
Perishable Shipment Tracker: Using
IoT, Web Bluetooth and Blockchain to
Raise Accountability and Lower Costs
in the Perishable Shipment Process

The Harvard community has made this
article openly available. Please share how
this access benefits you. Your story matters

Citation Galibert, Roland. 2019. Perishable Shipment Tracker: Using IoT,
Web Bluetooth and Blockchain to Raise Accountability and Lower
Costs in the Perishable Shipment Process. Master's thesis, Harvard
Extension School.

Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364573

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Perishable%20Shipment%20Tracker:%20Using%20IoT,%20Web%20Bluetooth%20and%20Blockchain%20to%20Raise%20Accountability%20and%20Lower%20Costs%20in%20the%20Perishable%20Shipment%20Process&community=1/14557738&collection=1/14557739&owningCollection1/14557739&harvardAuthors=427d992fe22f7ef1fc6ac57c67995bc1&departmentSoftware%20Engineering
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364573
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Roland L. Galibert

A Thesis in the Field of Software Engineering

for the Degree of Master of Liberal Arts in Extension Studies

Harvard University

November 2019

Using Espruino, Blockchain and Amazon Web Services to Raise Accountability and Lower Costs

in Perishable Shipping

© 2019 Roland L. Galibert

Abstract

Just like many other fields of application, IoT and blockchain have not left the

perishable shipment industry untouched, and these technologies have already improved

the overall quality of perishable goods by bringing advances to the shipping process.

However, there is still a great deal of room for improvement, especially with regard to

making IoT sensors more cost-effective, improving the accuracy of IoT sensors, and

raising the accountability of perishable shipment actors both through GPS tracking and

through the use of blockchain.

My thesis project has several goals: to provide a versatile, easy-to-use application

to suppliers who want to deploy sensors to track their shipments, to add an additional

level of accountability by incorporating blockchain in the application, and to examine the

use of Espruino devices and Web Bluetooth as a way to maintain IoT sensor accuracy

with minimal additional cost, and also as a way to allow suppliers to easily use a variety

of sensors.

As a result, my project consists of three primary components, a mobile-centered

serverless web application called the PST (Perishable Shipment Tracker), functionality

provided by Amazon Web Services and a temperature/GPS sensor device made up of a

puck.js Espruino unit combined with the GY-NEO6MV2 6M GPS NEO by Ublox.

iv

Frontispiece

The Dunedin, the first refrigerated clipper ship to complete a successful shipment of

refrigerated meat (from Wikipedia article “Reefer ship”

https://en.wikipedia.org/wiki/Reefer_ship).

https://en.wikipedia.org/wiki/Reefer_ship

v

Author’s Biographical Sketch

The author graduated from Williams College in 1984 where he majored in

English but also took a number of courses in computer science; his final project in his

programming class was to write a basic Turing machine in FORTRAN (on keypunch

cards). Another favorite course was a class in machine architecture where the final

assignment was to emulate a primitive computer on a Commodore SuperPet using 6809

assembler.

The author then took a number of graduate courses in computer science at

Rensselaer Polytechnic Institute (where assignments included developing a LISP

interpreter for a systems programming course and implementing extendible hashing as a

final project for a database management course). After a hiatus from the field of software

development, the author returned to studies in the field in 2013 when he began his

master’s studies in software engineering at Harvard Extension School.

Finally, the author also works as a certified German to English translator and in

his spare time enjoys golf, bridge, music and karaoke.

vi

Acknowledgments

I owe many thanks to Eric Gieseke, my Thesis Director, who contributed to my

thesis in many ways. We worked together for several months to improve on my original

proposal (a system to provision BLE beacons) to come up with a project which was more

specific and more current. Eric also helped to give me the proper mindset to developing

the solution, for example recommending to me the book The Lean Startup so I would

approach my solution from that standpoint, and recommending practical measures such

as interviewing providers with real-life problems, creating user stories, etc. Finally, the

learning I gained back in 2014 when I took Eric’s software design course was also a great

help in developing my solution.

I would also like to thank Dan Ward for his time. Dan’s input as an oyster farmer

and perishable food shipper was essential in providing function requirements that helped

guide the design.

vii

Table of Contents

Frontispiece .. iv

Author’s Biographical Sketch ..v

Acknowledgments.. vi

Chapter I. Problem Statement ..14

Figures Including Expected Growth ..15

Losses ...16

Fundamental Challenges ..17

Time ...17

Maintaining the cold chain...18

Maintaining cold chain over all stages...18

Related Challenges and Trends ..18

Multitude of regulations / paperwork ..19

Variety of actors ...20

Variety of carriers ..21

Accountability ..22

Food traceability ..22

Recent Digital Technologies Which Support Perishable Shipping23

IoT (Internet of Things) ...23

Espruino / Web Bluetooth. ...24

Tracking of temperature, humidity and other conditions.25

viii

Location/asset tracking. ...25

Blockchain ...27

Chapter II. Prior Work ...29

Tracking Applications ..29

Multi-Function Sensors ..30

GPS Trackers ...31

Temperature Loggers ...31

Espruino ...31

Chapter III. Requirements ..33

Dan Ward, Ward Aquafarms ...33

General shipping process and actors ..33

Accountability ..34

Measurements and frequency ..34

Shipment worth ..34

Disadvantages with previous systems used / failure points34

Mobile-based application ...35

Miscellaneous considerations ..35

Chapter IV. System Overview ...37

PST Application ...38

puck.js ..40

GY-NEO6MV2 6M GPS NEO module by Ublox40

Sensor Power Options ..41

Sensor Protection Options..41

ix

Chapter V. Design and Technology Choices ...43

Mobile optimized application ..43

Responsive mobile-based web application vs. native mobile application44

Serverless Application vs. Traditional Web Hosted Application46

Advantages of serverless computing ...47

Disadvantages of serverless computing ...48

Chapter VI. Use Cases ...51

Use Case Diagram..51

Use Case Actors ...52

Use Case – PFST System Administration ...52

1.1.1 Use Case – Create User Account ...52

1.1.2 Use Case – Access/Update User Account ...53

1.1.3 Use Case – Delete User Account ...53

1.1.4 Use Case – Procure PFST Device ..53

1.1.5 Use Case – Manage Device Stock ...54

1.1.6 Use Case – Create a Measurement Instruction ..54

1.1.7 Use Case – CRUD Preset Instructions/Definitions54

1.1.8 Use Case – Provision Shipment ...55

1.1.9 Use Case – Take Reading ..55

1.1.10 Use Case – Track Shipment ...56

1.1.11 Use Case – Complete Shipment ...56

1.1.12 Use Case – Return Device ...56

1.1.13 Use Case – View PFST Device Data ...56

x

1.1.14 Use Case – CRUD Harvest Info (Oyster Supplier)57

1.1.15 Use Case – Scan Harvest Tag (Oyster Supplier)57

1.1.16 Use Case – View Food History ..57

Chapter VII. Implementation ...58

PST Service ..58

Main service for the perishable shipping tracking application.59

Class Diagram ..59

Class Dictionary ...60

Device Control Service ..68

Service for supplier device control. ...69

Class Diagram ..69

Class Dictionary ...69

Reader Control Service ..70

Service for reader control...71

Class Diagram ..71

Class Dictionary ...71

Chapter VIII. Implementation Details ...73

Component Diagram ..73

Sequence Diagrams ..73

Sequence - General ..74

Sequence – Provisioning a Device ...74

Sequence – Taking a Reading ..75

Sequence – Completing a Shipment ..76

xi

Chapter IX. Testing ..77

Memory Capacity...77

GPS Accuracy ..78

Temperature Accuracy ...78

Battery Life ..79

Chapter X. Risks ..81

Web Bluetooth connection failure ...81

puck.js power failure ..81

Unauthorized access to puck.js ..81

Lack of reader Internet connection ..81

Service unavailability...82

Chapter XI. Results and Evaluation ...83

GPS 3.7V 350 mAh LiPo battery capacity test (Appendix 2)83

GPS 3.7V 1200 mAh LiPo battery capacity test (Appendix 3)84

GPS Accuracy Test (Appendix 4) ..85

Temperature Accuracy Test (Appendix 5) ..86

puck.js failure ...86

Chapter XII. Summary and Conclusions ...88

Contributions / Goals Attained ..88

Barebones ...89

Sensor versatility ..89

Reader/application device versatility ...89

Other versatility ...89

xii

Ease of use ...89

Accountability / reduction in paperwork ...90

Alerts ..90

Ease of use for application administrator ...91

Ublox sensor quality and price ..91

puck.js as a logger ..91

Sensor case compactness ...92

Unattained Goals ..92

puck.js as a temperature sensor ..92

Combo sensor cost-effectiveness ...92

Things I Would Have Done Differently ..93

Additional tests ..93

DynamoDB ..94

Future Work ...94

Receiver/end customer incentives..95

Blockchain for payment ...95

puck.js security ..95

puck.js identification/isolation ...96

Nordic Thingy 52 and other sensors ..96

Combine GPS coordinates with Google Places, maps, etc.96

Progressive web app/one page app ..97

Future Work of Value Beyond PST Application ...97

Enhanced Web Bluetooth connection interface ...97

xiii

Ublox GPS sensor quality ..97

Espruino ...97

Appendix 2 Capacity test of 3.7V 350 mAh lithium polymer battery101

Appendix 3 Capacity test of 3.7V 1200 mAh lithium polymer battery102

Appendix 4 GPS Accuracy Test ..103

Appendix 5 Temperature Accuracy Test ...109

Chapter XV. References ..114

Chapter I.

Problem Statement

The International Air Transport Association (IATA) defines a shipment as

perishable if “its contents will deteriorate over a given period of time when exposed to

harsh environmental conditions, such as extreme temperatures or humidity”

(https://www.fedex.com/en-us/shipping/perishables.html). Perishable shipments therefore

include commodities such as seafood, dairy, meats and pharmaceuticals.

Refrigeration is one primary method used to maintain a perishable commodity. In

the paper “The Impact of Refrigeration”, Barbara Krasner-Khait defines refrigeration as

the process of cooling a space or substance below environmental temperature, and notes

the concept has existed since antiquity, with the Chinese harvesting and storage ice

before the first millennium and the ancient Egyptians using cool night air to create snow

(Krasner-Khait, 2016).

The use of refrigeration to ship perishable cargo began to evolve from roughly the

mid-1800s and was the result of the ice harvesting industry. Ship owners transporting ice

found they could make even higher profits by taking advantage of the low temperatures

of their vessels to transport perishable cargo, and by the 1870s meat was being shipped

from the United States to London, from Argentina to France and from Australia to

England (Bryant, 2016). Then around 1930, with the increased popularity of road

transportation, mechanically cooled trucks also began to be used commercially (ABCO

Transportation, 2015).

https://www.fedex.com/en-us/shipping/perishables.html

15

Figures Including Expected Growth

A June 9, 2015 blog post by Joey Hougham of Transgistics claims that approximately

70% of all the food consumed in the United States is handled by cold chains, that the

United States alone imports about 30% of its fruits and vegetables and about 20% of its

food exports can be considered perishables (Hougham, 2015). These figures are

corroborated by a blog post by the cold chain monitoring solution provider Controlant

which states that FDA estimates show that approximately 15 percent of U.S. food is

imported, including one half of all fresh fruits, 20 percent of fresh vegetables, and 80

percent of all seafood, and this import and export trend expected to continue its growth

(Controlant, 2018). The Controlant post also indicates that the International Air Transport

Association (IATA) claims that by 2021, “world sales of cold-chain drugs and of

biologics such as vaccines and insulin will top $396 billion, in a global bio-pharma

market exceeding $1.47 trillion.”

Other reports also indicate that the perishable shipping industry will grow in the next few

years. The “Global Perishable Goods Transportation Market 2018-2022” report,

published by the market research company Technavio in July 2018, expects the

perishable goods transportation market to grow by USD 5.19 billion over 2018-2022 at a

compound annual growth rate of almost 8% (snapshot at

https://www.technavio.com/report/global-perishable-goods-transportation-market-

analysis-share-2018). Finally, a presentation by Gerard de Wit of WorldACD Market

Data at the IATA World Cargo Symposium in March 2016 showed an increased demand

for perishables in India and China.

https://www.technavio.com/report/global-perishable-goods-transportation-market-analysis-share-2018
https://www.technavio.com/report/global-perishable-goods-transportation-market-analysis-share-2018

16

Various reasons for this growth include an increased consumer desire for perishable

goods due to increased urbanization and income growth, general population growth and

the continued growth of the world’s largest food retailers. As a rule, developed countries

spend more on fresh food.

Losses

Shipment losses incurred by perishable good suppliers are great. These losses can arise

from factors including:

 a broken cold chain (not maintaining the proper temperature over the course of

the entire shipment)

 improper shipping conditions

 logistics issues

 lack of compliance

 lack of standardization

 lack of accountability and transparency

Breaches in the cold chain actually contribute to a 25% waste of all perishable food

products in the U.S. each year (Hougham, 2015). In addition, the annual economic impact

of food waste is estimated at $218 billion in the U.S., $143 billion in Europe, and $27

billion in Canada (Young 2012; ReFED 2015; FUSIONS 2016) (from Mercier et al.,

2017).

And according to a recent report from the IATA, the pharmaceuticals business “loses

upwards of a staggering $35 billion per annum” solely as a result of temperature

17

excursions and “30% of scrapped pharmaceutical can be attributed to logistics issues

alone.” (Buxbaum, 2018) Further data from IATA indicates that 25% of vaccines reach

their destinations degraded because of incorrect shipping and that 20% of temperature-

sensitive products are damaged during the transportation process due to a broken cold

chain.

Fundamental Challenges

Using refrigeration to ship perishable cargo brings a number of fundamental challenges;

two of the most important are keeping shipping time to a minimum and maintaining the

cold chain at every stage of the process.

Time

Ideally, the total time for a perishable shipment should be as short as possible,

with delays kept to a minimum (although even without delays some perishable shipment

times are expected to last up to several weeks or even more than a month). For example,

Kenneth Wu, the founder and CEO of the grocery delivery service Milk and Eggs in Los

Angeles says his company focuses on shortening delivery times to ensure product

freshness and safety and typically gets orders to customers in one to two hours (Wells,

2017). However, given situations such as shipper delays, missed connections, removing

perishable cargo to make room for necessary fuel and even competition for cargo from

other shippers, this is not always possible.

18

Maintaining the cold chain

According to the article “Time–Temperature Management Along the Food Cold

Chain: A Review of Recent Developments,” a cold chain is “the succession of

refrigeration steps along the supply chain that are applied to keep perishable food in the

desired temperature range” (Mercier et al., 2017).

Maintaining cold chain over all stages. Although a perishable being shipped must be kept

in a chilled or frozen state along its entire supply chain, it is a significant challenge to

maintain the temperature of the perishable item at each and every step of the chain

(Mercier et al., 2017). For example, the cold chain is often broken at the “last mile” of the

supply chain, when the product is actually delivered to its destination (Hougham, 2015).

Should the final customer leave a shipment pallet sitting out or otherwise fail to continue

to maintain refrigeration in good time, the product will become spoiled.

The very beginning of the shipment can be another point of failure; a good must have

already been brought to the correct temperature by the time it is transferred to the

delivery truck.

Different perishables have different requirements. In addition, suppliers must take into

account the differing requirements for different products, which are not only based on the

product itself but also on current regulations and consumption patterns (Controlant,

2018). For example, different categories of perishable food products (from dairy and eggs

to fruits and vegetables up to meat and seafood) have different optimal temperature

ranges in order to maximize their shelf-life and commercial potential (IATA 2009), from

(Mercier et al., 2017).

Related Challenges and Trends

19

In addition to the challenges basic to perishable shipping which are listed above,

perishable good suppliers must also contend with a number of related challenges as well

as current trends, a few of which are discussed below.

Multitude of regulations / paperwork

Perishable good suppliers must comply with a mass of domestic and international

regulations which are designed to ensure proper harvest, handling, sanitation and

documentation throughout the supply chain, and of course the associated paperwork. This

is especially true of seafood shippers; for example, a blog post on the mainebiz.biz Maine

business news website lists five regulatory bodies which oversee seafood exports, in

areas from import requirements to sanitation inspections and cargo compliance

(Schreiber, 2017). And of course, accurate records must be kept to verify requirements

(including temperature conditions) have been maintained (Controlant, 2018).

Actors in the perishable good shipping process can choose to deal with (or not

deal with) these regulations in a number of alternative ways. For example, after the U.S.

Department of Homeland Security issued regulations requiring 100-percent inspection of

all passenger aircraft cargo, a number of freight forwarders themselves attained the

credentials required to inspect and certify shipments so that they could avoid having to

wait for government inspections (Controlant, 2018). And in San Diego, because domestic

regulations are so much more stringent than overseas regulations, many restaurants

simply carry very little, if any, local products and offer mainly exported seafood

(Shoffler, 2018).

20

Variety of actors

In addition to the numerous regulatory bodies, which can vary by specific product

and by import/export country, perishable product suppliers must also take into account

the other actors involved in the shipment process, which include the actual shipper (or

shippers) and other intermediaries such as wholesalers. Since a shipment between

supplier and end customer is often handled by several parties (and not just one

intermediary), tracking the process becomes especially complicated (Ward, 2018).

As in any industry, competition can also be a problem for perishable product

suppliers. For example, an August 25, 2017 blog post describing a study of meal kit

providers described the “Wild West” environment of that industry, “where scores of

startups have jumped in to try and claim a slice of the market” despite not having the

capacity to properly handle product and control temperature. And trends such as the

farm-to-market movement will of course also affect the number of suppliers, markets and

restaurants involved in perishable shipping.

As a result, perishable product suppliers often look for ways to reduce the number

of actors required in the shipment process. As mentioned in the previous section, a

number of freight forwarders attained the credentials required to inspect and certify

shipments so as to avoid having to have the government do this inspection. As another

example, the FreshDirect removes physical stores from the supermarket equation by

delivering groceries to customers throughout the greater New York metropolitan area, all

of New Jersey, Philadelphia and Washington, D.C. (Orlando, 2017). Finally, blockchain

and IoT technologies (discussed in greater detail below) make it possible for suppliers to

21

eliminate intermediaries and in general give them much more control over the shipping

process.

Variety of carriers

Suppliers should be prepared to be flexible when it comes to selecting a carrier for

their goods, and not just for reasons of cost. Factors such as seasonal conditions, the

competition and need to store fuel can affect a specific carrier’s ability to take on a

shipment for a supplier at all.

Also, just in terms of air shipping, freighters and passenger aircraft each provide

different advantages. “Passenger flights are generally more frequent, less expensive, and

more widely available, they require adherence to tight schedules, and may get bumped

due to a variety of reasons. Freighters often offer better temperature control, additional

capacity, and fewer inspections, but they may fly less frequently and to fewer locations,

be more costly, and may sit until they reach near capacity, placing perishables at risk.”

(Controlant, 2018) The nature of goods being shipped, market needs and other elements

can also dictate a choice between freighters and passenger flights.

Ocean transport is also an option for shipping perishable goods, especially those

with longer shelf lives (Controlant, 2018). Some suppliers, especially pharmaceutical

companies, are also moving to ocean transport instead of air because air carriers can be

unreliable about ensuring the integrity of temperature-controlled shipments (also, costs

are cheaper) (Buxbaum, 2018). However, efforts by ocean transport providers to reduce

fuel consumption by traveling more slowly has led some perishable commodities to

return to air cargo (Controlant, 2018).

22

Accountability

For legal, regulatory and business reasons, perishable good suppliers must ensure

accountability, especially in cases where a shipment becomes spoiled. This can be

difficult, if only for the number of actors involved in the shipping process (as described

above). Other factors make ensuring accountability difficult, for example, the meal kit

study cited above notes that carriers like FedEx, UPS and the U.S. Postal Service all

waive any responsibility for perishable products; similarly, vendors say they’re not

responsible for deliveries that aren’t made on time” (Wells, 2017). Another article notes

that IATA claims 20% of vaccines are damaged during transport due to lack of

compliance, standardization, accountability, and transparency across the air transport

supply chain (Controlant, 2018).

Food traceability

The International Food Information Council Foundation (IFIC) has named food

traceability as one of the top five food trends in 2019 (Te-Food, 2019). Food Standards

Australia New Zealand defines traceability as the ability to track any food through all

stages of production, processing and distribution (including importation and at retail),

including the ability to trace movements one step backwards and one step forward at any

point in the supply chain

(http://www.foodstandards.gov.au/industry/safetystandards/traceability/Pages/default.asp

x).

Such traceability has seen increasing demand from consumers in recent years, and

not only from consumers who are able to afford fresh foods and specialty foods and

expect high quality. Because of increased media access made available by the Internet

http://www.foodstandards.gov.au/industry/safetystandards/traceability/Pages/default.aspx
http://www.foodstandards.gov.au/industry/safetystandards/traceability/Pages/default.aspx

23

(including social media) and mobile devices, consumers are much more aware of cases of

food poisoning such as the recent outbreak of E. coli infections related to romaine lettuce,

and therefore look for ways to ensure the food they eat is not harmful.

However, suppliers and other actors also show an increasing demand for food

traceability, and not just to meet the increased demand for regulation on the part of

consumers. Food traceability helps suppliers to reduce business costs, including costs

associated with spoilage and product recalls, to navigate a global food supply chain that

is becoming increasingly complex and to deal with changing industry processes (Fisher,

2015).

Recent Digital Technologies Which Support Perishable Shipping

A number of informational technologies which have been emerging in recent years are

very well-suited to meeting the various challenges faced by the perishable shipping

industry. One of these is the Internet of Things (IoT), which enables applications such as

time-based asset tracking, temperature tracking and tracking of other conditions such as

humidity and motion. The possibilities offered by the emerging technology of blockchain

can also be applied to solve problems which come up in perishable shipping.

IoT (Internet of Things)

The Internet of Things (IoT for short) refers to the billions of physical devices

around the world that are now connected to the Internet (Ranger, 2018). The term IoT is

generally used for devices that wouldn't traditionally be expected to have an Internet

connection, and that now collect, communicate and share data over the Internet in real

24

time, independently of human action (Ranger, 2018). The field is experiencing rapid

growth – with 8.4 billion IoT devices in use in 2017, there are already more connected

things than people in the world, and the analyst Gartner calculates that this will likely

reach 20.4 billion by 2020, with company spending on IoT endpoints and services

already reaching the trillions (Ranger, 2018).

Smart sensors are one key ingredient which makes IoT work. In general, a smart

sensor has three major components: a sensor that captures data from an environment; a

microprocessor, which computes on the output of the sensor via programming; and

communications capabilities that enable the sensor to communicate the microprocessor's

output for action (Shea, 2015). To be most effective, IoT should include wireless

communications, be smart enough to compute data remotely and be programmable to

accommodate new capabilities as needed, said Institute of Electrical and Electronics

Engineers senior member Shawn Chandler.

Espruino / Web Bluetooth.

Two technologies that can be used separately or in combination to bring about these three

requirements (wireless communications, compute data onboard and be programmable)

are Espruino and Web Bluetooth.

Espruino is an open-source JavaScript interpreter for microcontrollers which was created

by Gordon Williams in 2012 (its Kickstarter project calls it “JavaScript for Things”).

Espruino (including the JavaScript interpreter and development toolchain) is installed

directly on the microcontroller itself, making it possible to control an Espruino-based

device using JavaScript code (Williams, 2017). Such devices are versatile as well as

25

fairly accessible, since JavaScript is relatively easy to learn and is a language with which

programmers are generally familiar.

In addition, if an Espruino device has enough memory (such as the puck.js device

(https://shop.espruino.com/puckjs) used in this thesis project), it is easy to use it as a data

logger through the JavaScript interpreter.

Web Bluetooth is a JavaScript API which was designed by Jeffrey Yasskin and Vincent

Scheib of Google in 2014 (Woolley, 2017). The API, now a W3C Community Project

(https://www.w3.org/community/web-bluetooth/), makes it possible for web browsers to

connect to and interact with Bluetooth devices, through the use of JavaScript. One

advantage of this is that someone who wishes to use a Bluetooth device wouldn’t have to

download an install a native application, but could use the device immediately just by

accessing a website or wherever else the code in question exists. In addition, devices can

be controlled based on real-time conditions, making them extremely versatile. Finally, the

code is easily maintainable as it exists in one centralized location.

Tracking of temperature, humidity and other conditions.

IoT sensors which detect temperature, humidity, motion (like vibrations, jolts and

shocks), air quality or other conditions and have the capacity to store, process and

transmit their readings are important in meeting the challenges of perishable food

suppliers. The use of such sensors can help suppliers proactively react to suboptimal

conditions in the cold chain, to avoid further losses in cases where goods are already

spoiled, and to collect historical data to improve future shipments. Such sensors are

especially effective when used in combination with asset tracking.

Location/asset tracking.

https://shop.espruino.com/puckjs
https://www.w3.org/community/web-bluetooth/

26

In his article “What is the IoT? Everything you need to know about the Internet of Things

right now”, Steve Ranger writes that one of the first IoT applications was to add RFID

tags to expensive pieces of equipment in order to help track their location (assets can also

be tracked using other methods like GPS and Bluetooth). Ranger goes on to say that the

cost of adding sensors and an Internet connection to objects has continued to fall, and

experts predict that this basic functionality could one day cost as little as 10 cents

(Ranger, 2018).

A tracking unit that uses GPS will determine location by getting a read through GPS

satellites, then either store this location (latitude, longitude, altitude, etc.) and/or

communicate it to a reading device.

Using a sensor to track the location of a perishable shipment is extremely advantageous

for suppliers in many ways. They can know exactly where a shipment is at any time, so

shipping deviations can be corrected immediately. When location is used in combination

with time, suppliers can determine estimated time of arrivals and also become aware of

delays, e.g. shipments that remain at the same location for too long a period of time.

Finally, when used in combination with tracking of temperatures and other

measurements, suppliers can determine exactly where a shipment is when it has gone bad

or is about to go bad, making it possible to either make proactive corrections, save time

by cancelling a bad shipment, and in general ensuring accountability on the part of

shippers. Finally, historical location data can help a supplier plan future shipments by

taking into account things like how long a trip is likely to take, probable traffic

conditions, etc.

27

Blockchain

Investopedia describes blockchain as a “distributed, decentralized, public ledger.”

Its distinguishing features are that the transactional data stored on a blockchain are

immutable and transparent to anyone, and the blockchain has no central authority, as it is

maintained by many different computers (thousands and even millions).

The concept was first conceived in 1991, for the purpose of implementing a

system preventing the tampering of document timestamps. However, its first real-world

application didn’t arrive until 2009, with Bitcoin, described by its pseudonymous creator

Satoshi Nakamoto as “a new electronic cash system that’s fully peer-to-peer, with no

trusted third party.”

A blockchain essentially works as follows (Rosic, 2019):

 A user requests a transaction (e.g., a purchase from an online store).

 The transaction (participants, time of purchase, purchase amount, etc.) is verified

by broadcasting it to a peer-to-peer network made up of nodes (computers).

 The verified transaction is stored in a block (which includes the relevant

information

 The block is assigned a hash code and inserted at the “top” of the blockchain as its

last element

The system also has the following important features:

 Every block contains its own hash as well as the hash of the preceding block. This

means that a hacker who changed the data in a block would then need to change

the hashes of subsequent blocks in the chain, which would take immense effort in

terms of computing power)

28

 Every computer on blockchain network has its own copy of blockchain, meaning

a would-be hacker would also need to manipulate each copy of the blockchain.

This system brings the following advantages:

 Elimination of intermediary and associated costs - For example, someone making

an online purchase might use a credit card, PayPal or some other third-party

provider for the transaction, and would need to pay the associated fee (as well as

expend the effort to involve this provider at all). With blockchain, the need for

this third party is eliminated.

 Data immutability – Data stored on the blockchain cannot be changed and are

therefore secure and reliable.

 Transparency – Data on the blockchain are transparent so that transactions can be

traced.

 Accountability – This data immutability and transparency means that all

blockchain participants are easily kept accountable, as it is virtually impossible

for them to tamper with their transactional data, and any blockchain participant

can view their data.

These general advantages provided by blockchain are of course also advantages for any

perishable supplier who uses that technology to secure shipment data to hold perishable

shipment actors accountable and to eliminate unnecessary intermediaries as well as the

associated paperwork and costs. In his article “Blockchain for global maritime logistics”,

Ashraf Shirani describes some potential gains perishable suppliers can realize through the

application of blockchain, including reduced use of intermediaries, :especially the freight

forwarders who, by some estimates, account for over 20% of the total cost of logistics”,

29

savings in total shipping time, savings in time spent on paperwork (“the United Nations'

estimates suggest that by putting the Asia Pacific's trade related paperwork online would

save as much as 44% in time”) and “real- or near-real time availability of data in the

blockchain about location, condition, and movement of goods [which] would enhance

visibility for importers and exporters into their supply chains and help them make better-

informed decisions in sales, marketing, logistics, and other areas”.

And as a final plus, one of the four technological fields identified by Shiran as excellent

candidates for synergistic relationship with blockchain technology is the Internet of

Things (IoT) described above.

Chapter II.

Prior Work

The following is a non-exhaustive list of perishable shipping tracking

applications, multi-function sensors, GPS sensors and temperature sensors. The purpose

of this list is to give a general idea of what is currently available in terms of perishable

shipping technology and to provide a baseline and target for tests for the puck.js/Ublox

GPS sensor combination sensor on which this thesis is based.

Tracking Applications

Name Sendum Asset Monitoring Solution

Website https://sendum.com/

Price Findum software 36-month license – minimum $594 (544.50 upfront, 16.50

month repayment) – includes Asset Monitoring Device (price in Australian

dollars and based on information from Telstra mobile phone provider at

https://www.telstra.com.au/content/dam/tcom/personal/help/pdf/cis-

business/machine-2-machine/business-critical-information-summary-

30

Sendum.pdf)

Measurements supported Motion, shock, orientation, battery level, GPS jamming detection,

temperature, relative humidity, barometric pressure, and light power (some

measurements require purchase of Advanced Sensor Pack)

Temperature range storage -20° C to +65° C / -4° F to +140° F

active use -20° C to +40° C / -4° F to +104°  F

GPS features

Battery 3760 mAh lithium-ion battery (PT 300D unit)

External battery also available (not included)

Battery life Estimated 21-day battery life

Size 2.09” x 4.92” x 0.51”

Weight 100 grams

Other features Can set rules for automatic notifications/alerts/exceptions

Comments Data collected made available through portal

Multi-Function Sensors

Note: Queclink (www.queclink.com) offered a number of different sensors of varying

sizes and with different battery types. Depending on reporting interval, these batteries

provided a maximum life before recharging from 190 hours to 5 years. All GPS units

used the Ublox All-in-One GNSS receiver with position accuracy (autonomous) < 2.5 m.

I have included the two cheapest units, based on various websites.

Model name Queclink GL300ma

Price $39.00 (Amazon)

Measurements supported location, motion detection, light monitoring, temperature/humidity monitoring

Temperature range -20 C ~ +60C

GPS features Ublox All-in-One GNSS receiver

Position accuracy: autonomous: < 2.5 m

Battery Lithium polymer, 15000 mAh

Battery life 10 days to 95 days, depending on reporting interval (190 days without

reporting)

Size 74mm(L) x 34.5 mm (W) x 151 mm (H)

Weight 375 g

Other features water resistant, OTA control, geo-fencing

Scheduled report – Report position and status based on preset time intervals,

distance, mileage or a combination of these settings

Model name Queclink GL300

Price $88.00 (Amazon), $130 (Walmart)

Measurements supported motion detection, ignition detection, vibration feedback

GPS features Ublox All-in-One GNSS receiver

Position accuracy: autonomous: < 2.5 m

Battery Lithium polymer, 1300 mAh

Battery life 120 hours to 190 hours, depending on reporting interval (280 hours without

31

reporting)

Size 38.5mm(L) x 23.5 mm (W) x 68.5 mm (H)

Weight 60 g

Other features water resistant, OTA control, geo-fencing

Scheduled report – Report position and status based on preset time intervals,

distance, mileage or a combination of these settings

GPS Trackers

Name SpyTec STI_GL300 Mini Portable Real Time Personal and Vehicle GPS

Tracker

Price 49.95 + $25/month

Battery Lithium polymer 1300 mAh

Battery life Standby time w/o reporting: 400 hours

reporting every 5 minutes: 130 hours

reporting every 10 minutes: 150 hours

Size 2.7” x 1.6” x 0.8”

Weight 2.1 oz.

Temperature Loggers

Name LogTag TRIX-8 Temperature Data Recorder

Price $32 at microdaq

Temperature range -40°C to 85°C with ±0.5°C accuracy

Battery 3 volt lithium batttery

Battery life 2 to 3 years @ 15 minute sampling interval and monthly data downloads

Size 3.39" x 2.14" x 0.33"

Weight 35 grams

Other features Sampling frequency 30 seconds to 18 hours

Windows compatible

Espruino

Name Nordic Thingy 52

Website https://www.nordicsemi.com/Software-and-Tools/Development-Kits/Nordic-

Thingy-52

Price $39.00 at Mouser Electronics

Measurements supported Environment (temp, humidity, pressure, air quality color and light)

9-axis motion sensing (accelerometer, gyroscope and compass)

Battery 1440 mAh rechargeable through USB

Size 2.4” x 2.4”

Other features Web Bluetooth

Android, iOS apps

Near Field Communication (NFC) support

https://www.nordicsemi.com/Software-and-Tools/Development-Kits/Nordic-Thingy-52
https://www.nordicsemi.com/Software-and-Tools/Development-Kits/Nordic-Thingy-52

32

Speaker and microphone

Program Memory 512kB Flash with cache

RAM 64kB

GPIO 32 configurable

Comments Intended for prototyping

Chapter III.

Requirements

Dan Ward, Ward Aquafarms

Dan Ward is owner of Ward Aquafarms, an aquaculture farm in Megansett

Harbor, North Falmouth, MA which commercially grows oysters, bay scallops, quahogs,

and sugar kelp (website at http://wardaquafarms.com/). Eric Gieseke, my thesis director,

had attended an IoT-related meetup a few years ago in which Dan presented, and felt the

challenges faced by Dan in his business might benefit from a solution based on the

puck.js or similar IoT device.

On December 31, 2018 Dan, Eric and I met through Skype. My master’s project,

a mobile application that provisions IoT devices to track perishable shipments, as well as

the targets I used to measure application performance, are in most part based on the

information Dan shared with us at the meeting (Eric’s notes on our meeting also appear

in the Appendix). The major points of the meeting were as follows:

General shipping process and actors

Dan’s end customers include restaurants and fish markets (known as receivers

below) located mainly in the United States, although he does have international

customers. He ships his products to these actors through various shippers and

distributors/wholesalers; a shipment may involve more than one of these intermediaries.

http://wardaquafarms.com/

34

Accountability

Dan mentioned that on the whole shipments ran well and that he worked well with

intermediaries, but that unfortunately there were a few intermediaries who were “bad

apples” and he needed to hold those people accountable if a shipment became spoiled

while it was in their hands.

Measurements and frequency

As a result, Dan needs to regularly track the temperature and location of his

shipments, so that if a shipment becomes spoiled, he’ll know exactly where and

when this happened. He specified a general rate of one sample per hour, although

he added in some cases the sampling rate might need to be anything between

fifteen minutes and one hour.

Total shipment times average two to three days but could be as long as fourteen

days.

Shipment worth

Dan ships about 50 to 100 bags per week, with each shipment worth $60 to $100.

Disadvantages with previous systems used / failure points

Device cost – At one point Dan tried a sensor model from Queclink (website at

http://www.queclink.com/); its location and temperature readings were very accurate, but

the unit was every expensive (roughly $300).

http://www.queclink.com/

35

Accuracy – At another point, Dan also tried a model from Sendum (website at

https://sendum.com/); at $30 the device was much cheaper than the Queclink but was

very inaccurate both in terms of location and temperature.

Battery cost – Another failure point Dan mentioned was the high cost of batteries

(specifically lithium ion batteries).

End customer involvement – Dan’s experience was that the end customer

(restaurant, fish market, etc.) could not be relied on to return a device following a

shipment. As a result, the device should effectively be disposable (a maximum cost of

$1). Possibly the end customer should also have an incentive to return the device.

Mobile-based application

Dan works mainly from his smartphone, thus any tracking application he uses

would need to be mobile-ready and include appropriate alerts.

Miscellaneous considerations

 The oyster industry is highly regulated; as a result, Dan’s shipments are

already tagged (at the bag level) with a physical tag which indicates the

harvest number, harvest location, date and time the oysters were harvested

and the date and time they were iced. The end customer is required to keep

this tag for 90 days.

 Actor involvement should be kept to a minimum; at best, the end customer

might be willing to take a reading and, due to the number of intermediaries

involved and their workload, those parties couldn’t be expected to be

https://sendum.com/

36

involved in the tracking process, even by setting up a stationary reader at

each access point.

 End customer incentive – One incentive for an end customer to become

more involved in the process might be to provide their end customers

(restaurant guests, fish market customers) with information about the

product they’re eating (e.g. where the oysters came from, when they were

picked, etc.) Bumble Bee® Seafoods already provides such a tool with its

“Trace My Catch” web page (at

https://www.bumblebee.com/tracemycatch/).

https://www.bumblebee.com/tracemycatch/

Chapter IV.

System Overview

My master’s project has a number of goals:

 offer a versatile, easy-to-use application to perishable product suppliers

who want to deploy sensors to take readings (not just GPS and

temperature) over the course of their shipments, for the purpose of holding

all parties to the shipment accountable for their participation in the

shipment.

 add an additional level of accountability to this shipment process by

storing readings in a blockchain.

 The solution is intended to be offered to all sorts of perishable product

suppliers and as such is intended to accommodate a variety of sensors.

 The other main goal of my project is to provide improvements on Dan

Ward’s specific needs by offering a device for tracking GPS location and

temperature that maintains the accuracy of those readings but is more cost-

effective than the solutions he previously used.

 The versatility offered by the application is also shown to some degree in

the puck.js logger/temperature sensor which is the base unit of the device.

As a result, my project consists of three primary components, a mobile-centered

web application called the PST (Perishable Shipment Tracker), the functionality

38

made available through Amazon Web Services, and a temperature/GPS sensor

device made up of a puck.js Espruino unit combined with the GY-NEO6MV2 6M

GPS NEO by Ublox.

PST Application

The PST application is a solution provided to perishable product suppliers who

want to deploy sensors in order to take readings over the course of their shipments, for

the purpose of maintaining shipment party accountability and in turn improving the

quality of their product. The application aims to be scalable and to provide suppliers with

a high degree of versatility and ease of use, especially in terms of sensor device selection,

reader selection and application device selection (although given the current state of

technology and Dan’s needs, it is primarily a mobile application). The application is

hosted by Amazon Web Services and thus is also scalable in terms of supplier user

numbers.

The PST provides all functionality related to this. Supplier functionality includes:

 Offering suppliers a variety of sensor devices for purchase.

 Easy-to-use processes for creating shipment records and associating to

these the desired customer (or shipment receiver), measurements, alerts,

and internal supplier order.

 A preused value system is provided to facilitate shipment creation; after a

supplier first enters a value for a shipment (a product, shipping unit or

non-standard shipper), the value will automatically appear in future

shipment creation screens as a radio button option.

39

 Suppliers may also save entire shipment records as templates, which are

then offered for selection when future shipments are created.

 Easy-to-use processes for deploying sensors (especially those which

support Web Bluetooth) for shipments, taking readings from sensors, and

uploading these to a central cloud location.

 Once a supplier finalizes a shipment, the associated readings

automatically receive a blockchain transaction ID and hash to render them

untamperable and ensure accountability.

 SMS alerts automatically sent to shipment suppliers and receivers when

defined thresholds are exceeded.

 Shipment activity recorded in logs (logs are also provided for supplier

devices).

 A cache is provided in each reader to ensure sensor readings are stored in

case network connectivity is unavailable.

PST administrators have the following functionality:

 Creation of new device models (including association with measurement

types supported, vendor information, etc.)

 Addition of new measurement types available as well maintenance of

other master data (alert types associated with a measurement type, etc.)

 Updating of device model logs to clarify history, record issues, etc.

40

puck.js

The puck.js (https://www.puck-js.com/) is a small IoT device which comes with a

number of features which make it an excellent device model choice in the PST

application. Most important, its microcontroller comes with Espruino, a JavaScript

interpreter, which means the puck.js can easily be controlled through JavaScript. In

addition, the puck.js supports Web Bluetooth, which means the JavaScript to control the

puck.js can be stored in and called from a website, meaning any authorized user would be

easily able to control the unit without having to download and install additional code.

The puck.js comes with 64kB RAM and 512kB Flash controllable through

Espruino, so it can easily log large amounts of data. Finally, in addition to the sensors and

other hardware which come ready on the device (temperature sensor, light sensor,

magnetometer, IR, RGB LEDs, BLE beacon functionality, control button) the puck.js’

board has a number of GPIO pins so that the unit can be connected to other

modules/sensors, such as the Ublox GPS module described below.

To sum, the puck.js can be easily controlled just by accessing a website, provides

the logging necessary for tracking, and makes available a variety of sensors, either on its

own or by being connected to a separate sensor.

GY-NEO6MV2 6M GPS NEO module by Ublox

The Ublox GY-NEO6MV2 6M GPS NEO is the GPS sensor portion of the

hardware device I used for this project. The main reasons I selected it were for its small

size and good price ($12.45 on Amazon https://www.ebay.com/itm/Ublox-GY-

NEO6MV2-6M-GPS-NEO-Small-Antenna-Package-for-Arduino-AVR-

https://www.puck-js.com/
https://www.ebay.com/itm/Ublox-GY-NEO6MV2-6M-GPS-NEO-Small-Antenna-Package-for-Arduino-AVR-PIC/331831468002?hash=item4d42b25fe2:g:GBQAAOSww3tY4vV2:rk:3:pf:1&frcectupt=true
https://www.ebay.com/itm/Ublox-GY-NEO6MV2-6M-GPS-NEO-Small-Antenna-Package-for-Arduino-AVR-PIC/331831468002?hash=item4d42b25fe2:g:GBQAAOSww3tY4vV2:rk:3:pf:1&frcectupt=true

41

PIC/331831468002?hash=item4d42b25fe2:g:GBQAAOSww3tY4vV2:rk:3:pf:1&frcectu

pt=true).

The device is soldered to the puck.js and immediately sends data to the puck.js

once it is powered on. It may take several minutes for the GPS module to attain a good

signal.

Sensor Power Options

Some options for powering a puck.js/Ublox GPS module combination were

described on the Espruino forum conversation “GPS Module not sending data on

Puck.js” (http://forum.espruino.com/conversations/324744/) and included powering the

puck.js with a CR 2032 coin battery (its normal power source) and powering the GPS

module with three AA cells or with a lithium polymer battery, powering both units from

the puck.js’ CR 2032 coin battery, or powering both units from a separate power source

(e.g. a lithium polymer battery), possibly in combination with a resistor.

Sensor Protection Options

I purchased a variety of cases to house the puck.js/Ublox GPS module

combination; these included:

 Hammond 1551KTBU Translucent Blue ABS Plastic Project Box, in sizes

1.97” x 1.97” x 0.59”, 2.36” x 1.38” x 0.59”, 3.15” x 1.58” x 0.79”

(https://www.amazon.com/gp/product/B007PBYRZ6/ref=ppx_yo_dt_b_as

in_title_o01_s00?ie=UTF8&psc=1).

 Adafruit Small Plastic Project Enclosure 3.2" x 4.4" x 1.8"

(https://www.adafruit.com/product/903)

https://www.ebay.com/itm/Ublox-GY-NEO6MV2-6M-GPS-NEO-Small-Antenna-Package-for-Arduino-AVR-PIC/331831468002?hash=item4d42b25fe2:g:GBQAAOSww3tY4vV2:rk:3:pf:1&frcectupt=true
https://www.ebay.com/itm/Ublox-GY-NEO6MV2-6M-GPS-NEO-Small-Antenna-Package-for-Arduino-AVR-PIC/331831468002?hash=item4d42b25fe2:g:GBQAAOSww3tY4vV2:rk:3:pf:1&frcectupt=true
http://forum.espruino.com/conversations/324744/
https://www.amazon.com/gp/product/B007PBYRZ6/ref=ppx_yo_dt_b_asin_title_o01_s00?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B007PBYRZ6/ref=ppx_yo_dt_b_asin_title_o01_s00?ie=UTF8&psc=1
https://www.adafruit.com/product/903

42

 Adafruit Pycom Universal IP67 Case 85 x 85 x 40.5mm

(https://www.adafruit.com/product/3690)

 All of these are weatherproof and fairly rugged so as to meet Dan’s needs

and those of other suppliers. Tests are described below to study each

case’s robustness and ensure it does not affect acquisition of a GPS signal.

https://www.adafruit.com/product/3690

Chapter V.

Design and Technology Choices

Mobile optimized application

Given Dan’s requirements as well as the general user trend toward mobile devices and

away from desktops, it was obviously necessary that my application would need to be

optimized for use on a mobile device. A 2018 blog post by Britt Armour entitled “Mobile

App Vs. Mobile Website: Which Is The Better Option?” claims that the number of

mobile-only Internet users has overtaken desktop-only users and that mobile app usage

has surpassed desktop usage, giving the following statistics:

 Just two years ago in 2015, time spent on mobile surpassed time spent on desktop.

 Google reported that more searches were being made on mobile than desktop.

 From 2016 to 2017, time spent per day on mobile has increased by approximately

seven minutes, reaching a total 3 hours and 15 minutes per day.

 During that period, time spent on desktop decreased by one minute and TV

viewing decreased by five minutes.

The following statistics also appeared in a different blog post (Ciligot, 2019):

 Fifty-eight percent of website visits came from a mobile device in 2018,

surpassing desktop usage for the fourth consecutive year.

 Mobile devices also accounted for 42 percent of total time spent online.

44

However, the Armour post also noted that although mobile use is surpassing

desktop use exponentially, the latter “isn’t going away anytime soon”. For this and other

reasons, I chose to make the Perishable Shipment Tracker a browser-based application.

Responsive mobile-based web application vs. native mobile application

Another choice I had to make was whether to develop my application as a native mobile

application (running directly on Android, iOS, etc.) or as a website optimized for mobile

use. Both application types have advantages and disadvantages (Armour, 2018; Stevens,

2018):

Native mobile apps – advantages:

 have access to mobile device system resources

 can run offline

 run faster

 more advanced in terms of features and functionality

 more secure, as they must first be approved by the app store

 can identify user location

 can be personalized based on user configuration and user actions (this is an

advantage especially for marketers who want to engage users)

 can be better for users, as they are generally familiar with the specific mobile

operating system they use

Native mobile apps – disadvantages:

 need to be downloaded and installed

45

 must be developed specific to a given operating system

 more expensive and difficult to maintain and update

Mobile-optimized websites – advantages:

 don’t need to be downloaded

 aren’t tied to a specific operating system

 can be easier to develop (using website templates, etc.)

 less expensive to develop

 easy to maintain

 can reach a wider audience

 greater search engine reach capability (in addition, mobile-optimized websites

rank higher in search engine results than those not optimized for mobile)

Mobile-optimized websites – disadvantages:

 require an Internet connection

 slower

 fewer features, functionality (as they cannot access mobile device resources)

 quality and security not always ensured, as they don’t need to be approved by an

app store

As mentioned above, in the end I chose to make my application a browser-based

application optimized for mobile use, for the following reasons:

 I wanted my application to be able to run on a variety of devices (mobile phone,

desktop computer, etc.)

46

 As I wanted the application to be able to support the use of Espruino devices, it in

turn needs to be able to support Web Bluetooth, as well as the use of JavaScript to

run such devices. This is easily done using a browser-based app, as all modern

browsers support both of these (https://caniuse.com/#feat=web-bluetooth).

Espruino device communication and control would be considerably more difficult

through Android or iOS.

 Another key component of my application is the use of serverless computing and

in turn an API gateway. I felt a web application would make it clearer and more

straightforward to implement the API calls, as there are already many JavaScript

tools that can be used for this purpose.

Serverless Application vs. Traditional Web Hosted Application

Another decision I made was to implement my solution using serverless

computing (specifically Amazon Web Services).

In its current usage, serverless generally refers to a “Functions as a Service”

(FaaS) application where server-side logic is written by the application developer, but,

unlike traditional architectures, the logic is run in stateless compute containers that are

event-triggered, ephemeral (may only last for one invocation), and fully managed by a

third party (Fowler, 2018). Such an approach eliminates much of the need for a

traditional always-on server component, and in short relieves developers of much of the

need to manage resources, such as implementing logic to scale their applications to

variable factors such as number of current users, and significantly reduces operational

cost and complexity (but of course brings some drawbacks).

https://caniuse.com/#feat=web-bluetooth

47

Serverless can also refer to a “(Mobile) Backend as a Service” (BaaS) application,

which significantly or fully incorporates third-party, cloud-hosted applications and

services to manage server-side logic and state (Fowler, 2018). In other words, such

applications make great use of the variety of services provided through the cloud

(databases, authentication services, etc.) instead of depending on a single web host to

provide these services.

Advantages of serverless computing

The advantages of using serverless computing (FaaS and/or BaaS) to implement

an application include the following (Roberts, 2018):

 reduced operational cost – a serverless application saves costs in a number of

areas – since the serverless computing provider is doing most of the work of

managing resources, the saved labor results in savings, costs of developing

authentication functionality, DB functionality, etc. are avoided, and overall costs

are cheaper since many parties are using the same resources.

 scaling cost savings – since horizontal scaling is automatic, serverless computing

customers only pay for the server time they actually use. This means that a

customer no longer needs to buy extra hardware to accommodate isolated spikes

in traffic, extra hardware which would be wasted the rest of the time. In addition,

any performance optimizations which are implemented will not only improve the

speed of an application but also reduce operational costs. Finally, such an

approach greatly reduces costs and lead time for the experimental work involved

in developing a new product.

48

 easier operational management – in the case of BaaS, fewer components need to

be supported, while an FaaS application requires “zero system administration”

 greener computing – According to Forbes, typical servers in business and

enterprise data centers on average deliver between 5 and 15 percent of their

maximum computing output over the course of the year (Roberts, 2018). One

reason for this is that enterprises manually make decisions about capacity which

often last for months and years, and they must take into account isolated peak

periods of high traffic. In a serverless approach, an enterprise is relieved of

making such decisions and only uses as much resource as they actually need.

 ease of development – there is no need to code to specific framework or library;

FaaS functions are regular applications when it comes to language and

environment. All that needs to be done is to upload the code for functions, and the

FaaS provider takes care of everything else.

Disadvantages of serverless computing

In turn, a serverless application can bring the following disadvantages:

 tight vendor control – Serverless computing customers need to deal with things

such as system downtimes, unexpected limits, changes in costs, loss of

functionality and API upgrades. In addition, an FaaS provider will set tight limits

on customers so as to ensure reliability of the overall system.

 multitenancy problems – a solution with multiple tenants can bring problems of

security, robustness and performance.

49

 vendor lock-in – switching vendors can be difficult, since serverless features are

very likely implemented differently from vendor to vendor.

 increased application client responsibility - A BaaS/FaaS application client has

much more logic than client in a traditional web application, since it must keep

track of a user session, read from a database, understand the UX structure of the

application, etc.

 greater number of components to manage – Both BaaS and FaaS involve a greater

number of “moving pieces” than a traditional monolithic application, so a

serverless computing customer must be prepared to take this into account

(choreography over orchestration).

I elected to implement the PST solution as a serverless application for the

following reasons:

 Variety/multitude of suppliers and other actors – The PST application is intended

to handle a varying number of suppliers, each of whom may have one or more

receivers and all of whom (including the supplier) are authorized to upload

readings and view shipment data. It is also expected that other actors, such as

intermediaries (shippers and wholesalers) as well as end customers (restaurant

patrons and gourmet food customers) will respectively upload readings and view

shipment data. The number of these operations will also vary based on conditions

such as time of day, time of the year, etc., and may be quite large. As a result, the

automatic scaling possibilities provided by a serverless computing solution are a

good way to meet these challenges.

50

 Variety of services – At a minimum, the PST application will make use of at least

two third-party services; a blockchain service as well as a service to take in

supplier payments for using the application. In addition, I am considering the use

of an authentication service different from Cognito. As such an architecture

already corresponds to a BaaS setup, it makes sense to implement the solution as

a serverless application.

 Data volumes associated with IoT applications – Using serverless computing to

implement the PST application also makes sense since the application will need to

volume large amounts of data; it is expected that a large number of suppliers will

be making one or more shipments at a time, each being tracked over one or more

measurements, with the number of these measurements increasing further

depending on reading interval time. This decision is corroborated by Steve

Ranger, who writes in his article “What is the IoT? Everything you need to know

about the Internet of Things right now” that the huge amount of data that IoT

applications generate means that many companies will choose to do their data

processing in the cloud rather than build huge amounts of in-house capacity

(Ranger, 2018).

Chapter VI.

Use Cases

Use Case Diagram

52

Use Case Actors

PFST system administrator – An individual who maintains the overall PFST platform.

Supplier – A supplier of perishable food who has a PFST application account.

Oyster supplier – A specific Supplier, one who supplies oysters to Customers.

Customer – A purchaser and receiver of a shipment of perishable food (e.g. restaurant,

gourmet food store, etc.)

Consumer – An actual consumer of the perishable good (e.g. a customer of a restaurant or

gourmet food store).

Wholesaler – An intermediary between the Supplier and the Customer who is responsible

for all or part of the perishable food shipment. More than one Wholesaler may be

involved in any shipment.

Use Case – PFST System Administration

Description: A PFST system administrator configures/makes change to the PFST system.

Process:

1) The PFST system administrator logs into the application.

2) The PFST system administrator carries out required system configuration.

3) The PFST system administrator logs out of the application.

Possible system maintenance activities:

 Block/unblock a user

 Make new device available for purchase

 Approve/process a new supplier account request (purchase, etc.)

 Process a device purchase order from a supplier

 Process a failed payment

1.1.1 Use Case – Create User Account

Description: A supplier creates/accesses/updates/deletes his or her PFST application

account.

Process:

1) A non-logged-in user clicks on the “Create new account” link.

2) The user is brought to the corresponding page and enters the required information,

including payment.

3) The user is automatically logged in and brought to the device purchase screen.

53

1.1.2 Use Case – Access/Update User Account

Description: A supplier accesses and possibly updates data in his or her PFST application

account.

Process:

1) The supplier logs into the PFST application.

2) The supplier reads the data in his or her PFST application account.

3) (Optional) The supplier updates data in his or her PFST application account.

a. The supplier saves the changes or cancels the changes.

4) The supplier logs out of the PFST application.

1.1.3 Use Case – Delete User Account

Description: A supplier deletes his or her PFST application account.

Process:

1) The supplier logs into the PFST application.

2) The supplier clicks to delete in his or her PFST application account.

3) The supplier is asked to confirm this deletion:

a. If yes, supplier is logged out, redirected to PFST application home page and his

or her account deleted.

b. If no, supplier is redirected to his or her PFST application account page.

1.1.4 Use Case – Procure PFST Device

Description: A supplier purchases a PFST device.

Process:

1) The supplier clicks to access the PFST purchase page, first logging into the PFST

application if necessary.

OR

1) A new supplier is automatically redirected to the PFST device purchase page after

creating a user account.

2) Available PFST devices - The supplier, from the list of available PFST devices displayed,

selects how many of each device he or she would like to purchase.

3) The supplier confirms his or her current selections and is brought to the alternate shipping

address page (or cancels the current selections and is returned to the account page)

4) Alternate shipping address - The supplier is presented with his or her current shipping

address to which the supplier may make changes as necessary

5) Payment information - The supplier confirms the shipping address and is brought to the

payment page (or cancels the alternate shipping address entry process and is returned to

the account page)

6) The supplier enters his or her payment information and is brought to the purchase

confirmation page (or cancels the payment information entry process and is returned to

the account page)

54

7) Purchase confirmation – The supplier clicks “Confirm” to initiate the purchase and third-

party payment transaction process, and is brought to the purchase transaction result page

(or cancels the purchase confirmation process and is returned to the account page)

8) Third-party payment – The payment is processed by a third-party application.

9) Purchase transaction result – Appropriately shows whether the payment was completed

successfully or not.

a. Payment succeeded page - Appropriate text including button to bring supplier

back to account page.

b. Payment failed page – Appropriate text including button to bring supplier back to

account page.

1.1.5 Use Case – Manage Device Stock

Description: A supplier views and/or maintains the PFST devices he or she owns.

Process:

1) The supplier logs in if necessary and accesses his or her MyDevices page.

2) If necessary, the supplier maintains his or her devices, including:

 Updating the status of a device (possible statuses: ready for use, in shipment, lost,

decommissioned)

 Adding a comment to the comment log

1.1.6 Use Case – Create a Measurement Instruction

Process:

1) A supplier accesses the screen to create a measurement instruction, logging into the PFST

application if necessary

2) The supplier creates a measurement instruction (e.g. measure the temperature of this

shipment every 1 hour AND measure the location of this shipment every hour).

3) If desired, the supplier also stores this measurement instruction for use for future

shipments.

1.1.7 Use Case – CRUD Preset Instructions/Definitions

Description: A supplier creates, reads, updates or deletes a preset measurement

instruction or alert definition.

Process:

1) The supplier accesses the screen to CRUD a preset measurement instruction or alert

definition, logging into the PFST application if necessary

2) The supplier is presented with a list of any previously created measurement

instructions/alert definitions.

3) The supplier either

a. Clicks on the link to create a measurement instruction/alert definition, and is

brought to the create measurement/alert definition page OR

b. Clicks on a previously created measurement instruction/alert definition to

read/modify/delete the definition, and is brought to the measurement/alert detail

page OR

55

c. Clicks on the appropriate link to delete a previously created measurement

instruction/alert definition.

1.1.8 Use Case – Provision Shipment

Description: A supplier provisions a shipment, including associating a device with the

shipment.

Process:

1) The supplier creates a record for the given shipment.

2) The supplier, in the application, associates the measurement instructions with the

shipment.

3) The supplier, in the application, associates any desired alert definitions with the

shipment.

4) The supplier uploads measurement instructions to the device, so the device knows what

measurements (e.g. temperature, humidity) are to be taken and at what intervals (e.g.

every hour, every 15 minutes, etc.)

5) The supplier, in the application, associates the device with the given shipment.

6) Oyster supplier: The supplier, in the application, associates harvest data (e.g. harvest

location, date/time oysters were harvested, date/time oysters were iced, etc.) with the

shipment (also see “Use Case – Scan Harvest Tag”)

7) The supplier physically associates the device with the shipment (e.g. attaches the device

to a bag of oysters, attaches the device to a shipment case, etc.)

8) When the actual shipment begins, the supplier triggers the device to begin reading (see

“Use Case – Take Reading”)

1.1.9 Use Case – Take Reading

Description: A supplier with a mobile device, customer with a mobile device or fixed

reader takes a reading from a PFST device associated with an ongoing shipment.

Process:

1) The supplier/customer takes a reading using a mobile device (at a minimum, it is

expected that the supplier will take a reading at the start of the shipment and that the

customer will take a reading upon completion of the shipment).

OR

1) A fixed reader installed within the vicinity of the PFST device takes readings at the

intervals specified in the measurement instructions associated with the given shipment.

2) An alert is displayed to the supplier/customer or in the reader if a measurement(s)

exceeds a warning limit or permissible limit.

3) The option to complete the shipment in the PFST application should also be easily

available to the user/device in the event this reading is the final reading for the shipment

(i.e. the shipment is complete).

Notes:

 This reading can be (and most likely is) a set of multiple readings which have

accumulated since the last time the device was read for the given shipment.

56

 Remaining battery power should also be read along with the given measurements.

1.1.10 Use Case – Track Shipment

Description: A supplier or customer views the measurement data which has been logged

thus far for a specific shipment.

Process:

1) The supplier/customer accesses the given shipment, logging into the PFST application if

necessary.

2) The measurement data are displayed sorted ascending by time the measurement was

taken.

1.1.11 Use Case – Complete Shipment

Description: The shipment arrives at the expected customer location and the customer

indicates the shipment as complete in the PFST application.

Process:

1) The customer accesses the complete shipment screen, logging into the PFST application

if necessary.

2) The customer indicates the shipment is complete(, in the process accepting/rejecting the

shipment?).

1.1.12 Use Case – Return Device

Description: A customer returns the PFST device to a supplier after a given shipment is

completed.

Process:

1) The customer collects PFST device(s) associated with completed shipments and returns

these to the supplier (e.g. in a self-addressed mailer already provided by the supplier).

2) The supplier receives the device(s) and indicates in the PFST application that they have

been returned.

1.1.13 Use Case – View PFST Device Data

Description: A supplier views data associated with a PFST device. The supplier can do

this either by searching for the device within the PFST application and accessing its data,

or automatically by calling up the data associated with a device in the supplier’s vicinity.

Process:

57

1) The supplier accesses the data in the PFST application associated with a device in the

supplier’s vicinity

OR

1) The supplier accesses the data in the PFST application associated with a device by:

 accessing the device overview page and clicking on the appropriate device to call

up the device’s detail page

 searching for the device in the device search screen

 clicking on the device associated with a shipment

1.1.14 Use Case – CRUD Harvest Info (Oyster Supplier)

Description: An oyster supplier enters information about an oyster harvest into the PFST

application, so it can be associated with a shipment.

Process:

1.1.15 Use Case – Scan Harvest Tag (Oyster Supplier)

Description: An oyster supplier scans the number on the plastic tag attached to a bag of

oysters (required by law to track information related to the oyster harvest), so it can be

associated with an oyster harvest information record and with a device/shipment.

Process:

1.1.16 Use Case – View Food History

Description: A consumer accesses the history (shipment values measured as well as any

supplier-specific information available such as oyster harvest information) associated

with food he or she is purchasing.

Process:

Chapter VII.

Implementation

PST Service

59

Main service for the perishable shipping tracking application.

Class Diagram

60

Class Dictionary

API

API calls for main PST Service.

Name Signature Description

signup (userId:String, password:String) Registers a new user with the

PST service.

signupConfirm (confirmationCode:String) Confirms new user registration

with the PST service.

login (userId:String, password:String) Logs a user into the PST service.

logout (token:AccessToken) Logs a user out from the PST

service.

createShipment (token:AccessToken, supplierId:String,

shipment:Shipment)

Creates a new shipment record

for the supplier with the

specified supplierID, using the

values in the shipment object.

getShipment (token:AccessToken, supplierId:String,

shipmentId:UUID)

Gets the shipment record

associated with the specified

supplier ID and shipment ID.

updateShipment (token:AccessToken, supplierId:String,

shipmentId:UUID, shipment:Shipment)

Updates the shipment record

associated with the specified

supplier ID and shipment ID,

using the values in the shipment

object.

deleteShipment (token:AccessToken, supplierId:String,

shipmentId:UUID)

Deletes the shipment record

associated with the specified

supplier ID and shipment ID.

createReceiver (token:AccessToken, supplierId:String,

receiver:Receiver)

Creates a new receiver record

for the supplier with the

specified supplierID, using the

values in the receiver object.

getReceiver (token:AccessToken, supplierId:String,

receiverId:UUID)

Gets the receiver record

associated with the specified

supplier ID and receiver ID.

updateReceiver (token:AccessToken, supplierId:String,

receiverId:UUID, receiver:Receiver)

Updates the receiver record

associated with the specified

supplier ID and receiver ID,

using the values in the receiver

object.

deleteReceiver (token:AccessToken, supplierId:String,

receiverId:UUID)

Deletes the receiver record

associated with the specified

supplier ID and receiver ID.

getShipmentLog (token:AccessToken, supplierId:String,

shipmentId:UUID)

Gets the shipment log entries

associated with the specified

supplier ID and shipment ID.

updateShipmentLog (token:AccessToken, userId:String,

shipmentId:UUID,

entryType:ShipmentLogEntryType,

entry:Map)

Updates the shipment log entry

associated with the specified

supplier ID and shipment ID,

using the values in the entry

object.

createSupplierDevice (token:AccessToken, supplierId:String,

supplierDevice:SupplierDevice)

Creates a new supplier device

record for the supplier with the

61

specified supplierID, using the

values in the supplierDevice

object.

getSupplierDevice (token:AccessToken, supplierId:String,

supplierDeviceId:UUID)

Gets the supplier device record

associated with the specified

supplier ID and supplier device

ID.

updateSupplierDevice (token:AccessToken, supplierId:String,

supplierDeviceId:UUID,

supplierDevice:SupplierDevice)

Updates the supplier device

record associated with the

specified supplier ID and

supplier device ID, using the

values in the supplierDevice

object.

getSupplierDeviceLog (token:AccessToken, supplierId:String,

supplierDeviceId:UUID)

Gets the supplier device log

entries associated with the

specified supplier ID and

supplier device ID.

updateSupplierDeviceLog (token:AccessToken, supplierId:String,

supplierDeviceId:UUID,

entry:String)

Updates the supplier device log

entry associated with the

specified supplier ID and

supplier device ID, using the

values in the entry object.

getSupplierMasterData (token:AccessToken, supplierId:String) Gets the master data associated

with the supplier with the

specified supplier ID.

createDeviceModel (token:AccessToken, userId:String,

deviceModel:DeviceModel)

Creates (on behalf of the

administrator with user ID

userID) a new device model

using the values in the

deviceModel object.

getDeviceModel (token:AccessToken, userId:String,

deviceModelId:UUID)

Gets (on behalf of the

administrator with user ID

userID) the device model

associated with the specified

device model ID.

updateDeviceModel (token:AccessToken, userId:String,

deviceModelId:UUID,

deviceModel:DeviceModel)

Updates (on behalf of the

administrator with user ID

userID) the device model record

associated with the specified

device model ID, using the

values in the deviceModel

object.

getDeviceModelLog (token:AccessToken, userId:String,

deviceModelId:UUID)

Gets (on behalf of the

administrator with user ID

userID) the device model log

entries associated with the

specified supplier ID and

supplier device ID.

updateDeviceModelLog (token:AccessToken, userId:String,

deviceModelId:UUID,

entry:String)

Updates (on behalf of the

administrator with user ID

userID) the device model log

entry associated with the

specified device model ID, using

the values in the entry object.

62

User

Table of PST application users.

Property name Type Description

id (= email) String User id (= user’s email address).

passwordHash String Hash of user’s password.

roles Map Array of user’s roles.

Suppliers

Table of suppliers registered to use PST application.

Property name Type Description

id String Supplier’s user ID.

company String Name of supplier’s company.

shipAddrLine1 String Supplier’s shipping address line 1.

shipAddrLine2 String Supplier’s shipping address line 2.

shipAddrCity String Supplier’s shipping address city.

shipAddrState String Supplier’s shipping address state.

shipAddrZip String Supplier’s shipping address zip code.

busAddrLine1 String Supplier’s business address line 1.

busAddrLine2 String Supplier’s business address line 2.

busAddrCity String Supplier’s business address city.

busAddrState String Supplier’s business address state.

busAddrZip String Supplier’s business address zip code.

billAddrLine1 String Supplier’s billing address line 1.

billAddrLine2 String Supplier’s billing address line 2.

billAddrCity String Supplier’s billing address city.

billAddrState String Supplier’s billing address state.

billAddrZip String Supplier’s billing address zip code.

contactName String Name of supplier contact.

contactEmail String Email of supplier contact.

contactMobile String Mobile phone number of supplier contact.

contactLandline String Landline number of supplier contact.

contactAltPhone String Alternate phone number for supplier contact.

paymentMethod Map Supplier’s payment methods (credit card

and/or PayPal)

Receivers

Table of receiving customers associated with suppliers registered to use PST

application.

Property name Type Description

id String Receiver’s user ID.

supplierId String User ID of supplier associated with receiver.

company String Name of receiver’s company.

63

shipAddrLine1 String Receiver’s shipping address line 1.

shipAddrLine2 String Receiver’s shipping address line 2.

shipAddrCity String Receiver’s shipping address city.

shipAddrState String Receiver’s shipping address state.

shipAddrZip String Receiver’s shipping address zip code.

busAddrLine1 String Receiver’s business address line 1.

busAddrLine2 String Receiver’s business address line 2.

busAddrCity String Receiver’s business address city.

busAddrState String Receiver’s business address state.

busAddrZip String Receiver’s business address zip code.

contactName String Name of receiver contact.

contactEmail String Email of receiver contact.

contactMobile String Mobile phone number of receiver contact.

contactLandline String Landline number of receiver contact.

contactAltPhone String Alternate phone number for receiver contact.

Shipments

Table of shipments created by a PST application supplier.

Property name Type Description

id String Unique ID for shipment.

supplierId String User ID of supplier who created shipment.

receiverCompany String Receiving company associated with shipment.

receiverId String User ID of receiving company associated with

shipment.

supplierDeviceName String Name of supplier device associated with the

shipment.

supplierDeviceId String Unique ID of supplier device associated with

the shipment.

product String Product being shipped.

shippingUnit String Product shipping unit.

quantity Number Number of shipping units in shipment.

shipper String Shipping company handling the shipment.

trackingNumber String Tracking number assigned to the shipment by

shipping company.

internalOrderNumber String Internal order number assigned to the shipment

by the supplier.

measurements String[] Measurements to be taken for the shipment

(array of [type, interval]).

alerts String[] Alerts defined for the shipment (array of [type,

limit value, alert level]).

dateCreated Number Time shipment was created.

expectedStartTime Number Time shipment is expected to begin.

actualStartTime Number Time shipment actually began.

receivedTime Number Time shipment was received.

finalizedTime Number Time shipment was finalized (and readings

subsequently written to blockchain).

status String Current status of shipment.

accepted Number (boolean) Boolean indicating whether or not shipment

was accepted.

blockchainTransactionId String Blockchain transaction ID.

64

blockchainHash String Blockchain hash.

blockchainRecord blob Readings record stored in blockchain (JSON

object).

ShipmentLog

Table of entries in log for a shipment (each shipment has one to many log entries).

Property name Type Description

id String Unique ID for shipment log entry.

shipmentId String Unique ID for shipment.

userId String ID of user who created this entry.

timestamp Number Time user created this entry.

entryType String Entry type (comment, readings upload, etc.).

entry Map Actual entry (JSON based on entry type).

ShipmentTemplates

Table of shipment templates associated with a supplier (zero to many).

Property name Type Description

id String Unique ID for template.

supplierId String Supplier’s user ID.

name String Name assigned to template.

receiverCompany String Template receiving company.

receiverId String User ID associated with template receiving company.

supplierDeviceName String Template supplier device name.

supplierDeviceId String Template supplier device ID.

product String Template product.

shippingUnit String Template shipping unit.

quantity Number Template quantity.

shipper String Template shipper.

measurements String[] Template measurement instructions.

alerts String[] Template alerts.

PreusedShipmentValues

Table of shipment values (product, shipping unit and shipper) previously used by

a supplier when creating shipments (these values were previously entered manually but

will now automatically appear as radio button selections).

Property name Type Description

supplierId String Supplier’s user ID.

products String[] Array of products used in previous shipments created by

supplier.

65

shippingUnits String[] Array of shipping units used in previous shipments created

by supplier.

shippers String[] Array of shippers used in previous shipments created by

supplier.

DeviceModels

Table of device models which are/were available for purchase by suppliers.

Property name Type Description

id String Unique ID for device model.

name String Name of device model.

description String Description of device model.

wholesalePrice Number Device model’s wholesale price.

retailPrice Number Device model’s retail price.

supportedMeasurements String[] Types of measurements possible with this device model.

vendor String Device model vendor.

addrLine1 String Device model vendor address line 1.

addrLine2 String Device model vendor address line 2.

addrCity String Device model vendor address city.

addrState String Device model vendor address state.

addrZip String Device model vendor address zip code.

contactName String Name of device model vendor contact.

contactEmail String Email of device model vendor contact.

contactMobile String Mobile phone number of device model vendor contact.

contactLandline String Landline number of device model vendor contact.

contactAltPhone String Alternate phone number for device model vendor

contact.

DeviceModelLog

Table of entries in log maintained for a device model (each device model can

have zero to many log entries).

Property name Type Description

id String Unique ID for log entry.

deviceModelId String Unique ID for device model.

userId String ID of user who created this entry.

timestamp Number Time this entry was created.

entry String Actual entry.

SupplierDevices

Table of devices owned by a supplier.

Property name Type Description

66

id String Unique ID assigned to this supplier device.

supplierId String User ID of supplier who owns this device.

datePurchased String Time supplier acquired this device.

deviceModelId String Unique ID assigned to device model of which this

device is an instance.

status String Current status of supplier device (active, discontinued,

etc.)

SupplierDeviceLog

Table of entries in log for a supplier device (each supplier device can have zero to

many log entries).

Property name Type Description

id String Unique ID for log entry.

supplierDeviceId String Unique ID assigned to supplier device.

userId String ID of user who created this entry.

timestamp Number Time this entry was created.

entry String Actual entry.

Roles

Possible user roles (enum).

Property name Type Description

id String ID assigned to role.

role String Role code (e.g. ADMIN, SUPPLIER, etc.)

description String Description of role.

Measurements

Possible measurements (enum).

Property name Type Description

id String ID assigned to this measurement type.

measurement String Measurement type code (e.g. GPS, TEMPERATURE,

etc.)

description String Further description of this measurement type.

AlertTypes

Possible alert types (enum).

Property name Type Description

id String ID assigned to this alert type.

67

alertType String Alert type code (e.g. MIN_TEMPERATURE,

MAX_TEMPERATURE, etc.)

measurement String Measurement type with which this alert is associated

(e.g. TEMPERATURE, etc.).

AlertLevels

Possible alert levels (enum).

Property name Type Description

id String ID assigned to this alert level type.

alertLevel String Alert level code (e.g. INFORMATIONAL,

WARNING, CRITICAL, etc.)

description String Further description of this alert level.

ShipmentStatuses

Possible shipment statuses (enum).

Property name Type Description

id String ID assigned to this shipment status.

shipmentStatus String Shipment status code (e.g. PENDING, IN_TRANSIT,

COMPLETED, etc.)

description String Further description of this shipment status.

DeviceModelStatuses

Possible device model statuses (enum).

Property name Type Description

id String ID assigned to this device model status.

deviceModelStatus String Device model status code (e.g. AVAILABLE,

DISCONTINUED, etc.)

description String Further description of this device model status.

SupplierDeviceStatuses

Possible supplier device statuses (enum).

Property name Type Description

id String ID assigned to this supplier device status.

supplierDeviceStatus String Device model status code (e.g. AVAILABLE,

DISCONTINUED, etc.)

description String Further description of this supplier device status.

68

ShipmentLogEntryTypes

Possible shipment log entry types (enum).

Property name Type Description

id String ID assigned to this shipment log entry type.

entryType String Shipment entry type code (e.g. COMMENT,

READINGS, etc.)

description String Further description of shipment log entry type.

Device Control Service

69

Service for supplier device control.

Class Diagram

Class Dictionary

API

Possible Device Control API calls.

Name Signature Description

getDeviceData ():Object Returns data associated with this

device (serial number, etc.).

startTracking (shipmentId:UUID,

measurements:Measurement[]):void

Command for device to start tracking

the measurements specified in

measurements for shipment

shipmentId.

stopTracking ():void Command for device to stop tracking.

getLog ():Object Returns reading data stored on this

device.

70

clearLog ():void Clears device log.

clearDeviceMemory ():void Clears all device memory.

Readings

Current readings stored on device.

Property name Type Description

shipmentId UUID Unique ID of shipment for which device is taking

readings.

deviceModel String Device model.

deviceSerial String Device serial number.

startTime long Time readings began to be taken.

stopTime long Time readings stopped being taken.

log Object Actual readings (array of [{type, readings[]}])

Reader Control Service

71

Service for reader control.

Class Diagram

Class Dictionary

API

Possible Reader Control API calls.

Name Signature Description

uploadCurrentReadingsToCloud ():void Uploads readings of current device being

scanned to cloud.

saveCurrentReadingsToCache (Object):void Stores readings of current device being scanned

to this reader’s cache.

uploadCacheToCloud ():void Uploads cache readings to cloud.

clearCache ():void Clears this reader’s cache.

Cache

Reader cache.

Property name Type Description

72

cachedReadings CachedReading[] Readings currently cached in this reader.

CacheReading

Cached reading object.

Property name Type Description

userId String ID of user who cached readings.

timestamp long Time these readings were cached.

readings Object Actual readings.

Chapter VIII.

Implementation Details

Component Diagram

Sequence Diagrams

74

Sequence - General

Sequence – Provisioning a Device

75

Sequence – Taking a Reading

76

Sequence – Completing a Shipment

Chapter IX.

Testing

I came up with a number of tests to check the puck.js/Ublox GPS combination

sensor on the basis of memory capacity (RAM and flash), power consumption (various

options), GPS accuracy and temperature accuracy.

Memory Capacity

I came up with the following tests to make sure the memory capacity of the combination

sensor would be adequate for Dan Ward’s needs, and also to get a general idea of the

maximum period of time the puck.js would be able to log data:

 RAM – Take GPS and temperature readings every hour for several days (Dan’s

requirements).

 RAM – Take GPS and temperature readings every 10 minutes for several days

(more rigorous test).

 Flash – Take GPS and temperature readings every hour for several days (Dan’s

requirements).

 Flash – Take GPS and temperature readings every 10 minutes for several days

(more rigorous test).

 RAM and flash – Take GPS and temperature readings every hour for several days

(Dan’s requirements).

78

 RAM and flash – Take GPS and temperature readings every 10 minutes for

several days (more rigorous test).

GPS Accuracy

I came up with the following tests to measure the accuracy of the Ublox GY-NEO6MV2

unit:

 Take GPS readings every 3 minutes with the Ublox for every several hours over

the course of a car ride, at the same time taking GPS readings with another sensor

(in this case the GPS Logger application on my Android smartphone) so that

results can be compared.

 Repeat this test with a second Ublox unit to confirm the accuracy of the device in

general.

Temperature Accuracy

I came up with the following tests to measure the accuracy of the puck.js temperature

sensor:

 Take temperature readings with a puck.js every 5 minutes for 24 hours, varying

temperature during certain periods (e.g. by putting the sensor in a refrigerator,

next to a space heater, etc. for several hours), at the same time taking temperature

readings with another sensor (in this case the Elitech RC-5 Data Logger) so that

results can be compared.

79

 Repeat this test with a second puck.js to confirm the accuracy of the device in

general.

Battery Life

I came up with the following tests, based on the power options suggested in the Espruino

forum conversation “GPS Module not sending data on Puck.js” mentioned above, to

check the battery life of the puck.js/Ublox GPS combination sensor:

 puck.js w/ CR 2032 + Ublox w/ 3.7 V 350 mAh LiPo – Log GPS and temperature

every hour for several days; log GPS and temperature every 10 minutes for

several days.

 puck.js w/ CR 2032 + Ublox w/ 3.7 V 1200 mAh LiPo – Log GPS and

temperature every hour for several days; log GPS and temperature every 10

minutes for several days.

 puck.js w/ CR 2032 + Ublox w/ 3 AA cell battery pack – Log GPS and

temperature every hour for several days; log GPS and temperature every 10

minutes for several days.

 puck.js and Ublox both powered w/ 3.7 V 350 mAh LiPo – Log GPS and

temperature every hour for several days; log GPS and temperature every 10

minutes for several days.

 puck.js and Ublox both powered w/ 3.7 V 1200 mAh LiPo – Log GPS and

temperature every hour for several days; log GPS and temperature every 10

minutes for several days.

80

The above tests should be repeated separately with a duplicate puck.js device, a duplicate

Ublox GPS unit and duplicate batteries to confirm the accuracy of results.

In addition, these tests can simultaneously check and confirm memory capacity limits,

assuming this won’t change test conditions.

Chapter X.

Risks

Unfortunately, the platform does come with some risks. Although the most

important are related to the puck.js device and could therefore be avoided altogether just

by using a different device, some risks are related to other system components.

Web Bluetooth connection failure

An inability for a reader to connect to a puck.js device (or other device that is accessed

through Web Bluetooth) could result in lost readings.

puck.js power failure

Should the battery powering a puck.js run down, this will result in loss of the device’s

data, which are lost upon startup. It must be ensured that a puck.js will have sufficient

power for an entire shipment.

Unauthorized access to puck.js

A hacker who manages to gain access to the Espruino interpreter could read, or even

worse tamper with, shipment readings. Measures should be taken to secure this data as

best as possible.

Lack of reader Internet connection

82

An Internet connection might not be readily available to a reader; as a result, a reader

might not be able to promptly upload crucial data (e.g. a shipment which has reached

critical temperature). In addition, a missing mobile connection could prevent a

smartphone from receiving a shipment alert.

Service unavailability

Cloud services might be temporarily unavailable. This would be a problem especially in

the case of AWS SNS availability; provisions should also be made in the case of

blockchain service unavailability.

Chapter XI.

Results and Evaluation

Unfortunately, due to time constraints, I was only able to carry out six tests, two

of which I have no readings for because the puck.js failed for various reasons and the

logged data was lost when I restarted the device. However, even with this test data I was

able to draw some conclusions.

GPS 3.7V 350 mAh LiPo battery capacity test (Appendix 2)

In this test, the puck.js was powered with a CR 2032 cell battery and the Ublox GPS

module was powered with a 3.7V 350 mAh lithium polymer battery, and I logged both

GPS location and temperature to puck.js RAM every 10 minutes for approximately 12

hours. The main purpose of this test was to determine how well a 350 mAh lithium

polymer battery could power the Ublox GPS module, but I took advantage of the test to

assess the capacity of the CR 2032 battery when used to determine the power the puck.js

and also to get an idea of how well RAM would hold out when logging data over an

extended period of time.

3.7V 350 mAh LiPo capacity – Unfortunately the GPS unit stopped working before the

test was fully completed; it did last about 11.5 hours. As a result, the 350 mAh LiPo

battery appears to be unsuitable to power the GPS unit; it might possibly work for short

trips (given Dan’s requirements of one reading every hour, it would last for 2 to 3 days).

84

CR 2032 capacity – The CR 2032 appeared to work relatively well in powering the

puck.js; its capacity dropped from 3.01 volts to 2.87 volts (percentage drop from 90 to

79). Based on a web discussion “Testing a 3.7 v 150 mAh LiPo”

(https://www.rcgroups.com/forums/showthread.php?1694183-Testing-a-3-7v-150mAh-

LiPo), which states a battery should not be used after it has only 20% capacity, I

estimated that under these conditions (GPS and temperature logged every 10 minutes),

the puck.js would last about three and a half days, or under Dan’s conditions, about 3

weeks.

RAM – RAM capacity was no problem; RAM capacity started at 65536 bytes and

finished at 63964 bytes, with a single GPS/temperature reading taking up 25 bytes. Under

the test conditions, RAM would be used up after a little more than 18 days; under Dan’s

conditions RAM would be used up after 109 days.

GPS 3.7V 1200 mAh LiPo battery capacity test (Appendix 3)

In this test, the puck.js was powered with a CR 2032 cell battery and the Ublox GPS

module was powered with a 3.7V 1200 mAh lithium polymer battery, and I logged both

GPS location and temperature to puck.js RAM every 10 minutes for approximately 12

hours. The main purpose of this test was to determine how well a 1200 mAh lithium

polymer battery could power the Ublox GPS module, but I took advantage of the test to

also assess the capacity of the CR 2032 battery when used to determine the power the

puck.js.

3.7V 1200 mAh LiPo capacity – Unsurprisingly, the 1200 mAh battery worked much

better than the 350 mAh battery and lasted the entire test; its starting capacity was 4.17

https://www.rcgroups.com/forums/showthread.php?1694183-Testing-a-3-7v-150mAh-LiPo
https://www.rcgroups.com/forums/showthread.php?1694183-Testing-a-3-7v-150mAh-LiPo

85

volts and it finished at 3.09 volts after a little more than 12 hours. However, according to

the battery web discussion mentioned above, the battery probably should not be used

further and should be recharged at this point. Under Dan’s conditions, the GPS unit

would work for about 3 days when charged with this 1200 mAh LiPo battery.

CR 2032 capacity – The capacity of the CR 2032 cell battery used to power the puck.js

dropped from 2.98 volts to 2.71 volts (percentage drop from 95 to 70).

GPS Accuracy Test (Appendix 4)

In this test I took GPS readings with the Ublox every 3 minutes for several hours as I

drove on highways and streets through central Vermont and New Hampshire. At the same

time, I logged readings to the GPS Logger application on my smartphone.

The Ublox GY-NEO6MV2 GPS unit worked extremely well in terms of accuracy. Its

readings were very close to the readings shown by the GPS Logger application. In

addition, a spot check of Ublox values by entering them in Google Maps confirmed it

was the route I took, including specific streets I drove on and even stores I passed.

3.7V 1200 mAh LiPo capacity – Just as added information on battery capacity, I also

logged the capacity of the 3.7V 1200 mAh lithium polymer battery I used to power the

GPS for the test; the battery began at 4.18 volts and finished at 3.87 volts (again, with

GPS measurements being logged every 3 minutes for about 2 hours and 45 minutes).

CR 2032 capacity – I also noted the capacity of the puck.js CR 2032 cell battery over the

2 hour 45 minute trip, it began at 3.0 volts and ended at 2.86 volt (percentage drop from

97 to 79).

86

Temperature Accuracy Test (Appendix 5)

Finally, I ran an approximately 10 hour test to determine the accuracy of the puck.js

temperature sensor. I took temperature readings at 5 minute intervals, and put the puck.js

in my home office, in the refrigerator, next to a space heater, and outdoors, each at

multiple hour intervals. An Elitech RC-5 temperature logger accompanied the puck.js at

all times to confirm the accuracy of the puck.js temperature readings.

Unfortunately, puck.js temperature readings differed greatly from those logged by the

Elitech RC-5; in addition, the differences themselves varied, even taking into account

temperature changes as I brought the units into a different environment. I posted to an

Espruino forum

(http://forum.espruino.com/conversations/328770/?utm_campaign=mentioned&utm_med

ium=email&utm_source=notification#comment14800691) and asked puck.js developer

Gordon Williams about the temperature sensor, and he wrote that although most units

require some calibration (which can vary from unit to unit), the value used for calibration

should be consistent, and that when calibrated the puck.js takes reliable temperature.

More extensive testing is definitely required to see if these temperature deviations were

indeed an isolated case, or possibly due to the Elitech sensor I used for comparison.

CR 2032 capacity – For added information on battery capacity I also noted the capacity

of the puck.js CR 2032 cell battery over the course of the test, in terms of actual voltage it

went from 2.96 volts to 2.81 volts.

puck.js failure

http://forum.espruino.com/conversations/328770/?utm_campaign=mentioned&utm_medium=email&utm_source=notification#comment14800691
http://forum.espruino.com/conversations/328770/?utm_campaign=mentioned&utm_medium=email&utm_source=notification#comment14800691

87

The puck.js inexplicably just stopped working in several tests, this was not due to a loss

of battery power since the unit started up again as soon as I re-inserted the battery. More

extensive testing is required to determine if this failure is a consistent situation, is related

to a high level of logging over many hours or was specific to the unit I used (in addition

to the possibility of an exceptional faulty unit, my soldering skills are limited so I may

have damaged the unit when I was soldering it to the Ublox GPS module). A quick web

search did not uncover any cases of such failure, but it goes without saying that if such

failure is consistent it would definitely detract from the puck.js’ value as a logger/sensor

since logged data are lost when the unit is re-started.

Chapter XII.

Summary and Conclusions

All in all I feel I succeeded in providing a cost-effective, versatile, barebones

solution for suppliers to track their perishable shipments on the basis of conditions such

as location, temperature, humidity, etc., and which ensures accountability not only

through the readings themselves, but by storing the readings in a blockchain. In the

process of developing the solution, I also uncovered areas which would benefit from

further work; these additional developments would not only benefit the application itself,

but would also further the technologies of IoT, Web Bluetooth and Espruino in general.

Despite these contributions, my final application was unfortunately not able to

attain all the goals I’d hoped it would meet (although I hope this learning and experience

is a contribution itself in that it makes a statement on the suitability/non-suitability of

devices/approaches, and whether an area would benefit from further work). In addition,

there were definitely some things I would have done differently were I to start my thesis

project over again from scratch.

Contributions / Goals Attained

Following is a list of the goals I feel my perishable shipment tracking application met,

and contributions I made to the fields of perishable shipping and information technology.

89

Barebones

The PST application does provide an effective “barebones” solution to track

perishable shipments; the only costs to the supplier are for sensors (which themselves are

cost-effective) and for use of the application, which can be kept well below those of

comparable applications (such as the Sendum).

Sensor versatility

Although the solution focuses on sensors which support Web Bluetooth and

Espruino (since they are themselves versatile and also easy to use, as they don’t need to

be physically attached to a reader), the application is intended to be easily extended to

accommodate any sensor type.

Reader/application device versatility

Although the solution is optimized for mobile, it is a browser-based application

and can therefore easily be used on many devices (smartphone, laptop, etc.)

Other versatility

The solution provides fields which allow shipment records to be linked to specific

supplier applications (i.e. the internal order number) and supplier shippers (shipper and

tracking number fields).

Ease of use

The following elements make the PST solution easy to use:

90

 mobile-optimized – The application can be run from any smartphone or other

device.

 browser-based – The solution does not need to be installed; suppliers just need to

sign up for the service from their browsers and they’re on their way.

 sensors – Sensors, especially in the case of Espruino sensors, are instantly ready

to use at the touch of a button, require absolutely no configuration and do not

need to be physically attached to the reader in order to upload readings.

 templates/preused values – The solution’s system of templates and having

shipment values (product, shipping unit, shipper) which were previously used

automatically presented later as radio button selections make it very easy to create

shipments.

 ease in defining measurements and alerts

Accountability / reduction in paperwork

As planned, the sensor readings themselves as well as their storage on a

blockchain ensure accountability of all parties to a shipment, and ease paperwork by

making these readings easily accessible.

Alerts

The solution’s configurable system of alerts (easily implemented through AWS

SNS) increase shipment integrity and reduce costs.

91

Ease of use for application administrator

The solution is also easy for administrators to maintain; its serverless nature

means there is less work involved in scaling the application to the current number of

suppliers and other users.

It is also conceivable that administrators wouldn’t have to be involved at all as a

middleman for device purchases; depending on what their requirements are, suppliers

themselves could purchase an appropriate Espruino device and automatically control it

using the JavaScript code provided by the solution.

Ublox sensor quality and price

Although I was unable to meet Dan Ward’s requirements of an effectively

disposable sensor unit, I definitely feel my thesis project showed that the Ublox GY-

NEO6MV2 6M GPS NEO module provides more than ample accuracy at a very low cost

($12.45).

puck.js as a logger

In addition, although it definitely did not meet all of the goals of my thesis

project, my project showed that in terms of perishable shipments, the puck.js at least has

value as a cost-effective data logger and in general is a very versatile device. It would

probably benefit from a power source different from the CR 2032 cell battery, although I

feel it could be used with that battery for short-term shipments. Its effectiveness as a

temperature sensor is uncertain and must be determined through additional tests.

92

Sensor case compactness

Finally, as an ancillary observation that would definitely require more

confirmation, based on the compact size of the puck.js and Ublox GPS sensor, I feel

perishable shipment sensor cases could be much more compact than those generally used,

especially for shipments of shorter periods. I was able to fit both devices, along with a 3.7

V 1200 mAh polymer lithium battery, into a 3.15” x 1.58” x 0.79” Hammond project box

(described above).

Unattained Goals

puck.js as a temperature sensor

Although the number of temperature tests I ran on the puck.js were limited and

more testing is definitely called for, it is quite possible the device is not suitable for use as

a temperature sensor for perishable shipments. Although its developer Gordon Williams

did note that the device does require calibration, the differences in puck.js temperature

readings with those taken with a different unit themselves varied, and (assuming this is

consistent behavior) it would not be possible to correct this just by adding or subtracting

a given value to all readings. Given the versatility of the puck.js, however, it would most

likely be a straightforward task to use attach a different sensor to the device and just use

the puck.js as a data logger.

Combo sensor cost-effectiveness

I was also unable to accommodate Dan Ward’s needs of a combination GPS

tracker/temperature sensor which would be effectively disposable. However, I do feel I

93

made some progress in this area, as the combination puck.js/Ublox sensor roughly costs

the same as the Queclink sensor which Dan Ward tried out at one point but didn’t

continue to use as its readings were inaccurate. The combination sensor is very accurate,

at least in terms of GPS location.

Also, given the general state of current technology, a disposable GPS

tracker/temperature sensor might not be currently feasible. In addition, receiver/customer

incentives to return sensors after a shipment (discussed below) might help to allay sensor

costs.

Things I Would Have Done Differently

Additional tests

In addition to additional runs of the tests I did define, my project would have

benefited from the following additional tests:

 more extensive testing on puck itself – one of my puck.js devices failed at least

twice after logging data. This was not due to battery life, since it restarted

immediately after I re-inserted the battery. Of course, it would have been good to

see if that failure occurred regularly, or if it was possibly a result of my

inexperience with soldering.

 confirmation of all test results using additional puck.js unit(s)

 flash memory – Although I don’t feel logging to puck.js flash memory (instead of

RAM) would have caused any problems, I did not test this.

94

 sensor enclosures – I did not get to test the sensor enclosures I purchased, and

should have at least tested the effect of each sensor enclosure on GPS readings

and temperature readings, as well as durability, and maximum battery size

possible for each enclosure.

 cable ties – I also purchased some disposable cable ties which I intended to use to

attach sensors to shipments (https://www.amazon.com/Strong-Adhesive-Backed-

Holders%EF%BC%8C-Screw-Hole-Provides-

long%EF%BC%8850pack%EF%BC%89/dp/B07JMSWNC8/ref=sr_1_3?keywor

ds=Strong-Adhesive-

Backed+Mounts+Cable+Tie+Mounts&qid=1564681303&s=gateway&sr=8-3),

and did not get an opportunity to test them.

DynamoDB

Were I to develop the PST solution from scratch, I might use a different database

than DynamoDB. I found the database limited in some ways (for example, it does not

provide a date/timestamp type) and also functionality to access and maintain the database

was limited, especially that provided through the AWS user portal.

On the other hand, this was my first time using a NoSQL database, and I did

enjoy the versatility of that approach.

Future Work

I am considering marketing my perishable shipping solution; whether or not I do so it

would benefit from the following enhancements:

https://www.amazon.com/Strong-Adhesive-Backed-Holders%EF%BC%8C-Screw-Hole-Provides-long%EF%BC%8850pack%EF%BC%89/dp/B07JMSWNC8/ref=sr_1_3?keywords=Strong-Adhesive-Backed+Mounts+Cable+Tie+Mounts&qid=1564681303&s=gateway&sr=8-3
https://www.amazon.com/Strong-Adhesive-Backed-Holders%EF%BC%8C-Screw-Hole-Provides-long%EF%BC%8850pack%EF%BC%89/dp/B07JMSWNC8/ref=sr_1_3?keywords=Strong-Adhesive-Backed+Mounts+Cable+Tie+Mounts&qid=1564681303&s=gateway&sr=8-3
https://www.amazon.com/Strong-Adhesive-Backed-Holders%EF%BC%8C-Screw-Hole-Provides-long%EF%BC%8850pack%EF%BC%89/dp/B07JMSWNC8/ref=sr_1_3?keywords=Strong-Adhesive-Backed+Mounts+Cable+Tie+Mounts&qid=1564681303&s=gateway&sr=8-3
https://www.amazon.com/Strong-Adhesive-Backed-Holders%EF%BC%8C-Screw-Hole-Provides-long%EF%BC%8850pack%EF%BC%89/dp/B07JMSWNC8/ref=sr_1_3?keywords=Strong-Adhesive-Backed+Mounts+Cable+Tie+Mounts&qid=1564681303&s=gateway&sr=8-3
https://www.amazon.com/Strong-Adhesive-Backed-Holders%EF%BC%8C-Screw-Hole-Provides-long%EF%BC%8850pack%EF%BC%89/dp/B07JMSWNC8/ref=sr_1_3?keywords=Strong-Adhesive-Backed+Mounts+Cable+Tie+Mounts&qid=1564681303&s=gateway&sr=8-3

95

Receiver/end customer incentives

As stated above, incentives to return sensor devices should be provided to

supplier customers. Some of these incentives might include:

Blockchain reward – A receiver might receive, through blockchain, a small

reward for uploading sensor data and for returning the device to the supplier.

End customer benefits – Supplier customers could be given incentive to return

devices by providing benefits to the end customer (i.e. restaurant patrons, gourmet food

customers, etc.) such as allowing them to view, through the website, the journey their

food took and that the food was indeed shipped under quality conditions. Bumble Bee®

Seafoods already provides a similar tool with its “Trace My Catch” web page (at

https://www.bumblebee.com/tracemycatch/).

Blockchain for payment

The solution’s blockchain functionality should be enhanced to make it possible

for suppliers to get paid for shipment immediately when the receiver approves the

shipment. In addition to speed of payment, this would bring the possibility of eliminating

an intermediary (i.e. the provider used to process the payment).

puck.js security

As mentioned above, sensor devices, including the puck.js, should be made more

secure. Gordon Williams has already provided methods for securing the puck.js

(https://www.espruino.com/BLE+Security), and other methods should be implemented if

feasible.

https://www.bumblebee.com/tracemycatch/
https://www.espruino.com/BLE+Security

96

puck.js identification/isolation

The Web Bluetooth window which pops up for users to show them Bluetooth

devices in range currently shows limited, somewhat meaningless information (i.e. the

puck.js serial number and model number). If possible, this window should be enhanced

so that administrators can also display more meaningful information (e.g. the shipment

associated with the device) in order to make it easier for technicians to select devices and

uncover possible problems.

Nordic Thingy 52 and other sensors

Although intended for use as a prototype, the Nordic Thingy 52 mentioned in the

“Prior Work” section does have many features which are attractive for perishable

shipping, such as a variety of sensors and support for Espruino. As a result, further work

should include the development of JavaScript to control the device, as well as research

into other sensors and the related development work.

Combine GPS coordinates with Google Places, maps, etc.

Currently, when GPS tracking is selected, the solution only shows, in addition to

time, the actual GPS coordinates (latitude, longitude and altitude) associated with a

shipment. Displaying these coordinates on a map and/or using Google Places to list the

places associated with coordinates would greatly enhance the solution’s usefulness to

suppliers.

97

Progressive web app/one page app

Finally, the solution might be more user-friendly if implemented as a progressive

web app (https://developers.google.com/web/progressive-web-apps/) or single-page app

instead of a traditional HTML/JavaScript app with several pages.

Future Work of Value Beyond PST Application

Finally, based on my experience with this thesis project, I feel the general area of IoT

(and not just my application) would benefit from the following further work:

Enhanced Web Bluetooth connection interface

As I mentioned in the previous section, functionality should be added to the Web

Bluetooth window to make it possible for the interface to display information (possibly

pulled from some table/database which can be configured) that is more meaningful that

the limited information currently displayed (device serial number and model number).

Ublox GPS sensor quality

I was very impressed at the quality of the Ublox GPS sensor and its very low

price, and I believe these factors make it possible for the sensor to be used in a variety of

applications which were not possible up to this point because of cost.

Espruino

Similarly, I was very impressed at the versatility offered by the Espruino

interpreter. Not only does Espruino make it possible for devices to be used versatilely,

even based on real-time conditions, the related code can be provided and maintained at a

https://developers.google.com/web/progressive-web-apps/

98

single central location, which is greatly advantageous to companies who deploy sensors

or other devices.

Finally, I believe the ability for a software provider to develop code for Espruino

devices and offer it for sale without the provider also having to become involved as a

middleman in device purchase might also open up new industries.

Appendix 1

Notes from December 31, 2018 meeting with Dan Ward of Ward Aquafarms

Don’t create extra work for people in the process.

The phone is good for the sensor. With alerts. Mobile ready web site.

Download app.

Farmer, a shipping company, local shipping company, the local distributor, consumer.

There needs to be an added value.

Use barcode to read data and upload.

Cellular

14-day max average, 2 - 3 days, sample per hour

Who are the end customers: restaurant, fish markets, individual consumers

International, and in country

Getting the tags back was a problem.

Bag level. 100 count, 60 - 100 dollars.

Worked with a system with Verizon which was abandoned. Value of fish was not sufficient.

Pharmaceuticals were better.

Input data every 7 days.

A very low-cost device that can be thrown away.

Many wholesalers, so having an access point at each would be hard.

Scan with the phone for now.

Food to the plate. Demonstrate at the local level. 2d barcode to link to the website.

The restaurant keeps the tag for 90 days.

Information: harvest date, time, time on ice, harvest number, harvest location.

Verizon used thermal cameras, provision the sensors, the thermal camera would take the

temperature, the tag would be geofenced.

Restaurants who would be willing to work with us. Restaurants in Boston, Boston distributor.

Googling for the oyster house. Legal Seafood. The Chart room. B&G oyster house. Union

Oyster House. Wholesalers.

50 to 100 bags/week. $60 -> $130

100

Oysters are the best focus. Scallops are also eaten raw. But could be applied more broadly.

Battery coast was the problem. Sensors were cheap. The lithium-ion battery was too expensive.

$1 dollar range

Verizon solution: Alerts to the phone, email, maps, but too expensive.

Appendix 2

Capacity test of 3.7V 350 mAh lithium polymer battery

Primary test goal: To determine capacity of a 3.7V 350 mAh lithium polymer

battery when used to power the GPS module.

Secondary test goal: To determine the capacity of a 3.7 V CR 2032 coin battery

used to power the puck.js.

Secondary test goal: To determine the RAM capacity of the puck.js when the

device is used to record GPS and temperature at regular intervals over a period of time.

Test description: Log both GPS location and temperature to puck.js RAM every

10 minutes for several hours.

Test period: June 27, 2019 7:58 p.m. to June 28, 2019 7:58 a.m.

Note: The GPS module stopped working toward the end of the test, at

approximately 7:45 a.m. on June 28.

GPS battery level (actual*) - start 4.17 V

GPS battery level (actual*) - end 3.09 V

puck.js battery level (actual*) - start 3.01 V

puck.js battery level (actual*) - end 2.87 V

puck.js battery level (percentage**) - start 90

puck.js battery level (percentage**) - end 79

Estimated remaining RAM - start 65536

Estimated remaining RAM - end 63964

Size of a single GPS/temperature reading 25 bytes

* measured using multimeter

** measured using puck.js E.getBattery() command

Appendix 3

Capacity test of 3.7V 1200 mAh lithium polymer battery

Primary test goal: To determine capacity of a 3.7V 1200 mAh lithium polymer

battery when used to power the GPS module.

Secondary test goal: To determine the capacity of a 3.7 V CR 2032 coin battery

used to power the puck.js.

Test description: Log both GPS location and temperature to puck.js RAM every

10 minutes for several hours.

Test period: July 1, 2019 7:30 a.m. to July 2, 2019 7:59 a.m.

GPS battery level (actual*) - start 4.20 V

GPS battery level (actual*) - end 3.75 V

puck.js battery level (actual*) - start 2.98 V

puck.js battery level (actual*) - end 2.71 V

puck.js battery level (percentage**) - start 95

puck.js battery level (percentage**) - end 70

* measured using multimeter

** measured using puck.js E.getBattery() command

Appendix 4

GPS Accuracy Test

Primary test goal: To determine the accuracy of the Ublox GY-NEO6MV2 6M

GPS NEO module used to track location.

Secondary test goal: To measure the capacity of a 3.7 V CR 2032 coin battery

used to power the puck.js.

Secondary test goal: To measure the capacity of a 3.7V 1200 mAh lithium

polymer battery when used to power the GPS module.

Test description: Log GPS location to puck.js RAM every 3 minutes for several

hours, logging GPS location to a separate GPS tracker (my smartphone’s GPS Logger) at

the same time. I drove from my home in Corinth, VT to Lebanon, NH and back again,

taking alternate routes and back roads where possible.

Test period: June 30, 2019 8:08 p.m. to 10:48 p.m.

Test results:

Device Time Lat Lon

GPS Logger 2019-06-28T20:01:01.013Z 44.01756 -72.2217

GPS Logger 2019-06-28T20:02:26.812Z 44.01756 -72.2217

GPS Logger 2019-06-28T20:04:01.737Z 44.01756 -72.2217

GPS Logger 2019-06-28T20:05:28.303Z 44.01756 -72.2217

GPS Logger 2019-06-28T20:07:02.000Z 44.01757 -72.2216

GPS Logger 2019-06-28T20:08:32.407Z 44.01756 -72.2217

GPS Logger 2019-06-28T20:09:35.968Z 44.01756 -72.2217

GPS Logger 2019-06-28T20:11:02.000Z 44.01756 -72.2216

Ublox 2019-06-28T20:11:46 44.01749 -72.2217

GPS Logger 2019-06-28T20:12:28.534Z 44.01756 -72.2217

GPS Logger 2019-06-28T20:13:37.813Z 44.01756 -72.2217

GPS Logger 2019-06-28T20:14:44.687Z 44.01756 -72.2217

Ublox 2019-06-28T20:14:47 44.01753 -72.2218

GPS Logger 2019-06-28T20:16:07.572Z 44.01756 -72.2217

104

GPS Logger 2019-06-28T20:17:11.000Z 44.01757 -72.2216

Ublox 2019-06-28T20:17:55 44.01761 -72.2214

GPS Logger 2019-06-28T20:18:21.000Z 44.01757 -72.2216

GPS Logger 2019-06-28T20:19:24.304Z 44.01756 -72.2217

GPS Logger 2019-06-28T20:20:31.000Z 44.01757 -72.2216

Ublox 2019-06-28T20:20:56 44.01761 -72.2214

GPS Logger 2019-06-28T20:21:43.000Z 44.01758 -72.2216

GPS Logger 2019-06-28T20:22:46.000Z 44.01726 -72.2221

Ublox 2019-06-28T20:23:57 44.01973 -72.2258

GPS Logger 2019-06-28T20:24:22.000Z 44.02147 -72.2218

GPS Logger 2019-06-28T20:25:30.000Z 44.01964 -72.2089

GPS Logger 2019-06-28T20:26:34.707Z 44.02364 -72.2015

Ublox 2019-06-28T20:26:58 44.02697 -72.1987

GPS Logger 2019-06-28T20:27:42.000Z 44.03097 -72.192

GPS Logger 2019-06-28T20:28:51.000Z 44.02761 -72.1779

GPS Logger 2019-06-28T20:29:54.000Z 44.01714 -72.1716

Ublox 2019-06-28T20:29:59 44.01599 -72.171

GPS Logger 2019-06-28T20:31:05.000Z 44.00604 -72.1643

GPS Logger 2019-06-28T20:32:12.405Z 43.99549 -72.1568

Ublox 2019-06-28T20:33:0 43.98876 -72.1504

GPS Logger 2019-06-28T20:33:59.000Z 43.98434 -72.1373

GPS Logger 2019-06-28T20:35:04.000Z 43.98195 -72.1228

GPS Logger 2019-06-28T20:36:06.485Z 43.98151 -72.1216

Ublox 2019-06-28T20:36:1 43.98178 -72.122

GPS Logger 2019-06-28T20:37:10.000Z 43.9826 -72.1246

GPS Logger 2019-06-28T20:38:13.000Z 43.98244 -72.1304

GPS Logger 2019-06-28T20:39:17.000Z 43.96866 -72.1263

Ublox 2019-06-28T20:39:3 43.97197 -72.1263

GPS Logger 2019-06-28T20:40:20.402Z 43.95236 -72.1321

GPS Logger 2019-06-28T20:41:52.000Z 43.92763 -72.1348

Ublox 2019-06-28T20:42:4 43.9239 -72.1335

GPS Logger 2019-06-28T20:43:01.390Z 43.91035 -72.1386

GPS Logger 2019-06-28T20:44:07.000Z 43.90087 -72.1586

GPS Logger 2019-06-28T20:45:15.399Z 43.88724 -72.1749

Ublox 2019-06-28T20:45:5 43.88937 -72.1738

GPS Logger 2019-06-28T20:46:53.000Z 43.86296 -72.1887

GPS Logger 2019-06-28T20:47:57.000Z 43.84695 -72.1983

GPS Logger 2019-06-28T20:48:59.000Z 43.83125 -72.207

Ublox 2019-06-28T20:48:6 43.84425 -72.2001

GPS Logger 2019-06-28T20:50:03.000Z 43.81542 -72.2148

GPS Logger 2019-06-28T20:51:07.000Z 43.81135 -72.2131

Ublox 2019-06-28T20:51:7 43.81152 -72.213

GPS Logger 2019-06-28T20:52:10.000Z 43.81191 -72.2137

105

GPS Logger 2019-06-28T20:53:13.000Z 43.80607 -72.2193

GPS Logger 2019-06-28T20:54:25.000Z 43.78786 -72.2155

Ublox 2019-06-28T20:54:9 43.79164 -72.2144

GPS Logger 2019-06-28T20:55:28.000Z 43.77195 -72.2232

GPS Logger 2019-06-28T20:56:44.000Z 43.75529 -72.2378

Ublox 2019-06-28T20:57:10 43.75058 -72.2459

GPS Logger 2019-06-28T20:58:23.000Z 43.74052 -72.2689

GPS Logger 2019-06-28T20:59:55.000Z 43.72128 -72.2909

Ublox 2019-06-28T20:8:45 44.01757 -72.2217

Ublox 2019-06-28T21:0:11 43.71688 -72.2938

GPS Logger 2019-06-28T21:01:02.000Z 43.70841 -72.3054

GPS Logger 2019-06-28T21:02:07.000Z 43.70402 -72.302

GPS Logger 2019-06-28T21:03:08.394Z 43.70236 -72.2923

GPS Logger 2019-06-28T21:04:18.000Z 43.70189 -72.2894

GPS Logger 2019-06-28T21:05:53.398Z 43.69054 -72.2911

GPS Logger 2019-06-28T21:06:58.000Z 43.68152 -72.2946

GPS Logger 2019-06-28T21:08:31.000Z 43.67038 -72.2999

GPS Logger 2019-06-28T21:09:36.000Z 43.66933 -72.3007

GPS Logger 2019-06-28T21:10:43.396Z 43.66293 -72.3051

GPS Logger 2019-06-28T21:11:56.000Z 43.65547 -72.308

Ublox 2019-06-28T21:12:15 43.65391 -72.3094

GPS Logger 2019-06-28T21:13:12.182Z 43.64989 -72.3105

GPS Logger 2019-06-28T21:14:40.000Z 43.64984 -72.3107

Ublox 2019-06-28T21:15:16 43.64988 -72.3106

GPS Logger 2019-06-28T21:16:23.000Z 43.64984 -72.3107

GPS Logger 2019-06-28T21:17:56.000Z 43.64984 -72.3107

Ublox 2019-06-28T21:18:17 43.64983 -72.3106

GPS Logger 2019-06-28T21:19:29.000Z 43.64985 -72.3107

GPS Logger 2019-06-28T21:20:52.746Z 43.64986 -72.3106

Ublox 2019-06-28T21:21:19 43.64973 -72.311

GPS Logger 2019-06-28T21:21:58.000Z 43.64669 -72.31

GPS Logger 2019-06-28T21:23:10.000Z 43.64003 -72.3135

Ublox 2019-06-28T21:24:20 43.63483 -72.3168

GPS Logger 2019-06-28T21:26:02.000Z 43.63147 -72.3201

Ublox 2019-06-28T21:27:21 43.63128 -72.3098

GPS Logger 2019-06-28T21:27:24.726Z 43.63132 -72.3092

GPS Logger 2019-06-28T21:29:06.000Z 43.63985 -72.277

Ublox 2019-06-28T21:3:12 43.70238 -72.292

GPS Logger 2019-06-28T21:30:13.000Z 43.65055 -72.259

Ublox 2019-06-28T21:30:22 43.6505 -72.2556

GPS Logger 2019-06-28T21:31:16.000Z 43.64731 -72.2516

GPS Logger 2019-06-28T21:32:19.000Z 43.64245 -72.2542

GPS Logger 2019-06-28T21:33:22.000Z 43.64235 -72.2523

106

Ublox 2019-06-28T21:33:23 43.64216 -72.2524

GPS Logger 2019-06-28T21:34:26.000Z 43.64292 -72.2556

GPS Logger 2019-06-28T21:35:30.000Z 43.64159 -72.2556

Ublox 2019-06-28T21:36:24 43.63918 -72.2629

GPS Logger 2019-06-28T21:36:37.000Z 43.63888 -72.2647

GPS Logger 2019-06-28T21:37:40.401Z 43.64294 -72.2733

GPS Logger 2019-06-28T21:38:45.000Z 43.64528 -72.2808

Ublox 2019-06-28T21:39:25 43.64383 -72.2777

GPS Logger 2019-06-28T21:40:18.000Z 43.64142 -72.2699

GPS Logger 2019-06-28T21:41:26.000Z 43.63853 -72.2685

Ublox 2019-06-28T21:42:26 43.63792 -72.2805

GPS Logger 2019-06-28T21:43:11.000Z 43.63654 -72.2879

GPS Logger 2019-06-28T21:44:17.000Z 43.63658 -72.2886

Ublox 2019-06-28T21:45:29 43.63616 -72.2903

GPS Logger 2019-06-28T21:45:40.000Z 43.63607 -72.2918

GPS Logger 2019-06-28T21:46:48.316Z 43.63916 -72.3034

Ublox 2019-06-28T21:48:30 43.64919 -72.3103

GPS Logger 2019-06-28T21:48:33.076Z 43.64916 -72.3103

GPS Logger 2019-06-28T21:49:39.000Z 43.65197 -72.318

GPS Logger 2019-06-28T21:50:44.000Z 43.65823 -72.3151

Ublox 2019-06-28T21:51:31 43.66424 -72.3145

GPS Logger 2019-06-28T21:51:48.000Z 43.66585 -72.3175

GPS Logger 2019-06-28T21:53:13.000Z 43.68411 -72.3143

Ublox 2019-06-28T21:54:32 43.70477 -72.307

GPS Logger 2019-06-28T21:54:37.391Z 43.70556 -72.3063

GPS Logger 2019-06-28T21:55:40.000Z 43.71853 -72.2921

GPS Logger 2019-06-28T21:57:15.000Z 43.73836 -72.271

Ublox 2019-06-28T21:57:33 43.74172 -72.2652

GPS Logger 2019-06-28T21:58:41.000Z 43.7504 -72.2445

GPS Logger 2019-06-28T21:59:44.000Z 43.76204 -72.2285

Ublox 2019-06-28T21:6:13 43.68761 -72.2928

Ublox 2019-06-28T21:9:14 43.67008 -72.2999

Ublox 2019-06-28T22:0:34 43.7744 -72.2219

GPS Logger 2019-06-28T22:00:53.000Z 43.77886 -72.2209

GPS Logger 2019-06-28T22:02:01.397Z 43.79568 -72.2161

GPS Logger 2019-06-28T22:03:10.000Z 43.81303 -72.2158

GPS Logger 2019-06-28T22:04:58.000Z 43.83986 -72.202

GPS Logger 2019-06-28T22:06:01.000Z 43.85528 -72.1928

GPS Logger 2019-06-28T22:07:29.257Z 43.87693 -72.1812

GPS Logger 2019-06-28T22:09:17.000Z 43.90005 -72.1599

GPS Logger 2019-06-28T22:10:22.000Z 43.90478 -72.1502

GPS Logger 2019-06-28T22:11:33.000Z 43.90467 -72.1503

GPS Logger 2019-06-28T22:12:37.005Z 43.91003 -72.1392

107

Ublox 2019-06-28T22:12:38 43.91023 -72.1382

GPS Logger 2019-06-28T22:13:49.000Z 43.92675 -72.1332

GPS Logger 2019-06-28T22:14:57.000Z 43.94418 -72.1316

Ublox 2019-06-28T22:15:39 43.95579 -72.1293

GPS Logger 2019-06-28T22:16:43.392Z 43.97191 -72.1256

GPS Logger 2019-06-28T22:17:50.000Z 43.98384 -72.1297

Ublox 2019-06-28T22:18:40 43.98623 -72.1423

GPS Logger 2019-06-28T22:19:23.000Z 43.99026 -72.1526

GPS Logger 2019-06-28T22:20:25.405Z 43.99856 -72.1596

Ublox 2019-06-28T22:21:41 44.01018 -72.1684

GPS Logger 2019-06-28T22:21:57.432Z 44.01224 -72.1699

GPS Logger 2019-06-28T22:23:29.000Z 44.02829 -72.1787

GPS Logger 2019-06-28T22:24:37.000Z 44.03011 -72.1929

Ublox 2019-06-28T22:24:42 44.02928 -72.1944

GPS Logger 2019-06-28T22:25:40.927Z 44.02254 -72.2025

GPS Logger 2019-06-28T22:27:19.000Z 44.02162 -72.2165

Ublox 2019-06-28T22:27:43 44.02128 -72.2223

GPS Logger 2019-06-28T22:28:20.589Z 44.01813 -72.228

GPS Logger 2019-06-28T22:29:25.710Z 44.0175 -72.2217

Ublox 2019-06-28T22:3:35 43.81948 -72.2115

GPS Logger 2019-06-28T22:30:30.000Z 44.01754 -72.2216

Ublox 2019-06-28T22:30:44 44.01762 -72.2214

GPS Logger 2019-06-28T22:31:33.000Z 44.01755 -72.2215

GPS Logger 2019-06-28T22:32:59.755Z 44.01756 -72.2217

Ublox 2019-06-28T22:33:45 44.01762 -72.2213

GPS Logger 2019-06-28T22:34:04.878Z 44.01756 -72.2217

GPS Logger 2019-06-28T22:35:08.839Z 44.01756 -72.2217

GPS Logger 2019-06-28T22:36:18.000Z 44.01774 -72.2215

Ublox 2019-06-28T22:36:46 44.01761 -72.2218

GPS Logger 2019-06-28T22:37:21.000Z 44.0175 -72.2217

GPS Logger 2019-06-28T22:39:03.000Z 44.01759 -72.2217

Ublox 2019-06-28T22:39:47 44.01753 -72.2218

GPS Logger 2019-06-28T22:40:30.876Z 44.01756 -72.2217

GPS Logger 2019-06-28T22:41:36.924Z 44.01756 -72.2217

GPS Logger 2019-06-28T22:42:42.000Z 44.0176 -72.2217

Ublox 2019-06-28T22:42:48 44.01758 -72.2219

GPS Logger 2019-06-28T22:43:44.800Z 44.01756 -72.2217

GPS Logger 2019-06-28T22:45:30.858Z 44.01756 -72.2217

Ublox 2019-06-28T22:45:49 44.01745 -72.2219

GPS Logger 2019-06-28T22:47:15.821Z 44.01756 -72.2217

GPS Logger 2019-06-28T22:48:37.000Z 44.01741 -72.2217

Ublox 2019-06-28T22:48:50 44.01771 -72.2217

GPS Logger 2019-06-28T22:50:17.827Z 44.01756 -72.2217

108

GPS Logger 2019-06-28T22:51:23.000Z 44.01752 -72.2216

GPS Logger 2019-06-28T22:52:26.805Z 44.01756 -72.2217

GPS Logger 2019-06-28T22:53:31.000Z 44.01752 -72.2216

GPS Logger 2019-06-28T22:54:34.137Z 44.01756 -72.2217

GPS Logger 2019-06-28T22:56:14.184Z 44.01756 -72.2217

GPS Logger 2019-06-28T22:57:50.580Z 44.01756 -72.2217

GPS Logger 2019-06-28T22:59:09.622Z 44.01756 -72.2217

Ublox 2019-06-28T22:06:36 43.8644 -72.1877

Ublox 2019-06-28T22:09:37 43.90347 -72.1539

GPS Logger 2019-06-28T23:00:19.000Z 44.01761 -72.2217

GPS battery level (actual*) - start 4.18 V

GPS battery level (actual*) - end 3.87 V

puck.js battery level (actual*) - start 3.0 V

puck.js battery level (actual*) - end 2.86 V

puck.js battery level (percentage**) - start 97

puck.js battery level (percentage**) - end 79

* measured using multimeter

** measured using puck.js E.getBattery() command

Appendix 5

Temperature Accuracy Test

Primary test goal: To determine the accuracy of the temperature sensor on the

puck.js.

Secondary test goal: To determine the capacity of the CR 2032 coin battery used

to power the puck.js.

Test description: Log temperature to puck.js RAM every 5 minutes for several

hours, logging temperature to a separate temperature logger (the Elitech RC-5) at the

same time.

Test period: June 30, 2019 9:34 a.m. to 7:19 p.m.

Test results:

puck.js

time

puck.js

temperature

Elitech

time

Elitech

temperature
Difference

9:34:52 16.75 9:34:58 22.1 -5.35

9:39:52 16.75 9:39:58 21.9 -5.15

9:44:52 8 9:44:58 16.5 -8.5

9:49:52 1.5 9:49:58 11 -9.5

9:54:52 -0.25 9:54:58 8.3 -8.55

9:59:52 -1 9:59:58 6.7 -7.7

10:04:52 -3 10:04:58 5.3 -8.3

10:09:52 -3.5 10:09:58 4.1 -7.6

10:14:52 -4.25 10:14:58 3.2 -7.45

10:19:52 -4.75 10:19:58 2.5 -7.25

10:24:52 -5.25 10:24:58 2.1 -7.35

10:29:52 -4.25 10:29:58 2.5 -6.75

10:34:52 -3.25 10:34:58 3.1 -6.35

10:39:52 -2 10:39:58 3.7 -5.7

10:44:52 -2 10:44:58 4.1 -6.1

110

10:49:52 -3 10:49:58 3.9 -6.9

10:54:52 -4 10:54:58 3.2 -7.2

10:59:52 -4.75 10:59:58 2.6 -7.35

11:04:52 -4.25 11:04:58 2.7 -6.95

11:09:52 -3.25 11:09:58 3.2 -6.45

11:14:52 -2.5 11:14:58 3.7 -6.2

11:19:52 -2 11:19:58 4.1 -6.1

11:24:52 -2.5 11:24:58 4 -6.5

11:29:52 -4.25 11:29:58 3.4 -7.65

11:34:52 -5.25 11:34:58 2.6 -7.85

11:39:52 -0.25 11:39:58 4.7 -4.95

11:44:52 -0.75 11:44:58 5.2 -5.95

11:49:52 -3.5 11:49:58 4.1 -7.6

11:54:52 -4.25 11:54:58 3.3 -7.55

11:59:52 -5.25 11:59:58 2.6 -7.85

12:04:52 -5 12:04:58 2.2 -7.2

12:09:52 -2.25 12:09:58 3.5 -5.75

12:14:52 -1.25 12:14:58 4.4 -5.65

12:19:52 -2.5 12:19:58 4.1 -6.6

12:24:52 -1 12:24:58 4.7 -5.7

12:29:52 0.25 12:29:58 5.3 -5.05

12:34:52 0.75 12:34:58 6.1 -5.35

12:39:52 0.5 12:39:58 6.4 -5.9

12:44:52 1 12:44:58 6.6 -5.6

12:49:52 0.25 12:49:58 6.7 -6.45

12:54:52 -1 12:54:58 6.2 -7.2

12:59:52 -2 12:59:58 5.4 -7.4

13:04:52 -3 13:04:58 4.6 -7.6

13:09:52 -4.25 13:09:58 3.9 -8.15

13:14:52 -4.75 13:14:58 3.3 -8.05

13:19:52 -4.25 13:19:58 3.2 -7.45

13:24:52 -3.75 13:24:58 3.2 -6.95

13:29:52 -3.75 13:29:58 3.4 -7.15

13:34:52 -4.5 13:34:58 3.1 -7.6

13:39:52 -4.75 13:39:58 2.7 -7.45

13:44:52 -5.25 13:44:58 2.3 -7.55

13:49:52 -5.5 13:49:58 2 -7.5

13:54:52 -5.25 13:54:58 2.2 -7.45

13:59:52 -4 13:59:58 2.8 -6.8

111

14:04:52 8 14:04:58 9.6 -1.6

14:09:52 13.5 14:09:58 15.6 -2.1

14:14:52 14.5 14:14:58 22.9 -8.4

14:19:52 14.75 14:19:58 21.1 -6.35

14:24:52 14.5 14:24:58 20.1 -5.6

14:29:52 14.25 14:29:58 19.8 -5.55

14:34:52 13.75 14:34:58 19.8 -6.05

14:39:52 13.75 14:39:58 19.8 -6.05

14:44:52 14.25 14:44:58 19.8 -5.55

14:49:52 13.75 14:49:58 19.8 -6.05

14:54:52 14.25 14:54:58 19.9 -5.65

14:59:52 14.5 14:59:58 19.9 -5.4

15:04:52 14.25 15:04:58 20.1 -5.85

15:09:52 14.75 15:09:58 20.2 -5.45

15:14:52 14 15:14:58 20.3 -6.3

15:19:52 14 15:19:58 20.3 -6.3

15:24:52 14 15:24:58 20.3 -6.3

15:29:52 14.75 15:29:58 20.3 -5.55

15:34:52 14.25 15:34:58 20.3 -6.05

15:39:52 14.25 15:39:58 20.3 -6.05

15:44:52 14.75 15:44:58 20.3 -5.55

15:49:52 14.5 15:49:58 20.4 -5.9

15:54:52 14.75 15:54:58 20.4 -5.65

15:59:52 14.25 15:59:58 20.4 -6.15

16:04:52 14.75 16:04:58 20.4 -5.65

16:09:52 14.75 16:09:58 20.4 -5.65

16:14:52 14.5 16:14:58 20.4 -5.9

16:19:52 15 16:19:58 20.5 -5.5

16:24:52 14.75 16:24:58 20.5 -5.75

16:29:52 14.75 16:29:58 20.5 -5.75

16:34:52 14.75 16:34:58 20.5 -5.75

16:39:52 15 16:39:58 20.5 -5.5

16:44:52 14.5 16:44:58 20.5 -6

16:49:52 15.25 16:49:58 20.5 -5.25

16:54:52 14.75 16:54:58 20.6 -5.85

16:59:52 14.75 16:59:58 20.6 -5.85

17:04:52 14.75 17:04:58 20.6 -5.85

17:09:52 15 17:09:58 20.6 -5.6

17:14:52 14.75 17:14:58 20.6 -5.85

112

17:19:52 14.75 17:19:58 20.6 -5.85

17:24:52 14.75 17:24:58 20.7 -5.95

17:29:52 15.25 17:29:58 20.7 -5.45

17:34:52 15 17:34:58 20.7 -5.7

17:39:52 14.75 17:39:58 20.7 -5.95

17:44:52 15.5 17:44:58 20.7 -5.2

17:49:52 14.75 17:49:58 20.7 -5.95

17:54:52 15 17:54:58 20.7 -5.7

17:59:52 15 17:59:58 20.7 -5.7

18:04:52 15.25 18:04:58 20.8 -5.55

18:09:52 15.25 18:09:58 20.7 -5.45

18:14:52 15.5 18:14:58 20.7 -5.2

18:19:52 15.25 18:19:58 20.7 -5.45

18:24:52 15.5 18:24:58 20.7 -5.2

18:29:52 15 18:29:58 20.7 -5.7

18:34:52 15.25 18:34:58 20.7 -5.45

18:39:52 14.75 18:39:58 20.7 -5.95

18:44:52 15 18:44:58 20.8 -5.8

18:49:52 15 18:49:58 20.8 -5.8

18:54:52 15 18:54:58 20.8 -5.8

18:59:52 14.75 18:59:58 20.8 -6.05

19:04:52 15.5 19:04:58 20.8 -5.3

19:09:52 15.5 19:09:58 20.8 -5.3

19:14:52 16 19:14:58 21.3 -5.3

19:19:52 17.5 19:19:58 22.4 -4.9

puck.js battery level (actual*) - start 2.96 V

puck.js battery level (actual*) - end 2.81 V

puck.js battery level (percentage**) - start 90

puck.js battery level (percentage**) - end ?

Note: Although its battery still had power, the puck.js inexplicably stopped

running in the middle of the test (I had originally planned to run the test until July 1 the

following morning). The unit started up again when I removed then re-inserted the

battery.

113

Chapter XV.

References

ABCO Transportation. The History of Refrigerated Trucking [Web log post]. (2015,

March 23). Retrieved from https://www.shipabco.com/history-refrigerated-

trucking/

Armour, Britt. Mobile App Vs. Mobile Website: Which Is The Better Option? [Web log

post]. (2018, April 20). Retrieved from

https://www.business2community.com/mobile-apps/mobile-app-vs-mobile-

website-which-is-the-better-option-02048068

Bryant, Dennis. Refrigerated cargo ships [Web log post]. (2014, August 2016). Retrieved

from https://www.maritimeprofessional.com/blogs/post/refrigerated-cargo-ships-

13576

Buxbaum, Peter. (2018, March 26). The perils of perishable airfreight shipments.

American Journal of Transportation. Retrieved from

https://www.ajot.com/premium/ajot-the-perils-of-perishable-airfreight-shipments

Ciligot, Chris. Mobile App Vs. Mobile Website: A UX Comparison – Which Is The

Better Option? [Web log post]. (2019, May 2). Retrieved from

https://clearbridgemobile.com/mobile-app-vs-mobile-website-which-is-the-better-

option/

Cold chain on a plane: Tracking perishable air freight with cloud and IoT [Web log post].

(2018, June 6). Retrieved from https://controlant.com/blog/2018/cold-chain-on-a-

plane-tracking-perishable-air-freight-with-cloud-and-iot/, 2018)

de Wit, Gerard. (2016, March). Perishables Markets - Modal Shift – Trends. Retrieved

from

http://coolchain.org/Websites/cca/images/WorldACD_presentation_Perishables_-

_Ken_de_Witt_Hamer.pdf

Fisher, William. “The Importance of Food Traceability.” FSM EDigest. March 17, 2015.

Retrieved from https://www.foodsafetymagazine.com/enewsletter/the-

importance-of-food-traceability/

Fortney, Luke. Blockchain Explained [Web log post]. (2019, June 25). Retrieved from

https://www.investopedia.com/terms/b/blockchain.asp

https://www.shipabco.com/history-refrigerated-trucking/
https://www.shipabco.com/history-refrigerated-trucking/
https://www.business2community.com/mobile-apps/mobile-app-vs-mobile-website-which-is-the-better-option-02048068
https://www.business2community.com/mobile-apps/mobile-app-vs-mobile-website-which-is-the-better-option-02048068
https://www.maritimeprofessional.com/blogs/post/refrigerated-cargo-ships-13576
https://www.maritimeprofessional.com/blogs/post/refrigerated-cargo-ships-13576
https://clearbridgemobile.com/mobile-app-vs-mobile-website-which-is-the-better-option/
https://clearbridgemobile.com/mobile-app-vs-mobile-website-which-is-the-better-option/
https://www.foodsafetymagazine.com/enewsletter/the-importance-of-food-traceability/
https://www.foodsafetymagazine.com/enewsletter/the-importance-of-food-traceability/
https://www.investopedia.com/terms/b/blockchain.asp

115

Hougham, Joey. Transportation of Perishables-The Importance of Paying Attention to the

Cold Chain [Web log post]. (2015, June 9). Retrieved from

https://www.trangistics.com/2015/06/transportation-of-perishables-the-

importance-of-paying-attention-to-the-cold-chain/

Krasner-Khait, Barbara. “The Impact of Refrigeration.” History Magazine. History

Magazine, Feb./Mar. 200. Web. 23 March 2015.

S. Mercier, S. Villeneuve, M. Mondor, and I. Uysal, “Time–Temperature Management

Along the Food Cold Chain: A Review of Recent Developments,”

Comprehensive Reviews in Food Science and Food Safety, vol. 16, no. 4, pp.

647–667, 2017.

Orlando, Dan. Freshness remains elusive for seafood delivery [Web log post]. (2017,

August 22). Retrieved from https://www.supermarketnews.com/print/87342

Ranger, Steve. What is the IoT? Everything you need to know about the Internet of

Things right now (Updated: The Internet of Things explained. What the IoT is,

and where it's going next) [Web log post]. (2018, August 21). Retrieved from

https://www.zdnet.com/article/what-is-the-internet-of-things-everything-you-

need-to-know-about-the-iot-right-now/

 Redman, Russell. Publix promotes seafood transparency: Tag program identifies

responsibly, sustainably sourced products [Web log post]. (2019, July 8).

Retrieved from https://www.supermarketnews.com/sustainability/publix-

promotes-seafood-transparency

Roberts, Mike. Serverless Architectures [Web log post]. (2018, May 22). Retrieved from

https://martinfowler.com/articles/serverless.html

Rosic, Ameer. What is Blockchain Technology? A Step-by-Step Guide For Beginners

[Web log post]. (2019, March 1). Retrieved from

https://blockgeeks.com/guides/what-is-blockchain-technology/

Schreiber, Laurie. Exporting seafood: With perishable products, time is money [Web log

post]. (2017, May 1). Retrieved from https://www.mainebiz.biz/article/exporting-

seafood-with-perishable-products-time-is-money

Shea, Sharon. Use cases and benefits of smart sensors for IoT [Web log post]. (2015, July

30). Retrieved from https://internetofthingsagenda.techtarget.com/opinion/How-

smart-sensors-are-transforming-the-Internet-of-Things

Shirani, A. (2018). Blockchain for global maritime logistics. Issues in Information

Systems. 19(3) 175-183.

Shoffler, Sarah. The Challenges of Producing and Consuming Local San Diego Seafood

[Web log post]. (2018, April 23). Retrieved from

https://www.trangistics.com/2015/06/transportation-of-perishables-the-importance-of-paying-attention-to-the-cold-chain/
https://www.trangistics.com/2015/06/transportation-of-perishables-the-importance-of-paying-attention-to-the-cold-chain/
https://www.zdnet.com/article/what-is-the-internet-of-things-everything-you-need-to-know-about-the-iot-right-now/
https://www.zdnet.com/article/what-is-the-internet-of-things-everything-you-need-to-know-about-the-iot-right-now/
https://martinfowler.com/articles/serverless.html
https://blockgeeks.com/guides/what-is-blockchain-technology/
https://internetofthingsagenda.techtarget.com/opinion/How-smart-sensors-are-transforming-the-Internet-of-Things
https://internetofthingsagenda.techtarget.com/opinion/How-smart-sensors-are-transforming-the-Internet-of-Things

116

https://ediblesandiego.ediblecommunities.com/food-thought/challenges-

producing-and-consuming-local-san-diego-seafood

Stevens, Emily. What Is The Difference Between A Mobile App And A Web App? [Web

log post]. (2018, April 3). Retrieved from https://careerfoundry.com/en/blog/web-

development/what-is-the-difference-between-a-mobile-app-and-a-web-app/

Te-Food. Food Traceability Trends to watch in 2019 [Web log post]. (2019, January 17).

Retrieved from https://medium.com/te-food/food-traceability-trends-to-watch-in-

2019-179a00b3b625

Wells, Jeff. Delivering fresh meat and seafood remains a challenge [Web log post].

(2017, August 25). Retrieved from https://www.grocerydive.com/news/grocery--

delivering-fresh-meat-and-seafood-remains-a-challenge/534763/

Williams, Gordon. Espruino: The Challenges of Running an Open Source Hardware and

Software Company [Web log post]. (2017, June 1). Retrieved from

https://makezine.com/2017/06/01/espruino-open-for-business/

M Woolley. (2017, May 1). Extending the Reach of the Web to Bluetooth Devices [Web

log post]. Retrieved from http://blog.bluetooth.com/extending-the-reach-of-the-

web-to-bluetooth-devices?_ga=2.268998769.1297226269.1525803096-

1043439978.1525803096

https://careerfoundry.com/en/blog/web-development/what-is-the-difference-between-a-mobile-app-and-a-web-app/
https://careerfoundry.com/en/blog/web-development/what-is-the-difference-between-a-mobile-app-and-a-web-app/
https://medium.com/te-food/food-traceability-trends-to-watch-in-2019-179a00b3b625
https://medium.com/te-food/food-traceability-trends-to-watch-in-2019-179a00b3b625
https://www.grocerydive.com/news/grocery--delivering-fresh-meat-and-seafood-remains-a-challenge/534763/
https://www.grocerydive.com/news/grocery--delivering-fresh-meat-and-seafood-remains-a-challenge/534763/
https://makezine.com/2017/06/01/espruino-open-for-business/
http://blog.bluetooth.com/extending-the-reach-of-the-web-to-bluetooth-devices?_ga=2.268998769.1297226269.1525803096-1043439978.1525803096
http://blog.bluetooth.com/extending-the-reach-of-the-web-to-bluetooth-devices?_ga=2.268998769.1297226269.1525803096-1043439978.1525803096
http://blog.bluetooth.com/extending-the-reach-of-the-web-to-bluetooth-devices?_ga=2.268998769.1297226269.1525803096-1043439978.1525803096

