
Imperfect Experience; or, Effects
of withholding training data on
multi-task question answering

in convolutional neural networks
The Harvard community has made this

article openly available. Please share how
this access benefits you. Your story matters

Citation Lutze, Matthew Donald. 2020. Imperfect Experience; or, Effects
of withholding training data on multi-task question answering in
convolutional neural networks. Master's thesis, Harvard Extension
School.

Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364870

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Imperfect%20Experience;%20or,%20Effects%20of%20withholding%20training%20data%20on%20multi-task%20question%20answering%20in%20convolutional%20neural%20networks&community=1/14557738&collection=1/14557739&owningCollection1/14557739&harvardAuthors=761bd115702f13e33beb493b69a274b1&departmentSoftware%20Engineering
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364870
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Imperfect Experience,

or,

Effects of withholding training data on multi-task question answering in

convolutional neural networks

Matthew Donald Lutze

A Thesis in the Field of Software Engineering

for the Degree of Master of Liberal Arts in Extension Studies

Harvard University

December 2019

c©2019, Matthew Donald Lutze

Abstract

This thesis explores the effects of training convolutional neural networks to

perform conditional multi-task problems with training data that systematically ex-

cludes information. Using the MNIST database of handwritten digits, we prepare two

collections of three versions of the database, adding color and an embedded question.

Two question-embedding method are used.

The base version of each data set has 100 combinations of 10 digits and 10

colors, with a roughly equal distribution of questions. From these base preparations

we extract color/shape combinations from the inputs using two strategies, forcing

each network to infer progressively more answers during testing.

We demonstrate six Convolutional Neural Networks (CNNs) varied by the ar-

chitecture of their output layers and output activation function, tested with two differ-

ent question embedding processes. Without otherwise implementing advanced tuning

techniques, the networks achieve between 96.78%(±0.41, n = 90) and 99.64%(±0.41,

n = 90) accuracy on the more difficult task when training on all category combina-

tions. At 50% combination extraction, one network variation demonstrates 98.33%

(±0.35, n = 90) and 99.87%(±0.09, n = 90) accuracy on shape and color classification

tasks.

The results indicate best performance from Sigmoid output activation and

task-shared final fully connected output layers. The thesis contributes to strategy for

network design when data is scarce.

Dedication

For Mom and Dad, Stefan and Letti;

for James, Tricia, Tom, Hugh, Liv, Pippa and Harvest;

I offer this work with gratitude and love.

iv

Acknowledgements

I would like to thank Dr. Xavier Boix, who agreed after a thorough search

to be my thesis director. Dr. Boix’s expertise and wisdom in both the field and the

writing process have been invaluable in helping me keep focus, refine my work and

ultimately achieve a result that I’m proud of.

My thanks also go to Dr. Sylvain Jaume for many months of support in finding

the right fit for me and in structuring my thesis process. Along with Dr. Jaume, my

thanks to Prof. Eric Gieseke and Dr. Michael Gussert for their support whilst I

developed my proposal, focused its scope and learned how to structure my goals into

something achievable.

To Dr. Wayne Homstad I extend my appreciation for the inspiration many

years ago to set my standards high and, even now, for helping me remember my voice.

To Dr. Gussert once more, my thanks for the many conversations as I worked to get

things exactly right.

Endless gratitude goes to my parents and family, whose love and support have

been and remain my bedrock.

Most of all, my deepest respect and adoration goes to my partner, Stefan Ursul.

This would not have been possible without his perpetual support, encouragement and

joy. Thank you—this has meant the world to me.

v

Contents

Table of Contents vi

List of Figures ix

List of Tables x

List of Code xi

1 Introduction 1

1.1 Questions are necessary for reasoning 2

1.2 Reasoning is necessary for developing wisdom and understanding . . . 3

1.3 Thesis structure . 4

2 Prior Work 5

2.1 Training neural networks to answer questions 6

2.2 Neural networks demonstrating reasoning characteristics 9

2.3 Neural networks cooperating and coordinating 13

2.4 Goals and Contributions . 15

3 Data and Experiments Design 16

3.1 Overall project requirements . 16

3.2 Components design . 18

3.2.1 Environment . 18

vi

3.2.2 Hardware and storage design 19

3.2.3 Testing setup design . 20

3.2.4 Networks design . 20

3.2.5 Softmax & Sigmoid activation 23

3.2.6 Data design . 25

4 Experiment Methods 29

4.1 Understanding and Preparing the MNIST database 30

4.2 Fundamental characteristics of the networks 32

4.2.1 Learning shape and color . 32

4.2.2 Selectively predicting shape or color 32

4.2.3 Switching between tasks . 33

4.2.4 Hyperparameter exploration 34

4.3 Preparing MNIST for the main tests 34

4.4 Final tests . 39

4.4.1 Automating training . 40

4.4.2 Preparation of results . 41

5 Results and Evaluation 42

5.1 Results of network characteristics tests 42

5.1.1 FC1 size . 42

5.1.2 Softmax vs Sigmoid output activation 43

5.1.3 Convolution filters & feature maps 43

5.2 Results of main experiments, multi-task training with increasingly scarce

data . 44

5.2.1 Softmax output activation with Channel-embedded questions . 46

5.2.2 Softmax output activation with Slice-embedded questions . . . 49

vii

5.2.3 Sigmoid output activation with Channel-embedded questions . 49

5.2.4 Comparing Channel-embedded preparations and Softmax-activated

variants . 50

6 Summary and Conclusions 52

6.1 Limitations and Known Issues . 53

6.2 Further work . 54

References 56

A Supplemental Data 63

viii

List of Figures

3.1 Shared and unique layers of the test network variants 22

3.2 Process for expanding and preparing the MNIST inputs 27

4.1 Example prepared data distribution for Experiment 1 in Set 1, Channel

embedded preparation . 38

5.1 Comparison of shape prediction accuracy between trial series, best

learning rate/momentum configuration. Mean accuracy with standard

deviation. Softmax- and Sigmoid-Channel n=90, Softmax-Slice n=120 45

5.2 Comparison of color prediction accuracy between trial series, best learn-

ing rate/momentum configuration. Mean accuracy with standard de-

viation. Softmax- and Sigmoid-Channel n=90, Softmax-Slice n=120 . 47

ix

List of Tables

3.1 Experiment design technologies . 19

5.1 Convolution windows and feature maps, % mean test accuracy 43

5.2 Network variant average Experiment 1 test accuracy, best learning rate

& momentum . 44

5.3 Softmax-Channel Trial Series, prediction test accuracy 48

5.4 Softmax-Slice trial series, prediction test accuracy 50

5.5 Sigmoid-Channel Trial Series, prediction test accuracy 51

A.1 Convolution windows and feature maps, mean training steps and % diff. 63

A.2 Convolution windows and feature maps, % difference from 4x4 and 25 64

A.3 Softmax-Channel Trial Series, validation and test for top 2 hyperpa-

rameter configurations . 65

A.4 Softmax-Slice Trial Series, validation and test for top 2 hyperparameter

configurations . 66

A.5 Sigmoid-Channel Trial Series, validation and test for top 2 hyperpa-

rameter configurations . 67

A.6 Percentage of test data that required prediction inference, Softmax-

and Sigmoid-Channel . 68

A.7 Percentage of test data that required prediction inference, Softmax-Slice 69

x

List of Code

3.1 Softmax output activation for LongFC2 and ShareFC2 24

3.2 Sigmoid output activation for LongFC2 and ShareFC2 24

3.3 Array used for coloring the MNIST images 26

4.1 Adding color to an MNIST image . 35

4.2 Experiment 2 process for extracting shape/color combinations 36

4.3 Experiment 3 process for extracting shape/color combinations 37

xi

Chapter 1: Introduction

There are four simple ways for the observant to tell Mr. Croup
and Mr. Vandemar apart: first, Mr. Vandemar is two and a half
heads taller than Mr. Croup; second, Mr. Croup has eyes of a
faded, china blue, while Mr. Vandemar’s eyes are brown; third,
while Mr. Vandemar fashioned the rings he wears on his right
hand out of the skulls of four ravens, Mr. Croup has no obvious
jewellery; fourth, Mr. Croup likes words, while Mr. Vandemar
is always hungry. Also, they look nothing at all alike.

Neil Gaiman, Neverwhere

Computer systems will not attain artificial “general intelligence” until they

can learn to communicate and develop reasoning skills (Mikolov et al., 2015, pp. 1,

24). These problem spaces are vast, but their potential solutions share both the need

to ask and answer questions and the need to infer new information from related-

but-distinct inputs (Mikolov et al., 2015; Bottou, 2014). At the intersection of these

two needs we may ask the question, “how would a system perform if asked questions

about scenarios it has not yet experienced?”

This thesis contributes answers to that and related questions. We require

neural networks to selectively classify images based on a question about the image’s

encodes shape or color. Controlled stress is applied by increasingly excluding answers

from the training data, requiring increasing inference. By observing the performance

of the networks in these conditions, we can make better fundamental design choices

that improve a network’s ability to perform from less data.

1

But first, a question: why are communication and reasoning so important to

the emergence of generally intelligent machines?

1.1. Questions are necessary for reasoning

A person, who we’ll call the transmitter, encodes abstract information from

their internal systems of perception and knowledge into a transferable format, hoping

that their audience, another person, will be able successfully decode the transferred

encoding within their own systems. The process of communication is imprecise and

difficult to do with high accuracy and precision. The transmitter must adapt and

account for the filters and differences in his or her audience’s ways of perceiving and

understanding. The audience similarly tries to guess the ways in which the transmitter

sees and interprets the world, because they must as well compensate for uncorrected

imprecision in the transmitter’s encoding. Observed by William H. Whyte in an

article for Fortune in 1950:

LET US RECAPITULATE A BIT: The great enemy of communication, we
find, is the illusion of it. We have talked enough; but we have not listened.
And by not listening we have failed to concede the immense complexity of our
society—and thus the great gaps between ourselves and those with whom we
seek understanding.

Disciplines have grown around the pursuit of understanding and perfecting

the process: the classics of grammar, logic and rhetoric, and with them the advances

of critique and the exploration of semiotics. Communication, and unambiguously

understanding it, are critical to our ability to interpret how we are expected to interact

with the outside world.

Argued by Melvin Conway, “organizations which design systems [...] are con-

strained to produce designs which are copies of the communication structures of these

organizations” (1968). He demonstrated that a system designed by more than a single

2

entity would reflect the way that those entities collaborated on the system’s design

and implementation. Expanding on this thesis, we might consider that non-solitary

neural networks need both an ability to communicate, and the means to develop

that communication around their own “organic” processes. Still, core to such a skill

would be the capability to ask and answer questions. Only as these systems interro-

gate other emerging systems will they have the chance to develop truly new modes

of understanding.

1.2. Reasoning is necessary for developing wisdom and understanding

Perhaps more fundamental to achieving an expression of intelligence is de-

veloping reasoning skills. Learning allows the network to collect impressions of the

outside world, but reasoning would be the network’s ability to interpret what those

impressions mean. Observed by LeCun et al. in “Deep Learning” for Nature, “Human

and animal learning is largely unsupervised: we discover the structure of the world

by observing it, not by being told the name of every object” (LeCun et al., 2015,

p. 442).

The task is so broad it can be difficult to define a success condition. Some

approach logic tasks (Hohenecker & Lukasiewicz, 2018) and others relational problems

(Santoro et al., 2017). Léon Bottou, in his essay on reasoning, describes the ultimate

goal as informal reasoning:

Human reasoning displays neither the limitations of logical inference nor those
of probabilistic inference. The ability to reason is often confused with the
ability to make logical inferences. When we observe a visual scene, when we
hear a complex sentence, we are able to explain in formal terms the relation of
the objects in the scene, or the precise meaning of the sentence components.
However, there is no evidence that such a formal analysis necessarily takes
place: we see a scene, we hear a sentence, and we just know what they mean.
This suggests the existence of a middle layer, already a form of reasoning, but
not yet formal or logical. (Bottou, 2014, p. 134)

3

He goes on to observe that learning how to model informal reasoning systems

may allow us to short-cut the labor-intensive and hard-coded systems of traditional

logic and instead use simpler, flexible designs. (Bottou, 2014, p. 136, 140).

We may find ways to model communication and informal reasoning in the

further deconstruction of simpler fundamental processes. Multi-task Learning is one

such motivation. Multi-task Learning (MTL) is simply the capacity of an entity to

learn to perform more than one activity at the same time. It is a process natural to

life: newborns learn to perform complex classification tasks by extending previously

learned tasks. Humans regularly learn complex activities by first mastering funda-

mental tasks (Ruder, 2017, p. 2). A network that learns to perform multiple tasks is

similarly better suited to learning more complex, general activities.

Various question answering and reasoning-based projects reviewed in Chapter

2 demonstrate a trend toward deeply complex and interconnected networks. This

thesis distills some of the fundamental aspects of these projects’ contributions. Using

those distillations, we will report on how core architecture choices can improve a

network’s ability to make selective predictions with partial training information.

1.3. Thesis structure

The remainder of this thesis details the background, set up and execution of a

project to investigate forced inferential reasoning in convolutional neural networks by

excluding training information. Chapter 2 will review Prior Works related to question

answering, reasoning, communication and cooperation. Next, Chapter 3 will present

the Requirements for the project and detail the Design of the project’s components.

Then, Chapter 4 reviews the Methods taken to perform the project, whose Results

are evaluated in Chapter 5. Finally, Chapter 6 will present Conclusions drawn from

the evaluation and describe potential future works.

4

Chapter 2: Prior Work

Therefore the problem of recognizing patterns and what to do
under these circumstances is the thing that the computer engi-
neers (they like to call themselves computer scientists) still find
very difficult. It is certainly one of the important things for fu-
ture computers, perhaps more important than the things I spoke
about.

Richard Feynman, Computing Machines in the Future

Two common deep learning neural network architectures are the Convolutional

Neural Network (CNN) and Recurrent Neural Network (RNN). Networks built on

either architecture, after undergoing a process of trial and correction, will adjust

many internal weights and variables to signal when an input contains patterns they

have previously seen. Where the RNN design works well for learning patterns between

inputs (being helpful for tasks like sentence completion and audio decoding), CNNs

are a traditional choice for learning the patterns within an input, such as image

classification tasks.

Recurrent Neural Networks can be described as a software analogy for short

term memory. They do a good job at discovering patterns experienced between inputs

and being able to recall them when the pattern is discovered again. In their basic

form, the process used to update the RNN with new information, backpropogation,

tends to decay information when errors or poorer signals overwrite a good signal. This

makes it very difficult to store information for a long time period if learning is an

5

active and ongoing process (Williams and Zipser, 1992; Werbos, 1988; Robinson and

Fallside, 1987 as referenced in (Hochreiter & Schmidhuber, 1997)). To solve the need

for long-term storage, Sepp Hochreiter and Jürgen Schmidhuber in 1997 introduced

the Long Short-Term Memory model for the recurrent network. The LSTM added the

capability to ignore an input or forget the state being effected, which helped reduce

the issue of new inputs dramatically effecting stored information (or never getting to

effect the stored model at all).

Still, the LSTM presents shortcomings with precision and accuracy. Weston

in 2014 noted that contemporary research demonstrated memorization, like directly

storing and returning the same information, are difficult for the RNN / LSTM alone

(Zaremba & Sutskever, 2014). For Zaremba and Sutskever, in order for an LSTM

to store and return a string of numbers consistently, it was necessary to reverse the

input and double-train the model before getting its output.

2.1. Training neural networks to answer questions

Question answering is a fundamental requirement of interactive networks. Net-

work architectures that can parse, process and reply to a question can be interrogated

and can potentially participate within a system of actors.

The RNN and LSTM train a corpus of information into memory and refer

to these storage patterns when classifying new inputs. This process predisposes the

networks to losing learned facts over time (LeCun et al., 2015). Many groups made

attempts to improve performance during the decades after Hochreiter and Schmidhu-

ber introduced their improvement. In 2014, Jason Weston et. al. presented Memory

Networks, which are designed to segment training input and store the learned pat-

terns in external memory. Storing the model’s ”knowledge” allowed improved recall

later, and successfully demonstrated Question Answering skills (Weston et al., 2014).

6

Published at approximately the same time as Memory Networks, a team of researcher

at Google DeepMind, led by Alex Graves, published a similar but separate approach

to the problem in Neural Turing Machines 2014.

The MemNN and NTM both approach the problem of long-term fact retention

by adding an external memory component. Vectors generated by an initial parsing

neural model are written to this memory by different schemes and the MemNN or

NTM can later, when it parses a question, recall the information whose stored vector

is closest or best matched to the question. Both models were significant improve-

ments to the LSTM approach for neural-model-based discussion. Follow up work to

improve both the Memory Network (Chandar et al., 2016) and Neural Turing Ma-

chine (Gulcehre et al., 2016, 2018; Woodward & Finn, 2017) have explored ways to

improve memory addressing performance and reduced the supervision required for

each one’s training. In these approaches, however, question answering is handled as a

parallel effort; a separate network for processing and understanding a question is in-

troduced, working in concert with a classification network for the ultimate extraction

and prediction of desired responses.

A Convolutional Neural Network (CNN), on the other hand, works by per-

forming a series of operations on the input and the neural network layers, producing

an output which describes how the input and the neural network layers interacted

with each other (these operations are called convolutions, giving the network type its

name).

A neural network layer in a CNN will have a set of “feature maps.” A portion

of the input’s pixels, the size of a predefined small filter window, will be summarized

and then stored in a corresponding pixel of one of the feature maps. If the network

uses a 4x4 pixel filter, for example, the window would process 16 pixels from the

input and store the result in the feature map. Different weights will apply to the

7

summarizing operation for each feature map, allowing each map to learn how to find

different features (thus the name). An activation function normalizes the feature map

values and, during a pooling stage, the parts of the activated convolution layer that

do less often signal known inputs will be removed to keep the network from bloating.

Backpropogation will, over time, adjust the weights and biases of the neurons in the

feature maps. By working backwards through the network with adjustments for the

correct answer, the network changes how input values are expressed layer-to-layer.

This will eventually (one hopes) result in the network correctly classifying future

inputs.

Convolutional feature extraction is helpful for visual classification but is not

generally the first choice for learning semantic relationships. The RNN described

earlier will learn the association between a set of letters that make up a word, or

a set of words that make up facts. More robust recurrent networks will learn the

association between parts of a set of words and parts of questions, allowing them to

eventually predict answers to question configurations they may not have explicitly

been trained on. RNNs underlie the Neural Turing Machine from Graves, Wayne and

Danihelka at DeepMind 2014 and the Memory Network from Weston, Chopra and

Bordes at Facebook 2014. The CNN is not as efficient at training word relationships.

In Karpathy (2015), the author observes that

A glaring limitation of vanilla Neural Networks (and also Convolutional Net-
works) is that their API is too constrained: they accept a fixed-sized vector as
input (e.g. an image) and produce a fixed-sized vector as output (e.g. proba-
bilities of different classes).

The CNN still presents an interesting challenge. A strategy that allows passing

communication along with an image, to a CNN capable of interpreting the commu-

nication, would make a separate communication parsing network unnecessary and

drastically simplify a Visual Question Answering (VQA) network’s design.

8

2.2. Neural networks demonstrating reasoning characteristics

When we talk about teaching a CNN to learn new information, we begin to

work with more complex problem spaces. The simplest problem space for classification

is asking a neural network to identify whether an input contains a specific sort of

representation: “Is there a cat?”, or “Is this blue?” From this problem space, we can

expand in two directions. If we add two or more representations to classify, then

we’ve introduced a Multi-Classification problem. If we ask the network to classify

two or more different kinds of representation (shape and color, for example) we’ve

introduced a Multi-Task problem.

Both of these spaces are rich with interesting applications. The most complex

contemporary example may be autonomous agents that operate vehicles. The com-

puter vision networks for these machines need to simultaneously identify the road,

vehicles, pedestrians, and other objects on the road, along with various environmen-

tal conditions (weather or signage) that might change the decisions the agent would

make.

Breakthrough models have been both complex and limited in their applica-

tions. Like the Neural Turing Machine and the Memory Neural Network discussed

in 2.1, these approaches have often looked at ways to add traditional computing

structures into the Deep Neural Networks. Emerging models haven’t required these

external storage-and-recall mechanisms and are exploring natural language visual

question answering.

Reviewed by Hudson & Manning (2018), the paper ”FiLM: Visual Reasoning

with a General Condition” introduces a computational method to influence a neural

network’s layers (Perez et al., 2017). In the case of CNNs, a network designer can

insert, between two layers of the convolutional network, a FiLM (Feature-wIse Linear

9

Modulation) layer, which can use an RNN to influence the output of the first layer and

therefore modify the perceived input at the second layer. This adaptability means

that one can have the benefit of rich feature identification in the CNN’s feature maps,

as well as the pattern recognition or language interpretation inherit to RNNs. This

combination can enable question-anwering about a visual input, and the authors

indeed report a 97.4 ± 0.4% accuracy on one of their models when testing with the

CLEVR dataset and evaluation model.

A downside to the FiLM model, observed by Hudson & Manning, is that the

FiLM layer’s influence is universally applied over the outputs of one CNN layer to the

next. In Figure 3 of the FiLM paper, the authors illustrate the FiLM layer inserted

between a convolutional layer and its activation function layer (Perez et al., 2017).

Hudson and Manning observe that this full-layer effect reduces the ability of a CNN

and FiLM network to perform attention-based tasks, which may limit the strategy’s

overall ability to answer detailed questions about regions of an input. The approach

is illustrative, however, of a direction for achieving CNN-only VQA.

Drew A. Hudson and Christopher D. Manning of Stanford University, in April

2018, published the Memory, Attention, Composition (MAC) cell neural network com-

ponent for using attention mechanisms to interrogating images during VQA (Hudson

& Manning, 2018). They identify a common lack of inferential power in neural net-

works. The nature of Deep Neural Networks to develop vast amounts of hidden

internal connections tends to mask the shallow connections that networks are often

establishing:

Most neural networks are essentially very large correlation engines that will
hone in on any statistical, potentially spurious pattern that allows them to
model the observed data more accurately. The depth, size and statistical nature
that allows them to cope with noisy and diverse data often limits their ability
to interpret and hinders their capacity to perform explicit and sound inference
procedures that are vital for problem solving tasks.

10

They offer a network design of recurrent cells, with each cell containing: a

control unit, which determines what the cell should be paying attention to; a read

unit, which takes direction from the control unit to “extract information” from input

or other information storage location; and a write unit, which performs an operation

with the extracted information and the previous cell’s memory output, creating a

new output that gets passed to the next cell. In their description of the module, a

reasoning prompt or question is delivered separately from the visual input, but both

are processed simultaneously.

In the case of the CLEVR visual question answering problem, the cell may get

a picture with some spheres in it as the memory output from a previous cell. The

control unit may determine it is supposed to find one of the spheres, which it tells

the read unit to extract. The read unit finds that sphere in the memory output from

the previous cell, and tells the write unit where the sphere is. That location is then

added to the currently held memory image, and is finally output from the cell as the

new memory output. Notably, their model performed faster and achieved a higher

overall accuracy on the CLEVR problem than FiLM and other then-state-of-the-art

models.

Vincent Marois, T.S. Jayram, Vincent Albouy, Tomasz Kornuta, Younes Bou-

hadjar and Ahmet S. Ozcan with IBM Research AI responded to (Hudson & Manning,

2018) with “On transfer learning using a MAC model variant.” In their paper, they

introduce a simplified version of the MAC model that achieves comparable results.

By removing some of the weights and biases from all three constituent units, the team

reduce the number of parameters-per-cell by 50-67% and achieve a training and test

accuracy less than 0.9% lower than the full MAC model (Marois et al., 2018).

The MAC model is interesting because it demonstrates how a network can take

a question and an input together, understand the relationship between question and

11

input, and work its way toward an answer. Because the question decomposition and

image analysis are happening concurrently (and not in separate layers of the network),

it is potentially “understanding” where an object is in an image and analyzing that

area to provide the correct answer. It also identifies that the simpler design performed

nearly as well while requiring a significantly smaller processing resource footprint.

In Section 4.2 of (Marois et al., 2018), the authors note that MAC (and we

assume their simplified MAC as well) networks fail to identify two shape and color

combinations that were held out of training sets. The authors on page 5 of the report

hypothesize that the MAC networks ”did not correctly separate the concept of shape

from the concept of color.” we will explore the phenomenon of networks learning to

separate tasks as a core question of this research project.

Santoro et al. present a composite function as a simple discussion model. This

simple Relational Network (RN) has two multi-layer perceptrons and a set of objects.

The input of the first MLP is the sum of outputs from the second MLP, one output for

when each possible combination of two objects, from the total set of objects, is passed

through that second MLP. The second MLP is learning the landscape of “distances”

between each of the objects, while the first MLP is determining how to reflect those

relationships or interactions.

To judge the CLEVR problem, the authors used a 4-layer CNN for image

processing and 128 unit LSTM for question parsing, along with their RNs. CNN-

parsed images features were given relative coordinates, which were fed into an RN

to learn spatial relationships. LSTM-parsed question words were assigned unique

integers, and the final output layer of the LSTM feeding the RN to learn the word

relationships.

The study was influential for using a separate, simple module to learn how

close or far apart things are, and it achieved state of the art performance on the

12

CLEVR tests. It seems to function like a look-up table for the other NNs, which

appears to exhibit a problem confirmed by Palm et al.: the standard RN will learn

single-order relationships between objects, but cannot infer second-order or deeper

connections.

The RN is a major step forward, but it has a limitation. The way it is con-
structed, each recognized object can only interact with the other recognized
objects once, after which the network must give an answer. This limits the RN
since it cannot reason about derived interactions, i.e. object A affecting object
B, which in turn affects object C, and so on. In the RN, object A must directly
affect object C, or not at all. Going through the interaction with object B is
not an option.

Palm et al. (2017) extends the RN work by adding a messaging function,

in this case a MLP that is passed by a node in problem space graph to all of its

neighbors. Those messages are used to update a hidden state of the graph node

(the authors used a Sudoku game to illustrate the process). This provides historical

context about existing relationships that can be used by a neural network to make

predictions based on greater that single-order relationships. They tested their model

with a separate task also evaluated by Santoro et al. (2017), bAbI question answering,

and the Recurrent Relational Network improved performance from 18 of 20 correct

tasks to 19.17 ± 0.35 correct tasks while training days quicker.

Parts of a neural network sharing state messages amongst themselves in order

to maintain historical context further decentralizes the influences network nodes have

on each other, particularly within the same layer. This level of complexity allows for

complex internal communication with its own form of memory to occur.

2.3. Neural networks cooperating and coordinating

One result of networks learning to communicate and perform nontrivial reason-

ing tasks would be cooperation between networks. Through the course of the project

13

we explored an initial collaborative-routing process for network question answering.

In a fully realized form, networks that can ask and answer questions, make judge-

ments and take actions would need a cooperation strategy for successfully interacting

with their neighbors.

An approach by Foerster et al. (2017) in “Learning with Opponent-Learning

Awareness” demonstrates multiple agents developing cooperation within different

game environments, in scenarios where both agents have access to the exact pa-

rameters of their opponent and other scenarios where these parameters are hidden.

The networks learn to infer the opponent’s parameters from that opponent’s action

trajectories using an Argmax function. Previous papers by Foerster et al. used policy

gradients to reinforce learning between agents 2016 and demonstrated Differentiable

Inter-Agent Learning, a method for agents to share policies. Mordatch & Abbeel

in 2017 demonstrated multiple agents in a learning environment developing a com-

positional language, without having previously been exposed to human language.

The agents used that new language to provide instructions to each other in order to

complete tasks.

A handful of researchers have recently demonstrated approaches of varying

complexity for introducing inter-cooperation between specialized networks. Ruder

et al. demonstrated in 2017 the Sluice Network, which uses a complicated strategy of

cross-connecting neurons within the layers of peer networks, so that the patterns one

has used can influence predictions of the other network. Andreas et al. (2015) describe

a strategy of selecting from best-of-breed modules to build a custom solution for a

problem. Rosenbaum et al. (2017) demonstrate an exciting design that encourages a

network to routing inputs to different network layers for optimal processing.

14

2.4. Goals and Contributions

To summarize the previous work, there is evidence of Convolutional Neu-

ral Networks learning to communicate, perform reasoning tasks and even cooperate.

These solutions separately are non-trivial and combined represent a dauntingly com-

plex architecture. By taking fundamental components from them, whether that is

embedding questions or training different layers to specialize in certain processing

tasks, we will discover how different architectural choices effect a network’s robust-

ness.

A way to explore these capabilities is by using purposefully incomplete training

environments for our networks. Architectures that perform well as less information

is available will be better suited to real-world environments, where perfect knowledge

is never achievable.

Interactive communication and reasoning are fundamental to generally useful

and adaptable neural networks. We intend to explore fundamental components of

recent advances in multi-task learning, network communication and cooperation in

order to understand if we may be able to work toward simpler architectures. Simple

but robust architectures that can transfer skills will be widely useful.

While deep learning neural networks excel at classifying previously trained

information, building a model that is good at inferential reasoning is still difficult

(Bottou, 2014). Transfer Learning—robustly pre-training a network before teaching

it new tasks—is a powerful way to improve multi-task, multi-classification perfor-

mance. Better understanding of how fundamental network architectures influence

both multi-task performance and networks’ inferential capacity may improve the qual-

ity of general use neural networks.

15

Chapter 3: Data and Experiments Design

When solving a problem, try not to solve a more general problem
as an intermediary step.

Vladimir Vapnik, The Nature of Statistical Learning Theory

The design and implementation of this project is agile and iterative, with

the success or failure of tests leading to refinements of both models and approach.

For accessibility, overall design choices and rationale are presented here. Specific

implementation details and methods are discussed in Chapter 4.

3.1. Overall project requirements

I hope to contribute to the Machine Learning field’s collective ability to develop

networks capable of learning many tasks with less-than-perfectly cultivated data. To

accomplish that, this project focused on exploring features of different configurations

of convolutional neural networks. More specifically, it explored how changing the

configuration of a network would effect the network’s ability to perform multiple

tasks. We want to answer the following questions:

1. How simply can we implement a network that can perform multiple tasks and

provide accurate multi-label outputs?

2. How can we extend this network to to use a shared vocabulary for answering

different questions? How does that network change?

16

3. How does performance change when the data isn’t exhaustive and doesn’t rep-

resent the entire problem space?

4. How do these end-to-end networks compare to a network where all of the clas-

sifying components may not exist in a single feed-forward network?

This line of questioning provided the road map for exploration. The literature

(see Section 2) describes many different design approaches that, for want of robust-

ness, require complex and deep networks. Our first goal in this project is to look

for a simple structure that would provide an easily reproducible foundation for the

further questions, while still learning to perform more than a single task. From that

baseline, the additional questions would direct exploration toward interesting aspects

of these networks. How does withholding information change how well the network

learns? Do other novel, simple approaches to developing multi-task networks provide

better performance?

The project’s solutions would need to provide a few commonsense capabilities.

The overall goal is to develop a collection of different-configured networks, and use

common testing data to compare their performance. To do this, the project will need

to accomplish:

• Collect a series of input images and process the inputs in a predictable, describ-

able and repeatable way

• Design the networks so that they can learn to perform more than one task based

on the inputs.

• Design the networks, so that they can process a ”question” or a switching

command in relation to an input.

• Provide a process for collecting comparable results from training the networks.

• Provide visualization points into the networks to allow analysis of how they’re

17

working.

3.2. Components design

This project hopes to understand fundamental performance characteristics of

convolutional neural networks. To find actual signals, we need to carefully design and

control the fixed parameters of the project data, neural networks and environments.

3.2.1 Environment

The industry standard for design and exploration of deep neural networks is

done in Python, which we use here. It offers the most deep learning frameworks

for designing and implementing the networks: Keras and Tensorflow are two of the

most common, though others including Theano, mxnet, PyTorch, Caffe and many

others have significant market share and benefits. While Keras makes model specifi-

cation incredibly simple, abstracting some of the verbosity of a backend framework

like Tensorflow or Theano, this project uses Tensorflow directly as it’s deep learning

framework. Tensorflow allowed me to provide greater flexibility in defining our train-

ing process. It further keeps the specification of network layer shapes verbose and

easier to extract.

During network development, we used Tensorboard to review how networks

were training in real-time. Being able to embed watchers on any part of the network

(such as the final predictions, loss calculations, accuracy calculations) helped under-

stand where the networks were training well and how to pick general parameters while

we added and tested new functionality.

The underlying environment is generally summarized in Table 3.1.

18

Core tools and frameworks implemented as part of this project.
Type Technology Version

Software language Python 3.6.4
Deep Learning framework Tensorflow 1.12.0

Stats visualization Tensorboard 1.12.1
Experiment data MNIST *
Nvidia GPU tools CUDA 9.2.148

cuDNN 7.2.1
*Note: uses tensorflow.contrib.learn.python.learn.datasets.mnist
distribution for MNIST data loading

Table 3.1: Experiment design technologies

3.2.2 Hardware and storage design

Hardware requirements are modest because these experiments will use the

MNIST database of handwritten digits, based on a 28x28 pixel image (see Section

3.2.6). These are much easier to process than other more complex test sets. Images

from the CLEVR database are much larger, while ImageNet images have variable

sizes. The computing requirements are therefore moderate; an available desktop

computer with a NVIDIA GeForce GTX 1070 graphics card provides sufficient per-

formance to make the non-graph-manipulation operations the time-limiting part of

training.

Beyond running tests, using git and GitHub will allow storing detailed version

history of the work, and provide a platform to share both results and problems as

they arise. To note: training and storing outputs from even simple neural networks

can require significant size. As testing and development continued, the size of pro-

duced outputs increased significantly, until final outputs were exceeding 1 GB per

experiment set run. In order to save from storing 100’s of GB of partial experiments

on GitHub, we store only summary run information for intermediate works.

19

3.2.3 Testing setup design

I began the project in Jupyter Notebook. The environment is easy to set

up and makes testing parts scripts visual and trivial. It would be especially useful

for inspecting and verifying the modifications to the MNIST inputs. Because we

planned to both add color and noise, we needed to be able to review the process and

determine that the modifications were sufficient and consistent. Jupyter Notebook

is used initially to make visualizing the changes easier than running through the

terminal.

A small testing platform will be necessary to efficiently run the volume of tests

intended. While Jupyter Notebook is helpful for breaking scripts down or running

tests, initial testing demonstrated that longer-running scripts stall or fail to complete.

Running tests through the browser further reduces the amount of memory available

for testing, and Jupyter Notebook presents issues with loading and running scripts

from other files. We will therefore build an experiment “test bench” for training

the networks directly in command shell-launched scripts to allow batch training and

easily configuring training parameters.

3.2.4 Networks design

Each network explored should be able to learn features of our training inputs

and respond to a ”question” about those inputs. The composition of the network

should be robust enough to efficiently learn its tasks, but not so excessively robust so

as to waste resources or training time. The networks should also be identical, except

for the specific component being alternated for the tests.

LeCun, Bottou, Bengio and Haffner in 1998 identified the following configura-

tion as well-performing for MNIST training (LeNet-4, with 4 layers):

20

1. 4 features, with 8 sub-sampling maps

2. 16 features, with 16 sub-sampling maps

3. fully-connected layer having 120 units

4. output layer having 10 units

The best performing configuration from the paper used this network setup

with 3 LeNet-4 networks(LeCun et al., 1998).

Simard, Steinkraus and Platt in 2003 discuss the effects of kernel size in the

convolutional layers of a CNN processing MNIST images and determine that “padding

the inputs did not improve performance significantly” They cite an optimal perform-

ing setup used 5 features in the first convolutional layer, 50 features in the second,

100 hidden units in the first fully connected layer and 10 output units in the second

fully connected layer (Simard et al., 2003).

I reviewed the above recommendations and perform tests with different sizes

for both the convolution window and the feature map depth. For the tests we will use

4x4 convolution window, and 25 feature maps for Convolution Layer 1. The review

results are discussed in sections 4.2.4 and 4.2.

For this thesis, we test very similar versions of an end-to-end Convolutional

Neural Network. Each network variant shares the first three layers, diverging at the

final output layer. The shared layers are designed as follows:

1. *Input: a 28x28x4 image.

2. Convolution Layer 1 (Conv1): uses a 4x4 convolution filter to create 25 feature

maps, for a resulting Tensor with shape (4, 28, 28, 25). Neurons are activated

with ReLU, and a 2x2 max pooling filter results in an output Tensor with shape

(4, 14, 14, 25).

3. Convolution Layer 2 (Conv2): uses a 4x4 convolution filter to create 50 feature

21

10
1
1*4

10
1
1*4 10
1
1*4

20
1
1*4

4
4

convolution

4
4

convolution

2
2

max pool

2
2

max pool reshape & matmul matmul

28

28

4 25*4
50*4

14 7
7

100

1*4
1

14

Input Conv1 Conv2 FC1 FC2

LongFC2

ShareFC2

Twin
FC2

Figure 3.1: Shared and unique layers of the test network variants

maps, for a resulting Tensor with shape (4, 14, 14, 50). Neurons are activated

with ReLU, and a 2x2 max pooling filter results in an output Tensor with shape

(4, 7, 7, 50).

4. Fully Connected Layer 1 (FC1): The output Tensor from Conv2 is reshaped to

(4, 2450) and then reduced through matrix multiplication to a (4, 100) Tensor.

The neurons are finally activated with a ReLU function.

The dimensions of the final Fully Connected layer (FC2) are varied for each

tested network type. Three network variations are used in this thesis:

1. TwinFC2 is two peer Tensors with shape (4, 10). Each layer is independently

fully connected to the FC1 layer neurons, and not connected to each other.

Each layer is trained on either the shape or color ground truths.

2. LongFC2 is one Tensor with shape (4, 20). Each output is assigned either a

shape or a color label when training on the inputs’ ground truths.

3. SharedFC2 is one Tesnor with shape (4, 10). Each output is assigned both a

shape and a color label when training on the inputs’ ground truths, and must

produce the correct prediction for the expected / embedded question.

The design of the networks are summarized in Figure 3.1. Each network

variant will be tested with a Softmax output activation and with a Sigmoid out-

22

put activation. All networks use a Momentum optimizer. The Long and Share ar-

chitecture variants optimize on the mean loss over a training batch calculated by

softmax_cross_entropy_with_logits_v2 or, for the Sigmoid-Channel trails series,

sigmoid_cross_entropy_with_logits. The TwinFC2 architecture variants use an

equally weighted average of the shape and color prediction mean loss.

3.2.5 Softmax & Sigmoid activation

Two sets of variants are used in these experiments, differed by output acti-

vation and loss function. LongFC2, ShareFC2 and TwinFC2 variants use a Softmax

activation function, while the SigLongFC2, SigShareFC2 and SigTwinFC2 variants

use a Sigmoid activation function. The output of a network variant is an array of

probabilities. A Softmax function will transform this array so that the value of the

array member with the highest probability is increased, while the other array mem-

bers are decreased to 0. Softmax ensures that one member of the output array is

always a strong prediction signal. A Sigmoid function will increase the value of array

members that have higher probability, but does not concurrently decrease the value

of other members. Sigmoid does not require any member of the output array to be a

strong prediction signal.

When TwinFC2 is implemented with a Softmax activation, each of the peer

output Tensors will always generate a prediction. To provide Shape and Color pre-

diction task accuracy, we mask the outputs of each final layer to select the indices

that correspond with each output’s relevant question, and report the mean over those

subsets. Because both outputs make a prediction, they both need a ground truth,

and the network ends up not being penalized for answering the wrong question.

In order to compare the performance of the Twin configuration with the other

two configurations, we need the network to output an array with a prediction for the

23

question task, and output an array with no prediction for the non-question task. We

accomplish this by changing the output activation functions to Sigmoid and training

the network with labels that provide a ground truth exclusively for the question asked.

For the interest of thoroughness, we also collect and report on the performance of

LongFC2 and ShareFC network variants using with a Sigmoid output activation.

1 ## Get network outputs

2 model_output = my_conv_net(x_input)

3

4 ## Loss

5 losses = tf.nn.softmax_cross_entropy_with_logits_v2(

6 logits=model_output, labels=y_target)

7 loss = tf.reduce_mean(losses)

8

9 ## Prediction

10 # Create prediction functions for digits and colors (_d and _c)

11 prediction = tf.nn.softmax(model_output)

12

13 ## Accuracy

14 correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(y_target,

1))

15 accuracy = 100*tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

Listing 3.1: Softmax output activation for LongFC2 and ShareFC2

1 ## Get network outputs

2 model_output = my_conv_net(x_input)

3

4 ## Loss

5 losses = tf.nn.sigmoid_cross_entropy_with_logits(

6 logits=model_output, labels=y_target)

7 loss = tf.reduce_mean(losses)

8

9 ## Prediction

10 prediction = tf.nn.sigmoid(model_output)

11

12 ## Accuracy

13 correct_prediction = tf.equal(

14 tf.round(prediction), tf.round(y_target))

15 accuracy = 100*tf.reduce_mean(

16 tf.reduce_min(tf.cast(correct_prediction, tf.float32), 1))

Listing 3.2: Sigmoid output activation for LongFC2 and ShareFC2

Listings 3.1 and 3.2 detail the specific method for calculating the loss and

accuracy with each output activation method. Note that the Sigmoid accuracy

24

calculation uses tf.reduce_mean(tf.reduce_min(correct_prediction,1)). The

tf.equal(tf.round(),tf.round()) operation for evaluating the correctness of the

prediction would produce the result “0.75” when comparing the prediction [1,0,1,0]

with the ground truth [0,0,1,0], because 3 of the 4 positions would evaluate to

“TRUE”. Using the tf.min() operation and setting its minimum to 1 means that any

correct_prediction that isn’t completely correct will be considered a miss. This

allows us to compare results with the Softmax network variants, whose tf.argmax()

and Softmax functions are naturally comparing one-hot predictions and ground truths.

It also ensures that strict accuracy is generally reported.

3.2.6 Data design

To test the questions posed in this design brief, we chose to augment the

MNIST database images by adding to each a color and small amount of random-

ized noise. These will be fed into each of the network variations, and the resulting

trained networks’ performance compared to develop new understanding. This section

discusses the design and rationale for data preparation.

The MNIST data set was published in conjunction with LeCun et al. (1998).

It has become a gold standard for basic visual task analysis. The images are small and

uniformly sized (28x28 pixels), which makes training networks simple for even a very

modest home computer. Further, neural networks need not be exceedingly deep (see

Section 3.2.4 above) in order to achieve very high accuracy. These properties make

it a good choice for quickly testing design choices, as training a single feed-forward

network on our hardware setup requires roughly 30-60 seconds.

An MNIST shape is a 28 by 28 pixel array with each pixel having a value from 0

to 1. In order to add color, we change this from a gray-scale to a color-scale image. We

copy the gray-scale array twice, making each shape a 3x28x28 Numpy Array. To this

25

3-channel array we multiply a 1x3 list of simplified RGB color values; channel intensity

values were 0.00, 0.25, or 0.75 (see the colors in Listing 3.3). The modified 3x28x28

is then clipped to 1, so that the pixel values remain in the 0 to 1 range. Finally, a

small amount of noise is added via a numpy.random.normal Gaussian distribution,

around 0 with a standard deviation of 0.2, after which the image is clipped one final

time. This procedure gives us a 3-channel RGB color image, for each of which a color

label is stored to enable supervised training of a feed-forward network on both shape

and color tasks.

1 # 10 colors, with a 4th channel to match the processed MNIST image shape

2 colors10 = np.array([

3 ["red", [.75,0.,0.,0.]],

4 ["green", [0.,.75,0.,0.]],

5 ["blue", [0.,0.,.75,0.]],

6 ["pink", [.75,0.,.75,0.]],

7 ["yellow", [.75,.75,0.,0.]],

8 ["cyan", [0.,.75,.75,0.]],

9 ["orange", [.75,.25,0.,0.]],

10 ["periwinkle", [0.,.25,.75,0.]],

11 ["purple", [.25, 0.,.75,0.]],

12 ["chartreuse", [.25,.75,0.,0.]]

13], dtype=object)

Listing 3.3: Array used for coloring the MNIST images

Once intermediary network designs are successfully learning shape and color

identification tasks, we need to be able to ask the network a question (see Section

3.1). For this added complexity, the data needs to be further augmented. Question

answering and reasoning networks benefit from attention-focusing: a target feature

is highlighted with a mask that helps the classification network ignore other parts of

the image. Using this general idea, we add a fourth channel to the images that stores

a simple integer question. The process above is thus adjusted: the base shape array

is copied 3 times, to make a 4x28x28 Numpy array, and a fourth 0 float is added to

each color list. With this new 4x28x28 image, the fourth channel will be replaced

26

with a 1 for the “shape” question, and a 2 for “color.” A list of questions is stored

alongside the shape and color labels so that we can ultimately evaluate each network’s

performance answering either question.

H

W D

Figure 3.2: Process for expanding and preparing the MNIST inputs

An overview of the image preparation process is demonstrated in Figure 3.2,

and the core function for coloring the images is demonstrated on page 35. In order

to reduce potential inaccuracy in our final experiments, three different prepared sets

of MNIST data were created. The runs in each prepared set for each specific network

variant, learning rate and momentum, in each experiment can be averaged together,

reducing potential unknown biases in any one particular set.

An unintended revision in the color strategy development process enables me

to test two different methods of embedding the question. In the second preparation,

later referred to as “Slice” trials, the question is embedded along the X-Z plane

of the image at Y-index 3 instead of the X-Y plane at Z index 3. This leaves a

28x1 row of embedded Question in each of the 4 image channels (embedding it in

27

a slice of the image) instead of the 28x28 plane (using a full channel of the image).

We present the results in comparison with the original question-embedding strategy

during Evaluation in Chapter 5.

28

Chapter 4: Experiment Methods

The first lesson on Roke, and the last is, Do what is needful!
And no more. The lessons in between, then, must consist in
learning what is needful.

Ursula K. Le Guin, The Farthest Shore

We approach the thesis research in three main parts. First, we need to un-

derstand how the MNIST database looks and how it can be manipulated in order to

effectively design ways to use that data. Next, we need to understand how the differ-

ent parts of a CNN may change its robustness, in order to select which components or

parameters we would vary. Finally, we need to set up a reproducible set of tests and

collect sufficient data from them to make observations about our varied network ar-

chitectures. I’ll briefly describe these sections before expanding on important process

points later in this chapter.

Part 1 involves understanding the MNIST database. We build and test scripts

that manipulate and evaluate the inputs and labels. This includes exploring ways

to add colors and noise to the database images. We test our understanding of the

data by training a simple CNN on the different data configurations and end up with a

network accurately predicting the encoded number and given color in example inputs.

For part 2, the exploration focused on implementing simple ways to ask a

“question.” Visual Question Answering is a still-developing field, while the state of

the art in natural language processing for full-text question answering is a complex

29

process. To reduce the inherit complexity in these processes, we review simple ways

to embed a question. In this part we also experiment with changing some of the

parameter dimensions and network characteristics to understand what effect they had

on the performance or robustness of these networks. A small script for standardizing

the reporting of parameters and for running tests is also built.

Part 3 of the project results in the main discussion of Chapter 5. How do

our best-performing network variants compare on fixed preparations of the MNIST

database? What is their robustness—how well do they infer the correct classification—

when we extract some of the training data in different ways? Significant efforts here

include choosing how best to prepare the data, confirming that it was consistent, and

collecting statistics about it before beginning the comparison tests.

The following sections will provide more detail on the specific process followed

in setting up and running the experiments. Significant discoveries or observations

will be discussed in more detail in Chapter 6, while results of experiments will be

discussed in Chapter 5.

4.1. Understanding and Preparing the MNIST database

It is fundamentally important to understand as much as possible about what

one is exploring, so that one knows what they can actually explore. The first phase of

this research effort involves exploring the MNIST data in detail and selecting methods

by which the images can be modified and made more difficult for the networks to learn.

Jupyter Notebook is used as the initial development platform. A Python script

loads tensorflow.contrib.learn.python.learn.datasets.mnist and builds the

training and test sets of inputs and labels. The images are 1x784 pixel arrays, which

can be re-shaped to 28x28 pixels (this eases visualizing the actual digit). The labels

can be stored as either an integer corresponding to the number in the image (0-9), or

30

a one-hot array, encoding the integer in the corresponding array position. The images

themselves are gray-scale; each array position is a floating point number between 0

and 1, representing that pixel’s intensity value.

Two initial modifications to the images are needed. First we add color. This is

accomplished by making the 28x28x1 pixel image a 28x28x3 pixel image, adding two

additional channels. With a 3-channel image, each pixel could then store a red, green,

or blue (RGB) value. This is accomplished by adding defined channel values indicated

for a given color (3.3) to the MNIST image along the axis grouping each pixel’s three

channel values. Clipping the values to 1 maintains the expected maximum value for

each pixel, and results in a consistent color being applied to the image.

The second need is adding noise to make sure the colors and number shapes

weren’t too uniform. We create another array with numpy.random.normal, using the

shape of the 3-channel colored MNIST image, centered on 0 with a spread of 0.2. The

images were again added and then clipped to keep the value a maximum of 1.

Finally, to make visualizing the example images easier and to clip the minimum

threshold of the images to 0, each array value is inverted and the absolute value is

stored. This added slightly more noise for the background of the image and ensured

that the encoded digit itself would be displayed with the colors, and the background

around it displayed as white.

The initial testing network has 2 CNN layers and 2 fully connected layers, as

described in Section 3.2.4. The initial network trains on only the shape labels, which

described the number encoded in the MNIST image. Once the networks demonstrates

better than 95% training accuracy on the shape labels colors are added and the

network adjusted. A peer second fully connected layer split is added to the network

to allow shape and color label training. The completion of this first task is the

generation of the TwinFC2 network variant.

31

4.2. Fundamental characteristics of the networks

To support final testing, we need to identify network architectures that learn

to differentiate between shapes and colors and to understand how the different hy-

perparameters change the performance of the networks.

4.2.1 Learning shape and color

Three network variants are explored as described in Section 3.2.4. TwinFC2

is used to explore selective color training. The training and test inputs use all 10

MNIST digits and either 2 or 3 colors. In the 2 color setup, digits 0-4 are colored

with the first color and 5-9 with the second. In the 3 color setup, digits 0-4 are colored

with either the first or third color and 5-9 with the second or third.

Initially the training is performed by manually setting all of the hyperparam-

eters for the network, running a test and reviewing. This is improved by using an

automation script to perform a grid search of different learning rates, momentum,

Batch sizes and Epochs lengths. The grid search method eventually identified a high-

performing parameter set, using the 10 shapes and 3 colors setup.

4.2.2 Selectively predicting shape or color

The next test demonstrates networks predicting either a color or shape based

on an embedded “question.” This is used to test whether the network is learning

to differentiate between shape and color, rather than memorizing all combinations.

Two major modifications are made to the setup. First, a 4th channel is added to the

MNIST inputs, within which a question could be stored. Each value in the channel is

made a 1 or a 2, representing the questions “which color is this?” or “which shape is

this?” When the inputs are processed to add colors, the question would be randomly

32

selected and set in the 4th channel, after which the list of ground truths is modified

to provide the correct one-hot encoded label for the color or the shape. Secondly, the

LongFC2 network is created. This has a single second fully connected layer with 20

elements. Each element represents a class for either a shape or a color.

For testing, shapes 0-9 are output elements 0-9, and 10 colors are used occupy-

ing elements 10-19. The LongFC2 network is tested using the grid search script with

both Softmax and Binary activation functions. A variation of the test is also run to

demonstrate multi-hot learning. When the question is not specified—a 0. is left in the

4th channel of the input—the network learns to respond with the element for both the

shape and the color. Hyperparameter configurations are discovered that demonstrate

high training and test accuracy for the binary activation when testing single-hot clas-

sification (a question is always present) and in the multi-hot classification tests, when

a question was sometimes absent.

4.2.3 Switching between tasks

Having demonstrated networks learning to classify shape and color indepen-

dently, and networks selectively responding to a “question,” the next level of refine-

ment is training a network to use the same output elements for predicting different

classes, depending on the context of the question asked. To test this capability the

SharedFC2 network is added. SharedFC2 has a single final fully connected layer,

with only 10 elements. In SharedFC2, instead of each class having an output, each

output element represents both a shape and a color. The test continued to use the

grid search script. Softmax and binary activation functions are tested with this setup,

and for both the testing discovered hyperparameters that resulted in high training

and test accuracy.

33

4.2.4 Hyperparameter exploration

In preparation for the final tests we review various hyperparameter configura-

tions. FC1 size: The LongFC2 and ShareFC2 networks are given multiple batteries

of the learning rate & momentum grid search, with the FC1 layer set at either 100, 25

or 10 entities. This test is used to determine how the networks’ performance would

change when there is less bandwidth between the convolution layers and the classifier.

Softmax vs Sigmoid: All three networks are configured with either a Softmax

or Sigmoid activation function, and tested with mutual well-performing learning rate

and momentum. These tests are used to determine which activation function results

in the highest-performing network.

Sliding window & feature maps: During final testing, after 10 batches of learn-

ing rate/momentum grid searches of Set 1, we ran a 3-batch grid search to check al-

ternative dimensions for the convolution window and the depth of the convolutional

layers. The test is intended to reinforce that the parameters we have been using are

providing the best accuracy, or to make an adjustment and use a new combination of

hyperparameters for the final tests.

4.3. Preparing MNIST for the main tests

Initial training data is converted from single-channel black-and-white images

to 4-channel black-and-white images, ready for a color and a question. Each training

step, the batch of random input images would be selected from the test, then colored,

given noise and modified with a question. This enabled the training tests to express

a vast variety of combinations of data—left long enough, all 55,000 training images

may have been experienced at least once with each color and each question. The

networks are therefore able to express their end qualities, but it practically meant

34

that each run of a test is not internally consistent with the next run. Because the

final tests would compare the averages of many runs, the data for each test needs to

be consistent.

1 def make_color(img, label):

2 """

3 Return the adjusted image with question, position for the one-hot label,

4 the question, and the shape and color label values

5 """

6 # pick color index

7 c = random.randrange(0,9+1,1)

8 #color the image, level it

9 img = img + colors[c][1]

10 img = np.clip(img, a_min=None, a_max=1)

11 # add noise, level the image

12 img += np.random.normal(0., 0.2, img.shape)

13 img = np.clip(img, a_min=0., a_max=1.)

14

15 # set the shape label on 0, color label on 1

16 # set the question channel to 1 for shape, 2 for color

17 if random.randrange(2) == 0:

18 img[:,:,3] = 1. ## Used for Channel trials series embedding

19 #img[:,3] = 2. ## Used for Slice trials series embedding

20 q = 1

21 output_position = label

22 else:

23 img[:,:,3] = 2. ## Used for Channel trials series embedding

24 #img[:,3] = 2. ## Used for Slice trials series embedding

25 q = 2

26 output_position = c

27

28 return img, output_position, q, label, c

Listing 4.1: Adding color to an MNIST image

For the final tests we generated three prepared sets of data, separated into

training, validation and testing groups. Experiment 1, in which a network would

train on all color-shape-question combinations, is the base data preparation for each

of three Sets. For Experiment 1, the MNIST inputs and labels are loaded from

the Tensorflow tensorflow.contrib.learn.python.learn.datasets.mnist distri-

bution. After initial reshaping (as described in Section 3.2.6), 10 percent of the entries

from the training set are masked via a random.choice() operation and extracted to

35

make a validation set.

All of the images are prepared with color and questions as described in Section

3.2.6. Once each image has a color and a question, the question is stored in an array,

and a one-hot label for the shape and the color are stored. Additionally, a one-hot

label that could be used by the LongFC2 and ShareFC2 networks is created and

stored, along with the split shape and color labels in a labels dictionary. LongFC2

required a 20-entity array; “shape” questions used the first 10 positions in the array,

and “color” questions used the second 10 positions in the array. ShareFC2 required

a 10-entity array; the one-hot label for the asked question is used as the label for this

input.

1 ## Get a list of (shape,color,question) that should be excluded from the

list

2 drops = [(None,None,None)] * (pctdrop * 2)

3 h = 1.

4 j = 0

5 while h < 3.:

6 while j < pctdrop:

7

8 # Make a combo, but make sure it doesn’t already exist.

9 isIn = True

10 while isIn is True:

11 s = random.randrange(0,9+1,1)

12 c = random.randrange(0,9+1,1)

13 ck_cmb1 = (s,c,1.)

14 ck_cmb2 = (s,c,2.)

15 isIn = ck_cmb1 in drops or ck_cmb2 in drops

16

17 # Add to the drop list

18 drops[j + (int(h)-1)*pctdrop] = (s,c,h)

19 j += 1

20 h += 1.

21 j = 0

Listing 4.2: Experiment 2 process for extracting shape/color combinations

Order is maintained in Experiment 1 (E1) by not shuffling the various lists—

the first position in the image array is also it’s corresponding label in any of the label

arrays, and its corresponding question in the question array. Experiments 2 and 3

36

(E2, E3) involved holding out 10% of the color-shape-question combinations using

one of two strategies (show in Listings 4.2 and 4.3).

To prepare E2, the E1 data set is provided to a script, which selected 10

combinations from question 1 and 10 different combinations from question 2. Any

input and corresponding label that has one of these combinations is removed from

the main training, validation or test set. The values that are removed from the test

set are moved instead to a set of excluded data, to enable testing the trained network

on predicting these unseen combinations. The combinations that are excluded are

stored in a dictionary of statistics, along with the number of inputs held out, and the

distribution of inputs between all the combinations.

1 #Get a list of (shape,color) that should be excluded from the list

2 drops = [(None,None)] * pctdrop

3 i = 0

4 while i < pctdrop:

5

6 # Make a combo, but make sure it doesn’t aready exist.

7 isI = True

8 while isI is True:

9 s = random.randrange(0,9+1,1)

10 c = random.randrange(0,9+1,1)

11 ck_cmb = (s,c)

12 isI = ck_cmb in drops

13

14 # Add to the drop list

15 drops[i] = (s,c)

16 i += 1

Listing 4.3: Experiment 3 process for extracting shape/color combinations

To prepare E3, the E1 data set is provided to a script, which selected 10

combinations across both question 1 and question 2. These are removed in the same

way as E2, and the excluded test items are similarly kept for unseen combination

testing. The combinations that are held out are stored in a dictionary of statistics,

along with the number of inputs held out, and the distribution of inputs between all

the combinations.

37

Figure 4.1: Example prepared data distribution for Experiment 1 in Set 1, Channel
embedded preparation

After the first three experiments are run, we extend each Set with a preparation

of E2 and E3 that held out 30% of the combinations from the E1 data. The inputs

from E1, and the stats dictionaries for Experiment 2 and 3 10% holdout tests, are

fed to the E2 and E3 preparation script along with a new 30% holdout percentage

argument. The script copied the 10% holdout information for each experiment and

then extracted the additional combinations to meet the new holdout percentage. The

same process is performed with 30% stats being provided for the 50% holdout versions

of the experiments.

This process is specific to ensure that the combinations held out in the less-

empty version of the experiment continued to not exist in the more-empty version, in

order to make the results more comparable. The process is performed for each of the

three Preparation Sets, resulting in seven experiments to run for three preparations

of the MNIST data. The specific data preparations for the tests reported here is

preserved for review.

As noted above, after preparing the data for an Experiment, the distribution

of examples for each combination of color and shape for each question are added to

38

the Set. An example distribution is illustrated in Figure 4.1. The heat maps represent

the relative distribution of the images in their combinations.

I update the data sets one final time in order to train TwinFC2 on only the

ground truth exclusive to the question embedded in a given input. We add a set

of labels to each experiment; for any input, the label for the classification category

asked by the question was left intact, but the other label was replaced by a zeros

array. The TwinFC2 network variant would have to learn to answer with an empty

array for the ignored category, and with a prediction for the requested category. This

label preparation is referred to as “exclusive split” labels. The findings in Section 5

refer to these runs as xTwinFC2.

4.4. Final tests

In order to report effects with some certainty, we needed to be able to re-

port standard deviation as well as mean accuracy and loss. For each major set of

trials—Softmax activation with X-Y axis slice question insertion (“Channel inser-

tion” or “Channel”), Softmax activation with Y-Z axis slice question insertion (“Slice

insertion” or “Slice”), or Sigmoid activation with Channel insertion—I first ran a

grid search of Experiment 1. Each network variant is trained on 12-14 combinations

of learning rate and momentum, with learning rates between 0.225 and 0.0002, and

momenta either 0.9 or 0.09.

After 8-10 trials are collected for each prepared set, we selected the 2 or 3

learning rate (LR) and momentum (MM) combinations that provided the best mean

validation accuracy and lowest mean standard deviation. We then collected 30-40

trials for Experiment 2 and 3, at 10, 30 and 50 percent input combination hold-out

(and collected additional trials for E1 to maintain consistent/comparable results). In

all, between 90 and 120 trials are averaged to report mean accuracy, loss and standard

39

deviation in our final reports. The results of the grid searches and the E2/E3 deep

searches in Chapter 5.

When training the networks on either the Channel insertion or Slice insertion

data preparations, identical methods are used to present the method to each network

variant. When training the networks on Sigmoid activation versus Softmax activation,

the presentation of data for the TwinFC2 network variant is modified. The Softmax

version of TwinFC2, named just TwinFC2, received one array of inputs and a sep-

arate array of ground truths (called ”Split” labels) that always contained the label

for the shape and the color in the corresponding input image. Early tests running

TwinFC2 with the Exclusive Split labels (see page 34) demonstrate that Softmax

activation by default cannot return a 0’s array. Therefore the network will surpass 50

percent accuracy. By converting TwinFC2 to use Sigmoid output activation the Twin

network architecture variant is able to successfully train on the Exclusive Split. Twin

architectures (either TwinFC2 or SigTwinFC2) that are trained on the Exclusive Split

labels are prefixed with an “x” in the summary trial data, e.g. “xSigTwinFC2.”

4.4.1 Automating training

Collecting consistent, comparable data is as important as the design of the

experiments. Each network script includes a method for running validation of the

network performance, which is then used to end training when the network stops

improving. Each also includes a method for running tests after training completes

and then reporting the test, validation and training results. These two observation

methods produce consistent and comparable information from each neural network

variant. Additionally, when a hold-out experiment is run, a test epoch is conducted

as well on the test inputs that have been excluded; this allows us to compare end per-

formance of the network on problems it explicitly learns the answer to, with problems

40

for which it has to infer the answer. When a network complete its training and test

reporting, this information is returned to the network training management script.

The training management script then stores the information in a designated CSV file.

Training step, accuracy and loss is captured for the training/validation step at which

peak training is determined to have occurred.

A high volume of trials would be difficult to collect manually. A batch manage-

ment script automates the execution of many repeat trials. Each major set of trials,

as noted above, standardized all but one significant architecture component and two

hyperparameters. Therefore, the batch management script specifies a dictionary of

common settings, the prepared sets to use, the experiments to run and the LR & MM

combinations to test with. A batch management script would then be set to run on

a computer for many hours, with that machine collecting varrying sets of tests.

4.4.2 Preparation of results

When a network fails to train, all accuracy, loss and generations results are set

to -1. The problem of training an end-to-end CNN to predict MNIST digits is well-

solved. Because the problem is well-defined, we heavily penalize configurations that

are unstable enough to fail to train. Having said that, it is rare for a hyperparameter

configuration to cause a network variant to fail, only ever showing up in the Softmax-

Slice trials with an LR of 0.9 in both MM and LR of 0.225 and MM of 0.09.

Accuracy reported in Chapter 5 will be the mean taken over all three sets of

test results.

41

Chapter 5: Results and Evaluation

There isn’t a way things should be. There’s just what happens,
and what we do.

Terry Pratchett, A Hat Full of Sky

In this chapter we report the results of initial parameter testing and the main

comparisons of network architecture variations over each data preparation. Additional

charts and graphs are available in the Appendix on page 63.

5.1. Results of network characteristics tests

In Section 4.2.4 we described tests used to determine optimal internal param-

eters for the layers shared between the network variants. Their results were used to

are briefly reviewed below.

5.1.1 FC1 size

I ran tests of setting the 1st fully connected layer’s depth to 100, 25, and

then from 10 down to 2. A single battery of tests was collected using the LongFC2

variant with Sigmoid activation. These trials demonstrated that the network lost no

performance at least until setting to 10, and then slowly until the size was 5, after

which validation accuracy dropped sharply. In order to remove the FC1 layer as a

variable from the final analysis (focusing just on the effects of the output layer shape)

42

we decided to leave FC1 depth set at 100.

5.1.2 Softmax vs Sigmoid output activation

Multiple individual trials were run comparing the performance of the network

variants using both Softmax and Sigmoid functions for output activation. The results

in low volume were inconclusive, which encouraged a higher volume of testing. This

additional exploration is reviewed in Section 5.2 and its subsections.

5.1.3 Convolution filters & feature maps

Mean accuracy of convolution window and feature sizes, %, average of 3 trials,
select learning rates where accuracy > 90%
Momentum Shape Test Accuracy Color Test Accuracy

Learning rate 4x4 5 5x5 25 4x4 25 5x5 5 4x4 5 5x5 25 4x4 25 5x5 5
M = 0.09 92.96 91.45 94.14 91.96 98.56 94.32 99.70 97.30
0.003515625 89.62 91.42 91.31 90.59 98.76 99.58 99.55 99.25
0.0140625 94.33 93.09 94.92 94.13 99.65 96.01 99.81 99.39
0.05625 94.93 89.84 96.19 91.16 97.27 87.36 99.75 93.26
M = 0.9 78.99 71.30 81.47 69.71 80.62 72.12 82.62 70.44
0.003515625 95.35 95.95 96.10 95.15 99.59 99.79 99.85 99.34
0.0140625 95.63 96.46 96.98 89.02 98.70 99.49 99.89 91.67
0.05625 45.98 21.49 51.32 24.97 43.58 17.09 48.13 20.32

Table 5.1: Convolution windows and feature maps, % mean test accuracy

Three batches of trials were run for each learning rate and momentum combi-

nation, with the Conv1 and Conv2 layer (see Section 3.2.4) convolution filter window

dimensions set to either 4x4 or 5x5, and the first Conv1 layer feature map depth set

to either 5 or 25. Table 5.1 shows the learning rate + momentum combinations where

accuracy was greater than 90 percent. The 4x4 window with 25 feature map depth

was roughly tied with the 5x5 and 25 settings for the very top rates, but the 5x5 and

25 settings combination fell off much quicker. Overall the 4x4 window with 25 fea-

43

ture maps provided a higher overall performing network across all the learning rates.

Page 64 reports the full table of percentage difference that the different convolution

windows and feature map depths had from the chosen 4x4 & 25 parameters.

5.2. Results of main experiments, multi-task training with increasingly scarce

data

Experiment 1 best mean test results
Softmax and Sigmoid Channel n=90, Softmax Slice n=120
Momentum = 0.9 for all reported configurations

Network Steps Shape Color
Series Variant LR Ave SD Acc% SD Acc% SD
Soft C Long 0.003515625 6347.02 1525.55 96.79 0.38 99.64 1.35
Soft S Long 0.0140625 5442.13 1911.96 97.52 0.35 99.87 0.17
Sig C Long 0.05625 6993.07 1958.54 99.64 0.04 99.98 0.02
Soft C Share 0.003515625 6237.51 1741.27 96.78 0.41 99.77 0.30
Soft S Share 0.0140625 5130.93 1762.99 97.33 0.44 99.85 0.21
Sig C Share 0.05625 6058.67 1960.00 99.38 0.08 99.95 0.04
Soft C Twin 0.0140625 5026.49 1545.22 97.49 0.33 99.79 0.25
Soft S Twin 0.0140625 5535.47 1778.01 97.85 0.28 99.93 0.05
Sig C xTwin 0.05625 6462.58 1813.68 96.82 0.37 99.75 0.46

Table 5.2: Network variant average Experiment 1 test accuracy, best learning rate &
momentum

Table 5.2 presents the best performance from each network variant / data

preparation. When the Softmax output logits activation function was used, the net-

work variants training on the Slice question embedding demonstrates slightly higher

overall accuracy. The accuracy for the LongFC2 network variant in particular is higher

than the combined standard deviations of the two variants. The variants training on

the Slice embedded questions also reach optimal validation accuracy quicker as well,

requiring a mean 14.3 and 17.8% fewer training steps to reach completion for the

Long and ShareFC2 variants, respectively. While the Slice versions of the Long and

Share variants are both quicker and more accurate, the TwinFC2 variant was nearly

44

10% quicker to train in the Channel-embedded trials.

70

80

90

100
A

cc
u
ra

cy
%

E2 Sigmoid-Channel E3 Sigmoid-Channel

70

80

90

100

A
cc

u
ra

cy
%

E2 Softmax-Channel E3 Softmax-Channel

0 10 30 50
70

80

90

100

Extraction %

A
cc

u
ra

cy
%

E2 Softmax-Slice

0 10 30 50

Extraction %

E3 Softmax-Slice

(sig)LongFC2 (sig)ShareFC2 (xSig)TwinFC2

Figure 5.1: Comparison of shape prediction accuracy between trial series, best learn-
ing rate/momentum configuration. Mean accuracy with standard deviation. Softmax-
and Sigmoid-Channel n=90, Softmax-Slice n=120

The learning rate & momentum configuration reported for each network vari-

45

ant was selected based on both highest mean shape and color prediction validation

accuracy, and selecting for the configuration that presented lower standard deviation

when results were too close to confidently separate them on accuracy alone. The re-

sults from Experiment 1 represented the network’s maximum expected performance

and were used to select for reporting.

Color accuracy is very stable through all of the experiments and configura-

tions. These results are visualized in Figure 5.2 The lowest registered mean color

accuracy was 96.92%(±1.41, n = 120) for Softmax-Slice ShareFC2. Shape accuracy

demonstrates more performance loss as combinations were extracted from the train-

ing data. The shape accuracy performance of each network variant over the 0-50%

extraction rate is illustrated in Figure 5.1, and the performance

5.2.1 Softmax output activation with Channel-embedded questions

Selecting one best configuration for the Softmax-Channel trials series is slightly

complicated by the wide standard deviation for the 0.0140625 learning rate. While

0.0140625 for Experiment 1 produces marginally better accuracy than the trials at

0.003515625, the accuracy for the remaining experiments demonstrated significant

deviation vs the slightly slower rate.

The mean shape accuracy for LongFC2 at LR = 0.0140625 in E2 and E3,

with 50% combinations extraction, was 85.96±4.44% and 85.15±4.52%, respectively.

These results are within the standard deviation of the mean accuracy presented for

0.003515625, but would actually place LongFC2 as more accurate than the TwinFC2

network. For E3 with 30% extraction, however, LongFC2 presents, for this project, a

massive standard deviation of ±13.45%. We would prefer to report the more exciting

results, but because of the high variability in 0.0140625 we report here instead the

results for LR = 0.003515625. The test results for both learning rates are however

46

90

92

94

96

98

100

A
cc

u
ra

cy
%

E2, Sigmoid-Channel E3, Sigmoid-Channel

90

92

94

96

98

100

A
cc

u
ra

cy
%

E2 Softmax-Channel E3, Softmax-Channel

0 10 30 50

90

92

94

96

98

100

Extraction %

A
cc

u
ra

cy
%

E2, Softmax-Slice

0 10 30 50

Extraction %

E3, Softmax-Slice

(sig)LongFC2 (sig)ShareFC2 (xSig)TwinFC2

Figure 5.2: Comparison of color prediction accuracy between trial series, best learning
rate/momentum configuration. Mean accuracy with standard deviation. Softmax-
and Sigmoid-Channel n=90, Softmax-Slice n=120

included in the appendix for review (see page 65).

The Softmax-Channel trial series demonstrates little loss in color classification

47

Test results for the Softmax-Channel series.
Momentum = 0.9, n=90 per result
LR: LongFC2, ShareFC2 = 0.003515625, TwinFC2 = 0.0140625

Long Share Twin
Experiment Mean StdDev Mean StdDev Mean StdDev

Test results, shape prediction
E1 96.79 0.38 96.78 0.41 97.49 0.33
E2 10 95.76 0.74 96.07 0.66 97.25 0.45
E2 30 92.01 1.52 92.99 1.63 96.14 0.62
E2 50 81.29 4.13 83.25 4.63 90.58 1.82
E3 10 95.97 0.70 96.15 0.64 96.49 0.72
E3 30 92.32 1.60 92.99 1.65 91.56 1.91
E3 50 79.98 4.52 81.47 4.77 78.37 5.01

Test results, color prediction
E1 99.64 1.35 99.77 0.30 99.79 0.25
E2 10 99.71 0.50 99.70 0.41 99.79 0.23
E2 30 99.56 0.38 99.47 0.47 99.69 0.26
E2 50 97.86 1.60 96.95 1.56 97.31 2.09
E3 10 99.71 0.46 99.63 0.59 99.59 0.75
E3 30 99.49 0.54 99.22 0.91 99.05 0.79
E3 50 98.69 1.13 98.08 1.35 97.95 1.53

Table 5.3: Softmax-Channel Trial Series, prediction test accuracy

task accuracy and varying loss in shape classification task accuracy. The TwinFC2

network variant falls from shape prediction accuracy of 97.49%(±0.33, n = 90) to only

90.58%(±01.82, n = 90) for 50% combination exclusion in the Experiment 2 tests,

versus 78.37%(±5.01, n = 90) accuracy in the 50% exclusion tests for Experiment 3.

All of the networks performed roughly the same during the Experiment 3 tests and

LongFC2 & ShareFC2 track each others performance for Experiment 2 as well.

During volume training with the Softmax variants on the Channel-embedded

data, standard deviation remained significant for the 0.0140625 learning rate. Partic-

ularly for ShareFC2, across all sets there was a greater than 12% standard deviation

in four of the seven tests, and higher than 6% standard deviation in all of them.

We didn’t see these effects with the Sigmoid output activation variants or with the

48

Slice-embedded data. Table A.3 in the appendix illustrates the significant variations

experienced in the results for the two highest performing learning rates / momentum

configurations.

5.2.2 Softmax output activation with Slice-embedded questions

As in the Softmax-Channel trials series, the LongFC2 and ShareFC2 networks

performed roughly the same, and TwinFC2 retained significantly more accuracy in

E2. For the E1 runs all three variants achieve a slightly higher mean accuracy of

97.52%(±0.35, n = 120), 97.33%(±0.44, n = 120), and 97.85%(±0.28, n = 120) for

Long, Share and TwinFC2. 10% holdout remains slightly higher as well for E2 and

E3, while drop-off is a slightly greater but less variable 80.99%(±3.74, n = 120),

79.50%(±4.14, n = 120), and 79.31%(±3.95, n = 120) at 50% exclusion for Long,

Share and TwinFC2, respectively. Table A.4 in the Appendix illustrates the results

for the two highest performing learning rates / momentum configurations.

5.2.3 Sigmoid output activation with Channel-embedded questions

The network variants trained on the Channel-embedded questions with a Sig-

moid output activation vastly outperformed the network variants configured with

Softmax output activation. Mean accuracy for E1 is 99.64%(±0.04, n = 90), 99.38%

(±0.08, n = 90), and 96.82%(±0.37, n = 90) for the sigLongFC2, sigShareFC2 and

xSigTwinFC2 variants, respectively. SigLongFC2 loses only 0.97% and 1.31% at 50%

exclusion for E2 and E3. The Twin FC2 architecture in this setup is the poorer

performer, tracking to 89.53%(±2.30, n = 90) and 87.00%(±2.42, n = 90) for E2 50%

and E3 50%. Table A.5 in the Appendix illustrates the results for the two highest

performing learning rates / momentum configurations.

49

Test results for the Softmax-Slice series.
Momentum = 0.9, n=120 per result
Learning Rate = 0.0140625

Long Share Twin
Experiment Mean StdDev Mean StdDev Mean StdDev

Test results, shape prediction
E1 97.52 0.35 97.33 0.44 97.85 0.28
E2 10 96.14 0.67 95.94 0.74 97.58 0.37
E2 30 90.47 1.90 89.85 2.13 96.85 0.45
E2 50 76.32 4.56 72.04 4.72 92.56 1.47
E3 10 96.56 0.80 96.35 0.84 96.81 0.65
E3 30 91.62 2.17 90.34 2.47 91.47 2.42
E3 50 80.99 3.74 79.50 4.14 79.31 3.95

Test results, color prediction
E1 99.87 0.17 99.85 0.21 99.93 0.05
E2 10 99.81 0.18 99.72 0.36 99.92 0.05
E2 30 99.32 0.57 99.18 0.71 99.88 0.09
E2 50 96.25 1.82 95.37 1.79 99.75 0.13
E3 10 99.78 0.34 99.73 0.27 99.87 0.09
E3 30 99.59 0.36 99.52 0.47 99.63 0.24
E3 50 97.40 1.50 96.92 1.41 97.51 1.14

Table 5.4: Softmax-Slice trial series, prediction test accuracy

5.2.4 Comparing Channel-embedded preparations and Softmax-activated

variants

Between the two sets of results using the Channel-embedding strategy, the Sig-

moid output activation is at a clear advantage. xSigTwinFC2 is an interesting com-

parison between the Sofmax and Sigmoid Channel sets. At 10 and 30% combination

exclusion, it still roughly matches performance. At E2 50% holdout, xSigTwinFC2

underperforms TwinFC2 at 89.53 ± 2.30% vs 90.58 ± 1.82%, but beats TwinFC2 by

8.53% (87.00 ± 2.42% vs 78.37 ± 5.01%).

The Sigmoid activation function provided overall more consistent results, but

did so at the cost of training time. Sigmoid-Channel E1 average training steps to peak

50

Test results for the Sigmoid-Channel series.
Momentum = 0.9, n=90 per result
Learning Rate = 0.05625

sigLong sigShare xSigTwin
Experiment Mean StdDev Mean StdDev Mean StdDev

Test results, shape prediction
E1 99.64 0.04 99.38 0.08 96.82 0.37
E2 10 99.54 0.06 99.29 0.98 96.19 0.65
E2 30 99.26 0.14 98.94 0.22 93.36 1.17
E2 50 98.67 0.34 98.13 0.84 89.58 2.30
E3 10 99.59 0.07 99.34 0.11 96.42 0.54
E3 30 99.23 0.13 98.75 0.25 93.69 1.03
E3 50 98.33 0.35 97.47 0.76 87.00 2.42

Test results, color prediction
E1 99.98 0.02 99.95 0.04 99.75 0.46
E2 10 99.97 0.04 99.78 1.09 99.60 1.09
E2 30 99.95 0.03 99.88 0.11 99.48 0.40
E2 50 99.76 0.15 99.22 1.30 98.04 1.39
E3 10 99.97 0.02 99.93 0.10 99.71 0.33
E3 30 99.93 0.13 99.88 0.09 99.42 0.66
E3 50 99.87 0.09 99.71 0.20 98.70 1.76

Table 5.5: Sigmoid-Channel Trial Series, prediction test accuracy

performance was 6504.77±1943.03, versus 5870.34±1604.01 for the Softmax-Channel

networks.

For the Sofmax-Slice trial series, the question was embedded as a 1x28x4

slice across all four channels of the input image. What is most interesting in this

regard is the change in performance of the TwinFC2 network. For the Experiment 2

series of tests, TwinFC2 learning the Slice data outperformed the other two network

variants by 16.24to20.52%. Color performance was closer overall; the variants lost

less than 5% accuracy from 0 to 50% holdout. Except the TwinFC2 E2 accuracy,

the overall performance of the Softmax-Slice networks was lower than the Softmax-

Channel networks.

51

Chapter 6: Summary and Conclusions

In this project we explored the way fundamental components of an image-

classifying neural network change the way that network responds to scarce train-

ing environments. Training a Convolutional Neural Network to classify the MNIST

database is the “Hello World” of deep learning computer vision. By starting with

this very well known problem and adding controlled complexity, we provided a set

of results that can be compared against the corpus of analysis and understanding

that extends from other MNIST work. Adding a second classification category and

requiring the network to make a prediction provided a platform for testing how pro-

cessing the final network output effects its overall accuracy. By removing increasingly

more combinations of MNIST digit and color combinations from the training data,

we forced each variant of that neural network to infer more of its predictions from

related experience.

Some of the results from the testing were expected—it is well known that

Sigmoid functions take longer to converge than Softmax functions. Some results

were less expected. Performance for variants with single FC2 Tensors was relatively

equal, whether the network had to use the same output position to make different

predictions. Embedding the question across layers, instead of in a dedicated channel,

resulted in slightly better full-combination training but overall worse performance

for all the network variants. We are encouraged by the ease with with the networks

learned to differentiate between the questions and am curious how detailed a question

52

could be, and by how much a question could be compressed, with the network still

learning to understand and make correct predictions.

Surprising was the accuracy of the Sigmoid-activated networks. The default

design for MNIST classification is to use a Softmax output activation, but the results

here suggest that, excusing a slightly longer training period, the Sigmoid output

activation is a superior choice. It is of particular note how little accuracy the Sigmoid

series networks lost, even when half of the combinations were excluded. The effect

of independently training each output channel from the network appears to make

the network learn the shapes and colors and resist simply learning the specifically

observed combinations.

The Sigmoid activation was also most effective when there was a single output

Tensor instead of two peer output Tensors. This has the benefit of requiring half

as many connections between the two fully connected layers, and could encourage a

more generally usable architecture. When paired with continual learning strategies,

for example, a ShareFC2 variant could potentially learn a third new task with its

existing output layer.

6.1. Limitations and Known Issues

The TwinFC2 network variants used a very simple process for averaging the

loss between the two output Tensors. It is possible that this variant would perform

better if a more clever algorithm were developed to bias optimization toward the

lagging task’s loss.

The Validation set for the data was held statically separate from the training

data – every trial run with a prepared set sees the same training and validation

examples. This was done to introduce fewer variation in the training experience

of the networks. However, it may be that part of the specific performance of the

53

networks is due to small irregularities in the validation set. Given additional time,

we would reinforce the confidence of our findings by running the trials again with a

strategy of selecting a random validation data set from the training data when each

batch of tests start.

The Validation and Test data in each Set, while each building off the previous

hold-out experiment’s combination exclusions, do not explicitly use the same exclusion

combinations that the Training data. Therefore, test accuracy is to some percentage

for each Experiment representing both the network’s performance on what it saw,

as well as it’s ability to infer answers. In the same way, the hold-out examples are

not a true example of exclusively untrained predictions. The excluded combination

sets for the training, validation and test data do intersect, and by weighting and

combining the results for the test and excluded test results, we get an accurate test

percentage. In repeat tests we would, however, use the hold-out combinations from

training data for the validation and testing data as well. This would allow more

direct interpretation of the network variant’s ability to infer from not-experienced

combinations.

6.2. Further work

The performance of the network variants with Sigmoid output activation under

high combination exclusion was significant and warrants further investigation. Run-

ning similar training data classification exclusion setups, with more difficult problems

like question answering in the CLEVR data set (Johnson et al., 2016) or real-world

problems like identifying facial features (Jain & Learned-Miller, 2010), would be in-

teresting. Such projects may develop further insight in how fundamental components

influence a network’s ability to learn when the data domain is scarce.

Late in the project’s development we experimented with a network configu-

54

ration that would approximate a network routing protocol. Two ShareFC2 variants

were trained with the split labels: one on the shape classification task and the other

on the color task. A third ShareFC2 network was trained to select which of the

experts to send an input to in order to get a correct result. The design was promis-

ing: the two “expert” networks trained their single tasks with fewer steps than the

multi-task networks required, and the “router” network needed only dozens of steps

to achieve near-ideal routing accuracy. This is similar to an architecture proposed in

Rosenbaum et al. (2017), but used networks as discrete entities instead of an exec-

utive agent inside an end-to-end neural network selecting internal layers to pass an

input through.

The collaborative-routing system was different enough from the rest of this

thesis’s work to set it aside for separate study. We would apply these lessons forward

to study that collaborative-routing system more thoroughly. A network that can

either answer a question, or, if it identifies that it does not know the answer, learns

to “ask” the question to a different network, could be of particular use in broad-skill

learning environments. A pre-trained network with this skill would hypothetically be

able to “decide” to learn a new task with which its existing training is aligned, or still

achieve success by declining to internalize the task, instead forwarding the problem

to a different network that learns it quicker.

55

References

Andreas, J., Rohrbach, M., Darrell, T., & Klein, D. (2015). Neural Module Networks.

arXiv:1511.02799 [cs]. arXiv: 1511.02799.

Bottou, L. (2014). From machine learning to machine reasoning. Machine Learning,

94(2), 133–149.

Chandar, S., Ahn, S., Larochelle, H., Vincent, P., Tesauro, G., & Bengio, Y. (2016).

Hierarchical Memory Networks.

Conway, M. E. (1968). How Do Committees Invent? Datamation, 1968(April), 28–31.

Foerster, J. N., Assael, Y. M., de Freitas, N., & Whiteson, S. (2016). Learning to

Communicate with Deep Multi-Agent Reinforcement Learning. arXiv:1605.06676

[cs]. arXiv: 1605.06676.

Foerster, J. N., Chen, R. Y., Al-Shedivat, M., Whiteson, S., Abbeel, P., & Mordatch,

I. (2017). Learning with Opponent-Learning Awareness. arXiv:1709.04326 [cs].

arXiv: 1709.04326.

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural Turing Machines.

arXiv:1410.5401 [cs]. arXiv: 1410.5401.

Gulcehre, C., Chandar, S., Cho, K., & Bengio, Y. (2016). Dynamic Neural Turing

Machine with Soft and Hard Addressing Schemes. arXiv:1607.00036 [cs]. arXiv:

1607.00036.

56

Gulcehre, C., Chandar, S., Cho, K., & Bengio, Y. (2018). Dynamic Neural Turing

Machine with Continuous and Discrete Addressing Schemes. Neural Computation,

30(4), 857–884.

Hochreiter, S. & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Compu-

tation, 9(8), 1735–1780.

Hohenecker, P. & Lukasiewicz, T. (2018). Ontology Reasoning with Deep Neural

Networks. arXiv:1808.07980 [cs]. arXiv: 1808.07980.

Hudson, D. A. & Manning, C. D. (2018). Compositional Attention Networks for

Machine Reasoning. arXiv:1803.03067 [cs]. arXiv: 1803.03067.

Jain, V. & Learned-Miller, E. (2010). FDDB: A Benchmark for Face Detection in

Unconstrained Settings. Technical Report UM-CS-2010-009, University of Mas-

sachusetts, Amherst.

Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C. L., & Gir-

shick, R. (2016). CLEVR: A Diagnostic Dataset for Compositional Language and

Elementary Visual Reasoning. arXiv:1612.06890 [cs]. arXiv: 1612.06890.

Karpathy, A. (2015). The Unreasonable Effectiveness of Recurrent Neural Networks.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2323.

Marois, V., Jayram, T. S., Albouy, V., Kornuta, T., Bouhadjar, Y., & Ozcan, A. S.

(2018). On transfer learning using a MAC model variant. arXiv:1811.06529 [cs].

arXiv: 1811.06529.

57

Mikolov, T., Joulin, A., & Baroni, M. (2015). A Roadmap towards Machine Intelli-

gence. arXiv:1511.08130 [cs]. arXiv: 1511.08130.

Mordatch, I. & Abbeel, P. (2017). Emergence of Grounded Compositional Language

in Multi-Agent Populations. arXiv:1703.04908 [cs]. arXiv: 1703.04908.

Palm, R. B., Paquet, U., & Winther, O. (2017). Recurrent Relational Networks.

arXiv:1711.08028 [cs]. arXiv: 1711.08028.

Perez, E., Strub, F., de Vries, H., Dumoulin, V., & Courville, A. (2017). FiLM: Visual

Reasoning with a General Conditioning Layer. arXiv:1709.07871 [cs, stat]. arXiv:

1709.07871.

Rosenbaum, C., Klinger, T., & Riemer, M. (2017). Routing Networks: Adaptive

Selection of Non-linear Functions for Multi-Task Learning. arXiv:1711.01239 [cs].

arXiv: 1711.01239.

Ruder, S. (2017). An Overview of Multi-Task Learning in Deep Neural Networks.

arXiv:1706.05098 [cs, stat]. arXiv: 1706.05098.

Ruder, S., Bingel, J., Augenstein, I., & Sgaard, A. (2017). Sluice networks: Learning

what to share between loosely related tasks. CoRR, abs/1705.08142.

Santoro, A., Raposo, D., Barrett, D. G. T., Malinowski, M., Pascanu, R., Battaglia,

P., & Lillicrap, T. (2017). A simple neural network module for relational reasoning.

arXiv:1706.01427 [cs]. arXiv: 1706.01427.

Simard, P., Steinkraus, D., & Platt, J. (2003). Best practices for convolutional neural

networks applied to visual document analysis. In Seventh International Conference

on Document Analysis and Recognition, 2003. Proceedings., volume 1 (pp. 958–

963). Edinburgh, UK: IEEE Comput. Soc.

58

Weston, J., Chopra, S., & Bordes, A. (2014). Memory Networks. arXiv:1410.3916

[cs, stat]. arXiv: 1410.3916.

Woodward, M. & Finn, C. (2017). Active One-shot Learning. arXiv:1702.06559 [cs].

arXiv: 1702.06559.

Zaremba, W. & Sutskever, I. (2014). Learning to Execute. arXiv:1410.4615 [cs].

arXiv: 1410.4615.

59

Glossary

Argmax A function that determines the largest values in a given array.. 14

Batch size A predetermined number of inputs presented to a neural network for

training, validation or testing during one Step. 32

Deep Neural Network A neural network containing more than 1 hidden layer. 9,

10

Epoch One training, validation or test pass through an entire data set. 1 Epoch is

generally the number of steps determined by dividing the length of the data set

by a batch size. 32

hyperparameter A shape or functional attribute of a neural network that can be

externally modified, such as a learning rate or layer dimension.. 32, 34

multi-layer perceptron A form of artificial network containing at least an input,

a hidden layer and an output, using non-linear activation.. 12

Multi-task Learning MTL, a form of Neural Network training in which a network

learns to perform more than one classification, recall or response activity, either

simultaneously or sequentially. 4

one-hot The name for an array where one array member is non-zero (commonly

equals 1) and all the other array members are 0. The array [0,0,1,0] is a one-hot

array.. 25

60

prepared set A collection of training, validation and test sets built around a single

coloring and question-embedding preparation of the MNIST datasets. Three in

total were created for the experiments in this thesis. 27, 35, 39, 41, 53

ReLU Rectified Linear Unit. An activation function with a minimum value 0 and

maximum value x.. 21

train The process of passing information through a neural network and correcting

the network’s predictions, so that over time the network becomes more accurate

at providing the correct predictions.. 6

61

Acronyms

CNN Convolutional Neural Network. iii, 5, 7, 8, 15, 21, 41, 52

LR learning rate. 27, 39, 41, 43

MM momentum. 27, 39, 41, 43

MTL Multi-task Learning. 4

RN Relational Network. 12, 13

RNN Recurrent Neural Network. 5

VQA Visual Question Answering. 8, 10

62

Appendix A: Supplemental Data

Additional explanation and analysis of the thesis experiment results are pre-

served here. These tables are referenced earlier in Chapter 5 or are included in this

section for extra review and discussion.

Mean training steps to peak validation, % difference from 4x4 25 combination,
select learning rates where accuracy > 90%
Momentum Generation (Mean steps) Generation (% diff)

Learning rate 4x4 5 5x5 25 4x4 25 5x5 5 4x4 5 5x5 25 5x5 5
M = 0.09 7235.56 6276.35 7128.89 6816.40
0.003515625 9057.19 8301.04 8888.89 8791.70 1.89 -6.61 -1.09
0.0140625 7560.30 6493.63 7413.33 6660.74 1.98 -12.41 -10.15
0.05625 5089.19 4034.37 5084.44 4996.74 0.09 -20.65 -1.72
M = 0.9 4632.10 4067.16 4628.15 3933.23
0.003515625 6263.70 5494.52 5873.78 5390.22 6.64 -6.46 -8.23
0.0140625 4613.93 4604.44 4994.37 4419.56 -7.62 -7.81 -11.51
0.05625 3018.67 2102.52 3016.30 1989.93 0.08 -30.29 -34.03

Table A.1: Convolution windows and feature maps, mean training steps and % diff.

Table A.1 summarizes the mean steps to optimal training for each set of in-

ternal convolution layer parameters, and the % difference as compared to the 4x4

window and first convolution layer with 25 feature maps. The other combinations

did achieve peak accuracy quicker with the other setups in the top performing ranges.

As demonstrated in Table A.2, however, the 4x4 with 25 setup performed marginally

better over more of the learning rates in the grid search. The goal with picking this

combination was to ensure a more consistent training experience.

63

% Difference from 4x4 convolution filter and 25 features, 3 trials
Momentum Shape Test Accuracy Color Test Accuracy

Learning rate 4x4 5 5x5 25 5x5 5 4x4 5 5x5 25 5x5 5
M = 0.09 -3.02 -2.02 -7.06 -5.97 -4.14 -6.54
5.49316E-05 -31.55 28.65 -35.34 -45.66 23.53 -28.79
0.000219727 -54.23 55.98 -26.26 -58.58 17.16 -28.37
0.000878906 -18.41 5.15 -3.20 -9.62 5.57 -3.16
0.003515625 -1.85 0.12 -0.79 -0.79 0.04 -0.30
0.0140625 -0.62 -1.93 -0.84 -0.15 -3.80 -0.42
0.05625 -1.31 -6.60 -5.23 -2.49 -12.42 -6.51
0.225 55.75 -69.32 -27.93 58.06 -74.03 -15.00
0.9 38.59 26.44 30.14 39.62 43.18 58.70
M = 0.9 -6.13 -4.30 -7.29 -4.01 -4.87 -7.55
5.49316E-05 -27.96 11.07 -1.91 -17.49 6.83 -4.89
0.000219727 -3.65 0.70 -0.27 -3.73 0.25 -0.80
0.000878906 -0.73 0.28 -0.49 -0.25 -0.05 -0.45
0.003515625 -0.78 -0.17 -1.00 -0.26 -0.06 -0.51
0.0140625 -1.39 -0.53 -8.20 -1.19 -0.39 -8.23
0.05625 -10.41 -58.13 -51.34 -9.44 -64.48 -57.78
0.225 -18.32 1.53 2.27 21.03 3.68 -0.14
0.9 2.54 2.95 -1.93 4.13 -7.18 11.37

Table A.2: Convolution windows and feature maps, % difference from 4x4 and 25

Tables A.3, A.4 and A.5 present the top two performing learning rate and

momentum combinations for each trials series, and the corresponding 30 or 40 batch-

per-Set results that were collected. Note the performance of the Softmax-Channel

results, and the high standard deviation in the quicker learning rate results.

The final appendix entry, Tables A.6 and A.7, show the % of test inputs that

were extracted and placed in the extracted test data set. The mean results were

used to add the test and extracted test epoch results back together and calculate the

final test accuracy for the trials series. Also provided is the percentage of intersection

between the training and test data for each experiment in each set.

64

Shape & color prediction validation & test for the
Softmax-Channel series. Momentum = 0.9

Learning rate LongFC2 ShareFC2 TwinFC2
Experiment Mean StdDev Mean StdDev Mean StdDev
0.003515625 Validation
Shape 97.07 1.72 97.20 1.81 96.90 1.15
Color 99.92 0.23 99.85 0.55 99.90 0.24
0.0140625
Shape 97.91 1.52 97.36 1.72 97.52 1.03
Color 99.72 0.78 99.05 2.46 99.89 0.39
0.003515625 Test results, shape prediction
E1 96.79 0.38 96.78 0.41 96.96 0.37
E2 10 95.76 0.74 96.07 0.66 96.57 0.47
E2 30 92.01 1.52 92.99 1.63 94.38 0.89
E2 50 81.29 4.13 83.25 4.63 87.48 2.12
E3 10 95.97 0.70 96.15 0.64 95.96 0.56
E3 30 92.32 1.60 92.99 1.65 90.80 1.92
E3 50 79.98 4.52 81.47 4.77 76.69 4.52
0.0140625
E1 97.06 1.24 94.01 15.06 97.49 0.33
E2 10 94.38 13.02 92.99 15.04 97.25 0.45
E2 30 93.73 1.71 91.65 12.66 96.14 0.62
E2 50 85.96 4.44 84.39 9.63 90.58 1.82
E3 10 95.53 9.17 94.18 12.85 96.49 0.72
E3 30 92.36 13.45 92.86 9.00 91.56 1.91
E3 50 85.15 4.52 84.62 6.13 78.37 5.01
0.003515625 Test results, color prediction
E1 99.64 1.35 99.77 0.30 99.85 0.14
E2 10 99.71 0.50 99.70 0.41 99.84 0.13
E2 30 99.56 0.38 99.47 0.47 99.69 0.32
E2 50 97.86 1.60 96.95 1.56 96.78 2.26
E3 10 99.71 0.46 99.63 0.59 99.76 0.24
E3 30 99.49 0.54 99.22 0.91 99.32 0.54
E3 50 98.69 1.13 98.08 1.35 98.65 0.77
0.0140625
E1 99.43 1.63 95.97 16.15 99.79 0.25
E2 10 95.64 17.02 94.75 16.61 99.79 0.23
E2 30 99.16 1.72 94.96 16.18 99.69 0.26
E2 50 97.04 9.42 93.30 10.77 97.31 2.09
E3 10 97.43 12.23 96.18 13.80 99.59 0.75
E3 30 96.48 13.60 97.12 9.93 99.05 0.79
E3 50 98.73 1.56 95.56 6.55 97.95 1.53

Table A.3: Softmax-Channel Trial Series, validation and test for top 2 hyperparameter
configurations

65

Shape & color prediction validation & test for the
Softmax-Slice series. Momentum = 0.9
Single LR selected after E1 and E2 & E3 10% review.

Learning rate LongFC2 ShareFC2 TwinFC2
Experiment Mean StdDev Mean StdDev Mean StdDev
0.003515625 Validation
Shape 97.05 1.62 97.17 1.69 97.24 1.24
Color 99.93 0.19 99.92 0.25 99.97 0.08
0.0140625
Shape 97.71 1.46 97.61 1.63 98.06 0.97
Color 99.96 0.18 99.93 0.21 99.97 0.11
0.003515625 Test results, shape prediction
E1 96.90 0.49 96.78 0.39 97.21 0.35
E2 10 95.42 0.74 95.22 0.87 96.80 0.48
E3 10 95.58 0.92 95.57 0.93 95.96 0.79
0.0140625
E1 97.52 0.35 97.33 0.44 97.85 0.28
E2 10 96.14 0.67 95.94 0.74 97.58 0.37
E2 30 90.47 1.90 89.85 2.13 96.85 0.45
E2 50 76.32 4.56 72.04 4.72 92.56 1.47
E3 10 96.56 0.80 96.35 0.84 96.81 0.65
E3 30 91.62 2.17 90.34 2.47 91.47 2.42
E3 50 80.99 3.74 79.50 4.14 79.31 3.95
0.003515625 Test results, color prediction
E1 99.87 0.09 99.84 0.09 99.90 0.09
E2 10 99.79 0.15 99.69 0.23 99.90 0.08
E3 10 99.80 0.13 99.72 0.27 99.86 0.13
0.0140625
E1 99.87 0.17 99.85 0.21 99.93 0.05
E2 10 99.81 0.18 99.72 0.36 99.92 0.05
E2 30 99.32 0.57 99.18 0.71 99.88 0.09
E2 50 96.25 1.82 95.37 1.79 99.75 0.13
E3 10 99.78 0.34 99.73 0.27 99.87 0.09
E3 30 99.59 0.36 99.52 0.47 99.63 0.24
E3 50 97.40 1.50 96.92 1.41 97.51 1.14

Table A.4: Softmax-Slice Trial Series, validation and test for top 2 hyperparameter
configurations

66

Shape & color prediction validation & test for the
Sigmoid-Channel series. Momentum = 0.9

Learning rate LongFC2 ShareFC2 TwinFC2
Experiment Mean StdDev Mean StdDev Mean StdDev
0.0140625 Validation
Shape 99.49 0.16 99.21 0.33 95.51 1.44
Color 99.99 0.04 99.96 0.16 99.91 0.17
0.05625
Shape 99.67 0.17 99.55 0.23 97.28 1.18
Color 99.99 0.04 99.97 0.07 99.88 0.27
0.0140625 Test results, shape prediction
E1 99.45 0.06 99.17 0.11 95.19 0.68
E2 10 99.36 0.11 99.00 0.16 94.02 0.84
E2 30 98.92 0.17 98.49 0.29 90.96 1.39
E2 50 98.40 0.34 97.50 0.79 87.05 2.50
E3 10 99.32 0.11 99.01 0.15 94.36 0.74
E3 30 98.93 0.15 98.28 0.29 91.01 1.20
E3 50 98.01 0.33 96.79 0.74 84.18 2.28
0.05625
E1 99.64 0.04 99.38 0.08 96.82 0.37
E2 10 99.54 0.06 99.29 0.98 96.19 0.65
E2 30 99.26 0.14 98.94 0.22 93.36 1.17
E2 50 98.67 0.34 98.13 0.84 89.58 2.30
E3 10 99.59 0.07 99.34 0.11 96.42 0.54
E3 30 99.23 0.13 98.75 0.25 93.69 1.03
E3 50 98.33 0.35 97.47 0.76 87.00 2.42
0.0140625 Test results, color prediction
E1 99.98 0.02 99.95 0.04 99.77 0.13
E2 10 99.96 0.05 99.95 0.05 99.71 0.23
E2 30 99.94 0.04 99.87 0.10 99.36 0.33
E2 50 99.64 0.17 99.30 0.33 96.80 1.37
E3 10 99.95 0.10 99.92 0.23 99.71 0.16
E3 30 99.92 0.06 99.86 0.09 99.20 0.43
E3 50 99.78 0.14 99.63 0.21 98.04 1.18
0.05625
E1 99.98 0.02 99.95 0.04 99.75 0.46
E2 10 99.97 0.04 99.78 1.09 99.60 1.09
E2 30 99.95 0.03 99.88 0.11 99.48 0.40
E2 50 99.76 0.15 99.22 1.30 98.04 1.39
E3 10 99.97 0.02 99.93 0.10 99.71 0.33
E3 30 99.93 0.13 99.88 0.09 99.42 0.66
E3 50 99.87 0.09 99.71 0.20 98.70 1.76

Table A.5: Sigmoid-Channel Trial Series, validation and test for top 2 hyperparameter
configurations

67

% of total test inputs in the excluded test set
% of inputs that require inference from network
For the Softmax-Channel and Sigmoid-Channel trials series.

Source % of test inputs % Test inference % Excluded inference
Set Exp Shape Color Shape Color Shape Color
Set1 E2 10 9.41 9.53 11.29 10.51 0.00 9.64
Set1 E2 30 29.31 29.07 29.48 29.13 31.08 32.92
Set1 E2 50 49.69 49.35 51.69 52.62 49.03 47.77
Set1 E3 10 10.41 10.79 11.42 11.22 0.00 0.00
Set1 E3 30 29.65 29.81 30.88 31.48 27.95 25.87
Set1 E3 50 50.21 50.03 62.20 62.26 37.28 38.70
Set2 E2 10 9.66 10.32 7.35 11.24 27.95 0.00
Set2 E2 30 29.93 30.69 28.80 31.85 32.49 26.25
Set2 E2 50 49.37 50.31 54.21 53.40 47.41 47.97
Set2 E3 10 9.34 9.70 10.35 11.63 0.00 0.00
Set2 E3 30 29.93 30.03 28.63 28.75 33.49 33.89
Set2 E3 50 49.95 50.09 51.40 51.00 47.58 46.91
Set3 E2 10 10.34 10.38 11.42 11.19 10.53 0.00
Set3 E2 30 29.42 29.82 34.71 28.80 23.01 30.69
Set3 E2 50 49.83 49.61 54.90 53.03 46.95 45.78
Set3 E3 10 9.73 10.44 11.41 11.06 0.00 0.00
Set3 E3 30 29.03 30.45 33.28 33.57 26.09 25.36
Set3 E3 50 48.20 49.75 50.99 53.46 49.29 50.24
Mean E2 10 9.80 10.08 10.02 10.98 12.83 3.21
Mean E2 30 29.55 29.86 31.00 29.93 28.86 29.96
Mean E2 50 49.63 49.76 53.60 53.02 47.80 47.17
Mean E3 10 9.83 10.31 11.06 11.30 0.00 0.00
Mean E3 30 29.54 30.10 30.93 31.27 29.18 28.37
Mean E3 50 49.45 49.96 54.86 55.57 44.72 45.28

Table A.6: Percentage of test data that required prediction inference, Softmax- and
Sigmoid-Channel

68

% of total test inputs in the excluded test set
% of inputs that require inference from network
For the Softmax Slice trials series.

Source % of test inputs % Test inference % Excluded inference
Set Exp Shape Color Shape Color Shape Color
Set1 E2 10 0.10 0.10 9.86 10.72 9.98 6.15
Set1 E3 10 0.09 0.10 8.94 8.96 18.79 20.40
Set1 E2 30 0.31 0.30 27.81 28.11 39.07 39.04
Set1 E3 30 0.29 0.30 30.08 30.99 30.44 30.85
Set1 E2 50 0.51 0.51 45.89 48.02 54.36 55.24
Set1 E3 50 0.49 0.50 53.46 54.47 45.82 46.43
Set2 E2 10 0.10 0.10 10.29 10.20 10.93 12.35
Set2 E3 10 0.10 0.10 9.60 10.01 12.16 8.98
Set2 E2 30 0.30 0.29 30.95 31.33 25.86 27.96
Set2 E3 30 0.30 0.30 26.85 27.48 37.42 37.02
Set2 E2 50 0.50 0.49 54.43 53.23 46.23 46.19
Set2 E3 50 0.48 0.50 37.53 39.41 61.06 61.59
Set3 E2 10 0.09 0.10 9.64 9.44 20.42 9.64
Set3 E3 10 0.10 0.09 11.14 10.41 0.00 0.00
Set3 E2 30 0.29 0.29 36.59 27.65 16.30 34.38
Set3 E3 30 0.30 0.30 33.04 31.87 23.51 21.76
Set3 E2 50 0.49 0.49 47.31 47.60 53.84 51.95
Set3 E3 50 0.50 0.49 54.52 53.18 47.65 44.50
Mean E2 10 0.10 0.10 9.93 10.12 13.78 9.38
Mean E3 10 0.10 0.10 9.89 9.79 10.32 9.79
Mean E2 30 0.30 0.29 31.78 29.03 27.08 33.79
Mean E3 30 0.30 0.30 29.99 30.11 30.46 29.88
Mean E2 50 0.50 0.50 49.21 49.62 51.48 51.13
Mean E3 50 0.49 0.50 48.51 49.02 51.51 50.84

Table A.7: Percentage of test data that required prediction inference, Softmax-Slice

69

	Titlepage
	Abstract
	Dedication
	Acknowledgements
	Contents
	Table of Contents
	List of Figures
	List of Tables
	List of Code
	1 Introduction
	1.1 Questions are necessary for reasoning
	1.2 Reasoning is necessary for developing wisdom and understanding
	1.3 Thesis structure

	2 Prior Work
	2.1 Training neural networks to answer questions
	2.2 Neural networks demonstrating reasoning characteristics
	2.3 Neural networks cooperating and coordinating
	2.4 Goals and Contributions

	3 Data and Experiments Design
	3.1 Overall project requirements
	3.2 Components design
	3.2.1 Environment
	3.2.2 Hardware and storage design
	3.2.3 Testing setup design
	3.2.4 Networks design
	3.2.5 Softmax & Sigmoid activation
	3.2.6 Data design

	4 Experiment Methods
	4.1 Understanding and Preparing the MNIST database
	4.2 Fundamental characteristics of the networks
	4.2.1 Learning shape and color
	4.2.2 Selectively predicting shape or color
	4.2.3 Switching between tasks
	4.2.4 Hyperparameter exploration

	4.3 Preparing MNIST for the main tests
	4.4 Final tests
	4.4.1 Automating training
	4.4.2 Preparation of results

	5 Results and Evaluation
	5.1 Results of network characteristics tests
	5.1.1 FC1 size
	5.1.2 Softmax vs Sigmoid output activation
	5.1.3 Convolution filters & feature maps

	5.2 Results of main experiments, multi-task training with increasingly scarce data
	5.2.1 Softmax output activation with Channel-embedded questions
	5.2.2 Softmax output activation with Slice-embedded questions
	5.2.3 Sigmoid output activation with Channel-embedded questions
	5.2.4 Comparing Channel-embedded preparations and Softmax-activated variants

	6 Summary and Conclusions
	6.1 Limitations and Known Issues
	6.2 Further work

	References
	A Supplemental Data

