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Applications of Equivariant Cohomology to Enumerative Geometry

Abstract

We show how equivariant cohomology can be applied to enumerative geometry in

three different settings: orbits of plane curves, strata of points on a line, and effective

divisors on the moduli space of curves. We first give a brief introduction to equivari-

ant cohomology. Then, we include three different applications that are essentially

unchanged from their published versions and contain joint work with Mitchell Lee,

Anand Patel, and Hunter Spink. We conclude with a short section with unpublished

observations and conjectures stemming from a concrete connection between counting

singularities and equivariant cohomology.
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Part 1. Introduction

1. Introduction

This thesis will cover three different applications of equivariant intersection theory,

where appreciating the applications does not require knowledge of equivariant theory.

It is our opinion that the tools of equivariant intersection theory are not widely used

enough by algebraic geometers, even though a working knowledge can be obtained

relatively quickly.

In some sense, the benefits of working equivariantly are psychological. Every equi-

variant construction can be restated in terms of a slightly more complicated analogue

in usual intersection theory, but the benefits are twofold. First, working equivariantly

highlights some approaches that wouldn’t be obvious nonequivariantly. Secondly, and

probably more important, there are results in the literature stated equivariantly that

are harder to interpret without knowing the language.

The main example we have in mind is in the field of counting singularities, where

we have Thom polynomials for singularities of maps and singularities of families

of hypersurfaces. The main tool in this case is to take test families of maps or

hypersurfaces parameterized by the classifying space of a torus (e.g. a product of

infinite projective spaces). This can be clearly stated nonequivariantly but it would

not seem like a natural approach, as it was not tried by algebraic geometers working

independently on the same problem. It also seems like the researchers using the

language of Thom polynomials have the stronger results.

We will concentrate on finding other applications of equivariant methods, though

counting singularities will appear in Part 2 in the context of reducing our problem

to counting quartic plane curves with prescribed singularities. For the remainder

of the introduction, we will present a simplified view of enumerative geometry and

equivariant intersection theory, and give some basics of equivariant intersection theory

in Section 2.
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1.1. Enumerative Geometry. Algebraic geometry is the study of varieties, geomet-

ric objects given as zero loci of polynomial equations, and intersection theory aims

to understand the (singular) cohomology rings of varieties and cohomology classes of

their subvarieties.

Enumerative geometry aims to count such objects subject to certain constraints.

For example, one may ask: how many lines in 3-space intersect 4 generic lines?

Instead of actually finding the lines, we can use the fact that the number of points in

the intersection of two submanifolds can be computed using the cup product of their

classes in singular cohomology.

In our example, the Grassmannian G(1, 3) is a 4-dimensional variety parameterizing

all complex lines in CP 3. The lines in CP 3 meeting a general line form a codimension

1 locus in G(1, 3) whose class α in cohomology is well-understood. One can then

compute that α4 in the cohomology ring of G(1, 3) is 2 times the class of a point,

showing there are 2 lines in 3-space meeting 4 generic lines.1

1.2. Equivariant Cohomology. Given an action of a topological group G on a

space X, the equivariant cohomology ring H•G(X) is the ordinary cohomology ring

of (X × EG)/G. The idea is to replace X with a homotopy equivalent space with a

free G-action, before taking the quotient by G.

1Those two lines might not be defined over the reals, which is why we work over the complex
numbers. See [18, Section 1.2] for the expected number of real lines meeting four real lines and [95]
for a count that works over arbitrary base fields.
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Just like the singular cohomology ring is analogous to the Chow ring, there is an

equivariant Chow ring corresponding to the equivariant cohomology. The founda-

tions were given by Totaro, Edidin and Graham [96, 27, 29], where the idea is to

approximate the infinite dimensional space EG with a sequence of finite dimensional

varieties.

Perhaps the most compelling reason for the correctness of the definition of the

equivariant Chow ring A•G(X) is that it is the integral Chow ring of the quotient stack

[X/G], defined functorially [27, Section 5.3]. This connection has been exploited to

compute Chow rings of various moduli spaces, see for example [25, 24, 48, 88, 14, 72].

However, in this thesis, we will exploit a different connection between equivariant

intersection theory and algebraic geometry. This connection is more naive and does

not require knowledge of stacks or moduli spaces in algebraic geometry.

Given an algebraic group G acting on a variety X and a principal G-bundle P → B,

we have the X-bundle (X × P)/G → B. Similarly, given a G-invariant subvariety

Z ⊂ X, we have a subbundle (Z × P)/G ⊂ (X × P)/G, and it is natural to ask for

its class.

In this context, the equivariant cohomology ring H•G(X) is the ordinary cohomology

ring of (X × EG)/G, where we let P → B be the universal G-bundle EG → BG.
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The equivariant class [Z] ∈ H•G(X) is the class of (Z × EG)/G ⊂ (X × EG)/G.

Therefore, the equivariant class [Z] ∈ H•G(X) contains the information of the class of

the subbundle (Z × P)/G ⊂ (X × P)/G for every principal G-bundle P → B.

Example 1.1. (Porteous formula) Given a map of two vector bundles V → W over

a complex variety B, the Porteous formula computes the class of {b ∈ B | rank(Vb →

Wb) ≤ k} for each k [32, Chapter 12].

If V and W are of ranks r1 and r2 respectively, then we can let X be the vector

space Hom(Cr1 ,Cr2), G = GLr1 ×GLr2 , and Z ⊂ Hom(Cr1 ,Cr2) consist of matrices

of rank at most k. The GLr1 ×GLr2-equivariant class of Z is equivalent to Porteous

formula, and allows for alternate derivations [43, Section 6]. Besides the psychological

advantage of working with a G-invariant subvariety Z ⊂ X instead of inside a non-

trivial X-bundle, there are various methods for computing equivariant cohomology

classes [44].

2. Background on Equivariant Cohomology in Algebraic Geometry

In this thesis, we will assume the basics of algebraic geometry [58, 100] and intersec-

tion theory [32]. However, since equivariant cohomology is not completely standard

yet as a tool in intersection theory, we will give an abbreviated introduction that is

general enough for our purposes. We will not strive for complete generality in this

section, instead we will try to focus on the special cases that will suffice for most of

the thesis, focusing on examples. The author originally learned equivariant cohomol-

ogy from David Anderson’s notes [10], and feels they are the best source for a quick

and clear introduction to the topic. The reader can also see the original papers intro-

ducing equivariant methods in the algebraic setting [27, 29]. We will let G denote an

algebraic group. When we appeal to singular cohomology, then it is assumed we are

working over the complex numbers, but the constructions for equivariant intersection

theory should hold regardless of the characteristic of the base field.
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2.1. Equivariant Chow ring of a point. The equivariant cohomology ring H•G(pt)

is H•(BG). For example,

H•GLn(pt) := H•(BGLn) = H•(G(n,∞)) = Z[c1, . . . , cn].

Similarly, for the diagonal torus T ⊂ GLn,

H•(BT ) = H•((P∞)n) = Z[t1, . . . , tn],

where t1, . . . , tn are naturally identified with the standard characters of the torus T .

The map T → GLn induces a map

H•(BGLn)→ H•(BT ),

sending ci to the ith symmetric function in the characters t1, . . . , tn. This map is

equivalently induced by (P∞)n 99K G(n,∞) as the indeterminacy locus happens in

infinite codimension.

Remark 2.1. The classes ci in H•(BGL)n) are the chern classes of complex vector

bundles and the fact that H•(BGLn) → H•(BT ) is injective is equivalent to the

splitting principle. Just as BGLn classifies vector bundles, BT classifies totally split

vector bundles with a choice of splitting.

In order to define the equivariant Chow rings A•GLn(pt), we replace G(n,∞) and

P∞ with their finite dimensional approximations G(n,N) and PN , as the groups

Ai(G(n,N)) and Ai(PN) stabilize for fixed i and N >> 0. To define A•G(pt) for an

arbitrary algebraic group G, one needs to approximate BG. To do this, one takes a

representation V of G on which G acts freely away from a set Z of large codimension

and let (V \Z)/G be the approximation for BG. See [27, Section 2.2] for a reference.

2.2. Equivariant Chow ring of a variety. Let X be a smooth variety with a G

action. The equivariant cohomology ring H•G(X) is the cohomology ring of H•(X×G
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EG). Since EG/G = BG, this specializes to H•G(pt) if X is a point. However, in

general, X ×G EG→ BG is an X-bundle.

Similarly to Section 2.1 above, the definition of AiG(X) is given by finding a finite

dimensional approximation EGN → BGN to the universal principal G-bundle EG→

BG. If G = GLn(C), then this is given by Ai(X ×G F (S)) where S → G(n,N) is

the tautological subbundle and F (S) → G(n,N) is the associated frame bundle for

N >> 0.

2.3. Examples of equivariant Chow rings. Equivariant Chow rings can some-

times be computed directly from the definitions. In this thesis, the equivariant Chow

rings are often very simple, with the following two basic examples sufficing for most

applications.

2.3.1. Affine space. If we have a G-action on affine space An acting as a subgroup of

GLn, then A•G(An) ∼= A•G(pt) as the Chow ring of a vector bundle is isomorphic to

that of its base.

2.3.2. Projective space. Given a G-action on affine space An acting as a subgroup of

GLn, then

A•G(Pn−1) = A•G(pt)[H]/(Hn + cG1 H
n−1 + · · ·+ cGn ).

Here, cGi are the equivariant chern classes of An, viewed as an equivariant vector

bundle over a point. Equivariant chern classes can be defined by using the usual

chern classes and finite approximations of EG→ BG as above. The presentation of

the Chow ring follows from the projective bundle theorem, and can be viewed as an

equivariant version of the projective bundle theorem.

2.3.3. Extensions. Similarly to the above, one can find the equivariant Chow ring of

a product of projective spaces by applying the projective bundle theorem iteratively.
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Also, the equivariant Chow ring of a Grassmannian can be deduced from the Chow

ring of a Grassmannian bundle [32, Theorem 9.18].

2.4. Equivariant class of a subvariety. If X is a smooth variety with a G-action

and Z ⊂ X is a subvariety preserved by G, then one can define its equivariant

cohomology class [Z]G ∈ H•G(X) as the usual cohomology class

[Z ×G EG] ∈ H•G(X) = H•(X ×G EG).(2.1)

Algebraically, one can repeat the same construction, as long as we replace EG→ BG

with a finite dimensional approximation as above. The equivariant class [Z]G can be

regarded as a universal formula for the class of the Z-bundle Z ×G P inside of the

X-bundle X ×G P for every principal G-bundle P → B. In equivariant cohomology,

this follows from the construction. In equivariant Chow rings, this is less obvious but

can also be shown quickly. This is given in the arXiv preprint [94, Section 2.2] with

Hunter Spink, which can also be found in this thesis Section 12.2.

2.4.1. Example: a linear subspace. This thesis is essentially devoted to examples of

equivariant classes of subvarieties and their applications. In terms of basic exam-

ples, the equivariant class of a linear subspace is equivalent to the formula for the

projectivization of a subbundle [32, Proposition 9.13].

Instead of deducing it from [32, Proposition 9.13], we present an alternative way

using equivariant intersection theory. Given a subbundle W ⊂ V , we want to compute

the class [P(W )] ∈ A•(P(V )). By the splitting principle, it suffices to consider the

case where W and V are totally split and W is a subset of the factors.

This is equivalent to computing the T -equivariant class of a torus invariant linear

space Λ ⊂ Pn, where n = rank(V ) − 1 and Λ is defined by the vanishing of the first

dim(V )−dim(W ) coordinates. Let Λ̃ ⊂ An+1 be the affine cone over Λ. Then, under
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the surjection

Z[H, t0, . . . , tn] ∼= A•T×Gm(An+1)→ A•T (Pn) ∼= Z[H, t0, . . . , tn]/((H + t0) · · · (H + tn)),

[Λ̃] maps to [Λ]. Now, to compute [Λ̃], we consider An+1 as the affine bundle An+1 →

Adim(W ), where Λ̃ is the zero section. Therefore, the class of Λ̃ is the top chern class

of this totally split vector bundle, which is (H + t0) · · · (H + tdim(V )−dim(W )−1).

To interpret this in the original setting of computing [P(W )] ∈ A•(P(V )), we

specialize H to the O(1) class and the t0, . . . , tdim(V )−dim(W )−1 to the chern roots of

V/W .
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Part 2. Equivariant classes of plane curve orbits

This part of the thesis contains the arXiv preprint [74] joint with Mitchell Lee and

Anand Patel. The key observation was that the GL3-equivariant class of a general

GL3 orbit closure in Sym4C3 (e.g. the orbit of a general quartic plane curve) can be

computed by a degeneration to a double conic. Surprisingly, this reduces the problem

of computing the equivariant class to a problem in enumerating A6 singularities in a

family of curves, which is known [65]. We also explore classes of more special orbits,

yielding connections with enumerating D6 and E6 singularities as well.

Abstract: In a series of papers, Aluffi and Faber computed the degree of the GL3

orbit closure of an arbitrary plane curve. We attempt to generalize this to the equi-

variant setting by studying how orbits degenerate under some natural specializations,

yielding a fairly complete picture in the case of plane quartics

3. Introduction

Let V be an (r + 1)-dimensional vector space, and let F ∈ Symd V ∨ be a non-

zero degree d homogeneous form on V . F naturally produces two varieties, OF ⊂

Symd V ∨ and POF ⊂ P Symd V ∨, namely the GLr+1-orbit closures of F and [F ]

respectively. Basic questions about the relationship between the geometry of POF and

the geometry of hypersurface {F = 0} remain unanswered. Consider, for example,

the enumerative problem of computing the degree of POF . The analysis of the degrees

of these orbit closures was carried out for the first two cases r = 1, 2 in a series of

remarkable papers by Aluffi and Faber [3, 4, 6, 7, 5, 8, 9]. For instance, Aluffi and

Faber’s computation in the special case r = 2, d = 4 of quartic plane curves yields

the enumerative consequence: in a general 6-dimensional linear system of quartic

curves, a general genus 3 curve arises 14280 times. When {F = 0} is a hyperplane

arrangement, the degree of POF was studied in [98, 75].
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One can interpret the calculation of the degree of POF as computing the funda-

mental class [POF ] ∈ A•(P Symd V ∨). Since POF is evidently preserved by the action

of GLr+1, one obtains a natural equivariant extension of the problem: to compute

the equivariant fundamental class [POF ]GLr+1 ∈ A•GLr+1
(P Symd V ∨). In simple terms,

beginning with a rank r + 1 vector bundle V , the class [POF ] encodes the universal

expressions in the chern classes c1, ..., cr+1 appearing in the fundamental class of the

relative orbit closure cycle (POF )V ⊂ P Symd V∨. This larger equivariant setting

encapsulates many more enumerative problems. For instance, by studying the par-

ticular case r = 2, d = 4 we will show: a general genus 3 curve appears 510720 times

as a 2-plane slice of a fixed general quartic threefold.

Very few equivariant classes [POF ]GLr+1 are known. When d = 2, the class

[POF ]GLr+1 is determined by the rank of the quadric F = 0 and recovers the Porteous

formula for symmetric maps [57]. The authors’ work with H. Spink in [73] estab-

lishes the equivariant class when F = 0 defines a hyperplane arrangement. In this

paper, we study the frontier case r = 2 of plane curves. As in [73], our strategy is to

degenerate [POF ] into a union of other orbits [POFi ] whose classes we can compute

directly. To do this, we initiate a detailed study of how orbits of plane curves behave

under particular specializations.

In the remainder of the introduction we summarize our results on degenerations of

plane curve orbits. The particular case of quartic plane curves is especially beautiful

– we deduce interesting relations among different orbit closures [POF ] for F ranging

over several types of quartic plane curves possessing special geometric properties.

Since the computation of equivariant orbit classes does not have a strong presence

in the literature, in the appendix we have included the cases of points on a line and

cubic plane curves. The case of points on a line is done in two independent ways: one

by specializing the results in [73] and the other by applying the Atiyah-Bott formula

to the resolution of the orbit given in [3].
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3.1. Summary of Degenerations. When degenerating orbit closures, it is often

convenient to work with not the cycle of the orbit closure, but rather that cycle

weighted by the number of linear automorphisms of the curve. In what follows, we

will describe how these weighted orbit closures specialize.

If a Ct is a family smooth curves specializing at t = 0 to a curve with nodes

and cusps, this induces a specialization of (weighted) orbit closures. We obtain a

description of which other orbits appear in the flat limit (see Theorem 8.1). To

illustrate this theorem, we will describe what happens in the special case where the

curve acquires a single node or a single cusp. The general case is simply a sum of the

contributions for each node or cusp.

3.1.1. Acquiring a node. If Ct acquires a single node in the limit C0, then as a limit

of weighted orbits, one obtains the weighted orbit PC0 along with one other weighted

orbit, POCBN , which occurs with multiplicity 2.

The curve CBN is a nodal cubic union a (d− 3)-fold line tangent to a branch of the

node.

3.1.2. Acquiring a cusp. If Ct acquires a single cusp in the limit C0, then as a limit

of weighted orbits, one obtains the weighted orbit of the cuspidal curve PC0 along

with another weighted orbit, POCflex
.
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The curve Cflex is a smooth cubic union a (d − 3)-fold flex line. We can degenerate

the weighted orbit of Cflex further to get the weighted orbit of CBN with multiplicity

2 together with the weighted orbit of CAN , where CAN is a nodal cubic union a

(d− 3)-fold flex line (at a smooth point).

The subscripts of CAN and CBN are just to help us remember that the line meets

“away from the node” or at a ”branch of the node”.

3.1.3. Splitting off a line. Since the equivariant class of the orbit closure of a union

of lines can be deduced using the results of [73], it is natural to try to specialize a

degree d plane curve to a union of lines. For example, we show that if Ct is a family

of general curves and C0 is a general union of lines, then in addition to the orbit class

of POC0 we also get d times the weighted orbit class of a general irreducible plane

curve with a multiplicity d− 1 point.

More generally, it is also possible to specialize so that C0 is a union of a general

degree e curve union a d− e general lines (see Proposition 7.2)
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3.1.4. Degeneration to the Double Conic. Next suppose Ct is a family of general plane

quartics specializing to a double conic. The orbit of the double conic has smaller

dimension, so it will not appear as a component of the t→ 0 limit of orbit closures.

We will show Theorem 10.5 that in this case, the weighted orbit of Ct specializes to 8

times the weighted orbit of a rational quartic curve with an A6 singularity. Equations

for quartic plane curves with A6, D6 and E6 singularities are given in (5.1) in Section 5

below.

In addition, we can also let Ct be a family where the general member is a general

curve with an An singularity where 3 ≤ n ≤ 6 and find the limit is (7− n) times the

weighted orbit of a rational quartic curve with an A6 singularity (see Theorem 10.7).

It is somewhat remarkable that the limit consists set-theoretically of the closure of

the quartic plane curves with an A6 singularity. This fact is related to the question

of which planar quartics can yield a general hyperelliptic curve after semistable re-

duction. Furthermore, the multiplicity 8 we obtain corresponds to the 8 Weierstrass

points of a genus 3 hyperelliptic curve. Tails arising from semistable reductions of

singularities have been studied in [89, 59, 21, 38].

3.2. Orbit classes of quartic curves. In the specific setting of quartic curves,

we find that the orbit class of an arbitrary smooth quartic can be deduced in a

direct way from the orbit classes of special quartics with A6 and E6 singularities.

We have already explained the relation with curves having an A6 singularity above.

By borrowing and adapting an idea of Aluffi and Faber [2, Theorem IV(2)], we
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specialize the GL3-orbit closure of a general quartic plane curve to the GL3-orbit

of any particular smooth quartic plane curve (possibly having hyperflexes). In the

flat limit, the GL3-orbit closure of a rational quartic with an E6 singularity appears

(with multiplicity twice the number of hyperflexes of the limiting smooth quartic).

In this way, we can express the orbit closure class of an arbitrary smooth quartic in

terms of orbit classes of strata of rational curves with an A6 singularity or with an

E6 singularity. From here, we conclude the analysis by invoking Kazarian’s work [65]

on counting A6 and E6 singularities in families of curves.

We can also compute the equivariant classes of orbit closure for many singular

quartics using the degenerations in Section 3.1. In particular, the curves with a D6

singularity arise when specializing to a node as in Section 3.1.1. We summarize the

results in Theorem 3.1.

Theorem 3.1. We can compute the equivariant classes of orbit closures of quartic

plane curves for: an arbitrary smooth quartic, a general union of 4 lines, a general

union of 2 lines and a conic, a general union of a cubic and a line, an irreducible

quartic with δ ordinary nodes and κ ordinary cusps without hyperflexes, a general

quartic with an An singularity for n ≤ 6, a nodal cubic union a line tangent to a

branch at the node, a cubic union a flex line, a smooth cubic union a flex line, a

rational curve with an E6 singularity. The formulas are given in Figure 1.

For a plane curve C ⊂ P2 with an 8-dimensional PGL3 orbit, the expressions pC

are defined to be the GL3-equivariant classes [OC ]GL3 times the number of PGL3-

automorphisms of C. We note that the classes [POC ]GL3 are related to [OC ]GL3 by a

simple substitution (see Proposition 4.4).

Remark 3.2. It is tempting to apply Kazarian’s work on multisingularities [66] to the

locus of curves with an A5 and an A1 singularity to find pCAN in Figure 1. However,

in addition to OCAN , there is another component of the locus of quartics with an A5
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and an A1 singularity, namely two conics meeting at two points with multiplicities 3

and 1 respectively. Therefore, it was necessary to compute OCAN independently (see

Section 9).

3.2.1. Sections of a Quartic Threefold. Starting with a smooth quartic threefold X ⊂

P4, one obtains a rational map

Φ : G(2, 4) 99KM3

sending a general 2-plane Λ ⊂ P4 to the moduli of the plane curve X ∩ Λ. Our

calculation of the equivariant class of GL3-orbit closure of the general quartic plane

curve gives

Corollary 3.3. If X is general, the map Φ has degree 510720.

We note that the same computation as the proof of Corollary 3.3 also computes the

number of times we see each curve in Theorem 3.1 with prescribed moduli (subject

to transversality assumptions). This is given in Figure 2.

Example 3.4. The number of tricuspidal curves arising as a section of a quartic

threefold is 27520 by applying Kazarian’s theory of multisingularities. More precisely,

the number can in principle be deduced from [66, Section 8], but the formula for 2-

planes in P4 meeting a degree d hypersurface in a curve with three cusps can be

found on Kazarian’s website. From Figure 2, we get 510720− 3 · 2 · 57600 = 6 · 27520,

accounting for the 6 automorphisms of the tricuspidal quartic. This agrees with

Kazarian’s formula. However, for example, our Figure 2 also computes the number

of 1-cuspidal and 2-cuspidal curves having prescribed moduli, which is not covered

by the theory of multisingularities.

Remark 3.5. The formula for the general orbit in Theorem 3.1 and the answer

510720 has also been verified independently by the authors using the SAGE Chow
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ring package [93] to implement the resolution used by Aluffi and Faber [4] for smooth

plane curves relatively. However, the computations were too cumbersome to verify

by hand.

Proof of Corollary 3.3. We find the degree of Φ directly by choosing a general quartic

plane curve C ⊂ P2 and counting the number of two planes Λ such that X ∩ Λ is

isomorphic to C.

Let G be a quartic homogenous form cutting out a general quartic threefold X ⊂

P4, and let π : S → G(2, 4) denote the rank 3 tautological subbundle over the

Grassmannian. The form G defines a section of OP(S)(4) on P(S), which in turn

induces a section s : G(2, 4) → Sym4(S∨). Let (OC)S ⊂ Sym4(S∨) be the relative

orbit as in Definition 4.1. Since G is general, the section s will intersect (OC)S only

in the interior of the relative orbit. Since C is general the intersection will consists of

reduced points by generic reducedness in characteristic zero. In this paper, we will

assume the characteristic is at least 7 (see Section 3.4), and there is a traversality

argument that can be made to show that the intersection is also still reduced in

this case. Therefore, s and (OC)S are smooth at the the scheme s ∩ (OC)S , and

deg(Φ) =
∫
G(2,4)

s∗[(OC)S ]. Expanding the formula for pC = [(OC)S ] in Theorem 3.1,

we get

48384c1(S)6 + 88704c1(S)4c2(S) + 32256c1(S)2c2(S)2 − 34944c1(S)3c3(S)

+2688c1(S)c2(S)c3(S)− 29568c3(S)2.

By evaluating on the Grassmannian, we conclude:

deg Φ = 48384 · 5 + 88704 · 3 + 32256 · 2− 34944 + 2688− 29568 = 510720.

�
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3.3. Related Work. This paper was heavily influenced and inspired by Aluffi and

Faber’s computation of degrees of orbit closures of plane curves of arbitrary degree.

Zinger also computed the degree of the orbit closure of a general quartic as a special

case of interpolating genus 3 plane curves with a fixed complex structure [102].

3.3.1. Planar sections of a hypersurface of fixed moduli. Counting linear sections of

a hypersurface with fixed moduli has been considered in the case of line sections of

a quintic curve [19] and generalized to line sections of hypersurfaces of degree 2r+ 1

hypersurfaces in Pr [73] by extending the computation of orbits of points on a line

[3] to the equivariant setting.

3.3.2. Counting curves with prescribed singularities. In addition to Kazarian’s work

[65], there have been independent efforts to count plane curve singularities at one

point, including [15, 69, 91].2 For us, Kazarian’s work has the advantage that it

can be directly applied to counting curve singularities in a family of surfaces. In

fact, Kazarian’s work applies to hypersurface singularities as well. We will not make

essential use of Kazarian’s generalization to multisingularities [66].

3.4. Assumptions on the characteristic of the base field. For our work on

degenerations on orbits of plane curves, we will work over an algebraically closed

field of arbitrary characteristic. For computations of equivariant classes, we work

over an algebraically closed field of characteristic at least 7, because of our use of

Kazarian’s work on enumerating singularities. Kazarian works over the complex

numbers, but it is possible to use equivariant intersection theory to show the existance

of a universal formula algebraically. Then, the computation of his formulas using test

classes [65, Section 2.5] can also be carried out algebraically. Also, one can give a

transversality argument to show a general fiber of Φ in Corollary 3.3 is reduced in

positive characteristic.

2For the reader’s convenience, we note that numerical errors in [69] have been fixed in an updated
arXiv version. Also, there are errors in the formulas for counting A6 and A7 singularities in [91].



18

3.5. Acknowledgements. We would like to thank Paolo Aluffi and Joe Harris for

helpful conversations. We would also like to thank Carl Lian for a careful reading

and helpful comments.

4. Definitions and Conventions

In this section, we define equivariant generalizations of predegrees of orbits of

hypersurfaces as studied by Aluffi, Faber, and Tzigantchev [98, 3, 4, 5]. We will only

deal with the case of points on a line, and plane cubics and quartics, but we give the

general definition for clarity and to emphasize the potential for future work.

As a rule, the projectivization of a vector bundle parametrizes 1-dimensional sub-

spaces, not quotients.

4.1. GLr+1-equivariant Chow classes. In this subsection, we will define theGL(V )-

equivariant Chow class [Z]GLr+1 of GL(V )-invariant subvariety Z of Symd V ∨ and

similarly for P(Symd V ∨). Our definitions are a special case of the definitions of equi-

variant intersection theory [27, 10], but we hope our setup will be self-contained and

understandable without the general theory.

Definition 4.1. Let V be an r + 1-dimensional vector space and Z ⊂ Symd V ∨ be a

GL(V )-invariant subvariety. Given a variety B and a rank r+ 1 vector bundle V on

B, define the subvariety ZV of the rank
(
d+r
r

)
vector bundle Symd V∨ → B, to be the

locus which restricts in every fiber to Z after choosing a basis.

Although ZV depends on B and V , its class in A•(B) ∼= A•(Symd V∨) is a universal

expression in chern classes of V . By choosing B = G(r,N) for N � 0 and V to be

the tautological subbundle, the construction of equivariant intersection theory [27]

shows there is a single formula that works for all such choices of B and V . Therefore,

throughout this paper we will fix a base variety B and rank r+ 1 vector bundle V on

B.
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Definition 4.2. Given Z as in Definition 4.1, let [Z]GLr+1 be the polynomial in

c1, . . . , cr+1 such that the class of ZV is [Z]GLr+1 with the chern classes of V substi-

tuted for c1, . . . , cr+1. Equivalently, [Z]GLr+1 is the GL(V )-equivariant class of Z in

A•GLr+1
(Symd V ∨) ∼= Z[c1, . . . , cr+1].

Similarly to Definition 4.2, we can define an equivariant Chow class for a GLr+1-

invariant subvariety of P(Symd V ∨). Following Definition 4.1, let PZ ⊂ P(Symd V ∨)

be the projectivization of Z and PZV ⊂ P(Symd V∨) be the projectivization of ZV .

Then, as before, there is a single formula in the chern classes of V and OP(Symd V∨)(1)

that gives the class of [PZV ] ∈ A•(P(Symd V∨)) for every choice of V → B.

Definition 4.3. Given Z as in Definition 4.1, let [PZ]GLr+1 be the polynomial in

c1, . . . , cr+1 and H such that the class of PZV is [Z]GLr+1 with the chern classes of V

substituted for c1, . . . , cr+1 and OP(Symd V∨)(1) substituted for H. Equivalently, [Z]GLr+1

is the GL(V )-equivariant class of Z in

A•GLr+1
(P(Symd V ∨)) ∼= Z[c1, . . . , cr+1][H]/(Hr+1 + c1H

r + · · ·+ cr+1).

It seems like [PZ]GLr+1 contains more information than [Z]GLr+1 , but they are

actually related by a simple substitution. Let u1, . . . , ur+1 denote the formal chern

roots of the vector bundle V . More precisely, using the inclusion Z[c1, . . . , cr+1] ↪→

Z[u1, . . . , ur+1] where ci maps to the ith elementary symmetric function, we can

view [Z]GLr+1 as a symmetric polynomial in u1, . . . , ur+1 and similarly [PZ]GLr+1 as a

polynomial in u1, . . . , ur+1 and H symmetric in the ui’s.

Proposition 4.4 ([41, Theorem 6.1]). We have:

[Z]GLr+1(u1, . . . , ur+1) = [PZ]GLr+1(u1, . . . , ur+1, 0)

[PZ]GLr+1(u1, . . . , ur+1, H) = [Z]GLr+1(u1 −
H

d
, . . . , ur+1 −

H

d
).
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When r = 1 and 2, we will use (u, v) for (u1, u2) and (u, v, w) for (u1, u2, u3),

respectively.

4.2. Weighting orbits by automorphism groups.

Definition 4.5. Given X ⊂ P(V ) a degree d hypersurface, let OX ⊂ Symd V ∨ be the

GL(V )-orbit closure of any defining equation F = 0 of X.

Definition 4.6. Let F ∈ Symd V ∨ be a degree d homogenous form cutting out X ⊂

P(V ). Then, define

pX :=


# Aut(X)[OX ]GLr+1 if # Aut(X) <∞

0 if # Aut(X) =∞.

PX :=


# Aut(X)[POX ]GLr+1 if # Aut(X) <∞

0 if # Aut(X) =∞.

We include the factor of # Aut(X) because it naturally arises when specializing

orbits. The polynomials PX are an equivariant generalization of predegrees as defined

by Aluffi and Faber [4, Definition].

Definition 4.7. The predegree of a hypersurface X having full dimensional orbit is

# Aut(X) times the degree of its orbit in the projective space P(d+rr )−1. If the orbit of

X is not full dimensional then we define its predegree to be zero.

Remark 4.8. The predegree of a hypersurface X is the coefficient of H(d+rr )−(r+1)2

in PX . Thus, the equivariant classes contain much more enumerative data than the

predegree. However, we will often critically use the knowledge of the pre-degree in

equivariant arguments.

4.3. Notation for GLr+1-equivariant degeneration. Our equivalences between

GLr+1-equivariant classes will be given by degeneration, so we will introduce notation
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to reflect this. Next we let R be a DVR with uniformizer t, and let ∆ = Spec(R).

Let 0 and η denote the special and generic point of ∆, respectively. We will often

denote by Ft a family of hypersurfaces parametrized by ∆.

Notation 4.9. Let Zt be a flat family of GL(V )-invariant subvarieties of Symd V ∨.

If the generic fiber Zη specializes in the flat limit to a union of GL(V )-invariant

subvarieties (with multiplicities) Z0 =
∑

imiZ
i
0, then we write

Zη  
∑
i

miZ
i
0.

Remark 4.10. We do not expect it to be true that the flat limit of orbit closures is

a union of orbit closures.

Notation 4.11. Consider the abelian group generated Z-linearly by eZ where Z

varies over all GL(V )-invariant subvarieties of Symd V ∨ and with relations generated

by all eZη −
∑

imieZi0 for all Zη  
∑

imiZ
i
0. Then, we define

∑
imiZi ∼

∑
j njZ

′
j if∑

imieZi =
∑

j njeZ′j in the abelian group.

Note that

∑
i

miZi ∼
∑
j

njZ
′
j ⇒

∑
i

mi[Zi]GLr+1 =
∑
j

nj[Z
′
j]GLr+1

∑
i

mi[PZi]GLr+1 =
∑
j

nj[PZ ′j]GLr+1 .

5. Known classes of orbits of special quartics

In this section, we record Kazarian’s formulas for counting curves with A6, D6 and

E6 singularities. It is known that in the space of quartic curves, the set of curves

with such singularities form three respective 8-dimensional orbits (Proposition 5.2).

Kazarian’s formulas then directly yield the equivariant orbit classes of these three

orbits (Corollary 5.4). We also record the computation for the equivariant class of

unions of four lines.
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We make essential use of a calculation of Kazarian [65, Theorem 1]:

Proposition 5.1. Let S → B be a smooth morphism of varieties whose fibers are

smooth surfaces. Let L be a line bundle on S and σ be a section of L cutting out

a family of curves C ⊂ S. The virtual classes [ZA6 ] (respectively [ZD6 ] and [ZE6 ])

supported on points p ∈ S where the fiber of C → B has an A6 (respectively D6 and

E6) singularity at p is given by:

[ZA6 ] = u(−c1 + u)(c2 − c1u+ u2)(720c4
1 − 1248c2

1c2 + 156c2
2 − 1500c3

1u

+ 1514c1c2u+ 1236c2
1u

2 − 485c2u
2 − 487c1u

3 + 79u4)

[ZD6 ] = 2u(−c1 + u)(4c2 − 2c1u+ u2)(c2 − c1u+ u2)(12c2
1 − 6c2 − 13c1u+ 4u2)

[ZE6 ] = 3u(−c1 + u)(2c2
1 + c2 − 3c1u+ u2)(4c2 − 2c1u+ u2)(c2 − c1u+ u2)

where ci := ci(TS/B) and u = c1(L).

Proposition 5.2. The set of irreducible quartic plane curves with an A6 (respectively

D6 and E6) singularity forms a single 8-dimensional orbit.

Proof. The case of D6 singularities is clear, since one of the branches of the singularity

must be a line. Hence such a curve must be the union of a nodal cubic with a tangent

branch line, constituting a single orbit.

The fact that irreducible plane quartics with an A6 or E6 singularity form an

irreducible subvariety of codimension 6 in the projective space P14 of all quartics

follows from their classification, for example [82, Section 3.4].

That an orbit of a general curve with such a singularity is 8-dimensional can be

checked by the formulas for their pre-degrees as found in [5, Examples 5.2 and 5.4],

which gives a nonzero result. This proves the proposition. �
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Definition 5.3. Let CA6 and CE6 denote rational quartic curves with an A6 and E6

singularity respectively, whose PGL3-orbits are 8-dimensional. By Proposition 5.2,

this definition is well-defined up to projective equivalence.

There are explicit equations for CA6 and CE6 (see for example [82, Section 3.4]):

CA6 : {(x2 + yz)2 + 2yz3 = 0} CD6 : {Z(ZXY +X3 + Z3) = 0}(5.1)

CE6 : {y3z + x4 + x2y2 = 0}.(5.2)

Corollary 5.4. We have

pCA6
= 3 · 112(9c3

1 + 12c1c2 − 11c3)(2c3
1 + c1c2 + c3)

pCD6
= 3 · 64(18c6

1 + 33c4
1c2 + 12c2

1c
2
2 − 85c3

1c3 − 11c1c2c3 − 7c2
3)

pCE6
= 2 · 48(2c3

1 + c1c2 + c3)(9c3
1 − 6c1c2 + 7c3),

where # Aut(CA6) = # Aut(CD6) = 3 and # Aut(CE6) = 2.

We will also verify the result for pCD6
independently in Section 9.

Proof. We apply Proposition 5.1 to the case where B = G(2, N) for N >> 0 and

S = P(V) where V is the tautological subbundle. Let T be the relative tangent bundle

of P(V) → B. By the splitting principle and the relative Euler exact sequence for

projective bundles, we get:

c1(T ) = c1(V) + 3c1(OP(V)(1))

c2(T ) = c2(V) + 2c1(V)c1(OP(V)(1)) + 3c1(OP(V)(1))2.
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Now, we let u = 4c1(OP(V)(1)) in the formulas for [ZA6 ], [ZD6 ] and [ZE6 ] Proposi-

tion 5.1 and apply push-forward along the projection P(V)
π−→ B. This yields

π∗[ZA6 ] = 112(9c1(V)3 + 12c1(V)c2(V)− 11c3(V))(2c1(V)3 + c1(V)c2(V) + c3(V))

π∗[ZD6 ] = 64(18c1(V)6 + 33c1(V)4c2(V) + 12c1(V)2c2(V)2 − 85c1(V)3c3(V)−

11c1(V)c2(V)c3(V)− 7c3(V)2)

π∗[ZE6 ] = 48(2c1(V)3 + c1(V)c2(V) + c3(V))(9c1(V)3 − 6c1(V)c2(V) + 7c3(V)).

Now, π∗[ZA6 ], π∗[ZD6 ], and π∗[ZE6 ] respectively give the formulas for [OCA6
]GL3 ,

[OCD6
]GL3 , [OCE6

]GL3 , as they are also the result of pulling back (OCA6
)S , (OCD6

)S ,

and (OCE6
)S under a generic section G(2, N)→ Sym4 S∨.

The statement on the automorphisms of CA6 and CE6 come from the equations.

Alternatively, one could compare the predegrees of CA6 and CE6 with the projective

versions of [ZA6 ] and [ZE6 ] using [5, Examples 5.2 and 5.4] and Proposition 4.4. �

In order to calculate the orbit class of a general quartic with a triple point, we

will need to know pC in the case where C is the union of four lines, with no three

concurrent.

Proposition 5.5. Let C be the union of four lines, no three concurrent. Then,

pC = 24 · 16(18c6
1 + 33c4

1c2 + 12c2
1c

2
2 + 131c3

1c3 + 153c1c2c3 − 147c2
3).

Here, # Aut(C) = 24.

Proof. We will closely follow [42, Theorem 3.1]. Consider the map φ : P(V∨)4 →

P(Sym4 V∨), which restricts to the multiplication map (P2)4 → P14 on each fiber.

Then, φ maps 4! to 1 onto POC so [POC ] = 1
24
φ∗(1).
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Let H = OP(Sym4 V∨)(1) and

α = H14 + c1(Sym4 V∨)H13 + · · ·+ c14(Sym4 V∨).

Using the fact that αH + c15(Sym4 V∨) = 0, we get that the integral∫
P(Sym4 V∨)→S

αβ

is equal to the constant term (with respect to H) of β. By this, we mean that any

class β ∈ A•(P(Sym4 V∨) can be written as a polynomial in H and pullbacks of classes

of A• and integrating against α extracts the constant term.

To finish, we let β = 1
24
φ∗(1) and apply the projection formula to reduce our

problem to the evaluation of

1

24

∫
P(V∨)4→S

φ∗(α).

This equals the answer claimed in the proposition, after multiplying by 24. �

6. Families of orbits

The purpose of this section is to gather the basic degeneration tools we will use

repeatedly throughout the paper.

Given a degree d plane curve with an 8-dimensional orbit, we can consider the

orbit map

PGL3 P(d+2
2 )−1

P8

φ

inducing a rational map P8 99K P(d+2
2 )−1. Resolving this map and pushing forward

the fundamental class yields # Aut(C) times the class of the orbit closure of C, which

is the definition of the predegree (see Definition 4.7).
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Suppose we have a family γ : ∆ → P(d+2
2 )−1 of plane curves parameterized by a

smooth (affine) curve or DVR ∆. Pulling back the universal curve yields C → ∆.

Let Ct be a general fiber of Ct and C0 be the special fiber over 0 ∈ ∆. In all our

applications, ∆ is an open subset of A1. Then, by taking the orbit map fiberwise, we

get

PGL3 ×∆ P(d+2
2 )−1

P8 ×∆

Φ

Resolving Φ : P8 × ∆ 99K P(d+2
2 )−1 yields a degeneration of the orbit closure of Ct

(with multiplicity # Aut(C)) to a union of 8-dimensional cycles. Our goal will be to

identify those cycles in the limit. To do so, we will frequently apply Principles 6.1

and 6.2 below.

Let ∆× = ∆\{0}.

Principle 6.1. Let µ : PGL3 × P(d+2
2 )−1 → P(d+2

2 )−1 be the action of PGL3 on

P(d+2
2 )−1 by pullback. Suppose for 1 ≤ i ≤ n we have found maps γi : ∆× → PGL3

such that

(1) The unique extension µ(γi, γ) : ∆ → P(d+2
2 )−1 sends 0 to a plane curve Ci

which has an 8-dimensional orbit closure.

(2) The images of γi(0) ∈ P8 are pairwise distinct.

Then, the equivariant class pCt −
∑n

i=1 pCi can be represented by a nonnegative

sum of equivariant classes of effective cycles. Suppose in addition the predegrees

of C1, . . . , Cn adds up to the predegree of Ct. Then, OCt  
∑n

i=1 OCi .

Proof. Given a rank 3 vector bundle V → B, the degeneration given by resolving

Φ also relativizes to a degeneration of # Aut(Ct)[(OCt)V ] into a union of relative

cycles in Symd V∨ given an equality in A•(Symd V∨) ∼= A•(B). Therefore, to prove

Principle 6.1, we can and will assume B is a point.
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For each curve γi, we can multiply by PGL3 to get a map

∆× PGL3 ∆× P8 P(d+2
2 )−1

fi

Φ

where (fi)∗(1) is # Aut(Ci)[OCi ]. Let X ⊂ ∆ × P8 × P(d+2
2 )−1 be the closure of the

graph of Φ. We see X → P(d+2
2 )−1 resolves Φ. Each γi corresponds to an 8-dimensional

component Yi of the special fiber X0 of X → ∆ over 0 ∈ ∆. Each Yi pushes forward

to a positive multiple of # Aut(Ci)[OCi ] in P(d+2
2 )−1.

Each Yi lies over precisely the orbit closure of PGL3 · γi(0) in P8 under the map

X0 → P8 given by restricting the resolution X → ∆ × P8 over 0 ∈ ∆. Since the

assumption on the images of γi(0) are equivalent to the orbits PGL3 · γi(0) being

distinct as we vary over 1 ≤ i ≤ n, the Yi’s correspond to distinct components of X0.

Therefore, we find the difference

# Aut(Ct)[OCt ]−
n∑
i=1

# Aut(Ci)[OCi ]

is a nonnegative combination of 8-dimensional cycles. If we assume the equality of

predegrees, the degrees of those 8-dimensional cycles sum to zero. This means the

difference is identically zero. �

For many of our applications, Principle 6.1 will suffice. But in Section 8.1, we will

have two different maps γ1, γ2 whose images γi(0) are the same, but will both still

contribute to pCt . We will show this by first blowing up ∆ × P8. The proof method

is the same as Principle 6.1, but with ∆ × P8 replaced by X for X → ∆ × P8 a

PGL3-equivariant birational map, so we omit it.

Principle 6.2. Let X → ∆ × P8 be a PGL3-equivariant birational map. Suppose

we have found γ1, . . . , γn maps γi : ∆× → PGL3 such that

(1) The unique extension µ(γi, γ) : ∆→ P(d+2
2 )−1 sends 0 to the curve Ci with an

8-dimensional orbit closure.
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(2) The unique extensions γi : ∆→ X have the property that the points γi(0) ∈

X are in different PGL3-orbits of X.

Then, the equivariant class pCt −
∑n

i=1 pCi can be represented by a nonnegative sum

of effective cycles. Suppose in addition the predegrees of C1, . . . , Cn adds up to the

predegree of Ct. Then, pCt =
∑n

i=1 pCi .

7. Splitting off a line as a component

In this section, we analyze how the orbit changes as a degree d smooth curve

degenerates to a general degree e smooth curve together with d− e general lines.

Lemma 7.1. Let F (X, Y, Z) and G(X, Y, Z) cut out plane curves of degrees d − 1

and d respectively. If {F = 0} or {G = 0} does not contain {X = 0}, then

lim
t→0

t−1((tX)F (tX, Y, Z) + tG(tX, Y, Z)) = XF (0, Y, Z) +G(0, Y, Z)

Proof. Consider t−1((tX)F (tX, Y, Z) + tG(tX, Y, Z)) = XF (tX, Y, Z) +G(tX, Y, Z).

Setting t = 0 yields XF (0, Y, Z) +G(0, Y, Z). �

Proposition 7.2. Let d ≥ 4 and let C,Cd−1, D be a general curve of degree d, a

general degree d curve with a point of multiplicity d − 1, and a general degree e 6= 1

curve union d− e lines respectively. Then,

OC  (d− e)OCd−1
+ # Aut(OD)OD.

Proof. This follows from Lemma 7.1 and Principle 6.1 provided we can show the

equality of predegrees. To show the equality on predegrees, it suffices to consider the

case e = 0, where we want to see that the predegree of a general degree d curve is

d times the predegree of a general degree d curve with a point of multiplicity d − 1

plus the predegree of the union of d general lines. The result follows from plugging

into the formulas in [5, Examples 3.1, 4.2] and [4]. �



29

8. Degeneration to nodes and cusps

In this section, we establish the effect of acquiring a node or cusp (with analytic

equation y2 = x3) on the polynomial pC for arbitrary plane curves d. In what follows,

a node singularity p of a plane curve C is called ordinary if both tangent lines intersect

C with multiplicity 3 at p. A similar definition for cusp singularities is not necessary

as no line meets the cusp with multiplicity ≥ 4. Throughout, let ∆ be Spec(R) where

R is a DVR with uniformizer t, valuation v and residue field C.

Our objective in this section is to prove:

Theorem 8.1. Let C → ∆ be a family of degree d plane curves whose generic fiber

Cν is a smooth curve with no hyperflexes and whose special fiber C0 has exactly δ

ordinary nodes and κ cusps. If the total space C is smooth and C0 has no hyperflexes

then:

# Aut(Cν)OCν ∼ # Aut(C0)OC0 + 2δ(3OCBN ) + κ(2OCflex
)⇒ pCν = pC0 + 2δ · pCBN + κ · pCflex

(8.1)

where CBN is curve defined by Zd−3(XY Z +X3 + Z3) and Cflex is the curve defined

by Zd−3(Y 2Z −X3 − aXZ2 − bZ3), where a, b ∈ K are general.

In words, CBN is a nodal cubic union a multiplicity d − 3 line tangent to one of

the branches at the node and Cflex is a general smooth cubic union a flex line with

multiplicity d−3. In Theorem 8.1, we note that Cflex still has moduli because we can

vary the j-invariant. A study of how Cflex degenerates as we send the j-invariant to

∞ yields the following

Proposition 8.2. Let CAN is a nodal cubic union a multiplicity d− 3 flex line. We

have OCflex
 OCAN + 3OCBN . In particular, pCflex

= pCAN + 2pCBN .

8.1. Degeneration to a node.
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Lemma 8.3. Let F (X, Y, Z) be a homogenous degree d polynomial with coefficients

in R cutting out C ⊂ ∆ × P2 such that the special fiber C0 has an ordinary node at

[0 : 0 : 1] and branches tangent to X = 0 and Y = 0 and C is smooth at the node of

C0. Then,

lim
t→0

t−1(F (t
1
3X, t

2
3Y, Z))

is projectively equivalent to Zd−3(ZXY +X3 +Z3), where t
1
3 is a third root of t in R

after an order three base change. In particular, the limit plane curve is a nodal cubic

with a multiple line tangent to a branch of the node. Similarly,

lim
t→0

t−1(F (t
2
3X, t

1
3Y, Z))

is projectively equivalent to Zd−3(ZXY + Y 3 + Z3).

Proof. From our setup, the coefficient aij of each monomial X iY jZd−i−j of F (X, Y, Z)

is an element of R. By the assumption on the tangents to the branches to the special

fiber at [0 : 0 : 1],

v(a0,0), v(a1,0), v(a0,1), v(a2,0), v(a0,2) ≥ 1.

Since the node singularity is assumed to be simple, v(a3,0) = v(a0,3) = 0. Since C is

smooth at the node v(a0,0) = 1. Now, a direct check shows 2
3
i + 1

3
j − 1 + v(ai,j) is

zero if (i, j) ∈ {(0, 3), (1, 1), (0, 0)} and strictly positive otherwise. The proof of the

second half is similar. �

Remark 8.4. In the case d = 4, the orbit closure of a nodal cubic union a line

tangent contains all curves possessing a D6 singularity.

Definition 8.5. Let CBN be the curve defined by Zd−3(ZXY +X3 + Z3).

Definition 8.5 depends on d, but it will be clear what d is from context.
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8.2. The degree of the orbit of CBN . In light of Proposition 8.16, we will now

compute the degree of the orbit closure of CBN . In principle, this can be deduced

by applying the algorithm of Aluffi and Faber in [5]. We provide an independent

calculation in this section.

Proposition 8.6. Let d ≥ 4. As a function of the degree d, the degree of the orbit

of CBN is the quadratic polyonomial 24 + 144 · (d− 3) + 140 · (d− 3)2. The predegree

of the orbit of CBN is 3(24 + 144 · (d− 3) + 140 · (d− 3)2).

We will prove Proposition 8.6 in pieces below. Given the calculation of the degree

of the orbit, the assertion on the predegree follows from the fact that the curve CBN

has order 3 automorphism group.

Lemma 8.7. Let d ≥ 4. As a function of the degree d, the degree of the orbit of CBN

is a quadratic polyonomial a+ b · (d− 3) + c · (d− 3)2 with a, b, c ≥ 0.

Explicitly a, b, c are the answers to the following enumerative problems:

a = 2#{singular cubics through 8 points} = 24

b =

(
8

1

)
#{nodal cubics through 7 points with a nodal branch line containing a fixed 8th point}

c =

(
8

2

)
#{nodal cubics through 6 points with specified nodal branch line}

Proof. Let V denote the 8 dimensional smooth variety parametrizing triples (C,L, p)

where C is a cubic curve singular at the point p ∈ P2 and L is a line containing p

whose intersection multiplicity with C is greater than 2.

The variety V possesses a natural map to the projective space P9 of cubic curves

in P2 by forgetting L and p – let H denote the divisor class on V induced by the

O(1) on P9. Similarly, let h denote the divisor class induced by the forgetful map

V 7→ P2∗ given by forgetting C and p.
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Let ν : P9×P2∗ → P(d+2
2 )−1 denote the map which sends a pair (C,L) to the degree

d curve C ∪ (d− 3)L. Then the composite map V → P9 × P2∗ → P(d+2
2 )−1 is induced

by the divisor class H + (d − 3)h on V , and the image of this map is precisely the

orbit closure of the curve CBN . Therefore, the degree of the orbit closure of CBN is

given by the intersection number (H + (d− 3)h)8 on V .

Since h3 = 0 on V , this intersection number is equal to

H8 + 8(d− 3)H7h+

(
8

2

)
(d− 3)2H6h2.

The numbers a, b, c in the lemma are the monomials H8, H7h,H6h2. By treating

H ihj as i general point conditions on the cubic C and j general point conditions on

the line L, we see that

H8 = 2#{singular cubics through 8 points},

where the coefficient of 2 arises because V → P9 is 2 to 1 onto its image. Furthermore,

H7h = #{nodal cubics through 7 points with a nodal branch line containing a fixed 8th point}

H6h2 = #{nodal cubics through 6 points with specified nodal branch line}.

This proves the lemma. The value of a comes from the fact that there are twelve

nodal cubics in a pencil [101]. �

Lemma 8.8. The sum a+ b+ c in Lemma 8.7 is 308.

Proof. To compute a + b + c, we need to know the degree of the orbit of CD6 in the

P14 of quartic plane curves. To compute the degree, we apply Corollary 5.4 together

with Proposition 4.4. Explicitly, we take

1

# Aut(CD6)
pCD6

= 64(18c6
1 + 33c4

1c2 + 12c2
1c

2
2 − 85c3

1c3 − 11c1c2c3 − 7c2
3)
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from Corollary 5.4, make the substitution c1 7→ u + v + w, c2 7→ uv + uw + vw,

c3 7→ uvw followed by u 7→ u− H
4

, v 7→ v− H
4

, w 7→ w− H
4

, and extract the coefficient

of H6. �

Lemma 8.9. The coefficient c in Lemma 8.7 is 5 ·
(

8
2

)
.

Proof. By the proof of Lemma 8.7 it suffices to demonstrate the following enumerative

statement: Fix 6 general points p1, ...p6 in P2 and fix a general line L ⊂ P2. Then

there are 5 singular cubics containing the points pi singular at a point on L and

meeting L with multiplicity ≥ 3 at the singular point.

For this, we recast the problem as the degree of the degeneracy locus of a map

between two rank 4 vector bundles e : A→ B on the line L. The vector bundle A is

simply the trivial vector bundle with fiber the vector space of cubic curves containing

the 6 points p1, ..., p6. We now describe the second vector bundle B, used previously

by the second author in [87, Section 5.2.2].

For each point p ∈ L, let Jp ⊂ OP2 denote the ideal defining the divisor 3p in L,

and let m2
p ⊂ OP2 denote the square of the maximal ideal. Let Wp ⊂ Zp denote the

subschemes defined by Jp and Jp ∩ m2
p respectively. We define B′ to the the rank 3

jet bundle on L whose fiber at a point p is

B′|p = {degree 3 forms}/{degree 3 forms vanishing on Wp}

and we define B to be the rank 4 jet bundle on L whose fiber at a given point p is

B|p = {degree 3 forms}/{degree 3 forms vanishing on Zp}.

The quotient space Jp/
(
Jp ∩m2

p

)
can naturally be identified with the conormal

space (IL/I2
L) |p: In local affine coordates (x, y), if L is the line x = 0 and p is the

origin, then Jp = (x, y3),Jp ∩ m2
p = (x2, xy, y3), and Jp/Jp ∩ m2

p is generated by x̄,

the local generator for (IL/I2
L) |p.
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Putting these observations together, we obtain a short exact sequence of vector

bundles:

0→ IL/I2
L ⊗OL(3)→ B → B′ → 0.(8.2)

Therefore, the degree of B (as vector bundle on L) is equal to the degree of B′ plus

the degree of the line bundle IL/I2
L ⊗ OL(3). The latter clearly has degree 2. B′ is

the standard second order jet bundle for the line bundle OL(3), which has degree 3.

Therefore, the degree of B is 5.

The map e : A→ B is the natural evaluation map. Since A is trivial, the number

of points where e is degenerate is the degree of B, which is 5. The lemma follows.

�

Proof of Proposition 8.6. Since a = 24 and c = 5 ·28 = 140 from Lemma 8.9, b = 144

from Lemma 8.8. �

8.3. Degeneration to a cusp. In what follows, a cusp singularity of a plane curve

C is called ordinary if no line meets C with multiplicity 4 at p. Let ∆ be the spectrum

of a DVR with uniformizer t and residue field C.

Lemma 8.10. Let F (X, Y, Z) be a homogenous degree d polynomial with coefficients

in R cutting out C ⊂ ∆ × P2 such that the special fiber C0 has an ordinary cusp at

[0 : 0 : 1] meeting the line {X = 0} to order 3 and suppose C is smooth at the cusp

of C0. Then,

lim
t→0

t−1(F (t
1
3X, t

1
2Y, Z))

is the curve Zd−3(X3 + Y 2Z + Z3) up to rescaling the coordinates, where t
1
6 is a 6th

root of t obtained after performing an order 6 base change on ∆.

Proof. The proof is identical to Lemma 8.3. From our setup, the coefficient aij of

each monomial X iY jZd−i−j of F (X, Y, Z) is an element of R. By the assumption on
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the tangents to the branches to the special fiber at [0 : 0 : 1],

v(a0,0), v(a1,0), v(a0,1), v(a2,0), v(a1,1) ≥ 1.

By the assumption that the cusp of C0 is an A2 singularity, v(a3,0) = 0. By the

assumption C is smooth at [0 : 0 : 1] in the central fiber, v(a0,0) = 1. One can check

that −1 + i
3

+ j
2

+ v(ai,j) is zero for (i, j) ∈ {(3, 0), (0, 2), (0, 0)} and strictly positive

otherwise. �

Definition 8.11. Let Cflex to be the curve which is the union of a general cubic with

(d− 3) times one of its flex lines. Let CAN denote the curve which is the union of a

nodal cubic with (d− 3) times one of the flex lines through a smooth point.

As in the previous section, we have dropped the dependence on d.

8.4. A degeneration of the orbit of Cflex. In this subsection, we will study how

the orbit of Cflex degenerates as we vary the j-invariant to ∞.

Proof of Proposition 8.2. Let W denote the smooth variety parametrizing triples

(C,L, p) where C is a plane cubic, p ∈ C is a point and L is a line containing p

which meets C with multiplicity at least 3 at p. (W is similar to the variety V from

the proof of Lemma 8.7, however we allow C to be an arbitrary smooth cubic curve.

Therefore, V is a closed subvariety of W .)

The 9 dimensional variety W has a natural projection to the projective space P9

of cubic plane curves, and also has a projection to the projective space P2∗ of lines in

P2. We let H and h denote the divisor classes on W corresponding to the respective

pullbacks of O(1) under these projections. Just as in the proof of Lemma 8.7, the

divisor class H + (d− 3)h is the pullback of O(1) under the map

f : W → P(d+2
2 )−1

sending (C,L, p) to the curve C + (d− 3)L.
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For each j ∈ P1, define the 8 dimensional subvariety Wj ⊂ W to be the clo-

sure of the locus of triples (C,L, p) where C is a cubic with j-invariant j. Let

W∞,AN ,W∞,BN ⊂ W∞ be the two components of W∞, where W∞,AN consists of

triples (C,L, p) where C is singular at p and W∞,BN is the closure of the triples

(C,L, p) where C is smooth at p. By specializing j to ∞, we get

[Wj] ' A[W∞,AN ] + B[W∞,BN ] + C[Z],

with A,B,C positive integers and j general. Here, Z consists of (C,L, p) where C

is the union of a conic and L and p is on L. Now, we intersect both sides of the

equation with H8, where H is the hyperplane class pulled back from the P9 of cubic

plane curves.

Specifically, [Wj]H
8 = 12 ·9 = 108, where 12 is the degree of the orbits closure of a

cubic with a fixed j-invariant and 9 is the number of flexes on such a cubic. Similarly,

we can compute [W∞,AN ]H8 = 3 · 12 = 36 and [W∞,BN ]H8 = 2 · 12 = 24, where we

have 3 smooth flexes of a nodal cubic and 2 branches at a node, respectively. We

know that the intersections are all multiplicity 1 by Bertini. Finally, H8 · [Z] = 0.

We conclude by noting that A = 1 and B = 3 are the only positive integer solutions

to 108 = 36A+ 24B. �

8.5. The degree of the orbit of Cflex. Next, we compute the degree of the orbit

closure of the curve Cflex in the projective space P(d+2
2 )−1. Again, although this can

be computed in principle using the algorithm of Aluffi and Faber [5], we have decided

to proceed independently.

Lemma 8.12. As a function of d, the degree of the orbit closure of Cflex is a quadratic

polynomial a + b · (d − 3) + c · (d − 3)2, where the coefficients a, b, c are the answers
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to the following enumerative problems:

a = 9 · 12#{Cubics through 9 points} = 108

b = 12 ·
(

8

1

)
#{Cubics through 8 points with flex line containing a fixed 9th point}

c = 12 ·
(

8

2

)
#{Cubics through 7 points flexed at a specified line}

Proof. We wil reuse the notation of W and Wj in Proposition 8.2. Our objective is

to calculate the degree of the image f(Wj), as this is precisely the orbit closure of

Cflex. Thus, we must compute (H + (d − 3)h)8 · [Wj] in the Chow ring of W . Since

h3 = 0, we get that the degree of the orbit closure of Cflex is:

H8 · [Wj] + 8(d− 3)H7h · [Wj] +

(
8

2

)
(d− 3)2H6h2 · [Wj].(8.3)

Next, we observe that the divisor Wj is linearly equivalent to 12 · H, since the

degree of the divisorial locus in P9 consisting of the closure of plane cubics with given

generic j-invariant is 12. Therefore, the degree of the orbit closure of Cflex is

12

(
H9 + 8(d− 3)H8h+

(
8

2

)
(d− 3)2H7h2

)
.

The lemma now follows by interpreting the three intersection numbers H9, H8h,H7h2

as the quantities appearing in the descriptions of a, b and c in the statement of the

lemma. �

Lemma 8.13. There are 9 cubics passing through eight general points and having a

flex line containing a general fixed ninth point, i.e. H8h = 9.

Proof. Let Λ denote the Hesse pencil

s(X3 + Y 3 + Z3) + tXY Z = 0.
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Recall that the 9 base points of the Hesse pencil consist of the 9 flexes of every smooth

member of Λ. At each base point p of the pencil, the flex lines of the cubic curves in

the pencil at p in turn sweep out a pencil of lines in P2. Therefore, a general point

x in P2 is contained in exactly 9 flex lines of members of the Hesse pencil, one per

basepoint.

Thus, if we use the Hesse pencil Λ to represent the curve class H8 in W , then we

get H8h = 9 as claimed. �

Lemma 8.14. There are 3 cubic curves passing through 7 general points and pos-

sessing a particular line as flex line, i.e. H7h2 = 3.

Proof. Let L be a fixed line, and suppose p1, ..., p7 are general points. Then the net

of cubic curves containing the points pi restricts to a general net in the linear system

|OL(3)|. A general such net maps L to a nodal cubic in P2, which has exactly 3 flex

points. These three flexes, in turn, correspond to the solutions to the enumerative

problem in the statement of the lemma. �

Corollary 8.15. The degree of the orbit closure of Cflex is 12 (9 + 72(d− 3) + 84(d− 3)2).

The predegree of Cflex is 24 (9 + 72(d− 3) + 84(d− 3)2).

Proof. Combine Lemma 8.12, Lemma 8.13, Lemma 8.14. The second statement fol-

lows from the fact that the curve Cflex has an order 2 automorphism group, since the

generic elliptic curve has an order 2 automorphism group. �

8.6. Proof of Theorem 8.1. We now have all ingredients for the proof of Theo-

rem 8.1.

Proposition 8.16. Let C → ∆ be a family of degree d plane curves whose generic

fiber Cν is a smooth curve with no hyperflexes and whose special fiber C0 has δ ordi-

nary nodes and κ cusps. If the total space C is smooth at those nodes and cusps then
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the equivariant class

pCν − pC0 − 2δ · pCBN − κ · pCflex
(8.4)

is a nonnegative sum of equivariant classes of effective cycles.

Proof. Let p1, . . . , pδ be the simple nodes and q1, . . . , qκ be the simple cusps of {F =

0}. For each pi, let Bi ' P2 ⊂ P8 denote the linear space corresponding to matrices

with image equal to pi. For each pi, we have two 1-parameter families γi,1 and γi,2

given by Lemma 8.3. For each qi we have the 1-parameter family γ′i from Lemma 8.10.

We apply Principle 6.2 to X being the blowup of ∆ × P8 along the subvarieties

∆ × Bi and the 1-parameter families γi,j for 1 ≤ i ≤ δ and j ∈ {1, 2} and to the

1-parameter families γ′i for 1 ≤ i ≤ κ. The only thing one needs to check is that γi,1

and γi,2 limit to points in different PGL3-orbits of X.

In coordinates, if pi = [0 : 0 : 1], then

Bi =




0 0 0

0 0 0

∗ ∗ ∗


 E =



∗ ∗ ∗

∗ ∗ ∗

0 0 0


 γi,1 =


t 0 0

0 t2 0

0 0 1

 γi,2 =


t2 0 0

0 t 0

0 0 1


where E is the exceptional divisor of the blowup of P8 along Bi. The central fiber of

X → ∆ can be identified with the blowup of P8 along Bi, and PGL3 action on E is

given by column operations. The curves γi,1 and γi,2 limit to1 0 0

0 0 0

 and

0 0 0

0 1 0


respectively on E which are not in the same PGL3-orbit because they have different

images. �

Proof of Theorem 8.1. From Proposition 8.16, pCν − pC0 − 2δ · pCBN − κ · pCflex
is

effective. To see that this class is in fact zero, we need the corresponding linear



40

combination of the predegrees to be zero. By [5, Example 4.1 and Example 5.2] the

contributions of a node and cusp to the predegree are respectively

24(35d2 − 174d+ 213) = 2 · 3(24 + 144(d− 3) + 140(d− 3)2)

72(28d2 − 144d+ 183) = 24(9 + 72(d− 3) + 84(d− 3)2)

which are precisely twice the predegree of pCBN and the predegree of pCflex
respectively

by Proposition 8.6 and Corollary 8.15. �

9. Computation of [OCAN ] and [OCBN ]

In this section we provide a method for computing the equivariant classes of OCAN

and OCBN and apply it to the case d = 4. Recall that when d = 4, CBN is a nodal

cubic union a line tangent to a branch of the singularity and CAN is a nodal cubic

union a flex line at a smooth point.

Proposition 9.1. When d = 4,

[OCBN ] = 64(18c6
1 + 33c4

1c2 + 12c2
1c

2
2 − 85c3

1c3 − 11c1c2c3 − 7c2
3)

[OCAN ] = 192(18c6
1 + 33c4

1c2 + 12c2
1c

2
2 + 19c3

1c3 − 7c1c2c3 − 35c2
3).

Proof. We will use the variety W parameterizing triples (C,L, p) given in the proof

of Proposition 8.2 in Section 8.4. We can regard W as an iterated projective bundle,

by first forgetting C, then forgetting p, and then forgetting L (to map to a point).

Each of these projective bundles are given by the projectivization of a vector bundle

over their associated base spaces, and so the Chow ring of W is determined by the

chern classes of these vector bundles.

Furthermore, there is a generically finite map c : W → P9 mapping (C,L, p) to

C. Applying Riemann-Hurwitz to c yields the ramification divisor, which has two

components:
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(1) W∞,BN consisting of (C,L, p) for which C is nodal at p and L meets C at p

to multiplicity 3

(2) Z consisting of (C,L, p) for which C is the union of a conic and L.

Using the classical fact that a branch line of a node is the limit of three flexes,

W∞,BN appears with multiplicity 2 in the ramification divisor of c. We will also be

able to deduce that Z appears with multiplicity 1 in the ramification divisor from

the formula.

Since we can compute the class Z in W , this computes W∞,BN . To get W∞,AN , we

pull back the discriminant locus ∆ ⊂ P9 under the map c and note that this pullback

is 3 ·W∞,BN +W∞,AN +2Z. Subtracting off the contributions of W∞,BN and Z yields

W∞,AN .

Finally, we note that the whole construction above is compatible with the standard

action of GL3 on W ⊂ P2 × P2∨ × P9∨ so given a vector bundle V → B of rank 3,

there is a relative version WV ⊂ P(V) × P(V∨) × P(Sym3 V∨). The argument above

yield the classes of W∞,AN and W∞,BN in A•(WV). Let Hcurve, Hpoint, Hline be the

O(1) classes of P(Sym3 V∨), P(V) and P(V∨) respectively. To finish, one applies the

same integration trick as in the proof of Proposition 5.5 and given in [42, Theorem

3.1], where we pullback a particular class φ under the canonical map

WV → P(Sym4 V∨)

and integrate to B to get a formula in terms of the chern classes of V .

We now do the computation. By abuse of notation, we suppress all pullbacks. Let

c1, c2, c3 be the chern classes of V . To perform the computation, let S → P(V∨) be

the universal subbundle. Its total chern class is c(V)
c(OP(V)(1))

. Next, over P(S)→ P(V∨),

we have a rank 7 vector bundle Vflex, which over each point of B restricts to the cubic



42

curves meeting l at p to order 3. More precisely, on P(S), we have an exact sequence

0→ Vflex → Sym3 V∨ → J3
P(S)/P(V∨)(OS(3))→ 0,

where Sym3 V∨ in the sequence is pulled back from B since we suppressed pullbacks

in our notation. Finally, WV = P(Vflex).

Using the structure of WV as an iterated bundle over B, we compute the relative

canonical of WV → B is −7Hcurve + Hline + Hpoint + 7u + 7v + 7w. Using the fact

that Z is the projectived subbundle of P(Vflex) given as the kernel of Sym3 V∨ →

J4
P(S)/P(V∨)(OS(3)), the class of Z is

3Hpoint + 3KP(S)/P(V∨) +Hcurve = Hcurve − 3Hpoint + 3Hline − 3c1.

Applying Riemann-Hurwitz, we find the ramification divisor is

KWV/P(V∨) −KP(Sym3 V∨) = 3Hcurve +Hline +Hpoint − 3c1

If we work nonequivariantly (set the ci = 0), we find that the Hcurve coefficient of Z

and W∞,BN is 1, meaning the multiplicity of Z in the ramification divisor must be 1.

Solving for [W∞,BN ] yields Hcurve −Hline + 2Hpoint.

The class of the relative discriminant divisor of P(Sym3 Vvee) is 12OP(Sym3 Vvee)(1)−

12c1. Pulling back to WV and subtracting off 3W∞,BN and 2Z, we get

W∞,AN = 7Hcurve − 3Hline − 6c1.

Now, according to the proof of Proposition 5.5 and [42, Theorem 3.1], we want to

pullback

φ := H14 + c1(Sym4 V∨)H13 + · · ·+ c14(Sym4 V∨)
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under WV → P(Sym4 V∨), multiply by W∞,AN and integrate to B using the projective

bundle structure. This computes [OCAN ]. Doing the same with W∞,BN gives [OCBN ].

�

Remark 9.2. The only place d = 4 was used in the the proof of Proposition 9.1 was

the definition of class φ and the pullback map A•(P(Sym4 V∨))→ A•(WV), meaning

that we have an algorithm to get the formulas for [OCAN ] and [OCBN ] for all d, but

we have not tried to use the algorithm to find a closed expression.

10. Degenerations of Quartic Plane Curves

In this section, we record the degenerations that are are proven only for quartics,

namely the degeneration to a double conic and acquiring a hyperflex. We think the

specialization to a hyperflex can be done in arbitrary degree, but the algorithm in [5]

was too complicated for us to apply with confidence.

10.1. Degeneration to the double conic. In this section, we study how pC changes

as a general smooth quartic C specializes to a double conic.

10.1.1. Preliminary lemmas.

Lemma 10.1. Let Q be a smooth conic and p ∈ Q a point. Let p1 and p2 (respectively

p1) be points of P2 so that p1, p2 and p are not collinear (respectively not lying on the

tangent line to Q at p). Then, there exists a unique smooth conic Q′ meeting Q at p

to order 3 (respectively 4) and containing p1 and p2 (respectively p1).

Proof. Let Z be the curvilinear scheme of length 3 (respectively 4) in a neighborhood

of p ∈ Q. By counting conditions, we see that there is a conic Q′ containing Z,

p1, . . . , p5−n. If n = 3, then Q′ cannot be a double line since Z, p1, p2 are not set-

theoretically contained in a line, and the conic cannot be the union of two distinct

lines since Z is not contained in a line. Therefore the conic is smooth.
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If n = 4, then Q′ cannot be a double line since the underlying line must be tangent

to Q at p, but that line does not pass through p1 by assumption. We also cannot

have Q′ be the union of two distinct lines or else Q′ can only meet Q at p to order 3.

Therefore Q′ is smooth.

In both cases, Q′ is unique because the space of all such conics is a linear system

and any nontrivial linear system of conics contains singular conics. �

Lemma 10.2. Let 3 ≤ n ≤ 7 and let C be a general quartic curve with an An

singularity. Then, there is a smooth conic meeting C at its singular point to order

n+ 1 and meeting C transversely at 7− n other points.

Proof. We will do this case by case. Let p ∈ C be the singular point, For the case

n = 3, the conic needs to pass through p with a specified tangent direction and

otherwise intersect C transversely. There is 3-dimensional linear system of conics

passing through p with a specified tangent direction. In that 3-dimensional linear

system, the conics that intersect C at 4 other distinct points form a nonempty open

set, as it contains the union of the unique line passing through p in the specified

tangent direction with a line intersecting C transversely. Since the space of smooth

conics in that 3-dimensional linear system is also nonempty, there exists a smooth

conics passing through p in the specified tangent direction and C at four other points.

For the case n = 4, we need to resort to equations. The space of conics meeting

C at p to order 5 is the same as the space of conics containing a specified length 3

curvilinear scheme Z, and we can assume p = [0 : 0 : 1] and Z is given by the length

3 neighborhood of X2 + Y Z around p. We can specialize C while preserving p and

Z, and it suffices to prove the result for the specialized curve. Consider the rational

quartic curve C0 given by

(X2 + Y Z)2 +X3Y = 0,
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which has a rhamphoid cusp at [0 : 0 : 1] and an ordinary cusp at [0 : 1 : 0].

Consider the conic given by X2 + Y Z + aXY + bY 2 = 0. If we restrict C0 to

the conic, then we get (aXY + bY 2)2 + X3Y = (X3 + a2X2Y + 2abXY 2 + b2Y 3)Y .

Therefore, the restriction of C0 to the conic is also given by the union of 4 lines

through p = [0 : 0 : 1]. The line given by Y = 0 is tangent to the conic at the point,

to it suffices to check the remaining three lines are distinct. This can be shown by

noting that the discriminant of the cubic polynomial X3 + a2X2Y + 2abXY 2 + b2Y 3

does not vanish identically (indeed it is not even homogenous).

For the cases n = 5, 6, we use Lemma 10.1. In both cases, we have a curvilinear

scheme Z of length n − 2 contained in a conic, and we want to find a smooth conic

containing Z and passing through 7− n distinct other points of C. If n = 5, then it

suffices to pick the remaining 2 points p1, p2 of C so that p, p1, and p2 do not all lie

on a line. If n = 6, it suffices to pick the remaining point p to not be contained in

the tangent line to Z. �

10.2. Sibling orbit with A6 singularity.

Lemma 10.3. Let F (X, Y, Z) cut out a quartic plane curve and let Q(X, Y, Z) =

X2 + Y Z. Suppose F and Q meet transversely at [0 : 0 : 1]. Then,

lim
t→0

t−4(t3F (t2X, tY, Z) +Q(t2X, tY, Z))

is projectively equivalent to CA6.

Proof. NoteQ(t2X, tY, Z)2 = t4Q(X, Y, Z). Also, the only coefficients of t3F (t2X, tY, Z)

whose vanishing order with respect to t is at most 4 are the coefficients of Z4 and

Z3X. Since F vanishes at p = [0 : 0 : 1] by assumption, the coefficient of Z4 is zero.
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The tangent line to {Q = 0} at p is given by Y = 0. Since {F = 0} is transverse

to {Q = 0} at p, the coefficient of Z3X is nonzero. Therefore,

lim
t→0

t3F (t2X, tY, Z) +Q(t2X, tY, Z)2 = (X2 + Y Z)2 + aZ3X

for a 6= 0, which is the unique, up to projective equivalence, rational curve with an

A6 singularity with a full dimensional orbit given in [5, Example 5.4]. �

Corollary 10.4. For a general quartic plane curve C,

OC  8(3OCA6
)⇒ pC = 8pCA6

,

where CA6 is a general quartic curve with an A6 singularity.

Proof. Let F (X, Y, Z) cut out C. Pick a conic intersecting C transversely in 8 points

and let Q(X, Y, Z) cut out the conic. Then, consider the family of curves over A1

given by

t3F (X, Y, Z) +Q(X, Y, Z)2.

Applying Lemma 10.3 gives 8 choices γi : A1 → PGL3, where 1 ≤ i ≤ 8, to use in

Principle 6.1. To conclude, we use either [5, Example 5.4] or Corollary 5.4 to see

the predegree of a general rational quartic CA6 with an A6 singularity is 1785, and

1785 · 8 = 14280, which is the predegree the orbit of a general quartic curve [4]. To

finish, we note # Aut(CA6) = 3 by the equation in [5, Example 5.4]. �

Theorem 10.5. For a smooth quartic plane curve C with no hyperflexes,

# Aut(C)OC  8(3OCA6
)⇒ pC = 8pCA6

,

where CA6 is a general quartic curve with an A6 singularity.
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Proof. Let F cut out a general plane quartic D and G cut out C. Consider the family

of curves given by tF + G and apply Principle 6.1 in the special case where n = 1

and γi : A1\{0} → PGL3 is the identity. Then, the fact that the predegree of C is

the same as the the predegree of a general plane quartic D [4] means pC = pD. We

conclude by Corollary 10.4. �

Remark 10.6. We remark that our usage of the predegree computation of Aluffi and

Faber [4] can in principle be replaced by the explicit description of the semistable

reduction of an An singularity given in [21].

Theorem 10.7. Let CAn be a general curve with an An singularity, where 3 ≤ n ≤ 6.

Then,

# Aut(CAn)OCAn
 (7− n)(3OCA6

)⇒ pCAn = (7− n)pCA6
.

Proof. By Lemma 10.2 we can find a smooth conic that meets CAn at its singular

point to order n+ 1 and meets C transversely at 7−n other points p1, . . . , p7−n. Let

F (X, Y, Z) cut out CAn and Q(X, Y, Z) cut out the conic.

Consider the family of quartic curves given by

t3F (X, Y, Z) +Q(X, Y, Z)2.

Note in particular that for general fixed t, we get a curve with an An singularity.

From Lemma 10.3 gives 7−n choices for γi : A1\{0} → PGL3 to use in Principle 6.1.

Applying [5, Example 5.4], we find the predegree of CAn is (7−n) times the predegree

of CA6 if n ≥ 3. �

Remark 10.8. The argument in Theorem 10.7 still works for n = 1, 2, except the

predegrees don’t add up. This suggests there are more orbits to identify. For the

cases n = 1, 2, we choose to instead use the degeneration in Section 8.



48

10.3. Quartic acquiring hyperflexes. Aluffi and Faber already considered the case

of a smooth plane curve with no hyperflexes degenerating to a smooth curve with a

hyperflex [2, Theorem IV(2)]. However, in order to run their argument, we need to

take a pencil of curves, where each member is tangent to the hyperflex of the special

curves. Since a smooth quartic can have up to twelve hyperflexes [71, Section 4],

some adjustment has to be made. Instead of using equations as in [2] and the rest of

our degenerations, we use ideas of limit linear series.

Lemma 10.9. Let C ⊂ P2 be a rational quartic with an E6 singularity and two

simples flexes. Then, C has an 8-dimensional orbit, so in particular is projectively

equivalent to CE6.

Proof. We will show Aut(C) is finite by showing that only a finite subgroup of PGL3

preserves the flexes and the tangent vector to the singularity. Let G be the component

of Aut(C) containing the identity.

Without loss of generality, we can assume the E6 singularity is at [0 : 0 : 1] and

the two flexes are at [0 : 1 : 0] and [1 : 0 : 0]. The group G fixes these three points,

so G is a subgroup of


a

b

c

.

In addition, G fixes the tangent vector to the singularity. The line L tangent to

the singularity meets the curve to order 4 at [0 : 0 : 1], so it cannot intersect [0 : 1 : 0]

or [1 : 0 : 0]. Since G must preserve L, a = b.

Let L1 be the tangent to C at [0 : 1 : 0] and L2 be the tangent to C at [1 : 0 : 0]. By

Bezout we know neither line passes through [0 : 0 : 1]. We also cannot have L1 = L2

by Bezout’s theorem. Therefore, L1 does not pass through [0 : 1 : 0] or L2 does not

pass through [1 : 0 : 0]. In the first case, we find a = c and in the second case we find

b = c. �
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Lemma 10.10. Let ∆ be a smooth (affine) curve, 0 ∈ ∆ be a closed point, and t be

a uniformizer at 0. Let C ⊂ P2 ×∆ be a family of smooth quartic curves where the

general member Ct has general flex behavior and C0 has a hyperflex at p ∈ C0.

Base changing and restricting ∆ to an open neighborhood of zero if necessary, there

is a family of matrices γ : ∆\{0} → PGL3 such that, in the P8 of matrices modulo

scalars, limt→0 γ(t) has image exactly the point p, and, in the P14 of quartics,

lim
t→0

Ct(γ(t) · (X, Y, Z))

is projectively equivalent to CE6.

Proof. We will use ideas from limit linear series (see [30] for a reference), but it is not

necessary to know the theory to understand the argument.

After base change, we can assume we have two sections σ1, σ2 : ∆ → C, where σ1

and σ2 trace out two flexes in the family limiting to the hyperflex p1 := p ∈ C0.

We blow up C0 at p1 in order to try to separate σ1 and σ2. Since C is smooth, the

exceptional divisor is a rational curve D1 attached to C0 at p1.

The family of curves C carries a line bundle L giving the map C → P2. Shrinking ∆

to an open neighborhood around 0 if necessary, pick sections s0, s1, s2 of L such that,

when restricted to C0, we have s0, s1, s2 vanish to orders 4, 1, and 0 respectively.

Let π1 : Blp1 C → C be the blowup map. Considered as meromorphic sections of

the line bundle L(−4D1), π∗1s0, π∗1s1, π∗1s2 have poles of orders 0, 3, 4 respectively.

Therefore, to make them regular sections, we have to multiply them by t0, t3, and

t4, respectively. Then, π∗1s0, t
3π∗1s1, t

4π∗1s2 vanish to orders 0, 3 and 4 respectively on

C0, so they also vanish to orders 0, 3, and 4 respectively at C0 ∩D1 when restricted

to D1.

To summarize, π∗1s0, t
3π∗1s1, t

4π∗1s2 are regular sections of π∗1L(−4D1). When re-

stricted to C0 the sections correspond to a constant map C0 → P2. When restricted

to D1, the sections map D1
∼= P1 into P2 such that the image is an irreducible quartic



50

plane curve. It cannot map multiple to 1 onto its image because t3π∗1s1 vanishes

to order 3 at p1, which is relatively prime to 4. Furthermore, p1 ∈ D1 maps to a

unibranch triple point singularity. No other point in D1 cannot map to the image of

p1 since t4π∗1s2 already vanishes to order 4 and p. Therefore the image of D1 in P2 is

a rational quartic with an E6 singularity.

Consider the proper transforms σ̃1 and σ̃2 of σ1 and σ2. They cannot pass through

C0∩D1 because σ1 and σ2 intersect C0 with multiplicity 1 at p. If σ̃1 and σ̃2 intersect

D1 at two distinct points, then the image of D1 in P2 also has two simple flexes.

Applying Lemma 10.9 shows that this is projectively equivalent to CE6 , and so has

an 8-dimensional orbit under PGL3. To find the family of matrices γ : ∆\{0} →

PGL3, we note that the construction above yields a family of matrices parameterized

by ∆ that sends π∗1s0, t
3π∗1s1, t

4π∗1s2 to π∗1s0, t
−3π∗1s1, t

−4π∗1s2 respectively, which is

equivalent to t4π∗1s0, tπ
∗
1s1, π

∗
1s2 in PGL3. This is our γ : ∆\{0} → PGL3. We see

γ(0) is precisely the point p.

If σ̃1 and σ̃2 intersect D1 at the same point p2, then the image of D1 in P2 has a

hyperflex and its orbit under PGL3 is smaller than 8-dimensional. Let them intersect

D1 at p2. Let π2 be the blowup map at p2 and D2 be the exceptional divisor. Then,

we pullback π∗1L(−4D1) and π∗1s0, t
3π∗1s1, t

4π∗1s2 under π2.

As before, pick a basis s1
0, s1

1, s1
2 for the vector space spanned by π∗1s0, t

3π∗1s1, t
4π∗1s2

such that s1
0, s1

1, s1
2 vanish to orders 4, 1, and 0 at p2 when restricted to D1. Then, as

above, we twist π∗2π
∗
1L(−4D1) down by −D2 and replace s1

0, s1
1, s1

2 with s1
0, t3s1

1, t4s1
2.

If the proper transforms of σ̃1 and σ̃2 intersect D2 at distinct points, we are done by

the same argument as above. The image of the family of matrices γ(t) will now be

the point p2, but p2 maps to the same point as p1 in P2.

If the proper transforms of σ̃1 and σ̃2 intersect D2 at the same point, we let p3 ∈ D2

be the common point of intersection, blow up at p3 and repeat.
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In summary, we found a family of matrices γ : ∆\{0} → PGL3 that takes the

original map C → P2 and creates a rational map C 99K P2 under pullback under

family of linear maps P2 × ∆ 99K P2 given by γ. Furthermore limt→0 γ(t) in the P8

of 3 × 3 matrices up to scalar has image precisely the point p. To resolve C 99K P2

, we blow up the special fiber of C → ∆ repeatedly to get a chain of rational curve

Dm ∪Dm−1 ∪ · · · ∪D1 ∪C0 in the special fiber. Here, Di is attached to Di−1 and D1

is attached to C0 at p. The resolved map collapses Dm−1 ∪ · · · ∪D1 ∪C0 to the same

point as p and maps Dm onto a curve that is projectively equivalent to CE6 . �

Theorem 10.11. Let C be a smooth quartic plane curve with n hyperflexes. Then,

# Aut(C)OC ∼ 8(3OCA6
)− n(2OCE6

)⇒ pC = 8pCA6
− npCE6

.

Proof. We consider a family of smooth quartic curves, where the general member C ′

has no hyperflexes, where C is the special fiber.

From applying Lemma 10.10 and Principle 6.1, we see that

pC′ − pC − npCE6

represents a sum of effective cycles, so it suffices to check the predegree of C ′ is the

predegree of C plus n times the predegree of CE6 . The predegree of C is 294n less

than the predegree of C ′ [4, Section 3.6]. Also, the predegree of CE6 is 294 from [5,

bottom of page 36] or Corollary 5.4 (noting # Aut(CE6) = 2).

Finally, we use pC′ = 8pCA6
from Theorem 10.5. �

A. Points on P1

In this section, we compute pX in the case X is a hypersurface in P1. We will let

u, v be the chern roots of c1 and c2. In the case X ⊂ P1 is supported on at most

three points, these are strata of coincident root loci, which were first computed in

[42] and generalized to PGL2-equivariant cohomology in [94]. Therefore, we only
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have to deal with the case where X is supported on at least four points, and we

give two separate proofs. Note that since Definition 4.1 involves taking the dual, our

sign convention differs from the usual in the case of points, and we will always be

computing pX(−u,−v) instead of pX(u, v).

Theorem A.1. Let X ⊂ P1 be a subscheme of length d supported on points p1, . . . , pn

with multiplicities m1, . . . ,mn with n ≥ 3. Then,

pX(−u,−v) =

∏d
i=0 (iu+ (d− i)v)

(u− v)2

(
n− 2

duv
+

n∑
i=1

2mi − d
(miv + (d−mi)u)(miu+ (d−mi)v)

)

We give a proof of Theorem A.1 using the resolution given by Aluffi and Faber [3]

together with the Atiyah-Bott formula [29] in Section B. This proof is self-contained

and direct. The second proof we give is from the machinery developed in [73] that

apply to arbitrary hyperplane arrangements. A computation is required to specialize

the results from the case of ordered points on P1 to unordered points on P1, we do

this now.

Proof using [73]. We use the same argument in [73, Theorem 12.5], so we only de-

scribe the computation, and refer the motivation and proof of correctness to [73]. Be-

cause our sign convention is opposite that of [73], we will actually compute pX(−u,−v).

Let d =
∑n

i=1 mi and G(z) =
∏d

i=0 (H + iu+ (d− i)v) ∈ Z[u, v][z]. Let L(z) =

G(z)−G(0)
z

. Let L(H1, . . . , Hn) be the result of reducing L(m1H1 + · · ·+mnHn) mod-

ulo (Hi +u)(Hi + v) for each i. Now, we carry out the three steps in the proof of [73,

Theorem 12.5].

Step 1 By Lagrange interpolation,

L(m1H1 + · · ·+mnHn) =
G(m1H1 + · · ·+mnHn)− L(0)

m1H1 + · · ·+mnHn

L(H1, . . . , Hn) =
∑

T⊂{1,...,n}

−G(0)

−
∑

i∈T miv −
∑

i/∈T miu

(∏
i∈T

Hi + u

−v + u

)(∏
i/∈T

Hi + v

−u+ v

)
.
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Step 2 Substituting z for each Hi yields

L(z, . . . , z) = G(0)
∑

T⊂{1,...,n}

1∑
i∈T miv +

∑
i/∈T miu

(z + u)#T (z + v)d−#T∏
i∈T (−v + u)

∏
i/∈T (−u+ v)

.

(A.1)

Step 3 Let F (z) = (z + u)(z + v). All terms of (A.1) are divisible by F (z)2 unless

#T ∈ {0, 1, n− 1, n}. Thus, [z1][F (z)1]L(z, . . . , z) is

G(0)

(u− v)n
[z1][F (z)1](

(−1)n(z + v)n

du
+

(z + u)n

dv
+

n∑
i=1

(−1)n−1F (z)(z + v)n−2

miv + (d−mi)u

+
n∑
i=1

(−1)F (z)(z + u)n−2

miu+ (d−mi)v
).

As in the proof of [73, Theorem 12.5],

[z1][F (z)1]F (z)(z + u)k = (u− v)k−1 [z1][F (z)1](z + u)k = (k − 2)(u− v)k−3

[z1][F (z)1]F (z)(z + v)k = (v − u)k−1 [z1][F (z)1](z + v)k = (k − 2)(v − u)k−3,
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so [z1][F (z)1]L(z, . . . , z) simplifies to

G(0)

(u− v)n
(
(−1)n(n− 2)(v − u)n−3

du
+

(n− 2)(u− v)n−3

dv
+

n∑
i=1

(−1)n−1(v − u)n−3

miv + (d−mi)u

+
n∑
i=1

(−1)(u− v)n−3

miu+ (d−mi)v
)

G(0)

(u− v)n
(
(−1)(n− 2)(u− v)n−3

du
+

(n− 2)(u− v)n−3

dv
+

n∑
i=1

(u− v)n−3

miv + (d−mi)u

+
(−1)(u− v)n−3

miu+ (d−mi)v
)

G(0)

(u− v)n
(
(n− 2)(u− v)n−2

duv
+

n∑
i=1

(2mi − d)(u− v)n−2

(miv + (d−mi)u)(miu+ (d−mi)v)
)

G(0)

(u− v)2
(
n− 2

duv
+

n∑
i=1

2mi − d
(miv + (d−mi)u)(miu+ (d−mi)v)

)

�

In the case all the multiplicities are all one, the formula in Theorem A.1 simplifies.

We will also give a direct proof by slow projection.

Corollary A.2. In the setting of Theorem A.1 if each mi = 1, then

pX(−u,−v) = n(n− 1)(n− 2)
n−2∏
j=2

(H + (ju+ (n− j)v)).

Proof using Theorem A.1. Applying Theorem A.1, we find pX(−u,−v) is

1

(u− v)2

n∏
i=0

(iu+ (n− i)v)

(
n− 2

nuv
− (−2 + n)n

((n− 1)u+ v)((n− 1)v + u)

)
=

n(n− 2)

(u− v)2

n∏
i=0

(iu+ (n− i)v)

(
1

(nu)(nv)
− 1

((n− 1)u+ v)((n− 1)v + u)

)
=

n(n− 2)

(u− v)2

n∏
i=0

(iu+ (n− i)v)

(
n− 1

(nu)((n− 1)u+ v)((n− 1)v + u)(nv)

)
.

Applying [41, Theorem 6.1] yields the answer. �
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Proof by slow projection. Let V be a 2-dimensional vector space, v1, . . . , vn pairwise

linearly independent vectors of V , X ⊂ P1 the corresponding point configuration

supported on p1, . . . , pn, and Z ⊂ P(Symn V ) the orbit closure. The key fact we will

use is

Claim A.3. Every point in the boundary of Z corresponds to a point configuration in

P1 supported on two points with multiplicities n−1 and 1 or one point with multiplicity

n.

Proof of Claim A.3. Let A(t) be a 1-parameter family of matrices, or more pre-

cisely a map from the spectrum of a discrete valuation ring to End(V ) where the

generic point maps to an element of GL(V ). We want to show that the multiset

S = {limt→0 A(t)pi | 1 ≤ i ≤ n} does not have two copies each of two distinct points.

First, we can assume the rank of A(0) = 1. If the rank of A(0) is 2, then S consists

of distinct points. If A(0) = 0, we can divide out by a power of the uniformizing

parameter so that A(0) 6= 0. Then, {limt→0 A(t)pi | 1 ≤ i ≤ n} is the point in P(V )

corresponding to the 1-dimensional image of A(0) if vi is not in the kernel of A(0).

Otherwise, there is at most one vi in the kernel of A(0) and {limt→0 A(t)pi | 1 ≤ i ≤ n}

is otherwise unrestricted. �

Let x, y be a basis for V . Then, a basis of Symn V is xn, xn−1y, . . . , yn. Let T ⊂

GL(V ) be the maximal torus corresponding to the basis x, y. SinceA•GL(V )(P(Symd V ))→

A•T (P(Symd V )) is injective, we can use a T -equivariant degeneration and compute the

T -equivariant class. Our T -equivariant degeneration will be to scale the coordinates

corresponding to xn−2y2, . . . , x2yn−2 to zero.

By Claim A.3, Z is disjoint from the source of this “slow projection,” so the T -

equivariant class of Z is a multiple of the class of the 3-plane in P(Symd V ) given by

the vanishing of the coordinates corresponding to xn−2y2, . . . , x2yn−2. The class of

that 3-plane is
∏n−2

i=2 (iu+ (n− i)v). The multiple we need is the degree of Z as a
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projective variety, with is n(n− 1)(n− 2) by the combinatorial argument given in [3,

Introduction]. �

Remark A.4. Corollary A.2 can be generalized in a different direction. Suppose we

fix n general points p1, . . . , pn ∈ Pr and consider all configurations of n points given by

mapping p1, . . . , pn via a linear rational map Pr → P1. Let the closure of these config-

urations in Symn P1 be Zr,n. The same proof of Claim A.3 using slow projection shows

the equivariant class of Zr,n in A•(Symn P1) = Z[u, v][H]/(
∏n

i=0 H + iu+ (n− i)v)

has constant term

2r+1∏
i=0

(n− i)
n−r−1∏
i=r+1

(iu+ (n− i)r),

and the full class is given by substituting u → u + H
n
, v → v + H

n
into the constant

term [41, Theorem 6.1]. These are examples of generalized matrix orbits defined in

[73]. Also see [97, Example 1.3].

B. Points on P1 via Atiyah-Bott

The method in Section A was closer to the theme of equivariant degeneration

explored in this paper. We note that there is self-contained proof given by the Atiyah-

Bott formula, or equivalently resolution and integral via localization [44, Section 4].

The authors attempted to perform the same method for smooth plane curves using

the resolution given by [4], but the computation of the normal bundles quickly became

intractable.

B.1. General setup. Let V be a 2-dimensional vector space with T = (C×)2 acting

by scaling. Then, we have T -action on P3 ∼= PHom(V,C2). Given a point configura-

tion of d-points in P1 (a central hyperplane configuration in C2), we have a rational

map

PHom(V,C2) 99K P(Symn V )
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The base locus is n-disjoint lines, where n is the number of distinct points, given

by the matrices with image contained in each pi for 1 ≤ i ≤ d. Picking a basis, we

find PHom(V,C2) is given by 2 by 2 matrices

∗ ∗
∗ ∗

 up to scaling. The T action

is by scaling the columns, and each of the base loci (after base change via a left

GL2-action) looks like

∗ ∗
0 0

.

Let X be the blow up of P3 along these base loci R1, . . . , Rn. This resolves the

rational map above [4, Proposition 1.2].

B.2. Normal bundle to a proper transform.

Lemma B.1. Let Z ⊂ Y be an inclusion of smooth varieties. Let W ⊂ Y be a

smooth subvariety and W̃ ⊂ BlZY be the proper transform of W . If π : BlZY → Y

is the blowup map, then we have the short exact sequence

0→ coker(π∗N∨W/Y → N∨
W̃/BlZY

)→ ΩBlZY/Y |W̃ → ΩW̃/W → 0.

Proof. Consider the following diagram

0 0

π∗N∨W/Y N∨
W̃/BlZY

0 π∗ΩY |W̃ ΩBlZY |W̃ ΩBlZY/Y |W̃ 0

0 π∗ΩW ΩW̃/W ΩW̃/W 0

0 0 0

The bottom two rows are exact by the relative cotangent sequence for a generically

separable morphism of integral smooth varieties [77, Remark 4.17]. The lemma fol-

lows from the nine lemma. �
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B.3. Setup for Atiyah-Bott integration. In order to apply Atiyah-Bott integra-

tion to X, we need to identify the fixed loci, their normal bundles, and how classes

restrict from X to the fixed point loci.

B.4. Fixed point loci. First, we note that the fixed-point loci of P3 under the action

of T consists of two disjoint P1’s which we will call C1, C2.∗ 0

∗ 0

 0 ∗

0 ∗


The fixed-point loci of X under the action of T must lie over the fixed-point loci of

P3 under T . We claim that there are 2n+ 2 fixed-point loci:

(1) 2 fixed point loci corresponding to P1’s that are the proper transforms C̃1

and C̃2 of C1 and C2. If we suppose C1 is the P1 consisting of the matrices∗ ∗
0 0

, then the point of the proper transform lying above C1 ∩R1 is given

by the limiting point of 1 0

0 0

+ t

0 0

1 0


as t→ 0.

(2) 2n isolated points that lie over the 2n pairwise intersections of C1, C2 with

R1, . . . , Rn. If we suppose C1 is the P1 consisting of the matrices

∗ ∗
0 0

,

then the point lying above C1 ∩R1 is given by the limiting point of1 0

0 0

+ t

0 0

0 1


as t→ 0.
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B.4.1. Normal bundles and restriction of proper transforms. Let H be the c1(OP3(1))

on P3 pulled back to X and E an exceptional divisor of X → P3. We have C̃1 is P1

with a trivial T -actions. Therefore, A•(C̃1) ∼= Z[z][u, v]/(z2). We have the following

restrictions:

H 7→ H = z − u

E 7→ z = H + u.

Here, E is any of the m exceptional divisors. (We are thinking of C̃1 as the P1

embedded as the first column of 2 by 2 matrices P3 up scaling. Therefore, it’s actually

natural to think of it as the projectivization of a vector bundle with a nontrivial T -

action, so it is a projective bundle over a point that is trivial, but O(1) = H is

twisted. The Leray relation in this case is (H + u)2 = z2.)

We need to compute the normal bundle to the proper transform of C1. The normal

bundle of C1 in P3 is

c(P3)

c(C1)
=

(1 + u+H)2(1 + v +H)2

(1 + u+H)2
= (1 + v +H)2.

Note that this also makes sense as C1 is a complete intersection cut out by (v+H)2.

Applying Lemma B.1 yields

0→ π∗N∨C1/P3 → N∨
C̃1/X

→ ΩX/P3 |C̃1
→ 0.

The term on the right is a skyscraper sheaf supported on the intersection of C̃1
∼= P1

with the exceptional locus. We need to find the torus action on the bundle TX/P3 |C̃1

supported on E at the intersection E∩ C̃1. There is an affine neighborhood of E∩ C̃1

in X of the form  1 a01

a00

a10

a00

a11

a00

+ t

0 0

1 A11

A10


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with coordinates given by a01

a00
, a10

a00
, A11

A10
as A11

A10
a10 = a11. We have the short exact

sequence

0→ C̃1(−z)⊗ Cv−u → C̃1 ⊗ Cv−u → Cv−u|C̃ ∩ π
−1(Ri)→ 0,

where Cv−u is the nonequivariantly trivial line bundle with an action of T by the

character v − u. The torus action has character v − u on the coordinate A11

A10
, so the

term on the right has chern class 1+v−u
1−z+v−u . We apply this for each i to find

c(NC̃1/X
) = (1 +H + v)2 (1− z + v − u)m

(1 + v − u)n

= (1 + v − u)2(1 +
z

1 + v − u
)2(1− z

1 + v − u
)n

= (1 + v − u)2(1 +
(2− n)z

1 + v − u
)

= (1 + z + v − u)(1 + (1− n)z + v − u).

B.4.2. Restriction to isolated points. Suppose we are considering the isolated fixed

point p given by the limit as t→ 0 of1 0

0 0

+ t

0 0

0 1


Then, we have the restrictions

H 7→ −u

E 7→ v − u.

Here, E is the exceptional divisor containing p. The first one is by restricting the

tautological line bundle and considering the torus action. To see the restriction of E,

we note that the restriction of E to itself is OP(NR1/P3 )(−1). Then, we take the local
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chart around π(p) consisting of  1 a01

a00

a10

a00

a11

a00


and find the action on the coordinate a11

a00
is v− u. Also the normal bundle to p in X

has chern class

(1 + v − u)2(1 + u− v).

To see this, consider the local chart around p 1 a01

a00

a10

a00

a11

a00

+ t

 0 0

A10

A11
1


which has local coordinates a01

a00
, a11

a00
, A10

A11
on which T acts by characters v − u, v − u

and u− v respectively.

B.5. Application of Atiyah-Bott.

Proof of Theorem A.1. As before, we compute pX(−u,−v) due to our sign conven-

tions. Let

φ(H) =
(H + du)(H + (d− 1)u+ v) · · · (H + dv)− (du) · · · (dv)

H
.

We want to pull φ(H) back toX and integrate using Atiyah-Bott. We first integrate

over C̃1. Since H pulls back to

dH −
n∑
i=1

miEi = d(z − u)− dz = −du,
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this is

[z]
1

(z + v − u)((1− n)z + v − u)
φ(−du) =

[z]

1
(v−u)2

(1 + z
v−u)(1 + (1−n)z

v−u )

−
∏d

i=0 (iu+ (d− i)v)

−du
=

(n− 2)
∏d

i=1 (iu+ (d− i)v)

(v − u)3
.

Adding this to the contribution of C̃2 yields

(n− 2)
d∏
i=0

(iu+ (d− i)v)
1

(v − u)3

(
1

du
− 1

dv

)
=

(n− 2)
d∏
i=0

(iu+ (d− i)v)
1

(v − u)2

1

duv

For each 1 ≤ i ≤ n, we have a point in the configuration of multiplicity mi. We have

two isolated fixed points corresponding to i lying above Ri ∩C1 and Ri ∩C2. For the

point lying above Ri ∩ C1, H pulls back to dH − miE, where E is the exceptional

divisor lying above Ri. This restricts to

−du− n(v − u) = (−d+mi)u−miv

at the fixed point. The contribution to Atiyah Bott is

1

(u− v)3
φ((−d+mi)u−miv) =

1

(u− v)3

−
∏d

j=0 (ju+ (d− j)v)

(−d+mi)u−miv
.
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Adding this to the contribution of the fixed point lying above Ri ∩ C2, we get

1

(u− v)3

d∏
j=0

(ju+ (d− j)v)

(
1

(d−mi)u+miv
− 1

(d−mi)v +miu

)
=

− 1

(u− v)2

d∏
j=0

(ju+ (d− j)v)
d− 2mi

((d−mi)u+miv)((d−mi)v +miu)
.

Adding the contributions up yields the result. �

C. Cubic plane curves

Although the computations of pC for cubic plane curves C are elementary, we

provide them here for the sake of completeness.

The following table provides a complete list of polynomials pC :

Cubic Curve C pC(c1, c2, c3) # Aut

Triple Line −(72c3
1c

2
2 + 36c1c

3
2 + 36c4

1c3 − 162c2
1c2c3 +

243c1c
2
3)

∞

Double Line plus Line −(72c3
1c2 + 36c1c

2
2 − 108c2

1c3) ∞

Three concurrent lines 12c4
1 + 6c2

1c2 + 27c1c3 ∞

Conic plus tangent line −36c3
1 − 18c1c2 ∞

Triangle −(12c3
1 + 6c1c2 + 27c3) ∞

Conic plus line 18c2
1 + 9c2 ∞

Cuspidal cubic 24c2
1 ∞

Irreducible nodal cubic (−12c1)6 6

Smooth cubic (j 6= 0, 1728) (−12c1)18 18

Smooth cubic with j = 1728 (−6c1)36 36

Smooth cubic with j = 0 (−4c1)54 54
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The formulas for a triple line, double line plus line, conic plus line, and triangle can

all be obtained via presentation and integration along the lines of [42, Theorem 3.1]

and Proposition 5.5. This is the method of resolution and integration [44, Section 3].

The formula for three concurrent lines, conic plus tangent line and cuspidal cubic

can be gotten by applying Kazarian’s formula [65, Theorem 1] for counting D4, A3,

and A2 singularities respectively. This was carried out for the case of quartic plane

curves for A6, D6, and E6 in the proof of Corollary 5.4. The formula for smooth

and nodal cubics and be obtained by their predegree formulas [4, Section 3.6] and

Proposition 4.4.

Part 3. PGL2-equivariant strata of point configurations in P1

This part of the thesis contains the arXiv preprint [94] joint with Hunter Spink.

The idea was to extend the GL2-equivariant computation of Fehér, Némethi, and

Rimányi [42] of strata of point configurations on P1 and determine the relations

between them. Here, the main obstacle is that PGL2 is harder to work with than

GL2 as it is nonspecial, so its Chow ring contains torsion.

Abstract: We compute the integral Chow ring of the quotient stack [(P1)n/PGL2],

which containsM0,n as a dense open, and determine a natural Z-basis for the Chow

ring in terms of certain ordered incidence strata. We further show that all Z-linear

relations between the classes of ordered incidence strata arise from an analogue of

the WDVV relations in A•(M0,n).

Next we compute the classes of unordered incidence strata in the integral Chow

ring of the quotient stack [SymnP1/PGL2] and classify all Z-linear relations between

the strata via these analogues of WDVV relations.

Finally, we compute the rational Chow rings of the complement of a union of

unordered incidence strata.
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11. Introduction

We consider PGL2-equivariant Chow classes of incidence strata corresponding

to point configurations in P1. Our results concern both ordered point configura-

tions, parametrized by (P1)n, and unordered point configurations, parametrized by

SymnP1 ∼= Pn. The equivariant Chow rings A•PGL2
((P1)n) and A•PGL2

(SymnP1) can

be defined as the integral Chow rings of the quotient stacks [(P1)n/PGL2] and

[SymnP1/PGL2] respectively, so the PGL2-equivariant Chow classes of incidence

strata specialize to relative classes in A•(Pn) and A•(SymnP) respectively for any

P1-bundle P → B.

Our computations of the PGL2-equivariant classes of unordered strata generalizes

the GL2-equivariant computation of Fehér, Némethi, and Rimányi [42]. From our

results we are able to deduce all integral relations between these PGL2-equivariant

classes. Surprisingly, despite the presence of nontrivial 2-torsion, every integral re-

lation between GL2-equivariant classes also holds PGL2-equivariantly. Even though

classes of incidence strata do not generate A•PGL2
(SymnP1) integrally, we find a Q-

linear basis of A•PGL2
(SymnP1) in terms of certain incidence strata.

Ordered strata of point configurations are products of diagonal classes in (P1)n.

The stack [(P1)n/PGL2] contains M0,n as a dense open, and we show that its Chow

ring behaves much like the Chow ring of M0,n [68], with incidence strata in place of

boundary divisors. We also find a Z-linear basis for A•PGL2
((P1)n) in terms of certain

incidence strata.

For any P1-bundle P → B and PGL2-invariant subvarieties X ⊂ (P1)n and Y ⊂

SymnP1, we have relative versions X ⊂ Pn and Y ⊂ SymnP restricting to X and Y

in every fiber of Pn → B and SymnP respectively. Our additive bases express the

non-equivariant integral Chow class of X (resp. rational Chow class of Y) as integral

(resp. rational) combinations of certain incidence strata.
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Finally, we remark two advantages of working PGL2-equivariantly rather than

GL2-equivariantly (where restriction to the torus-fixed points is an injection). First,

our results specialize to arbitrary P1-bundles P → B instead of only projectivizations

of rank 2 vector bundles. Second, in the corresponding GL2-invariant Chow ring,

there are additional classes not generated by GL2-invariant cycles. Thus it does not

seem clear how to recover results such as the ones in the previous paragraph directly

from the GL2-equivariant theory.

The reader may refer to Section 12.1 and Section 12.2 for an exposition on how

equivariant Chow classes yield universal relations between relative Chow classes in

bundles, and Example 11.11 for example consequences.

11.1. Ordered strata in [(P1)n/PGL2]. The moduli spaceM0,n of n distinct points

on P1 is the quotient of (P1)n \
⋃
i<j ∆i,j by the free action of PGL2, where ∆i,j is

the locus in (P1)n where the ith and jth coordinates are equal. This is classically

compactified by the variety M0,n of stable genus zero n-pointed curves.

We study the integral Chow ring A•PGL2
((P1)n) (as defined in [27, Section 5]) of the

quotient stack [(P1)n/PGL2] containingM0,n as a dense open. This stack is stratified

by certain incidence strata ∆P ⊂ (P1)n for P a partition of [n] := {1, . . . , n}, the loci

where the ith and jth coordinates are equal if i and j are in the same part of P .

We compute a ring presentation in Theorem 11.1 for A•PGL2
((P1)n) similar to that of

A•(M0,n) computed by Keel [68]. The incidence strata ∆P play a fundamental role in

the equivariant Chow ring: in Theorem 11.3 we compute a Z-basis for A•PGL2
((P1)n),

which consists in degree ≤ n − 2 of certain incidence strata, and in Theorem 11.5

we show all relations between incidence strata arise from an analogue of the WDVV

relation in A•(M0,4) (see Section 11.1.1).

Theorem 11.1. The following are true.
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(1) (Theorem 15.16) For n ≥ 3, the ring A•PGL2
((P1)n) =

Z[∆i,j ]1≤i<j≤n
relations

, where the

relations are (notating ∆j,i := ∆i,j for j > i)

(a) ∆i,j + ∆k,l = ∆i,k + ∆j,l for distinct i, j, k, l (square relations)

(b) ∆i,j∆i,k = ∆i,j∆j,k for distinct i, j, k. (diagonal relations)

(2) (Lemma 15.4) For n ≥ 1, the group AkPGL2
((P1)n) is a free Z-module of rank

∑
i≤k

i≡k mod 2

(
n

i

)
.

(3) (Theorem 13.3) For n ≥ 1, the natural map from A•PGL2
((P1)n) to

A•GL2
((P1)n) ∼= Z[u, v]S2 [H1, . . . , Hn]/(F (H1), . . . , F (Hn)),

is injective, where u + v and uv are the first and second chern classes of the

standard representation of GL2, F (z) = (z + u)(z + v), and Hi is c1(O(1)) ∈

A•PGL2
((P1)) pulled back via projection to the ith factor.

This identifies A•PGL2
((P1)n) with the subring of A•GL2

((P1)n) generated by

Hi +Hj + u+ v for distinct i, j and 2Hi + u+ v for all i, and this maps

∆i,j 7→ Hi +Hj + u+ v.

(4) (Remark 13.5) If the base field is C, then for all n ≥ 1 the map A•PGL2
((P1)n)→

H•PGL2
((P1)n) to equivariant cohomology is an isomorphism.

The square relations ∆i,j + ∆k,l = ∆i,k + ∆j,l for distinct i, j, k, l are analogous

to the WDVV relations on A•(M0,n) pulled back from A•(M0,4) ∼= A•(P1) (see

Section 11.1.1).

The diagonal relations ∆i,j∆i,k = ∆i,j∆j,k are geometrically obvious as ∆i,j ∩∆i,k

and ∆i,j ∩ ∆j,k both give the locus where the ith, jth, and kth coordinates are all

equal. In particular, repeated intersections in this fashion allow us to reconstruct all

∆P .
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We will in fact show that the classes of the ∆P for P a partition of {1, . . . , n} into

d ≥ 2 parts generate An−dPGL2
((P1)n) Z-linearly. Surprisingly, we can produce a Z-basis

for A•PGL2
((P1)n) represented by certain ∆P (at least in degrees ≤ n− 2).

Definition 11.2. Call a partition P of {1, . . . , n} good if it can be written as P =

{A1, . . . , Ad} with A1 tA2 an initial segment of {1, . . . , n}, and A3, . . . , Ad intervals.

Theorem 11.3 (Theorem 15.16). For n ≥ 3, the additive group AkPGL2
((P1)n) has a

Z-basis consisting of the following.

(1) If k ≤ n− 2, the classes ∆P for P a good partition into n− k parts.

(2) If k > n − 2, the classes ∆k−n+2
iP ,jP

∆P for P a partition of {1, . . . , n} into two

parts and ∆k−n+1
i{[n]},j{[n]}

∆{[n]}, where for each P the pair iP , jP are chosen to lie

in the same part of P .

In Section 15.1 we describe a simple algorithm to write arbitrary classes in this

Z-basis, along with a worked example.

In addition, we show that all relations between the ∆P are generated by pushfor-

wards of square relations. The method of proof will in fact supply an algorithm to

write every ∆Q as a Z-linear combination of ∆P for P a good partition using only

these relations.

Definition 11.4. Denote by Part(d, n) the set of partitions of [n] into d parts. Let

Sq(d, n) be the subgroup of the free abelian group ZPart(d,n) generated by formal square

relations Pi,j−Pj,k+Pk,l−Pl,i for P ∈ Part(d+1, n) and i, j, k, l ∈ {1, . . . , n} indices

in different parts of P , where Px,y denotes the partition formed by merging the parts

of P containing x and y.

Theorem 11.5 (Corollary 15.14). For d ≥ 2, the map

ZPart(d,n)/ Sq(d, n)→ An−dPGL2
((P1)n)
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sending P 7→ ∆P is an isomorphism.

In particular, since every square relation between the ∆P classes comes from an

explicit PGL2-invariant degeneration in (P1)n (see Section 11.1.1), Theorem 11.5

implies that all linear relations between the ∆P classes can be realized by a sequence

of PGL2-invariant degenerations in (P1)n.

Non-equivariantly, there are relations between the classes ∆P ∈ A•((P1)n) not

generated by these square relations. For example, if n = 4 we have

∆{{1,2,3},{4}} + ∆{{1,2,4},{3}} + ∆{{1,3,4},{2}} + ∆{{2,3,4},{1}}

= ∆{{1,2},{3,4}} + ∆{{1,3},{2,4}} + ∆{{1,4},{2,3}}

in A2((P1)4).

Remark 11.6. All of our theorems can be extended to n = 1, 2 if we include the

classes ψi = π∗i c1(T∨P1) ∈ A•PGL2
((P1)n) pulled back from the ith projection πi, which

for n ≥ 3 can be written in terms of the ∆j,k-classes via ψi = ∆j,k −∆i,j −∆i,k for

any j, k 6= i. They correspond to −(2Hi + u + v) under the map from item (3) of

Theorem 11.1 (see Proposition 14.4) and their definition is analogous to the ψ-classes

on M0,n [86, Section 2].

11.1.1. Relation of the square relation to the WDV V relation. The WDV V relation

in A•(M0,4) says two points inM0,4
∼= P1 corresponding to reducible curves have the

same class [78, Section 0.1]. It was shown by Keel [68] that A•(M0,n) is generated as

a ring by its boundary divisors, and the only nontrivial relations come from pulling

back the WDV V relation under forgetful maps M0,n →M0,4. The square relations

relate to the WDV V relations as follows. Consider the diagram

M0,4(P1, 1) (P1)4

M0,4

ev

π
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where ev is the (PGL2-equivariant) total evaluation map from the Kontsevich map-

ping space [51, Section 1] and π remembers only the source of the stable map and

stabilizes. The square relation is ev∗ π
∗ applied to the WDV V relation.

Equivalently, for any closed point a ∈ P1 ∼= M0,4, we can consider the locus

Aa ⊂ (P1)n consisting of the quadruples of points with cross ratio a. The square

relation comes from equating the classes of A0 and A∞.

11.1.2. Relation to other moduli spaces. If we pick a linearization of the PGL2-action

on (P1)n and there are no strictly semistable points, then excising the unstable locus

and applying [27, Theorem 3] gives the rational Chow ring of the GIT quotient. In

this case, the ideal given by excision is generated by the classes of the excised strata.

See [47] for an approach via quiver representations. These GIT quotients are Hassett

spaces with total weight 2+ε [60, Section 8] and receive maps fromM0,n via reduction

morphisms [60, Theorem 4.1], as induced maps between GIT quotients [61, Theorem

3.4], or by viewing M0,n as a Chow quotient [63].

11.2. Unordered strata in [SymnP1/PGL2]. The PGL2-action on P1 induces an

action on the symmetric power SymnP1 ∼= Pn, which parameterizes degree n divisors

on P1. For each partition λ = {λ1, . . . , λd} of n, we have the PGL2-invariant subva-

riety Zλ ⊂ Pn consisting of divisors that can be written in the form
∑d

i=1 λipi where

pi ∈ P1. For convenience we often write λ = ae11 . . . aekk to be the partition of n where

ai appears ei times.

11.2.1. Integral classes of strata. We compute the class of [Zλ] in A•PGL2
(Pn). The

class of [Zλ] in A•GL2
(Pn) was given in [42], and we will give a quick independent

proof and more compact form in Theorem 14.5. If n is odd, the map A•PGL2
(Pn) →

A•GL2
(Pn) induced by the projection GL2 → PGL2 is injective (see Proposition 13.7).

Therefore, all of the difficulty lies in computing [Zλ] in A•PGL2
(Pn) for n even. It
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turns out (see Section 17) that it suffices to compute the class in A•PGL2
(Pn)⊗Z/2Z,

which takes on a particularly simple form.

Theorem 11.7. Let n be even and λ = ae11 . . . aekk be a partition of n into d =

e1 + . . . + ek parts. The class of [Zλ] ∈ A•PGL2
(Pn) ⊗ Z/2Z ∼= F2[c2, c3, H]/(qn(H))

where

qn(t) =


t(n+4)/4(t3 + c2t+ c3)n/4 n ≡ 0 mod 4, and

t(n−2)/2(t3 + c2t+ c3)(n+2)/4 n ≡ 2 mod 4

is non-zero precisely when all ai and d!
e1!...ek!

are odd and all ei are even, in which case

it is equal to ( qn
qd

)(H).

11.2.2. Relations between strata. If λ = {λ1, . . . , λd} = ae11 . . . aekk is a partition of n,

then taking Φ : (P1)n → SymnP1 to be the multiplication map, if P = {A1, . . . , Ad}

is any partition of [n] with |Ai| = λi, we have

Φ∗∆P = (
∏

ei!)[Zλ].

In particular, every square relation between the classes of ordered strata induces a

relation between [Zλ] classes by pushing forward along Φ.

Theorem 11.8. (Section 17) Fix n and choose aλ ∈ Z for each partition of n. The

following are equivalent:

(1)
∑
aλ[Zλ] = 0 in A•PGL2

(Pn)

(2)
∑
aλ[Zλ] = 0 in A•GL2

(Pn)

(3)
∑
aλ[Zλ] is formally a rational linear combination of pushforwards of square

relations from A•PGL2
((P1)n)

(4) The following identity holds in Q[z]:

∑
λ=a

e1
1 ...a

ek
k

aλ∏k
i=1 ei!

k∏
i=1

(zai − 1)ei = 0.
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Corollary 11.9. Every Z-linear relation that holds between Chow classes of relative

Zλ-cycles in A•(SymnP(V )) for every rank 2 vector bundle V → B and base B holds

in A•(SymnP) for every P1-bundle P → B and base B.

We remark that there is 2-torsion in A•PGL2
(Pn) for n even, but Theorem 11.8

implies that if each aλ is even and
∑
aλ[Zλ] is zero in A•PGL2

(Pn), then in fact the

same is true for
∑ aλ

2
[Zλ].

Rather than search for linear relations between [Zλ] classes using Theorem 11.8 (4),

the following corollary identifies certain partitions whose corresponding strata are a

Q-linear basis for A≤n−2
PGL2

(Pn)⊗Q, and gives an explicit formula for writing every such

class in this basis. Every part of Corollary 11.10 can be deduced from Theorem 11.8

except that the strata that we choose span A≤n−2
PGL2

(Pn)⊗Q.

For λ = ae11 . . . aekk , denote by [λ] the normalization

[λ] = (
∏

ei!)[Zλ].

Corollary 11.10 (Theorem 16.4 and Corollary 16.2). For fixed d ≥ 2, the classes

[{a, b, 1d−2}] form a Q-basis for An−dPGL2
(Pn) ⊗ Q ⊂ An−dGL2

(Pn) ⊗ Q. Writing the poly-

nomial

− 1

(z − 1)d−2

d∏
i=1

(zai − 1) =
∑

0≤k1≤k2
k1+k2=n−d+2

αk1(zk1 + zk2),

we have αi ∈ Z and

[{a1, . . . , ad}] =
∑

1≤k1≤k2
k1+k2=n−d+2

αk1 [{k1, k2, 1
d−2}].

Each relation between classes [Zλ] in the equivariant Chow ring A•PGL2
(Pn) gives

relations between enumerative problems.
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Example 11.11. Suppose n = 6, then Corollary 11.10 implies

[Z{4,1,1}] + 3[Z{2,2,2}] = [Z{3,2,1}].

Consider the following two instances:

(1) Let Ct ⊂ P2 be a general pencil of degree 6 plane curves. Then, as we vary Ct

over t ∈ P1, the number of hyperflex lines plus thrice the number of tritangent

lines is equal to the number of lines that are both flex and bitangent.

(2) Let X ⊂ P3 be a general degree 6 surface. Then in G(1, 3), the class of the

curve of lines that meet X to order 4 at a point plus three times the class of

the curve of tritangent lines to X is equal to the class of the curve of lines

that meet X at three points with multiplicities 1, 2, 3.

Note that in both examples, in the absence of a transversality argument, the equalities

need to be taken with appropriate multiplicities.

Remark 11.12. Lines with prescribed orders of contact with a hypersurface were

also studied in [99, Section 5]. Counts of these lines are also related to counting line

sections of a hypersurface with fixed moduli [20, 73]. For the surface X ⊂ P3 in

Example 11.11, the points p ∈ X for which a line meets X at p to order 4 is the

flecnode curve, which is always of expected dimension 1 if X is not ruled by lines by

the Cayley-Salmon theorem [64, Theorem 6], which is a primary tool for bounding

the number of lines on a smooth surface in P3 (see [92] and [17, Appendix]).

Also, there is no reason not to consider a general variety X ⊂ PN other than the

difficulty of finding a projective variety of higher codimension that has at least a

3-dimensional family of 6-secant lines.

11.3. Excision. As an application of our results, we compute the rational equivariant

Chow ring of the complement of a union of unordered strata A•PGL2
(Pn \∪λZλ)⊗Q =

(A•PGL2
(Pn)⊗Q)/(

∑
λ Iλ ⊗Q), where Iλ is the ideal of excision for Zλ.
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We show that Iλ ⊗Q is generated by the classes of strata contained in Zλ.

Theorem 11.13 (Lemma 18.8). Given a partition λ of n, Iλ ⊗ Q is generated by

[Zλ′ ] for all λ′ that can be obtained from λ by merging parts.

Remark 11.14. Theorem 11.13 is false if we replace Iλ ⊗ Q with Iλ. This already

fails nonequivariantly in the case n = 4 and λ = {2, 1, 1}. Indeed, Φ : P1 × P2 → P4

maps birationally onto Zλ. Let H1 and H2 be the hyperplane classes in the factors of

P1×P2 and H be the hyperplane class of P4. Then Φ∗H1 = H2, while [Z{2,2}] = 8H2,

[Z{3,1}] = 6H2, and [Z{2,1,1}] = 6H.

We typically don’t need to use every merged partition λ′ for dimension reasons by

Corollary 11.10. When λ = {a, 1n−a} is a partition with only one part of size greater

than 1, we in fact show that Iλ ⊗Q is generated by just two generators.

Theorem 11.15 (Theorem 18.2). Given the partition λ = {a, 1n−a} of n, Iλ ⊗Q is

generated by [Zλ] and [Zλ′ ], where

λ′ =


{a+ 1, 1n−a−1} if a 6= n

2

{a, 2, 1n−a−2} if a = n
2
.

In fact we will also show the analogous results with A•GL2
(Pn \∪λZλ)⊗Q, and if we

further replace Pn \ ∪λZλ with its affine cone An+1 \ ∪λZ̃λ and consider A•GL2
(An+1 \

∪λZ̃λ) (see Theorem 19.2).

In the special case λ = {2, 1n−2}, computing Iλ is the technical heart of the com-

putation of Edidan and Fulghesu of the Chow ring of the stack of hyperelliptic curves

of even genus [26].

For n odd and Zλ the unstable locus, i.e with λ = {n+1
2
, 1

n−1
2 }, the rational Chow

ring A•GL2
(Pn \Zλ)⊗Q equals A•(Pn//GL2)⊗Q, the rational Chow ring of the GIT

quotient [27, Theorem 3]. For all n and Zλ ⊂ Pn the locus of unstable and strictly
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semistable points, Fehér, Némethi, and Rimányi computed A•GL2
(Pn\Zλ) ⊗ Q using

a spectral sequence and used the result to compute the rational Chow ring of the

GIT quotient [42, Theorems 4.3 and 4.10]. They actually work with the affine space

SymnK2 instead of Pn, but the two settings are essentially the same (see Lemma 19.5).

Remark 11.16. The affine analogue of Theorem 11.15 as given in Theorem 19.2 in

the special case a = dn
2
e recovers the GL2-equivariant Chow rings of the stable locus

computed in [42, Theorems 4.3 and 4.10] as described above. The Chow ring of the

semistable locus required a separate argument.

11.3.1. Multiplicative relations of affine analogues. We conclude in Section D by de-

scribing a combinatorial branching rule for multiplying the affine analogue of the

class of a strata [Z̃λ] ∈ A•GL2
(SymnK2) ∼= Z[u, v]S2 by a generator u + v or uv. This

generalizes [42, Remark 3.9 (1)].

11.4. Acknowledgements. The authors would like to thank Mitchell Lee and Anand

Patel for helpful conversations during the project. The authors would like to thank

Jason Starr for helpful comments and references.

12. Background and conventions

Conventions:

(1) The base field K is algebraically closed of arbitrary characteristic

(2) GL2 acts linearly on P1 and hence on all products (P1)n, symmetric powers

SymnP1 ∼= Pn, and their duals

(3) T ⊂ GL2 is the standard maximal torus with standard characters u and v

(4) [n] denotes the set {1, . . . , n}

(5) Φ : (P1)n → SymnP1 ∼= Pn denotes the multiplication map, where n will be

clear from context.
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12.1. Universal relations and equivariant intersection theory. Equivariant

intersection theory was formalized in [27] and will be used to help us analyze the

following situation. See also [11] for an exposition.

Suppose we have a group G (typically G = T,GL2, PGL2) acting on a variety X

(typically (P1)n, SymnP1 = Pn), and G-invariant subvarieties Yi (typically incidence

strata in (P1)n or Pn). Given a principal G-bundle P → B, we have the X-bundle

XP → B, where XP := P ×G X. Inside XP , we have the cycles

(Yi)XP := (Yi)P ⊂ XP

restricting to Yi in each fiber X, inducing classes [Yi]XP ∈ A•(XP). We would like to

understand what “universal” linear relations exist between these classes (i.e. which

don’t depend on B or P).

For example, if we take G = PGL2, then we are seeking universal relations between

classes [ZP ]Fn and between classes [Zλ]SymnF for F → B a P1-bundle. If we use

G = GL2 instead the relations hold a priori only for F the projectivization of a rank

2 vector bundle on B.

As we will see in Section 12.2, there is a universal group AG• (X) approximated

by certain A•(XP ′) which is equipped with maps AG• (X) → A•(XP) for all P and

there are classes [Yi] ∈ AG• (X) such that [Yi] 7→ [Yi]P , so any relations in AG• (X)

between the [Yi] descend to relations between the [Yi]P . Conversely, we will see by

construction that any relation between the [Yi]P for all P induces a relation between

the [Yi].

12.2. Equivariant intersection theory. The equivariant Chow group AG• (X) is

defined as follows. Suppose G acts linearly on a vector space V with an open sub-

set U of codimension c on which it acts freely. Then for any k < c, we define

AGdim(X)−k(X) := Adim(X×GU)−k(X ×G U). Note that X ×G U = XP where P is
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the principal G-bundle U → U/G. This does not depend on the choice of V [27,

Definition-Proposition 1].

For P → B a principal G-bundle over an equidimensional base B, we have a map

AG• (X)→ Adim(B)+•(P ×G X)

via the composition

AG>dim(X)−c(X) ∼= A>dim(X×GU)−c(X ×G U)

→ A>dim((P×X)×GU)−c((P ×X)×G U)

∼= A>dim((P×X)×GU)−c((P ×X)×G V )

∼= A>dim(P×GX)−c(P ×G X)

where the second map is induced by flat pullback from the projection, the third map

follows from excising (P ×X) ×G (V \ U), and the last map follows from the Chow

groups of a vector bundle [50, Theorem 3.3(a)].

Now, we define A•G(X) to be the ring of operational G-equivariant Chow classes

on X, i.e. AiG(X) is all assignments

(Y → X) 7→ (AG• (Y )→ AG•−i(Y ))

for every G-equivariant map Y → X, compatible with the standard operations on

Chow groups [27, Section 2.6]. In our case X is always smooth, and we have the

Poincaré duality isomorphism A•G(X) = AGdim(X)−•(X) [27, Proposition 4], and the

identification

A•([X/G]) ∼= A•G(X),

where [X/G] is the quotient stack [27, Section 5.3].
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12.3. GL2 and T -equivariant Chow rings of (P1)n and Pn. We will postpone

discussing PGL2-equivariant intersection rings to Section 13. The equivariant Chow

rings A•T ((P1)n), A•T (Pn), (respectively A•GL2
((P1)n), A•GL2

(Pn)) can be approximated

by the ordinary Chow rings of (P1)n and Pn bundles over PN × PN (respectively the

Grassmannian of lines G(1, N)) for N >> 0.

Let u, v be the standard characters of T . If pt is a point with trivial GL2 action,

then

A•T (pt) = Z[u, v], A•GL2
(pt) = Z[u, v]S2

where S2 acts on Z[u, v] by swapping u, v. By the Chow ring of a vector bundle [50,

Theorem 3.3(a)], the T (respectively GL2) equivariant Chow ring of an affine space

is isomorphic to the equivariant Chow ring of a point. By the projective bundle

theorem [32, Theorem 9.6], we have

A•T ((P1)n) = Z[u, v][H1, . . . , Hn]/(F (Hi)), A•T (Pn) = Z[u, v][H]/(G(H)),

A•GL2
((P1)n) = Z[u, v]S2 [H1, . . . , Hn]/(F (Hi)), A•GL2

(Pn) = Z[u, v]S2 [H]/(G(H))

where Hi is c1(OP1(1)) pulled back to (P1)n under the ith projection and H is

c1(OPn(1)), and we define

F (z) = (z + u)(z + v), G(z) =
n∏
k=0

(z + ku+ (n− k)v)

for the rest of the document. Even though one might want to use GL2-equivariant

Chow rings for applications, GL2-equivariant Chow rings inject into T -equivariant

Chow rings, so it suffices to only consider T -equivariant Chow rings.

The formula for the class of the projectivization of a subbundle [32, Proposition

9.13] shows the ith coordinate hyperplane in Pn has class H + iu + (n − i)v. This
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gives the formula for any torus fixed linear space (for example the torus-fixed points)

in (P1)n or Pn by multiplying a subset of these classes.

12.4. Ordered and unordered strata of n points on P1.

Definition 12.1. Given a collection P = {A1, . . . , Ad} of disjoint subsets of [n],

let ∆P ⊂ (P1)n denote the d-dimensional locus of points (p1, . . . , pn) where pi = pj

whenever i, j are in the same set Ak of P .

Example 12.2. If P = {{1, 2, 4}, {3, 6}} and A = [6], then ZP ⊂ (P1)6 consists of

points (p1, . . . , p6) such that p1 = p2 = p4 and p3 = p6.

Definition 12.3. Given a partition λ = {λ1, . . . , λd} of a positive integer n, we

define the d-dimensional subvariety Zλ ⊂ SymnP1 ∼= Pn to be the image of ∆P under

the multiplication map Φ : (P1)n → Pn, where P = {A1, . . . , Ad} is any partition of

[n] with |Ai| = λi.

Remark 12.4. If we view SymnP1 ∼= Pn as binary degree n forms on the dual of P1,

then Zλ is the closure of the degree n forms with multiplicity sequence given by λ,

whose equivariant Chow classes were studied by Fehér, Némethi, and Rimányi [42].

In order to compactify notation, we make the following definitions.

Definition 12.5. Given P a partition of [n] and λ a partition of n, we let

∆P := [∆P ] ∈ H•G((P1)n)

[λ] := (
n∏
i=1

eλi !)[Zλ] ∈ H•G(Pn),

where G is T , GL2 or PGL2, depending on the context and eλi = #{j | λj = i}. For

λ = {a1, . . . , ad}, we will often write [a1, . . . , ad] or [1e
λ
1 , . . . , ne

λ
n ] for [λ].

Remark 12.6. For any such partition P and λ as in Definition 12.3, then Φ maps

∆P onto Zλ with degree
∏n

i=1 e
λ
i !, so Φ∗∆P = [λ].
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12.5. Affine and projective Thom polynomials.

Definition 12.7. Given a T -invariant subvariety V ⊂ Pn, let Ṽ ⊂ A(SymnK2)

denote the cone of V ⊂ Pn in A(SymnK2) ∼= An+1.

Given a T -invariant subvariety V ⊂ Pn, its class [V ] ∈ A•T (Pn) is a polynomial

p(H, u, v) of degree at most n. The degree 0 term in H, p0(u, v), is [Ṽ ] ∈ A•T (An+1) ∼=

Z[u, v]. This is seen by considering the diagram

A•T (Pn)
∼← A•T×Gm(An+1\{0})→ A•T (An+1\{0})

and noting that AkT (An+1\{0}) ∼= AkT (An+1) for k ≤ n.

It turns out p0(u, v) determines all of p.

Lemma 12.8 ([41, Theorem 6.1]). We have p(u, v) = p0(u+ H
d
, v + H

d
).

Proof sketch. As (An+1\{0})/Gm
∼= Pn, p can be computed from [Ṽ ] ∈ A•T×Gm(An+1)

by mapping to A•T (Pn) via

A•T×Gm(An+1)→ A•T×Gm(An+1\{0}) ∼= A•T (Pn).

However, the diagonal action of Gm on An+1 actually factors through the action of T

on An+1, so A•T×Gm(An+1) contains no more information than A•T (An+1). Taking the

class p0 and following it from A•T (An+1) to A•T×Gm(An+1) and finally to A•T (Pn) yields

Lemma 12.8. This argument is written down precisely and in its natural generality

in [41, Theorem 6.1]. �

13. PGL2 and GL2-equivariant Chow rings

In this section we compare certain PGL2-equivariant Chow rings to their GL2-

equivariant counterparts, which are easier to work with because GL2 is special, so

restricting to the maximal torus is an injection on equivariant Chow rings [27, Propo-

sition 6].
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In particular, we show in Theorem 13.3 that A•PGL2
((P1)n)→ A•GL2

((P1)n) is injec-

tive and identify its image. For the unordered case, we show in Proposition 13.7 that

A•PGL2
(Pn)→ A•GL2

(Pn) is injective for n odd and injective up to 2-torsion when n is

even.

To start, we recall a lemma.

Lemma 13.1 ([80, Lemma 2.1]). Given a linear algebraic group G acting on a smooth

variety X, let H be a normal subgroup of G that acts freely on X with quotient X/H.

Then, there is a canonical isomorphism of graded rings

A•G(X) ∼= A•G/H(X/H).

Remark 13.2. Lemma 13.1 was proven in [80, Lemma 2.1] directly from the defini-

tions, but it can also be seen as a consequence of the fact that the ring A•G(X) depends

only on the quotient stack [X/G] [27, Proposition 16] and [[X/H]/(G/H)] ∼= [X/G]

(see [90, Remark 2.4] or [14, Lemma 4.3]).

Theorem 13.3. For n ≥ 1, the ring homomorphism

A•PGL2
((P1)n)→ A•GL2

((P1)n)

induced by the quotient map GL2 → PGL2 is an injection, and the image is generated

by the classes −(2Hi + u+ v) and ∆i,j = Hi +Hj + u+ v.

Remark 13.4. We will show in Proposition 14.4 that ψi := π∗i c1(T∨P1) = −(2Hi +

u+ v), as mentioned in Remark 11.6. For n ≥ 3 this class is redundant as

−(2Hi + u+ v) = ∆j,k −∆i,j −∆i,k.

Proof. We show the injectivity of A•PGL2
((P1)n)

ι−→ A•GL2
((P1)n) using the commuta-

tivity of the diagram
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A•PGL2
((P1)n) A•GL2

((A2\0)× (P1)n−1)

A•GL2
((P1)n) A•GL2×Gm((A2\{0})× (P1)n−1)

∼
q1

ι f

∼
q2

with f induced by the multiplication map GL2 ×Gm → GL2.

We have the isomorphisms q1 and q2 by Lemma 13.1.

To prove commutativity of the diagram, we can identify each of the rings A•G(X)

with A•([X/G]) as in Section 12.2, so it suffices to show the following diagram of

stacks is commutative.

[(P1)n/PGL2] [(A2\{0})× (P1)n−1/GL2]

[(P1)n/GL2] [(A2\{0})× (P1)n−1/(GL2 ×Gm)]

∼

∼

Suppose we start with a principal GL2 ×Gm-bundle P → S together with a GL2 ×

Gm-equivariant map P → (A2\{0}) × (P1)n−1, giving a map S → [(A2\{0}) ×

(P1)n−1/(GL2 ×Gm)]. Following the diagram around clockwise or counterclockwise,

we get a map S → [(P1)n/PGL2] given by a PGL2-equivariant morphism

P ×GL2×Gm GL2 ×GL2 PGL2
∼= P ×GL2×Gm PGL2 → (P1)n.

When going counterclockwise, the product P ×GL2×Gm GL2 is taken with respect to

the multiplication map GL2×Gm → GL2, while when going clockwise, the product is

taken with respect to the projection map GL2 ×Gm → GL2. However, the resulting

principal PGL2-bundle is the same as the compositions with the quotient GL2 →

PGL2 are identical.

Now, we will find the induced map

A•GL2
((A2\0)× (P1)n−1)→ A•GL2

((P1)n)

in terms of generators and show it is injective. Consider the diagram
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A•GL2
((A2\0)× (P1)n−1) A•GL2×Gm((A2\{0})× (P1)n−1) A•GL2

((P1)n)

A•GL2×(Gm)n−1((A2\0)n) A•GL2×(Gm)n((A2\{0})n) A•GL2×(Gm)n((A2\{0})n)

f

∼ ∼

q2
∼

∼

f ′ q′2
∼

where GL2 acts in the standard way in all cases. In the middle term of the top row,

Gm acts by scaling A2 \{0}. In the last term of the second row, (Gm)n acts by having

the ith copy of Gm scale the ith copy of A2 \ {0}. In the middle term of the second

row, (Gm)n acts by having the first copy of Gm act by scaling all copies of A2 \ {0}

and the ith copy of Gm with 2 ≤ i ≤ n acting by scaling the ith copy of A2 \ {0}.

In the first term of the second row, the ith copy of Gn−1
m scales the i + 1st copy of

A2 \ {0}.

To compute f ′, we let H1 be the standard character on the first factor of Gm

in GL2 × (Gm)n and let H2, . . . , Hn be the standard characters on the remaining

n − 1 factors and the n − 1 factors of Gm in GL2 × (Gm)n−1. The induced map

T × (Gm)n → T × (Gm)n−1 of tori induces u 7→ u+H1 and v 7→ v +H1. Therefore,

f ′ :
Z[u, v]S2 [H2, . . . , Hn]

(uv, F (H2), . . . , F (Hn))
→ Z[u, v]S2 [H1][H2, . . . , Hn]

(uv, F (H2 +H1), . . . , F (Hn +H1))
,

where u 7→ u+H1, v 7→ v +H1, and Hi 7→ Hi.

For q′2, the induced map T × (Gm)n → T × (Gm)n of tori induces H1 7→ H1,

Hi 7→ Hi −H1 for 2 ≤ i ≤ n and u 7→ u, v 7→ v, and gives the map

q′2 :
Z[u, v]S2 [H1][H2, . . . , Hn]

(uv, F (H2 +H1), . . . , F (Hn +H1))
→ Z[u, v]S2 [H1, . . . , Hn]

(F (H1), . . . , F (Hn))
.

The composite

q′2 ◦ f ′ :
Z[u, v]S2 [H2, . . . , Hn]

(uv, F (H2), . . . , F (Hn))
→ Z[u, v]S2 [H1, . . . , Hn]

(F (H1), . . . , F (Hn))

is given by u 7→ u + H1, v 7→ v + H1, Hi 7→ Hi − H1 for 2 ≤ i ≤ n. The image is

therefore generated by 2H1 + u+ v and Hi −H1 for 2 ≤ i ≤ n. If n ≥ 3, then this is
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generated by the collection

{Hi +Hj + u+ v | 1 ≤ i < j ≤ n} = {∆i,j | 1 ≤ i < j ≤ n}

(see Proposition 14.4). �

Remark 13.5. Suppose our base field is C. We have a commutative diagram

A•PGL2
((P1)n) A•GL2

((P1)n)

H•PGL2
((P1)n) H•GL2

((P1)n)

q1

qH1

The map A•GL2
((P1)n)→ H•GL2

((P1)n) is an isomorphism by the Leray-Hirsch theorem

applied to P1
C-bundles. Running the proof of Theorem 13.3 for the map qH1 shows qH1

is injective. Here we replace the projective bundle theorem in algebraic geometry by

the Leray-Hirsch theorem applied to P1
C-bundles and the application of Lemma 13.1

with the fact that if G acts on X and H is a normal subgroup which acts freely, then

(X × EG)/G ∼= ((X × EG)/H)/(G/H), and (X × EG)/H is homotopy equivalent

to X/H and has a free action by G/H.

This implies A•PGL2
((P1)n)→ H•PGL2

((P1)n) is an isomorphism.

By [85, Theorem 1], the injection SO(3)→ GL3 induces a surjection A•GL3
(pt)→

A•SO(3)(pt) expressing A•SO(3)(pt) ∼= Z[c1, c2, c3]/(c1, 2c3), where c1, c2, c3 are the gen-

erators of A•GL3
(pt). Lemma 13.6 expresses the map A•PGL2

(pt)→ A•GL2
(pt) in terms

of this presentation.

Lemma 13.6. Under the composition,

A•GL3
(pt)→ A•SO(3)(pt) ∼= A•PGL2

(pt)→ A•GL2
(pt)→ A•T (pt),

we have c1 7→ 0, c2 7→ −(u− v)2, c3 7→ 0.
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Proof. Lemma 13.6 amounts to finding the map

T → GL2 → PGL2
∼= SO(3)→ GL3

inducing the maps of rings.

To describe the isomorphism SO(3) ∼= PGL2, recall that GL2 acts on the space

K2×2 of 2 by 2 matrices by conjugation. There is a pairing 〈•, •〉 on K2×2 given

by 〈A,B〉 = Tr(AB) that restricts to a nondegenerate form on the three-dimensional

vector space of trace zero matrices V ⊂ K2×2. Since the action of GL2 preserves 〈•, •〉

and the scalar matrices inside GL2 act trivially, we have an injection PGL2 → SO(3),

which is an isomorphism for dimension reasons.

Under this isomorphism,

u 0

0 v

 ∈ T maps into diagonal matrices in GL3 and

acts on V with characters u− v, v − u and 0 (written additively). Therefore,

c1 7→ (u− v) + (v − u) = 0

c2 7→ (u− v)(v − u) = −(u− v)2

c3 7→ 0(u− v)(v − u) = 0.

�

Proposition 13.7. We have

A•PGL2
(Pn) ∼=


Z[u, v]S2/(

∏n
i=0((n+1

2
− i)u+ (−n+1

2
+ i)v)) if n is odd

Z[c2, c3, H]/(2c3, pn(H)) if n is even

where pn(t) ∈ A•PGL2
(pt)[t] is defined as

pn(t) =


t
∏n

2
k=1(t2 + k2c2) + t

n
4

+1
∑n

4
k=1

(n
4
k

)
(t3 + c2t)

n
4
−kck3 n ≡ 0 (mod 4)

t
∏n

2
k=1 (t2 + k2c2) + t

n−2
4

∏n+2
4

k=1

(n+2
4
k

)
(t3 + c2t)

n+2
4
−kck3 n ≡ 2 (mod 4).
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The map

A•PGL2
(Pn)→ A•GL2

(Pn)

induced by GL2 → PGL2 is given by

u 7→ H +
n+ 1

2
u+

n− 1

2
v v 7→ H +

n− 1

2
u+

n+ 1

2
v if n is odd, and

c2 7→ −(u− v)2 c3 7→ 0 H 7→ H +
n

2
(u+ v) if n is even.

Finally, A•PGL2
(Pn) → A•GL2

(Pn) is injective for n odd and injective up to 2-torsion

when n is even.

Proof. The injectivity statements immediately follow from the explicit descriptions

of all of the rings maps in the statement of Proposition 13.7, we omit the verification.

We do the cases n is odd and even separately. First suppose n is odd. Consider

the commutative diagram

A•PGL2
(Pn) A•GL2

(Pn)

A•GL2
(An+1 \ {0}) A•GL2/µn

(An+1 \ {0}) A•GL2×Gm(An+1 \ {0})

∼ ∼

φ1

∼ φ2

The map φ1 is induced by the isomorphismGL2/µn → GL2 given byA 7→ (detA)
n−1

2 A

[13, Proposition 4.4]. To determine A•GL2
(An+1\{0}) it suffices to check how the max-

imal torus T ⊂ GL2 acts on An+1. Since the inverse of GL2 → GL2/µn is given by

A 7→ (detA)
1−n
2n A,

λ1

λ2

 maps to

λn+1
2n

1 λ
1−n
2n

2

λ
1−n
2n

1 λ
n+1
2n

2

 in GL2/µn and acts

on An+1 with characters {(n+1
2
− i)u+ (−n+1

2
+ i)v | 0 ≤ i ≤ n}. This shows

A•PGL2
(Pn) = Z[u, v]S2/(

n∏
i=0

((
n+ 1

2
− i)u+ (

−n+ 1

2
+ i)v))

in this case.
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To find the map A•GL2
(An+1 \ {0}) → A•GL2×Gm(An+1 \ {0}), we consider the map

GL2×Gm → GL2 and find it maps the pair

λ1

λ2

 , λ to λ
1
n

λ1

λ2

 in GL2/µn

and

λλn+1
2

1 λ
n−1

2
2

λλ
n−1

2
1 λ

n+1
2

2

 in GL2. This shows the map

Z[u, v]S2/(
n∏
i=0

((
n+ 1

2
− i)u+ (

−n+ 1

2
+ i)v))→ Z[u, v]S2 [H]/(

n∏
i=0

(H + iu+ (n− i)v))

giving A•GL2
(An+1 \ {0})→ A•GL2×Gm(An+1 \ {0}) is given by

u 7→ H +
n+ 1

2
u+

n− 1

2
v v 7→ H +

n− 1

2
u+

n+ 1

2
v.

Now, we do the case n is even. Let V ∼= K2 be a 2-dimensional vector space with the

standard representation of GL2. Let D ∼= K be a 1-dimensional vector space where

GL2 acts by multiplication by the determinant. Then, (SymnV )⊗ (D∨)⊗n is a GL2

representation that descends to a PGL2 representation.

To determine

A•PGL2
(Pn) ∼= A•PGL2

(P((SymnV )⊗ (D∨)⊗
n
2 ))

it suffices to find the chern classes of the PGL2 representation (SymnV ) ⊗ (D∨)⊗
n
2

regarded as a PGL2-equivariant vector bundle over a point. These chern classes are

given in [49, Corollary 6.3]. The reader should also note that [49] contains mistakes

elsewhere in the document (see [24, Introduction]). As a result, we have A•PGL2
(Pn)

is Z[c2, c3, H]/(2c3, pn(H)), where pn(t) ∈ APGL2(pt)[t] is given as in the statement

of the proposition.

Therefore, we have

A•PGL2
(P((SymnV )⊗ (D∨)⊗

n
2 ))→ A•GL2

(P((SymnV )⊗ (D∨)⊗
n
2 ))
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given by c2 7→ −(u−v)2 and c3 7→ 0 by Lemma 13.6. Also, the OP((SymnV )⊗(D∨)⊗
n
2 )

(1)

class in A•PGL2
(P((SymnV ) ⊗ (D∨)⊗

n
2 ) maps to the OP((SymnV )⊗(D∨)⊗n)(1) class in

A•GL2
(P((SymnV )⊗ (D∨)⊗

n
2 ) by the projective bundle formula.

Finally, since (SymnV )⊗(D∨)⊗
n
2 is a twist of SymnV by aGL2-equivariant line bun-

dle, the OP((SymnV )⊗(D∨)⊗
n
2 )

(1) class in A•GL2
(P((SymnV )⊗(D∨)⊗

n
2 ) maps to OP(SymnV )(1)+

cGL2
1 (D⊗

n
2 ) in A•GL2

(P(SymnV )⊗
n
2 ). Since cGL2

1 (D⊗n/2) = n
2
(u + v), we find the com-

posite map

A•PGL2
(P((SymnV )⊗ (D∨)⊗

n
2 )→ A•GL2

(P(SymnV ))

is given by

c2 7→ −(u− v)2 c3 7→ 0 H 7→ H +
n

2
(u+ v).

�

14. Formulas and initial reductions

In this section we express the ∆P and [λ] classes in terms of our equivariant Chow

ring presentations.

After this, we compute formulas for ∆P ∈ A•T ((P1)n) and give a quick, alternative

computation of the classes [Zλ] ∈ A•T (Pn) given in [42, Theorem 3.4]. The simple

presentation for the class of the diagonal in (P1)n works especially well with the

formula for the pushforward Φ∗ : A•T ((P1)n) → A•T (Pn) via the classes of torus fixed

points, and appears not to have been previously exploited in this fashion.

14.1. Class of the diagonal in (P1)n. We now compute the T -equivariant class of

the diagonal ∆{[n]} ⊂ (P1)n. This formula would also follow from localization to the

torus fixed points, but the derivation below is simpler.

Proposition 14.1. The class of ∆{[n]} in A•T ((P1)n) is given by

∆{[n]} =
1

u− v

(
n∏
i=1

(Hi + u)−
n∏
i=1

(Hi + v)

)
.
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Proof. This is a result of the fact that ∆{[n]} intersected with {[0 : 1]} × (P1)n−1 and

{[1 : 0]} × (P1)n−1 are the torus-fixed points [0 : 1]n and [1 : 0]n respectively, so

((H1 + u)− (H1 + v))∆{[n]} =
n∏
i=1

(Hi + u)−
n∏
i=1

(Hi + v).

�

14.2. Formula for ∆P . When two strata ∆P and ∆P ′ intersect transversely in (P1)n,

it is easy to describe their intersection as another stratum.

Proposition 14.2. The class ∆P ∈ An−dPGL2
((P1)n) for P a partition of [n] into d

parts is given by the product
∏
{i,j}∈Edge(T ) ∆i,j, where T is any forest with vertex set

[n] consisting of one spanning tree for each part of P . In particular,

(1) If i, j are in distinct parts of P , then if Pij is the partition merging the parts

containing i and j, we have ∆i,j∆P = ∆Pij .

(2) If i, j, i′, j′ are in the same part of P , we have ∆i,j∆P = ∆i′,j′∆P .

Proof. Item (1) follows from the transversality of the intersection ∆i,j ∩ ∆P , from

which we can deduce the first part of the proposition, and item (2) then follows

from the first part and repeated applications of the diagonal relation ∆i,j∆i,k =

∆i,j∆j,k. �

Proposition 14.3. Let P = {V1, . . . , Vd} be a partition of [n], then

∆P =
1

(u− v)d

d∏
i=1

(∏
j∈Vi

(Hj + u)−
∏
j∈Vi

(Hj + v)

)
.

Proof. From Proposition 14.2, ∆P =
∏d

i=1 ∆{Vi}. Now apply Proposition 14.1. �

14.3. The ψi and ∆i,j classes. At this point, we can prove the formula for ∆i,j in

item (3) of Theorem 11.1 and for ψi as mentioned in Remark 11.6.
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Proposition 14.4. We have

∆i,j = Hi +Hj + u+ v

ψi = −(2Hi + u+ v).

Proof. The formula for ∆i,j is an immediate consequence of Proposition 14.3.

To compute ψi, it suffices to show that c1(TP1) ∈ A•GL2
(P1) is 2H + u + v, where

H = c1(O(1)). We note that ctop(TX) for any smooth X is the pullback of the diagonal

under the diagonal map X → X ×X. The pullback A•GL2
((P1)2)→ A•GL2

(P1) under

the inclusion P1 ∼= ∆1,2 ↪→ P1 × P1 is given by H1, H2 7→ H. Under this map, ∆1,2

pulls back to 2H + u+ v as desired. �

14.4. Pullback and Pushforward under Φ. The pullback map Φ∗ : A•T (Pn) →

A•T ((P1)n) is induced by

Φ∗(H) =
n∑
i=1

Hi.

We now consider Φ∗. By considering the classes of the torus-fixed loci, we have for

any A ⊂ [n],

Φ∗

∏
A

(Hi + u)
∏

[n]\A

(Hj + v)

 =
∏

k∈[n]\{|A|}

(H + kv + (n− k)u).

This in fact uniquely characterizes Φ∗, which can be seen either from localization [29,

Theorem 2] or because ∏
A(Hi + u)

∏
[n]\A(Hj + v)∏

A(−v + u)
∏

[n]\A(−u+ v)

is a Lagrange interpolation basis for polynomials in H1, . . . , Hn modulo F (Hi) for

each i.
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14.5. Formula for [λ]. Fehér, Némethi, and Rimányi computed the class of [λ] for

λ a partition of n [42, Theorem 3.4]. We can give a quick self-contained computation

from Section 14.4 and Proposition 14.1 as follows.

Theorem 14.5 ([42, Theorem 3.4]). The class [a1, . . . , ad] is the result of first ex-

panding the polynomial

d∏
i=1

(zai − 1) =
∑
k≥0

ckz
k (ck ∈ Z),

and then replacing each monomial

zk 7→ 1

(u− v)d

∏
j∈[n]\{k}

(H + jv + (n− j)u).

Proof. Let P = {V1, . . . , Vd} be a partition of [n] with |Vi| = ai. We expand the

formula from Proposition 14.3

∆P =
1

(u− v)d

d∏
i=1

(∏
j∈Vi

(Hi + u)−
∏
j∈Vi

(Hi + v)

)

to a sum of terms of the form
∏

i∈A(Hi + u)
∏

j∈[n]\A(Hj + v). Then, Section 14.4

implies that each such term pushes forward to
∏

j∈[n]\{|A|}(H + jv + (n − j)u). The

result follows immediately. �

15. Strata in [(P1)n/PGL2]

In this section we prove all of our results on ordered point configurations in P1. Up

to Section 15.1, the only result that we use is Theorem 13.3, and in particular the

identification of ∆i,j in A•GL2
((P1)n) as Hi +Hj + u+ v.

Remark 15.1. Whenever we write ∆i,j in any context, we will always treat {i, j} as

an unordered tuple, so that implicitly

∆i,j := ∆j,i



92

for i > j.

Recall from Theorem 13.3 and Section 12.3, we have the inclusions

A•PGL2
((P1)n) ⊂ A•GL2

((P1)n) ⊂ A•T ((P1)n).

We first consider the square relation in (P1)4.

Proposition 15.2. In A•PGL2
((P1)4), we have the square relation

∆1,2 + ∆3,4 = ∆2,3 + ∆4,1.

Proof. Both sides are equal to H1 +H2 +H3 +H4 +2(u+v) by Proposition 14.4. This

can also be shown using the fact that the diagonal ∆ ⊂ P1×P1 has a torus-equivariant

deformation to {0} × P1 ∪ P1 × {∞}. It also holds by Section 11.1.1. �

Definition 15.3. Let R(n) be the ring

R(n) = Z[{∆i,j | 1 ≤ i < j ≤ n}]/relations,

generated by the symbols ∆i,j together with the relations

(1) ∆i,j + ∆k,l = ∆i,k + ∆j,l for distinct i, j, k, l (square relations)

(2) ∆i,j∆i,k = ∆i,j∆j,k for distinct i, j, k. (diagonal relations)

given in Theorem 11.1 (1). If n is clear from context or irrelevant, we will let R :=

R(n). If we let each ∆i,j have degree 1, then the ideal of relations is homogenous, so

R is a graded ring, and we will denote by Rk the kth graded part of R.

By Theorem 13.3, we can identify A•PGL2
((P1)n) as a subring of A•GL2

((P1)n), where

the image

A•PGL2
((P1)n) ↪→ A•GL2

((P1)n) = Z[u, v]S2 [H1, . . . , Hn]/(F (H1), . . . , F (Hn))
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is generated by ∆i,j = Hi + Hj + u + v for n ≥ 3. If n ≤ 2, we also have to add

the classes ψi = −(2Hi + u + v) (see Proposition 14.4). Therefore for n ≥ 3 by

Proposition 15.2, we have a surjective map

(15.1) R� A•PGL2
((P1)n),

sending each symbol ∆i,j ∈ R to ∆i,j ∈ A•PGL2
((P1)n). To show Theorem 11.1 (1),

we need to show this surjection is an isomorphism for n ≥ 3.

As A•GL2
((P1)n) is free as an abelian group, AkPGL2

((P1)n) is a free abelian group

for each k. We first compute the rank of these groups for varying k.

Lemma 15.4. For every n ≥ 1, the free abelian group AkPGL2
((P1)n) has rank

∑
i≤k

i≡k mod 2

(
n

i

)
.

Proof. We compute the rank of AkPGL2
((P1)n) by working instead with the rational

subring

A•PGL2
((P1)n)⊗Q ⊂ A•GL2

((P1)n))⊗Q,

which is generated by the elements H ′i := Hi + 1
2
(u + v) by Theorem 13.3. Noting

that H ′2i = 1
4
(u− v)2, we see the Q-vector space AkPGL2

((P1)n)⊗Q is spanned by the

elements

B = {
(
u− v

2

)n−d−|B|∏
i∈B

H ′i | B ⊂ [n], |B| ≤ n− d, |B| ≡ n− d (mod 2)},

which has size

|B| =
∑
i≤k

i≡k mod 2

(
n

i

)
.

To finish, it suffices to show that the elements of B are linearly independent. Indeed,

the elements of B become distinct monomials in the H ′i after setting u = 1 and v = −1

(after which the defining relations F (Hi) = 0 become H ′2i = 1 for each i). �
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Definition 15.5. Let Part(d, n) denote the set of partitions of [n] into d parts. For

P ∈ Part(d, n), for any forest T with vertex set [n] consisting of one spanning tree

for each part of P , we define

∆P =
∏

{i,j}∈Edge(T )

∆i,j ∈ R

Note that by the diagonal relations this is independent of the choice of T , and ∆P 7→

∆P under the map R→ A•PGL2
((P1)n) by Proposition 14.2.

Remark 15.6. The two items (1), (2) in Proposition 14.2 are also true for the

elements ∆P ∈ R as the proof only uses the diagonal relations in A•PGL2
((P1)n).

Lemma 15.7. For k ≤ n− 2, Rk is generated by {∆P | P ∈ Part(n− k, n)}.

Proof. Given a product
∏k

`=1 ∆i`,j` , we will produce an algorithm for rewriting this

product in terms of ∆P with P a partition of [n] into n− k parts.

By induction, we can write
∏k−1

`=1 ∆i`,j` as
∑

P ′∈Part(n−k+1,n) aP ′∆P ′ , so it suffices

to show that ∆ik,jk∆P ′ for P ′ ∈ Part(n − k + 1, n) can be written as a Z-linear

combination
∑

P∈Part(n−k,n) aP∆P .

If ik, jk are in different parts of P ′, then ∆ik,jk∆
′
P = ∆P where P merges the parts

containing ik and jk, and we are done. Otherwise, if they are in the same part A1,

let A2, A3 be two parts of P ′ distinct from A1 (which exist as n − k + 1 ≥ 3), with

elements x2 ∈ A2 and x3 ∈ A3. By applying a square relation, we have

∆ik,jk∆P ′ = (∆ik,x2 −∆x2,x3 + ∆x3,jk)∆P ′ ,

and each of the three terms on the right is some ∆P with P ∈ Part(n− k, n). �

Definition 15.8. Given a partition P of [n] and i, j ∈ [n] in distinct parts of P , let

Pi,j be the partition of [n] obtained by merging the parts in P containing i and j.

From Remark 15.6, the following relations hold in R(n) (and hence also in A•PGL2
((P1)n)).
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Definition 15.9. For i1, i2, i3, i4 in distinct parts of a partition P of [n], define the

square relation for P associated to i1, i2, i3, i4 to be the relation

∆Pi1,i2
−∆Pi2,i3

+ ∆Pi3,i4
−∆Pi4,i1

= 0.

Definition 15.10. Inside the free abelian group ZPart(d,n), denote by Sq(d, n) the

subgroup generated by formal square relations Pi,j−Pj,k +Pk,l−Pl,i for P ∈ Part(d+

1, n) and i, j, k, l distinct. Then we define

A(d, n) := ZPart(d,n)/ Sq(d, n).

Lemma 15.7 shows for d ≥ 2 we have a surjection

A(d, n)� Rn−d

that sends P 7→ ∆P . We will in fact show this is an isomorphism.

Definition 15.11. Say a partition P ∈ Part(d, n) for d ≥ 2 is good if P can be

written as P = {A1, . . . , An} with A1 t A2 a partition of an initial segment of [n],

and A3, . . . , An all contiguous intervals. Denote

Good(d, n) := {P ∈ Part(d, n) | P good}.

Lemma 15.12. For d ≤ n− 2, A(d, n) is generated by the set of P ∈ Good(d, n).

Proof. We use induction on n and d. For d = 2 every partition is good, and for n = 2

the result is trivial. Suppose now we have n, d > 2. Take Q ∈ Part(d, n).

If n− 1 and n are in the same part, then Q′ := Q \ n ∈ Part(d, n− 1), and by the

induction hypothesis applied to A(d, n− 1) we can write Q′ =
∑

P ′∈Good(d,n−1) aP ′P
′.

There is a map

A(d, n− 1)→ A(d, n)
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mapping each P ′ for P ′ ∈ Part(d, n − 1) to P , where P is obtained by adding n

to the same part as n − 1 in P ′. Furthermore, under this map P ∈ Good(d, n) if

P ′ ∈ Good(d, n− 1), so we get Q as a Z-linear combination of P for P ∈ Good(d, n).

If n is isolated in Q, then let Q′ = Q \ n ∈ Part(d − 1, n − 1). By the induction

hypothesis applied to A(d − 1, n − 1), we can write Q =
∑

P ′∈Good(d−1,n−1) aP ′P
′.

There is a map

A(d− 1, n− 1)→ A(d, n)

mapping each P ′ for P ′ ∈ Part(d−1, n−1) to P , where P is obtained by adding n as an

isolated part. Furthermore, under this map P ∈ Good(d, n) if P ′ ∈ Good(d−1, n−1),

so we get Q as a Z-linear combination of P for P ∈ Good(d, n).

If neither of the above two cases hold, then n− 1 and n are not in the same part

and n is not isolated in Q. Let x ∈ [n] be another element in the same part as n,

and let y ∈ [n] be in a different part as n− 1 and n (which exists as d > 2). Then if

we let Q̃ ∈ Part(d+ 1, n) be the result of taking Q and isolating n into its own part,

the square relation for Q̃ associated to n − 1, n, x, y yields Q as a combination of 3

terms, each of which either has n isolated or n− 1, n in the same group. �

Lemma 15.13. For d ≥ 2,

# Good(d, n) =
∑
i≤n−d

i≡n−d mod 2

(
n

i

)
.

Proof. From the definition of Good(d, n),

# Good(d, n) =
n−d+2∑
k=1

(2k−1 − 1)

(
n− k − 1

n− k − d+ 2

)
.
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Let

Gd,n =
n−d+2∑
k=1

(2k−1 − 1)

(
n− k − 1

n− k − d+ 2

)

G′d,n =
∑
i≤n−d

i≡n−d mod 2

(
n

i

)
.

We will show Gd,n = G′d,n for all n ≥ 2 and d ≥ 2 by induction on n. For the base

case if n = 2 and d ≥ 2 arbitrary, we have two cases: if d = 2, |G(2, 2)| = G2,2 = 1 and

if d > 2, |G(d, 2)| = Gd,2 = 0. If d = 2 and n ≥ 2 arbitrary, then G′d,n = 2n−1 − 1 by

the binomial theorem, and Gd,n = 2n−1−1 because only the k = n term (2n−1−1)
(−1

0

)
contributes.

Now, assume we know Gd,n = G′d,n for some n and all d ≥ 2. For the induction

step,

Gd,n +Gd+1,n =
n−d+2∑
k=1

(2k−1 − 1)

((
n− k − 1

n− k − d+ 2

)
+

(
n− k − 1

n− k − d+ 1

))

=
n−d+2∑
k=1

(2k−1 − 1)

(
n− k

n− k − d+ 2

)
= Gd+1,n+1,

and similarly applying Pascal’s identity, G′d,n +G′d+1,n = G′d+1,n+1. �

Corollary 15.14. For d ≥ 2, and n ≥ 3 we have the isomorphisms

ZGood(d,n) ∼−→ A(d, n)
∼−→ Rn−d

∼−→ An−dPGL2
((P1)d).

Proof. By Lemmas 15.7 and 15.12 and (15.1), we have

ZGood(d,n) � A(d, n)� Rn−d � An−dPGL2
((P1)d).

Since An−dPGL2
((P1)d) is a finitely generated, free Z-module of rank equal to the rank

of ZGood(d,n) by Lemmas 15.4 and 15.13, the composite ZGood(d,n) → An−dPGL2
((P1)d) is

an isomorphism. �
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We now find an explicit basis for Rk for k > n− 2 of size 2n−1.

Lemma 15.15. For each partition P ∈ Part(d, n) for d ≤ 2, arbitrarily choose iP , jP

that lie in the same part. Then for k > n− 2, Rk is generated by the 2n−1 elements

Sk := {∆{[n]}∆
k−n+1
i{[n]},j{[n]}

} ∪ {∆P∆k−n+2
iP ,jP

| P ∈ Part(2, n)}.

Proof. Let P = {A,B} ∈ Part(2, n). By Lemma 15.7, it suffices to show ∆P

∏k−n+2
a=1 ∆ia,ja

is generated by Sk for any choices of ia 6= ja. We proceed by induction on k > n− 2.

For the base case k = n−1, it suffices to show ∆i,j∆P is generated by Sk for any i 6= j.

If k > n− 1, then by the induction hypothesis, it suffices to show ∆i,j∆P∆k−n+1
iP ,jP

and

∆i,j∆{[n]}∆
k−n
i{[n]},j{[n]}

are generated by Sk. Both the base case and the induction step

will work in the same way.

First, ∆i,j∆{[n]}∆
k−n
i{[n]},j{[n]}

= ∆{[n]}∆
k−n+1
i{[n]},j{[n]}

by Remark 15.6 (2). To deal with

∆i,j∆P∆k−n+1
iP ,jP

, we have two cases.

(1) If {i, j} is not contained in A or B, then ∆i,j∆P is the diagonal ∆{[n]} by Re-

mark 15.6 (1). Then, by Remark 15.6 (2), ∆i,j∆P∆k−n+1
iP ,jP

= ∆k−n+1
i{[n]},j{[n]}

∆{[n]}.

(2) Suppose now each {i, j} is in A or B, and that without loss of generality,

iP , jP ∈ A. If i, j ∈ A, then using Remark 15.6 (2) we may replace ∆i,j

with ∆iP ,jP . If i, j ∈ B, we can use a square relation to replace it with

∆i,iP −∆iP ,jP + ∆jP ,i. We then have ∆i,iP∆P = ∆{[n]} = ∆jP ,i∆P , so

∆i,j∆P∆k−n+1
iP ,jP

= 2∆k−n+1
i{[n]},j{[n]}

∆{[n]} −∆P∆k−n+2
iP ,jP

by Remark 15.6 (2).

�

Theorem 15.16. For n ≥ 3, the natural surjection R � A•PGL2
((P1)n) is an iso-

morphism. Furthermore, Rk has Z-basis given by

(1) {∆P | P ∈ Good(n− k, n)} for k ≤ n− 2
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(2) Sk = {∆{[n]}∆
k−n+1
i{[n]},j{[n]}

} ∪ {∆P∆k−n+2
iP ,jP

| P ∈ Part(2, n)}, where for each

partition P ∈ Part(d, n) for d ≤ 2, arbitrarily choose iP , jP that lie in the

same part.

Proof. If k ≤ n − 2, we have Rk � AkPGL2
((P1)n) is an isomorphism with Z-basis

given by {∆P | P ∈ Good(n− k, n)} by Corollary 15.14. Now, we consider the case

k > n− 2.

The Sk span Rk by Lemma 15.15, so applying (15.1) yields

ZSk � Rk � AkPGL2
((P1)n),

whose composite is a surjection of free Z-modules of the same rank 2n−1 by Lem-

mas 15.4 and 15.15, so it is an isomorphism. This proves Rk � AkPGL2
((P1)n) is an

isomorphism and identifies Sk as a basis. �

15.1. Algorithm and Example. We can describe an algorithm for writing ar-

bitrary classes in A•PGL2
((P1)d) in terms of our Z-basis. The key fact is that if

prn : (P1)n → (P1)n−1 is projection by forgetting the last factor, then by definition of

the pushforward of a cycle

prn∗ ∆P =


∆P\n if n is not isolated, and

0 if n is isolated.

At the level of formulae, if we write our class as a polynomial in the Hi, u, v with

each Hi appearing to degree at most 1, then prn∗ extracts the Hn-coefficient. Also, if

we have a ∆P and we know that either n is isolated or n− 1, n are in the same part,

then as (Hn −Hn−1) ∩∆n−1,n = 0 we also have

prn∗ (∆P ∩ (Hn −Hn−1)) =


0 if n− 1, n are in the same group, and

∆P\n if n is isolated.
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Suppose we have a class

α =
∑

P∈Good(d,n)

aP∆P =
∑

P∈Good(d,n)
n isolated

aP∆P +
∑

P∈Good(d,n)
n−1,n together

aP∆P

and we want to find the coefficients aP .

We first show how to reduce down to the case d = 2. By the above, we have

prn∗ α =
∑

P∈Good(d,n)
n−1,n together

aP∆P\n, prn∗ (α ∩ (Hn −Hn−1)) =
∑

P∈Good(d,n)
n isolated

aP∆P\n.

In the first case each P \ n ∈ Good(d − 1, n), and in the second case each P \ n ∈

Good(d− 1, n− 1) so we can apply induction to determine all of these coefficients.

Once we have reduced down to the case d = 2, we can now identify each aP

separately for P = {A,B} a partition of [n] into two parts by evaluating at Hi = −u

for i ∈ A and Hi = −v for i ∈ B (which is localization at a torus-fixed point). By

Proposition 14.3, this evaluates to a{A,B}(u− v)n−2(−1)|A|−1.

The same method for d = 2 works for elements α ∈ Ak((P1)n) with k > n − 2.

Applying the same substitution to

α =
∑

aP∆k−n+2
iP ,jP

∆P + a{[n]}∆
n−k+1
i{[n]},j{[n]}

∆{[n]}

extracts the aP -coefficient for P = {A,B} a partition of [n] into two parts as this is

the only term that does not vanish under this substitution. Then, we subtract off all

of these terms to recover a[n].

Example 15.17. As a simple example, consider the PGL2-orbit closure of a generic

point in (P1)5. The formula computed in [73, Corollary 4.8] shows that the class of

this orbit is

α = e2(H1, H2, H3, H4, H5) + 2(u+ v)(H1 +H2 +H3 +H4 +H5) + (3u2 + 4uv+ 3v2),
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where e2 is the second elementary symmetric polynomial. We have

α

pr5
∗(α)

pr4
∗(pr∗5(α))

pr3
∗(pr4

∗(pr5
∗(α)))

= 0

pr3
∗(pr4

∗(pr∗5(α)) ∩ (H3 −H2))

= ∆{{1},{2}}

pr4
∗(pr5

∗(α) ∩ (H4 −H3))

= ∆{{1,2},{3},{4}}

pr5
∗(α ∩ (H5 −H4))

= ∆{{1,2,3},{4}}

pr5
∗ α = (H1 +H2 +H3 +H4) + 2(u+ v)

pr5
∗(α ∩ (H5 −H4)) = e2(H1, H2, H3) + (u+ v)(H1 +H2 +H3) + (u2 + uv + v2)

pr4
∗(pr5

∗ α) = 1

pr4
∗(pr5

∗ α ∩ (H4 −H3)) = H1 +H2 + u+ v

pr3
∗(pr4

∗(pr5
∗ α)) = 0

pr3
∗(pr4

∗(pr5
∗ α) ∩ (H3 −H2)) = 1.

The only non-trivial identification was pr5
∗(α ∩ (H5 −H4)) = ∆{{1,2,3},{4}}, which we

can identify as follows. Substitute −u’s and −v’s for the Hi corresponding to all

nontrivial partitions {A,B} of [4] into two parts. We find the only choice that gives

a nonzero result is A = {1, 2, 3}, B = {4}, yielding (u− v)2, which is the same as for

∆{{1,2,3},{4}} by Proposition 14.3. Putting this together yields

α = ∆{{1},{2},{3,4,5}} + ∆{{1,2},{3},{4,5}} + ∆{{1,2,3},{4},{5}}.
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We remark that the PGL2-orbit closure Xn ⊂ (P1)n of a general point in (P1)n

decomposes into good incidence strata as

(15.2) [Xn] =
n−2∑
a=1

∆{{1,...,a},a+1,{a+2,...,n}}

which can be geometrically explained as follows. Consider the diagram

M0,n(P1, 1) (P1)n

M0,n

ev

π

(see Section 11.1.1 for notation). The left and right hand side of (15.2) can both be

described as ev∗π
∗(pt) for pt ∈M0,n being a general point and the point correspond-

ing to a chain of n− 2 rational curves (respectively), and the result follows from the

flatness of π. See [73, Section 4] for a generalization of this degeneration to PGLr+1

orbits closures of general points in (Pr)n.

16. GL2-equivariant classes of strata in SymnP1

Recall from Definition 12.5 that [λ] ∈ A•GL2
(Pn) for λ a partition of n is the push-

forward of ∆P ∈ A•GL2
((P1)n) under the multiplication map (P1)n → Pn for P a

partition of [n] into subsets with cardinalities given by λ. Up to a constant factor

given in Definition 12.5, this is the class of the closure Zλ given in Definition 12.3

of degree n forms on (P1)∨ whose roots have multiplicities given by λ as studied by

Fehér, Némethi, and Rimányi [42].

Definition 16.1. Denote by [a, b, 1c] := [{a, b, 1, 1, . . . , 1}] where there are c 1’s.

From writing the expressions for [λ] in Theorem 14.5 using generating functions,

we find the following new Corollary.
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Corollary 16.2. For d ≥ 2, consider the polynomial

− 1

(z − 1)d−2

d∏
i=1

(zai − 1) =
∑

0≤k1≤k2
k1+k2=n−d+2

αk1(zk1 + zk2).

Then αi ∈ Z and

[a1, . . . , ad] =
∑

1≤k1≤k2
k1+k2=n−d+2

αk1 [k1, k2, 1
d−2]

Proof. Clearly all αi ∈ Z except possibly αn−d+2
2

, which a priori only lies in Z[1
2
]. But

plugging in z = 1 to both sides shows the integrality.

By Theorem 14.5, it suffices to show

d∏
i=1

(zai − 1) =
∑

1≤k1≤k2
k1+k2=n−d+2

αk1(zk1 − 1)(zk2 − 1)(z − 1)d−2.

or equivalently

1

(z − 1)d−2

d∏
i=1

(zai − 1) =
∑
k1≤k2

k1+k2=n−d+2

αk1(zk1 − 1)(zk2 − 1).

By definition of αk, the coefficients of both sides agree except possibly the z0 and

zn−(d−2)-coefficient. Also, the coefficients of z0 and zn−(d−2) are equal to each other on

the left hand side, and the same is true on the right side. To see they agree between

the left and right sides, we note both sides are 0 after substituting z = 1. �

Lemma 16.3. The rational GL2-equivariant classes in Pn of the torus fixed points

∏
j∈[n]\{k}

(H + jv + (n− j)u) ∈ A•T (Pn)⊗Q

are linearly independent.
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Proof. For fixed k, H 7→ −ku− (n− k)v maps
∏

j∈[n]\{k′}(H + jv + (n− j)u) to 0 if

and only if k′ 6= k �

Theorem 16.4. For fixed c ≥ 0, the classes [a, b, 1c] with a + b = n − c and a ≥ b

form a Q-basis for An−c−2
PGL2

(Pn)⊗Q ⊂ An−c−2
GL2

(Pn)⊗Q.

Proof. To show the linear independence, first note that
∏

j∈[n]\{k}(H + jv+ (n− j)u)

are linearly independent in A•T (Pn)⊗Q by Lemma 16.3. Therefore, it suffices to show

for fixed c that the polynomials (za−1)(zb−1)(z−1)c with a ≥ b and a+b = n−c are

linearly independent. Indeed, dividing out by (z − 1)c, we note that (za − 1)(zb − 1)

is the only such polynomial which contains either of the monomials za or zb.

To see that the Q-linear span of the classes [a, b, 1c] is precisely An−c−2
PGL2

(Pn)⊗Q, we

note that we have just shown that the dimension of the Q-linear span of the [a, b, 1c]

is precisely bn−c
2
c by linear independence, which we can check is the same as the

dimension of An−c−2
PGL2

(Pn)⊗Q by Proposition 13.7.

�

17. Integral classes of unordered strata in [SymnP1/PGL2]

In this section, we compute the integral classes of [Zλ] ∈ A•PGL2
(Pn). By Propo-

sition 13.7, if n is odd, then A•PGL2
(Pn) → A•GL2

(Pn) is injective and we know the

image of the [Zλ] in A•GL2
(Pn) by Theorem 14.5, so it suffices to consider the case n

is even, which we assume for the remainder of this section.

Recall the polynomials pn(t) ∈ A•PGL2
(pt)[t] defined in Proposition 13.7 for even n

and let qn be the image of pn in A•PGL2
(pt)/(2)[t] ∼= F2[c2, c3, t]. It is easy to see by

the binomial theorem or directly from [49, Lemma 6.1] that

qn(t) =


t(n+4)/4(t3 + c2t+ c3)n/4 if n ≡ 0 mod 4, and

t(n−2)/4(t3 + c2t+ c3)(n+2)/4 if n ≡ 2 mod 4,

and qn(t) | qn+k(t) for k = 0 or k ≥ 4 for any n.
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By Proposition 13.7, for n even,

A•PGL2
(Pn) ∼= Z[c2, c3, H]/(2c3, pn(H)),

which is isomorphic to(
n⊕
i=0

Z[c2]H i

)
⊕

(
n⊕
i=0

c3F2[c2, c3]H i

)

as abelian groups. So to determine the class [Zλ] ∈ A•PGL2
(Pn), it suffices to find its

image in
⊕n

i=0 Z[c2]H i and
⊕n

i=0 c3F2[c2, c3]H i. Equivalently, if we write the class of

[Zλ] as a polynomial in c2, c3, and H with degree at most n in H, then it suffices to

consider the terms not containing c3 and the terms containing c3 separately. Under

the map A•PGL2
(Pn) → A•GL2

(Pn), Proposition 13.7 shows that the first factor maps

injectively and the second factor maps to zero.

We can determine the image of [Zλ] in the first factor using Theorem 14.5, so it

suffices to determine the image of [Zλ] in the second factor to identify its class. To

do this, we will work modulo 2 and determine [Zλ] ∈ A•PGL2
(Pn)⊗Z/2Z. Discarding

those monomials not containing c3 then yields the image of [Zλ] in the second factor.

Definition 17.1. We say a partition λ = ae11 . . . aekk of n into d =
∑k

i=1 ei parts is

special if all ai and d!
e1!···ek!

are odd, and all ei are even.

Theorem 17.2. Let d and n be integers with n even. The class of [Zλ] ∈ A•PGL2
(Pn)⊗

Z/2Z for λ a partition of n into d parts is given by
qn
qd

(H) if λ is special, and

0 otherwise.

Remark 17.3. If [Zλ] ∈ A•PGL2
(Pn)⊗Z/2Z is zero, then the component in

⊕n
i=0 Z[c2]H i

is a multiple of 2, and the component in
⊕n

i=0 c3F2[c2, c3]H i is zero.
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Furthermore, given the statement of the theorem, if [Zλ] ∈ A•PGL2
(Pn) ⊗ Z/2Z

is non-zero, then the component in
⊕n

i=0 c3F2[c2, c3]H i is non-zero and is given by

discarding anything with a c0
3-coefficient in qn

qd
(H).

Lemma 17.4. Given a ring R[H]/(P (H)) for P a monic polynomial of degree n+1,

define the R-linear map
∫

: R[H]/(P (H)) → R given by taking a polynomial f(H),

and outputting the Hn-coefficient of the reduction f̃(H) of f(H) (mod P (H)) to a

polynomial of degree ≤ n. Then letting t be an indeterminate, we have∫
P (H)− P (t)

H − t
f(H) = f̃(t).

Proof. We have∫
P (H)− P (t)

H − t
f(H)

=

∫
P (H)− P (t)

H − t
f̃(H)

=

∫
P (H)

f̃(H)− f̃(t)

H − t
−
∫
P (t)

f̃(H)− f̃(t)

H − t
+

∫
P (H)− P (t)

H − t
f̃(t)

=0 + 0 + f̃(t) = f̃(t).

Where in the second last equality, the first term is zero because the integrand is a

multiple of P (H), the second term is zero because f̃(H)−f̃(t)
H−t is a polynomial of degree

at most n− 1, and the last term is f̃(t) because P (H)−P (t)
H−t is monic of degree n. �

Remark 17.5. Let G be a linear algebraic group and V be a representation. Then,

A•G(P(V )) ∼= A•G(pt)[H]/(P (H))

A•G(P(V )× P(V )) ∼= A•G(pt)[H1, H2]/(P (H1), P (H2)),

where P ∈ A•G[T ] is T dim(V ) +cG1 (V )T dim(V )−1 + · · ·+cGdim(V )(V ) by the projective bun-

dle theorem and the class of the diagonal in P(V )×P(V ) is (P (H1)−P (H2))/(H1−
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H2), giving a geometric interpretation of Lemma 17.4. This can be proven, for ex-

ample, by first noting that it suffices to consider the case G = GL(V ). Then, we

can restrict to a maximal torus [27, Proposition 6] and use the fact that the diagonal

in P(V ) × P(V ) admits a torus-equivariant deformation into a union of products of

coordinate linear spaces [16, Theorem 3.1.2].

Proof of Theorem 17.2. Note that when all ai are odd and all ei are even then n =∑
aiei is either equal to

∑
ei, or exceeds it by at least 4, so qe1+...+ek | qn and the

claimed expression for [Zλ] is well-defined.

We resolve Zλ birationally with the map

Ψ :
k∏
i=1

Pei → Pn

taking (D1, . . . , Dk) 7→ a1D1 + . . .+ akDk (treating P r = SymrP1 for all r).

If at least one ei is odd, then we claim c3[Zλ] = 0. Indeed,

c3[Zλ] = Ψ∗c3,

and c3 ∈ A•PGL2
(pt) maps to 0 in A•PGL2

(
∏k

i=1 Pei) as the projection
∏k

i=1 Pei → pt

can be factored as the composite
∏k

i=1 Pei → Pei → pt, and if ei is odd then c3 pulls

back to zero in A•PGL2
(Pei) by Proposition 13.7.

Hence, as c3[Zλ] = 0, we must have [Zλ] is zero in A•PGL2
(Pn)⊗ Z/2Z.

Now, suppose that all ei are even. This means each Pei is the projectivization of a

PGL2-representation with Chern classes given as the coefficients of pei(t), so we have

the Chow ring

A•PGL2
(
k∏
i=1

Pei) ∼= A•PGL2
(pt)[H1, . . . , Hk]/(pe1(H1), . . . , pek(Hk))

by repeatedly applying the projective bundle formula.
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For the remainder of the proof all integrals are in Chow rings after tensoring with

Z/2Z, so each pr(t) gets replaced with qr(t). By Lemma 17.4, it suffices to show

∫
Pn

qn(t)− qn(H)

t−H
∩Ψ∗1 =


qn
qd

(t) if all ai and d!
e1!...ek!

are odd and

0 otherwise.

By the projection formula applied to Ψ, we have∫
Pn

qn(t)− qn(H)

t−H
∩Ψ∗1 =

∫
∏k
i=1 Pei

qn(t)− qn(
∑
aiHi)

t−
∑
aiHi

.

Now, if any ai is even, then as we are working modulo 2, qn(t)−qn(
∑
aiHi)

t−
∑
aiHi

will not

contain Hi, so the integral is clearly zero. Hence we may assume from now on that

all ai are odd, so that
∑
aiHi =

∑
Hi mod 2.

We claim that qd(
∑
Hi) = 0 and that∫
∏k
i=1 Pei

qd(t)− qd(
∑
Hi)

t−
∑
Hi

=
d!

e1! · · · ek!
.

The first of these follows from pulling back qd(H) under the multiplication map∏k
i=1 Pei → Pd, and the second of these follows from applying Lemma 17.4 to 1 ∈

A•PGL2
(Pd) together with the projection formula as the multiplication map has degree

d!
e1!···ek!

.

From the vanishing of qd(
∑
Hi), we have

qn(t)− qn(
∑
Hi)

t−
∑
Hi

=
qn
qd

(t)
qd(t)− qd(

∑
Hi)

t−
∑
Hi

+ qd(
∑

Hi)

qn(t)
qd(t)
− qn(

∑
Hi)

qd(
∑
Hi)

t−
∑
Hi

=
qn
qd

(t)
qd(t)− qd(

∑
Hi)

t−
∑
Hi

,

and the result now follows from the second claim after applying
∫∏k

i=1 Pei to both

sides. �
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We now prove surprisingly that despite the presence of occasional 2-torsion, integral

relations between [Zλ] classes in A•GL2
(Pn) are equivalent to integral relations between

[Zλ]-classes in A•PGL2
(Pn).

Theorem 17.6. Let n, d be integers. A linear combination
∑
aλ[Zλ] with aλ ∈ Z

and each λ a partition of n into d parts is zero in A•PGL2
(Pn) if and only if it is zero

in A•GL2
(Pn). In particular,

∑
aλ[Zλ] = 0 if and only if

∑
λ=a

e1
1 ...a

ek
n

aλ

k∏
i=1

(zai − 1)ei

ei!
= 0.

Proof. One direction is trivial, as we have the map A•PGL2
(Pn) → A•GL2

(Pn) induced

by GL2 → PGL2, so if a linear relation holds in A•PGL2
(Pn), then it also holds in

A•GL2
(Pn). Conversely, suppose that we have

∑
aλ[Zλ] = 0 in A•GL2

(Pn). We only have

to care about the case that n is even, because when n is odd, A•PGL2
(Pn) ↪→ A•GL2

(Pn)

is an injection by Proposition 13.7.

For n even, suppose we have a sum
∑
aλ[Zλ], which is 0 in A•GL2

(Pn). Then

since the kernel of A•PGL2
(Pn)→ A•GL2

(Pn) is 2-torsion by Proposition 13.7, we know∑
aλ[Zλ] is 2-torsion in A•PGL2

(Pn). By Theorem 17.2, the class [Zλ] in A•PGL2
(Pn)⊗

Z/2Z is either 0 or qn
qd

(H), and the second possibility occurs precisely when λ is

special. Hence to prove Theorem 17.6, by Theorem 14.5 and Lemma 16.3 it suffices

to show that if

(17.1)
∑

λ=a
e1
1 ...a

ek
n

aλ

k∏
i=1

(zai − 1)ei

ei!
= 0,

then

∑
λ special

aλ ≡ 0 (mod 2).

Note first that if no special λ appears we are done, so we may assume that at least

one special λ appears. As d =
∑k

i=1 ei for any partition λ = ae11 . . . aekn appearing, we
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must have d is even if a special λ appears. Multiplying (17.1) by d!
(z−1)d

and plugging

in z = 1, we have

∑
λ=a

e1
1 ...aenn

aλ
d!

e1! · · · ek!

k∏
i=1

ai
ei = 0.

Now we claim that d!
e1!···ek!

is even if any ei is odd. Indeed, as d is even, if not all ei are

even, then at least two of the ei are odd. If ei, ej are both odd, then replacing ei!ej!

in d!
e1!···ek!

with (ei − 1)!(ej + 1)! yields an integer with a smaller power of 2 dividing

it.

Hence, d!
e1!···ek!

∏k
i=1 ai

ei is odd precisely when λ is special. Taking the equality

(mod 2) then yields the desired result. �

We complete the proof of Theorem 11.8.

Proof of Theorem 11.8. We have (1), (2) and (4) are equivalent by Theorem 17.6.

Also (3) implies (2) is clear as A•GL2
(Pn) is free as an abelian group, so A•GL2

(Pn) ↪→

A•GL2
(Pn)⊗Q.

To finish, it suffices to show (2) implies (3). Let λ = (λ1, . . . , λd) for λ1 ≥ · · · ≥ λd.

Claim. Suppose λ3 > 1. Then using pushforwards of square relations in A•PGL2
((P1)n),

we can express [λ] ∈ A•PGL2
(Pn) in terms of classes [λ′] where λ′ = (λ′1, . . . , λ

′
d) where

λ1 + λ2 > λ′1 + λ′2.

Proof of Claim. Pick a partition P = {A1, . . . , Ad} of [n] with |Ai| = λi. Since

|A3| > 1, we can partition it as A3 = A′3 t A′′3 into nonempty parts. Now, applying

the square relation associated to P ′ = {A1, A2, A
′
3, A

′′
3, . . . , Ad} of [n] into d+ 1 parts

and the parts A1, A2, A3, A
′′
3 shows

[λ] = [λ1] + [λ2]− [λ3],
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where λ′3 = |A′3| and λ′′3 = |A′′3| and

λ1 = {λ1 + λ′3, λ2, λ
′′
3, . . . , λd}

λ2 = {λ1, λ2 + λ′′3, λ
′
3, . . . , λd}

λ3 = {λ1 + λ2, λ
′
3, λ
′′
3, . . . , λd}.

�

Returning to the proof of Theorem 11.8, iterating the claim shows that the push-

forward of square relations allow us to rewrite any [λ] in terms of the Q-basis found

in Theorem 16.4, which shows (2) implies (3). �

18. Excision of unordered strata in [SymnP1/PGL2]

As an application of our results in the ordered case, we will prove the following

result on the PGL2-equivariant Chow ring of Pn with strata excised, which we will

adapt in the next section to the case of GL2-equivariant Chow rings with strata in

both Pn and in An+1.

Theorem 18.1. Given a partition λ = {λ1, . . . , λd} of n,

A•PGL2
(Pn \ Zλ) = A•PGL2

(Pn)/I,

where the ideal I ⊗ Q ⊂ A•PGL2
(Pn) ⊗ Q is generated by all [λ′] for λ′ a partition

formed by merging some of the parts of λ.

Even though Theorem 18.1 requires many generators for I, in some cases fewer

generators suffice.
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Theorem 18.2. Given the partition λ = {a, 1n−a} of n, the ideal I ⊗ Q in Theo-

rem 18.1 is generated by [λ] and [λ′], where

λ′ =


{a+ 1, 1n−a−1} if a 6= n

2

{a, 2, 1n−a−2} if a = n
2
.

See Remark 19.3 for the connection to similar results proved in [42].

By the excision exact sequence [50, Proposition 1.8], the ideal I is the same as the

pushforward ideal Iλ which we define in Definition 18.3.

Definition 18.3. Given a partition λ of n and for G = PGL2 or GL2, let IGλ be the

ideal of A•G(Pn) given by the pushforward via the inclusion ιλ : Zλ ↪→ Pn

IGλ = (ιλ)∗A
G
• (Zλ) ⊂ AG• (Pn)

and the identification AG• (Pn) ∼= An−•G (Pn) via Poincaré duality [27, Proposition 4].

When G is clear from context we will simply write Iλ.

Since Zλ is possibly singular, we will want to instead work with a desingularization

(as was done in [42]).

Definition 18.4. Given a partition λ = {λ1, . . . , λd} of n, let eλi = #{j | λj = i}

and Yλ =
∏n

i=1 Pe
λ
i . We have a map

ι̂λ : Yλ → Pn

that is birational onto its image Zλ given by the composition

Yλ ↪→
n∏
i=1

Pieλi → Pn
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of the ith power map on each factor Pei together with the multiplication map. Equiv-

alently, if we view projective space Pn as parameterizing degree n divisors on P1, then

the map is given by (D1, . . . , Dn) 7→
∑n

i=1 iDi.

In particular, Iλ is also given by the image of (ι̂λ)∗. Since we are working rationally,

we can take a finite cover of Yλ.

Definition 18.5. Given a partition λ = {λ1, . . . , λd} of n, define the finite map

Φλ : (P1)d → Yλ to be

Φλ : (P1)d =
n∏
i=1

(P1)e
λ
i →

n∏
i=1

Peλi = Yλ

given by the multiplication map (P1)e
λ
i → Peλi on each factor.

Since Φλ is finite,

(Φλ)∗ : A•PGL2
((P1)d)⊗Q→ A•PGL2

(Yλ)⊗Q

is surjective, so Iλ ⊗Q is the image of

(ι̂λ ◦ Φλ)∗ : A•PGL2
((P1)d)⊗Q→ A•PGL2

((P1)n)⊗Q.

The map Φλ has the nice property that given a partition P of [d], the pushforward

of the strata (ι̂λ ◦Φλ)∗∆P is [λ′], where λ′ is the partition of n given by merging the

parts of λ according to the partition P . From this, we will be able to deduce certain

symmetrized strata generate Iλ ⊗ Q based on the generation properties of strata in

(P1)d.

Definition 18.6. Given a set of partitions P of [d] and G = PGL2 or GL2, let

ΛG
P ⊂ A•G((P1)d)⊗Q be the submodule over A•G(Pn)⊗Q generated by the classes ∆P .

Explicitly,

ΛG
P =

∑
P∈P

∆P ∩ Φ∗λι̂
∗
λ(A

•
G(Pn)⊗Q).
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When G is clear from context we will notate ΛG
P simply by ΛP .

Lemma 18.7. Let λ = {λ1, . . . , λd} be a partition of n, and let G = PGL2 or GL2.

Suppose we have a collection of partitions P of [d] such that in A•G((P1)d)⊗Q

A•G((P1)d)
∏n
i=1 Seλ

i ⊗Q ⊂ ΛG
P .

Then {(ι̂λ ◦ Φλ)∗∆P | P ∈ P} generates IGλ ⊗Q ⊂ A•G(Pn)⊗Q.

Proof. Since

Φ∗λ(A
•
G(Yλ)⊗Q) ⊂ A•G((P1)d)

∏n
i=1 Seλ

i ⊗Q ⊂ ΛG
P ,

we have

(Φλ)∗Λ
G
P ⊃ (Φλ)∗(Φ

∗
λ(A

•
G(Yλ))⊗Q) = A•G(Yλ)⊗Q

and by the projection formula, (Φλ)∗Λ
G
P is

(Φλ)∗
∑
P∈P

∆P ∩ Φ∗λι̂
∗
λ(A

•
G(Pn)⊗Q) =

∑
P∈P

(Φλ)∗∆P ∩ ι̂∗λ(A•G(Pn)⊗Q).

By the projection formula again, we thus have

IGλ ⊗Q = (ι̂λ)∗(A
•
G(Yλ)⊗Q) =

∑
P∈P

(ι̂λ ◦ Φλ)∗∆P ∩ A•G(Pn)⊗Q

as desired. �

Lemma 18.8. Let λ = {λ1, . . . , λd} be a partition of [n] and P be all partitions of

[d]. Then

ΛPGL2
P =


A•PGL2

((P1)2)S2 ⊗Q if d = 2 and λ1 = λ2, and

A•PGL2
((P1)d)⊗Q otherwise.

In particular, given a partition λ = {λ1, . . . , λd} of n, IPGL2
λ ⊗ Q is generated by

all [λ′] with λ′ formed by merging parts of λ.



115

Proof. Given the description of ΛPGL2
P , the result about IPGL2

λ ⊗ Q follows directly

from Lemma 18.7. We will now show the description of ΛPGL2
P .

We may identify A•PGL2
(Pn) ⊗ Q ⊂ A•GL2

(Pn) ⊗ Q as the subring generated by

H + n
2
(u+ v) and (u− v)2 by Proposition 13.7. Define

H ′i = Hi +
1

2
(u+ v) and H ′ = H +

n

2
(u+ v).

Note that with these definitions, we have

Φ∗λι̂
∗
λ(H

′) =
∑

λiH
′
i, H ′2i =

1

4
(u− v)2.

We have the Q-linear span

ΛP = SpanQ({∆P (u− v)2k(
∑

λiH
′
i)
` | k, l ≥ 0, P ∈ P}).

The trivial partition is in P , so 1 is automatically in ΛP .

Recall by Proposition 14.4 that

∆i,j = H ′i +H ′j,

and that A•PGL2
((P1)d)⊗Q is generated by the H ′i and (u− v)2. As H ′2i = 1

4
(u− v)2,

to show ΛP = A•PGL2
((P1)d)⊗Q it suffices to show that every monomial

∏
i∈C H

′
i is

in ΛP for C ⊂ [n].

For d = 1, λ = {[n]}, we are done as H ′1 = 1
λ1

Φ∗λι
∗
λH
′.

For d = 2 and λ1 6= λ2,

H ′1 =
1

λ1 − λ2

(Φ∗λι̂
∗
λ(H

′)− λ2∆1,2)

H ′2 =
1

λ2 − λ1

(Φ∗λι̂
∗
λ(H

′)− λ1∆1,2)

H ′1H
′
2 =

1

2λ1λ2

(Φ∗λι̂
∗
λ(H

′)2 − 1

4
(λ2

1 + λ2
2)(u− v)2).
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For d = 2 and λ1 = λ2 = a, we have to show ΛP = A•PGL2
((P1)2)S2 ⊗ Q. As

H ′2i = 1
4
(u−v)2, it suffices to show 1, H ′1 +H ′2 and H ′1H

′
2 are in ΛP . We already know

that 1 ∈ ΛP , and

H ′1 +H ′2 =
1

a
Φ∗λι̂

∗
λH
′,

H ′1H
′
2 =

1

2a2
(Φ∗λι̂

∗
λ(H

′)2 − 1

2
a2(u− v)2).

We will now show that ΛP = A•PGL2
((P1)d)⊗Q when d ≥ 3.

Up to degree d − 2, we can take k, ` = 0 as the classes ∆P for P ∈ P generate

A≤d−2
PGL2

((P1)d) by Lemma 15.12. Hence to conclude the proof of Lemma 18.8, it suffices

to show that
∏

k 6=iH
′
k for all i and

∏
H ′k are in ΛP .

For
∏

k 6=iHk, without loss of generality suppose i = 1. We have each of

1

a1a2

(
∏
k 6=1,2

H ′k) ∩ Φ∗λι̂
∗
λH
′ =

1

a1

∏
k 6=1

H ′k +
1

a2

∏
k 6=2

H ′k +
1

4a1a2

(u− v)2
∑
j 6=1,2

aj
∏

k 6=1,2,j

H ′k

1

a1a3

(
∏
k 6=1,3

H ′k) ∩ Φ∗λι̂
∗
λH =

1

a1

∏
k 6=1

Hk +
1

a3

∏
k 6=3

Hk +
1

4a2a3

(u− v)2
∑
j 6=2,3

aj
∏

k 6=2,3,j

H ′k

1

a2a3

(
∏
k 6=2,3

H ′k) ∩ Φ∗λι̂
∗
λH =

1

a2

∏
k 6=2

Hk +
1

a3

∏
k 6=3

Hk +
1

4a1a3

(u− v)2
∑
j 6=1,3

aj
∏

k 6=1,3,j

H ′k

lie in ΛP as we have already shown each
∏

k 6=i,j Hk lies in Λ. Also, the last term on

each right hand side lies in ΛP as the number of terms in the H ′k monomial is d− 3.

Hence taking a linear combination we get
∏

k 6=1 H
′
k ∈ ΛP .

To show
∏n

i=1 H
′
i ∈ ΛP , we can proceed similarly to above, or expand

1

a1 . . . an
Φ∗λι̂

∗
λ(H

′)d =
∏

H ′i + (u− v)2 (lower order terms in the H ′i) ,

using H ′2i = 1
4
(u− v)2. �

Proof of Theorem 18.1. This follows from the excision exact sequence [50, Proposi-

tion 1.8] and Lemma 18.8. �
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Lemma 18.9. Let λ = {a, 1b} be a partition of n. Define Pλ to be the set of partitions

Pλ = {T} t


{T1,i}i≥2 a 6= b

{Ti,j}2≤i<j≤n a=b,

where T is the trivial partition and Ti,j is the partition with n − 1 parts and i, j in

the same part. Then

ΛPGL2
Pλ = A•PGL2

((P1)b+1)S1×Sb ⊗Q.

Proof. Define

H ′ = H +
n

2
(u+ v) and H ′i = Hi +

1

2
(u+ v).

Then in particular,

∆i,j = H ′i +H ′j

Φ∗λι̂
∗
λ(H

′) = aH ′1 +H ′2 + . . .+H ′b+1,

so ΛPλ is the Q-linear span

ΛPλ = SpanQ{∆P (u− v)2k(aH ′1 +H ′2 + . . .+H ′b+1)` | k, ` ≥ 0, P ∈ Pλ}.

We first show that H ′1 ∈ ΛPλ . Consider the case b 6= a. Then

H ′1 =
1

a− b

(
Φ∗λι̂

∗
λ(H

′)−
∑
i≥2

∆1,i

)
∈ ΛPλ .

Now consider the case b = a. Then

H ′1 =
1

a

(
Φ∗λι̂

∗
λ(H

′)− 1

a− 1

∑
2≤i<j≤a+1

∆i,j

)
∈ ΛPλ .
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Now that we have shown that H ′1 ∈ Λ, it therefore suffices to show that the invariant

subring A•PGL2
((P1)b+1)S1×Sb is given by

SpanQ{(u−v)2k(aH ′1+H ′2+. . .+H ′b+1)`, H ′1(u−v)2k(aH ′1+H ′2+. . .+H ′b+1)` | k, ` ≥ 0}

Note that by using the relation H ′21 = 1
4
(u− v)2, we see this is the same as

SpanQ{H ′k1 (aH ′1 +H ′2 + . . .+H ′b+1)` | k, ` ≥ 0}

= SpanQ{H ′k1 (H ′2 + . . .+H ′b+1)` | k, ` ≥ 0}

= SpanQ{(u− v)2k(H ′1 +H ′2 + . . .+H ′b+1)`,

H ′1(u− v)2k(H ′1 +H ′2 + . . .+H ′b+1)` | k, ` ≥ 0}.

By using the relations H ′2i = 1
4
(u − v)2 whenever possible, we see that an element

of the invariant subring is a sum of terms of the form (u− v)2kej(H
′
2, . . . , H

′
b+1) and

(u − v)2kH ′1ej(H
′
2, . . . , H

′
b+1) where ej is the jth elementary symmetric polynomial,

hence it suffices to show that

SpanQ{(u−v)2kej(H
′
2, . . . , H

′
b+1) | j, k ≥ 0} ⊂ SpanQ{(u−v)2k(H ′2+. . .+H ′b+1)` | k, ` ≥ 0}.

This follows by induction on j and the relation

ej(H
′
2, . . . , H

′
b+1)(H ′2 + . . .+H ′b+1)

= (j + 1)ej+1(H ′2 + . . .+H ′b+1) +
1

4
(u− v)2(n− j + 1)ej−1(H ′2, . . . , H

′
b+1).

�

Proof of Theorem 18.2. This follows from the excision exact sequence [50][Proposition

1.8], Lemma 18.7, and Lemma 18.9. �
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19. Excision of unordered strata in [SymnP1/GL2] and [SymnK2/GL2]

In this section, we show how our results about excision of unordered strata in

[SymnP1/PGL2] imply similar results in [SymnP1/GL2] and [SymnK2/GL2], recov-

ering and extending some results of [42] (see Remark 19.3).

Definition 19.1. Given a partition λ of n, let Ĩλ be the ideal of A•GL2
(An+1) given

by the image of the pushforward AGL2
• (Z̃λ) ↪→ AGL2

• (An+1) and the identification

AGL2
• (An+1) ∼= An+1−•

GL2
(An+1) via Poincaré duality [27, Proposition 4].

Theorem 19.2. IGL2
λ ⊗Q (respectively Ĩλ⊗Q) is generated by all [Zλ′ ] (respectively

[Z̃λ′ ]) with λ′ formed by merging parts of λ. For λ = {a, 1n−a} only two generators

are required, namely [Zλ] (respectively [Z̃λ]) and [Zλ′ ] (respectively [Z̃λ′ ]) where

λ′ =


{a+ 1, 1n−a−1} if a 6= n

2

{a, 2, 1n−a−2} if a = n
2
.

Remark 19.3. In the affine case, when n is odd and a = dn
2
e this recovers [42,

Theorem 4.3], and when n is even and a = n
2

this recovers the rational Chow ring of

the stable locus in [42, Theorem 4.10].

Lemma 19.4. We have

Q[u, v]S2
(
A•PGL2

((P1)d)⊗Q
)Se1×...×Sek =

(
A•GL2

((P1)d)⊗Q
)Se1×...×Sek and

Q[u, v]S2
(
A•PGL2

(Pn)⊗Q
)

= A•GL2
(Pn)⊗Q.

In particular, if a set of partitions P satisfies the hypotheses of Lemma 18.7 for

G = PGL2, then they also satisfy the hypotheses of Lemma 18.7 for G = GL2.

Proof. We identify A•PGL2
((P1)d) ⊗ Q as the subring of A•GL2

((P1)d) ⊗ Q via Propo-

sition 13.7 generated by H ′ := H + n
2
(u + v) and (u − v)2. Since A•GL2

((P1)d) ⊗
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Q is generated by H ′ over Q[u, v]S2 , and (u − v)2 and u + v generate Q[u, v]S2 ,

Q[u, v]S2
(
A•PGL2

(Pn)⊗Q
)

= A•GL2
(Pn)⊗Q.

For the other equality, we use Theorem 13.3 to identify A•PGL2
(Pn)⊗Q as the sub-

ring ofA•GL2
(Pn)⊗Q generated byH ′i := Hi+

u+v
2

. Then,
(
A•PGL2

((P1)d)⊗Q
)Se1×...×Sek

is generated Z-linearly by all p(H ′1, . . . , H
′
n), where p is a polynomial invariant under

the action of Se1 × · · · × Sek . Similarly,
(
A•GL2

((P1)d)⊗Q
)Se1×...×Sek is generated by

all such p(H ′1, . . . , H
′
n), together with u+ v and uv. Therefore,

Q[u, v]S2
(
A•PGL2

((P1)d)⊗Q
)Se1×...×Sek =

(
A•GL2

((P1)d)⊗Q
)Se1×...×Sek .

�

As we will now see, the cones over generators of IGL2
λ ⊗ Q also generate Ĩλ ⊗ Q.

We will use a certain property about the classes of unordered strata to prove this,

which as we will see is that Zλ contains a cycle whose class divides the class of the

origin in A•GL2
(An+1)⊗Q.

Lemma 19.5. Given a partition λ of n and a set of generators S of IGL2
λ ⊗ Q of

degree at most n, Ĩλ ⊗Q is generated by

{α0 | α ∈ S},

where α0 is the constant term of α ∈ A•GL2
(Pn)⊗Q, after writing α as a polynomial in

H, u, v that is degree at most n in H using the relation G(H) = 0 (see Section 12.3).

Proof. Let Ĩ ′λ ⊂ A•GL2
(An+1)⊗Q be the ideal generated by {α0 | α ∈ S}, so we want

to show Ĩ ′λ = Ĩλ ⊗Q. Consider the diagram of rational Chow rings (we omit ⊗Q for

brevity)
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A•GL2
(Pn) A•GL2×Gm(An+1\{0}) A•GL2

(An+1\{0}) A•GL2
(An+1)

A•GL2
(Pn\Zλ) A•GL2×Gm(An+1\Z̃λ) A•GL2

(An+1\Z̃λ) A•GL2
(An+1\Z̃λ)

π1

∼

π2 π3 π4

∼ ∼

where Gm acts by scaling on An+1.

We know Iλ ⊗ Q is the kernel of π1, so it maps surjectively to the kernel of π3 in

A•GL2
(An+1\{0}). Each generator α ∈ S maps to the image of α0 in A•GL2

(An+1\{0})⊗

Q. Since the kernel of A•GL2
(An+1) ⊗ Q → A•GL2

(An+1\{0}) ⊗ Q is generated by∏n
i=0 (iu+ (n− i)v), we have Ĩ ′λ + 〈

∏n
i=0 (iu+ (n− i)v)〉 = Ĩλ ⊗ Q. To finish, it

suffices to see
∏n

i=0 (iu+ (n− i)v) ∈ Ĩ ′λ.

As Z{n} is a cycle in Zλ, [{n}] can be expressed as an A•GL2
(Pn)⊗Q-linear combi-

nation of the elements of S, and taking the constant terms yields

[{n}]0 = n
n−1∏
i=1

(iu+ (n− i)v) ∈ Ĩ ′λ

by Proposition 14.1 and Section 14.4, which divides
∏n

i=0 (iu+ (n− i)v). �

Proof of Theorem 19.2. Apply Lemma 19.4 to Lemmas 18.8 and 18.9 to get the state-

ments on IGL2
λ ⊗Q. Then, apply Lemma 19.5 to get the statements on Ĩλ. �

D. Multiplicative relations between symmetrized strata

In this section, we investigate certain multiplicative relations between the classes

[Z̃λ] ∈ A•GL2
(SymnK2). These are equivalent to certain relations between the degree

0 terms of the expressions for [λ] ∈ A•GL2
(Pn) by Section 12.5. For this, it suffices to

restrict ourselves to the Q-basis given by the [a, b, 1c]-classes from Theorem 16.4.

Definition D.1. Denote by [a, b, 1c]0 ∈ Z[u, v]S2 be the term of [a, b, 1c] ∈ H•GL2
(Pn)

that is degree zero in H.

We show how to write (u+v)[a, b, 1c]0 and uv[a, b, 1c]0 as a Q-linear combination of

strata. A few of these multiplicative relations have been explicitly written down [42,
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Remark 3.9] and shown to exist abstractly [42, Theorems 4.3 and 4.10] using the de-

generation of a spectral sequence of a filtered CW-complex. We give a combinatorial

method to do this in general in Theorems D.2 and D.4.

Theorem D.2. For c ≥ 1 and a+ b+ c = n,

n(u+ v)[a, b, 1c]0 = (c+ a− b)[a+ 1, b, 1c−1]0

+(b+ c− a)[a, b+ 1, 1c−1]0

+(a+ b− c)[a+ b, 1, 1c−1]0.

Proof. We will prove Theorem D.2 by pulling back to (P1)n. By Lemma 12.8, we

want to show

(2H + nu+ nv)[a, b, 1c] = (c+ a− b)[a+ 1, b, 1c−1]

+(b+ c− a)[a, b+ 1, 1c−1]

+(a+ b− c)[a+ b, 1, 1c−1].

Let A = {1, . . . , a}, B = {b+1, . . . , a+ b}. By the projection formula, the right hand

side is

Φ∗(∆{A,B} ∩ Φ∗(2H + nu+ nv)).

The pullback of 2H + nu+ nv along Φ is

(H1 +H2 + u+ v) + (H2 +H3 + u+ v) + . . .+ (Hn +H1 + u+ v)

= ∆1,2 + ∆2,3 + . . .+ ∆n,1

by Proposition 14.4. In this way, we now only have to intersect strata using Propo-

sition 14.2 and the square relation as in Proposition 15.2.
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There are 6 cases: 1 ≤ i ≤ a − 1, i = a, a + 1 ≤ i ≤ a + b − 1, i = a + b,

a + b + 1 ≤ i ≤ n− 1, and i = n. We will deal with each of these cases in the same

way outlined above.

To calculate Φ∗(∆i,i+1∆{A,B}) for 1 ≤ i ≤ a − 1, we use the square relation to

replace ∆i,i+1 with ∆i,n − ∆n,a+1 + ∆a+1,i+1. Using Proposition 14.2, each of the

products is itself a strata, and the pushforward is

[a+ 1, b, 1c−1]− [a, b+ 1, 1c−1] + [a+ b, 1, 1c−1].

A B
i
i+1 a+1

n

For i = a, Proposition 14.2 implies ∆a,a+1∆A,B = ∆{AtB}, which pushes forward

to

[a+ b, 1, 1c−1].

Similarly to before, for a+ 1 ≤ i ≤ a+ b− 1, the pushforward is

[a, b+ 1, 1c−1]− [a+ 1, b, 1c−1] + [a+ b, 1, 1c−1].

For i = a + b, Proposition 14.2 implies ∆a+b,a+b+1∆{A,B} = ∆{A,Bt{a+b+1}}, which

pushes forward to

[a, b+ 1, 1c−1].

For a+ b+1 ≤ i ≤ n−1, replace ∆i,i+1 with ∆i,a−∆a,a+1 +∆a+1,i+1, and similarly

to before we get the pushforward is

[a+ 1, b, 1c−1]− [a+ b, 1, 1c−1] + [a, b+ 1, 1c−1].
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Finally, for i = n, using Proposition 14.2, ∆n,1∆{A,B} = ∆{At{n},B}, so this will

pushforward to

[a+ 1, b, 1c−1].

Combining these yields the desired result. �

Remark D.3. Given a partition λ of n with at least three nontrivial parts, the

argument of Theorem D.2 is a combinatorial algorithm that can non-canonically

express n(u + v)[λ] in terms of other classes [λ′] with one fewer part. The number

of square relations can be drastically reduced in practice by an appropriate choice of

the partition pushing forward to [a1, . . . , ad].

Theorem D.4. For c ≥ 2, and a+ b+ c = n

n2uv[a, b, 1c]0 = (2ab+ ac+ bc+ c(c− 1))[a+ 1, b+ 1, 1c−2]0

+(−ab− bc)[a+ 2, b, 1c−2]0

+(−ab− ac)[a, b+ 2, 1c−2]0

+(−ac− bc− c(c− 1))[a+ b+ 1, 1, 1c−2]0

+(ac+ bc)[a+ b, 2, 1c−2]0.
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Proof. As in the previous theorem letting A = {1, . . . , a}, B = {a+ 1, . . . , a+ b} the

statement is equivalent to

Φ∗((
∑

Hi + nu)(
∑

Hi + nv)∆{A,B})

= (2ab+ ac+ bc+ c(c− 1))[a+ 1, b+ 1, 1c−2]

+(−ab− bc)[a+ 2, b, 1c−2]

+(−ab− ac)[a, b+ 2, 1c−2]

+(−ac− bc− c(c− 1))[a+ b+ 1, 1, 1c−2]

+(ac+ bc)[a+ b, 2, 1c−2].

We have (Hi + u)(Hi + v) = 0, so

(
∑

Hi + nu)(
∑

Hi + nv) =
∑

1≤i<j≤n

(Hi + u)(Hj + v) + (Hj + u)(Hi + v)

=
∑

1≤i<j≤n

−(Hi −Hj)
2

=
∑

1≤i<j≤n

−(∆i,ki,j −∆j,ki,j)
2

where ki,j ∈ [n]\{i, j} is arbitrary. There are 6 cases depending on which of A,B, [n]\

{A,B} each of i, j lie in, and for each of these cases an appropriate choice of ki,j can be

made so that the strata combine via Proposition 14.2 as in the proof of Theorem D.2

and push forward to [a′, b′, 1c−2]-classes. �

Remark D.5. Similarly to Theorem D.2, the argument of Theorem D.4 is a com-

binatorial algorithm that can express n2uv[λ] in terms of other classes [λ′] with two

fewer parts for any partition λ of n with at least four parts.
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Part 4. Divisors on the moduli space of curves from divisorial conditions

on hypersurfaces

In this part, we consider an application of equivariant intersection theory to the

moduli space of curves. The original connection was given by Farkas and Rimányi

[37]. The contribution of this work is to vastly simplify the part of the paper involving

equivariant intersection to a basic lemma. Since the lemma now applies more gen-

erally, we obtain more examples of effective (virtual) divisors and used Mathematica

to compute their slopes.

In the paper, we cannot show that these virtual divisors are actual divisors, and

we can only compute the coefficients of λ and δ0. I suspect that showing that these

virtual divisors are actual divisors is hard. I have tried to see if I could compute the

coefficients of δi for i > 0, but I am still unsure how to do so.

Abstract: In this note, we extend work of Farkas and Rimányi on applying quadric

rank loci to finding divisors of small slope on the moduli space of curves by instead

considering all divisorial conditions on the hypersurfaces of a fixed degree containing

a projective curve. This gives rise to a large family of virtual divisors onMg. We de-

termine explicitly which of these divisors are candidate counterexamples to the Slope

Conjecture. The potential counterexamples exist on Mg, where the set of possible

values of g ∈ {1, . . . , N} has density Ω(log(N)−0.087) for N >> 0. Furthermore, no

divisorial condition defined using hypersurfaces of degree greater than 2 give coun-

terexamples to the Slope Conjecture, and every divisor in our family has slope at

least 6 + 8
g+1

.

20. Introduction

There has been much interest in bounding the effective cone of the moduli space of

curves Mg. In the study of the effective cone, a fundamental invariant of Mg is the
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slope s(Mg). Much work has been done in bounding s(Mg) from above by exhibiting

special effective divisors on Mg to show general typeness [56, 53, 31, 34, 76, 62] and

to find counterexamples to the Slope Conjecture [54, Conjecture 0.1] stated by Harris

and Morrison [36, 33, 35, 37, 70]. Despite this, many basic questions are still open.

For example, we do not understand how s(Mg) behaves asymptotically [22, Problem

0.1].

In this note, we focus on extending the methods of Farkas and Rimányi [37]. The

authors fixed g, r, d so the Brill Noether number ρ = g−(r+1)(r−d+g) is 0 and asked

for nondegenerate curves C → Pr of degree d and genus g to either lie on a quadric of

low rank or be contained in a degenerate pencil of quadrics. When either of these two

conditions is a divisorial condition on the space of quadrics containing C, one gets a

(virtual) divisor onMg. The authors exhibited infinitely many examples of potential

counterexamples to the Slope Conjecture and verified the potential counterexamples

were actual divisors in small cases using Macaulay [37, Section 7].

Our contribution is twofold. First, we show their argument can both be easily

simplified and generalized to apply to any divisorial condition on the hypersurfaces

of degree m ≥ 2 containing a curve (see Section 21). Second, we use the formulas to

deduce three results (see Theorem 20.1):

(1) We show the slopes of all our divisors are all bounded below by 6 + 8
g+1

. This

gives evidence that s(Mg) approaches 6 as g → ∞ in the context of [22,

Problem 0.1].

(2) Only divisors defined using quadrics (instead of hypersurfaces of higher de-

gree) can give counterexamples to the Slope Conjecture.

(3) We give virtual divisors that are candidate counterexamples to the Slope

Conjecture on Mg for all g = (r + 1)s with r2+1
3r−1

< s ≤ r
2
.

20.1. Statement of results.
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20.1.1. Definition of slope. We recall for g ≥ 3 [12, Theorem 1],

A•(Mg)⊗Q = Qλ⊕
b g

2
c⊕

i=0

Qδi.

Given an effective divisor D = aλ−
∑b g

2
c

i=0 biδi on Mg with a, bi > 0, define the slope

s(D) =
a

min{bi : 0 ≤ i ≤ bg
2
c}
.

If a, bi are not all positive, then we define s(D) =∞. Define s(Mg) to be the infimum

of s(D) as D varies over all effective divisors.

Even though this is not standard, we will similarly define

s0(D) =


a
b0

if a, b0 > 0

∞ otherwise

s0(Mg) = inf{s0(D) : D is effective}.

Clearly, s0(D) ≤ s(D) and s0(Mg) ≤ s(Mg). Conjecturally, s0(Mg) = s(Mg) [36,

Conjecture 1.5], and this has been verified for g ≤ 23 [36, Theorem 1.4]. For technical

reasons (see Section 22.1), we will work with s0(D) instead of s(D), which means our

candidate counterexamples to the Slope Conjecture have only been checked with the

coefficients of λ and δ0. However, lower bounds for s0(D) clearly give lower bounds

for s(D).

20.1.2. Definition of the divisors. We will work withMg as a Deligne-Mumford stack

instead of a coarse moduli space, but the distinction does not matter for the statement

of Theorem 20.1. We will work over C, but see Section 20.4 for more on characteristic

assumptions on the base field. Fix r, g, d such that ρ := g − (r + 1)(g − d + r) = 0.

Equivalently, we have s ≥ 1, r ≥ 1 such that g = (r + 1)s, d = (s + 1)r. Since

we are interested in the hypersurfaces containing a curve C → Pr, we also assume
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r ≥ 3. Given an integer m ≥ 2 such that
(
r+m
m

)
≥ md − g + 1, fix a divisor D ⊂

Hom(SymmCr+1,Cmd−g+1) invariant under the action of GL(Cr+1)×GL(Cmd−g+1).

Let Mirr
g ⊂ Mg denote the open substack parameterizing irreducible curves of

genus g. In Mirr
g , consider the locus Zm,r,s

g consisting of curves C for which there

exists a line bundle L of degree d mapping C → Pr such that the induced map

H0(Pr,OPr(m))→ H0(C,L⊗m)

is given by a map in D after choosing bases for H0(L) and H0(C,L⊗m). Since D is

invariant under GL(Cr+1)×GL(Cmd−g+1), this definition is independent of choice of

bases.

Now, take the closure of Zm,r,s in Mg to get Dm,r,s ⊂ Mg. If Zm,r,s is not dense,

then Dm,r,s is a divisor and we can compute its slope. Otherwise, we only know its

slope as a virtual divisor, whose class can be defined using intersection theory. In

either case, we can define s(Dm,r,s) and s0(Dm,r,s) as above. Now, we state our main

theorem

Theorem 20.1. The slope s0(Dm,r,s) is independent of the choice of the GL(Cr+1)×

GL(Cmd−g+1)-invariant divisor D ⊂ Hom(SymmCr+1,Cmd−g+1) given m ≥ 2, r ≥

3, s ≥ 1. Furthermore

(1) If m ≥ 3, s0(Dm,r,s) ≥ 6 + 12
g+1

, so considering hypersurfaces other than

quadrics will not yield counterexamples to the Slope Conjecture. Equality holds

if and only if (m, r, s) = (3, 3, 2).

(2) We have s0(D2,r,s) > 6 + 8
g+1

.

(3) We have s0(D2,r,s) < 6 + 12
g+1

if and only if r2+1
3r−1

< s ≤ r
2
.

The density of the potential counterexamples in Theorem 20.1 is Θ( 1

log(g)δ log(log(x))
3
2

)

by [46, Corollary 2], where δ = 1− 1+log(log(2))
log(2)

≈ .086071.
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One can always choose D by taking the closure of a suitably large family of orbits

as follows. Let e = md − g + 1. If
(
r+m
m

)
= e, we choose D to be the linear

maps not of full rank. If
(
r+m
m

)
= e + 1, we can choose D to be linear maps whose

kernel defines a singular hypersurface in Pr. If
(
r+m
m

)
≥ e + 2, then one can check

dim(Hom(SymmCr+1,Ce)) ≥ dim(GL(Cr+1)) + dim(GL(Ce)), so a general orbit in

Hom(SymmCr+1,Ce) has codimension at least 1.

The proof of Theorem 20.1 follows from Lemma 21.2, a generalization of [37, The-

orems 1.1 and 1.2] that can be proved easily using standard methods of equivariant

intersection theory, together with straightforward, but tedious, formula manipulation

using Mathematica.

20.2. Example cases and comparison to literature.

Example 20.2. If
(
r+m
m

)
= md − g + 1, then the unique choice of invariant di-

visor D ⊂ Hom(SymmCr+1,Cmd−g+1) consists of linear maps that are not of full

rank. This is the locus of curves contained in a degree m hypersurface. In the case

(r, g, d,m) = (4, 10, 12, 2) this is the first known counterexample to the Slope Conjec-

ture [36, Theorem 1.7(4)] and this was considered in general by Khosla [70, Section

3-B]. For the case of m = 2, it has been checked that the coefficient of δi for i > 0 do

not contribute to the slope [35, Theorem 1.4].

Example 20.3. The case (r, g, d,m) = (5, 12, 15, 2) was considered in [37, Section

8]. Given a general genus 12 curve C together with one of its finitely many de-

gree 15 embeddings C ⊂ P5, there is a pencil of quadrics containing it. Pulling

back the discriminant hypersurface of singular quadrics yields 6 points (possible non-

distinct) on P1. To illustrate the independence of the slope on the choice of divisor

D ⊂ Hom(Sym2 C6,C19) in the statement of Theorem 20.1, the following divisorial

conditions on those 6 points yield virtual divisors onM12 with the same slopes, each
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contradicting the Slope Conjecture. To bound the coefficients of δi for i > 0, one can

use [36, Corollary 1.2].

(1) 6 points on P1, where at least two points coincide. This was considered in [37,

Section 8] and shown to be an actual divisor using Macaulay.

(2) 6 points on P1 with an involution.

(3) 6 points on P1 such that 4 of them have a fixed choice of moduli.

(4) 6 points on P1 that arise as the image of 6 points on P2 under a linear map

P2 99K P1. It is not necessary for the 6 points to be general, for example it

suffices for 5 of them to be in general linear position.

Example 20.4. Let m = 2. If r = 9`− 2 and s = 4`− 1, this recovers [37, Theorem

7.1], and similarly if r = 8`+ 3 and s = 3`+ 1, this recovers [37, Theorem 7.2]. The

authors state the result in terms of s(D2,9`−2,4`−1) and s(D2,8`+3,3`+1), but they also

only computed s0(D2,9`−2,4`−1) and s0(D2,8`+3,3`+1).

Example 20.5. The smallest case of Theorem 20.1 that is new to our knowledge

is when (g, r, d) is (27, 8, 32). Given a line bundle L of degree 32 mapping a genus

27 curve C → P8, we expect dim(Sym2 H0(C,L)) = 45 and H0(C,L⊗2) = 38, so we

expect a P6 of quadrics containing C, and there to be
(9

3)(
10
2 )(11

1 )
(1

0)(
3
1)(

5
2)

= 1386 quadrics of

corank at least 3 [57, Proposition 12(b)]. We can choose D to be the divisor where

at least two of these points coincide.

Example 20.6. If g = 10 + 6j for j ≥ 0, then [33, Theorem A] gives a virtual

counterexample to the Slope Conjecture, where the coefficients of δi for i > 0 are

also checked. There are cases where Theorem 20.1 and [33, Theorem A] overlap,

and computing the slopes with Mathematica in small cases suggests that the divisor

computed in [33, Theorem A] will always have smaller slope unless r = 12`, s = 6`,

and
(
r+2

2

)
= 2d − g + 1. In this case, D corresponds to curves lying on a quadric

surface. This has been tested for all values of r < 1000.
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Example 20.7. In the equality case of Part 1 of Theorem 20.1, we are looking at

genus 8 curves with a degree 9 map C → P3 contained in a cubic surface. This

set-theortically contains the Brill-Noether divisor of curves with a g2
7. Suppose we

have f : C → P2 whose image is a septic plane curve with 7 nodes. The canonical

divisor on the image is 4L, where L is the class of a line in P2. The canonical

divisor of C is then 4f ∗L −
∑7

i=1 (pi + qi), where pi, qi are the preimages of the 7

nodes. Pick one of the nodes, for example the node corresponding to p7, q7. The lines

through that node give a g1
5 on C. Subtracting this g1

5 from the canonical on C gives

3f ∗L −
∑6

i=1 (pi + qi), which is the cubics in P2 passing through the other 6 nodes

of the image of C. This gives C → P2 99K P3 which yields a degree 9 embedding

of C into P3 contained in a cubic surface. The class of C on the cubic surface is

7L− 2(E1 + · · ·+E6). It is not immediately clear to us, for example, whether curves

corresponding to 9L−3(E1 + · · ·+E6) or 11L−4(E1 + · · ·+E6) could also contribute

additional components to D3,3,2.

20.3. Classification of the divisors. Given vector spaces V and W , it is natural to

ask for a classification of divisors D ⊂ Hom(Symm(V ),W ) invariant under the action

of GL(V )×GL(W ). There is a correspondence between such invariant divisors and

divisors on the GIT quotient G(dim(W ), Symm(V ))//SL(V ) of the Grassmannian of

quotients of Symm(V ) under the action of SL(V ).

Thinking of Hom(Symm(V ),W ) as an affine space, any divisor D must be cut out

by a single polynomial f . If D is GL(W ) invariant, then it must act on f by a

character of GL(W ), which is the kth power of the determinant for some positive k.

If D is also SL(V ) invariant, then D is also GL(V )-invariant.

Therefore, we have the trivial vector bundle A1 × Hom(Symm(V ),W ) together

with an action of SL(V )×GL(W ) lifting the action on the base Hom(Symm(V ),W ).

This action is unique up to taking a power. Taking the GIT quotient by GL(W )

shows all GL(W )-invariant divisors are given by pullbacks from the Grassmannian
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G(dim(W ), Symm(V )) parameterizing dim(W ) quotients of Symm(V ). Taking the

GIT quotient by SL(V ) shows SL(V )× GL(W ) divisors on Hom(Symm(V ),W ) di-

visors on G(dim(W ), Symm(V ))//SL(V ).

The intersection of all the SL(V )×GL(W ) invariant divisors on Hom(Symm(V ),W )

is by definition the unstable points. The unstable points consist of the maps in

Hom(Symm(V ),W ) that are not of full rank and the pullback of the SL(V )-unstable

points under Hom(Symm(V ),W ) 99K G(dim(W ), Symm(V )).

The semistable points of G(dim(W ), Symm(V )) under the action of SL(V ) has

appeared in the study of associated forms, for example [1, 39, 40].

20.4. A note on characteristic assumptions. We will work over C for notational

convenience, but our proofs are algebraic, so everything automatically extends to

when our base field is an algebraically closed field of characteristic zero.

Section 21 holds independent of characteristic. To extend Theorem 20.1 to positive

characteristic, one would need to check that the setup in [70] or [35, Section 2]

to pushforward classes from the stack parameterizing curves with a linear series to

the moduli space of curves can be adapted to positive characteristic. The Picard

group Pic(Mg,n) ⊗ Q is unchanged in positive characteristic [81]. More seriously,

when applying limit linear series arguments in positive characteristic, we want to

restrict ourselves to cases where ramification is imposed at at most two points on

each component [83, 84]. For example, since we only compute the coefficients of λ

and δ0, [70, Lemma 4.5] suffices for our use, but Khosla degenerates further to a comb

of elliptic curves with a rational backbone in the proof.
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21. Divisors from hypersurfaces

The goal of this section is to prove the following two lemmas that generalize [37,

Theorems 1.1 and 1.2].

Lemma 21.1. Let D ⊂ Hom(Ce, SymmCf ) be a divisor, preserved under the natural

actions of GL(Ce) and GL(Cf ). Given vector bundles E and F of ranks e and f

respectively over a scheme X together with a map φ : E → SymmF , the class of the

virtual divisor supported on points of X over which φ fiberwise restricts to maps in

D is a positive multiple of

mec1(F)− fc1(E).

Lemma 21.2. Let D ⊂ Hom(SymmCe,Cf ) be a divisor, preserved under the natural

actions of GL(Ce) and GL(Cf ). Given vector bundles E and F of ranks e and f

respectively over a scheme X together with a map φ : Symm E → F , the class of the

virtual divisor supported on points of X over which φ fiberwise restricts to maps in

D is a positive multiple of

ec1(F)−mfc1(E).

Lemmas 21.1 and 21.2 are stated in a form that is easier to apply, but they are

easier to prove in the language of equivariant intersection theory. Lemma 21.1 follows

from Lemma 21.4 and Lemma 21.2 follows from Lemma 21.5 in Section 21.1 below.

Finally, we note that we will be applying Lemma 21.2 in the case where X is the

Deligne-Mumford stack of the moduli space of curves. To do so, one either pulls back

to enough test curves or notes that the equivariant class computed in Lemma 21.5

below implies Lemma 21.2 in the necessary generality (for example the argument in

[94, Section 2.2]).

21.1. Proof of Lemmas 21.1 and 21.2.
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Lemma 21.3. Let T be a torus acting on an affine space AN . Then, the equivariant

Chow ring A•T (AN) ∼= Z[t1, . . . , tn], where t1, . . . , tn Z-linearly span the character

lattice of T .

If D ⊂ AN is a T -invariant divisor, then it is defined by a polynomial F (x1, . . . , xN)

whose monomials have the same weight χ under the action of T . The equivariant class

[D] ∈ A•T (AN) is χ.

Proof. The statement on A•T (AN) ∼= Z[t1, . . . , tn] is standard [28, Section 3.1]. The

statement on the class of [D] is used in [37, Theorem 5.1] and can be proven for

example by scaling the coordinates of AN to degenerate to the case where D is

defined by a monomial. Then, we reduce to the case where F is simply a coordinate

function of AN . �

Lemma 21.4. If D ⊂ Hom(Ce, SymmCf ) is a divisor, preserved under the natural

actions of GL(Ce) and GL(Cf ), then the equivariant class [D] in

A1
GL(Ce)×GL(Cf )(Hom(Ce, SymmCf ))

is a positive multiple of

me
∑

βi − f
∑

αi,

where {αi} and {βi} are the standard characters of the standard maximal tori of

GL(Ce) and GL(Cf ) respectively.

Lemma 21.5. If D ⊂ Hom(SymmCe,Cf ) is a divisor, preserved under the natural

actions of GL(Ce) and GL(Cf ), then the equivariant class [D] in

A1
GL(Ce)×GL(Cf )(Hom(SymmCe,Cf ))
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is a positive multiple of

e
∑

βi −mf
∑

αi,

where {αi} and {βi} are the standard characters of the standard maximal tori of

GL(Ce) and GL(Cf ) respectively.

The proofs of Lemmas 21.4 and 21.5 follow easily from Lemma 21.3. For example,

we prove Lemma 21.5.

Proof of Lemma 21.5. Let Te and Tf be the standard maximal tori of GL(Ce) and

GL(Cf ) respectively. The restriction map

A1
GL(Ce)×GL(Cf )(Hom(SymmCe,Cf ))→ A1

Te×Tf (Hom(SymmCe,Cf ))

is injective [28, Proposition 6].

To determine [D] we apply Lemma 21.3. Let α1, . . . , αe be the standard characters

of Te and let β1, . . . , βf be the standard characters of Tf . Viewing Hom(SymmCe,Cf )

as the space of
(
e+1
m

)
×f matrices, Te and Tf act by the characters {βi−

∑
j∈S αj} on

the entries, where i ranges from 1 to f and S ranges over multisets of {1, . . . , e} with

size m. Each monomial term of the hypersurface F defining D in Hom(SymmCe,Cf )

has a certain weight χ.

Now, we use the fact that χ has to be invariant under permutation of the characters

αi and the characters βi, which means that it must be

e
∑

βi −mf
∑

αi

up to a power. �
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22. Application to Slopes of Mg

22.1. Setup. In addition to Lemma 21.2, we will need to pushforward classes from

the moduli stack parameterizing a genus g curve together with a grd. The key ingredi-

ents were first written in [70] and [35, Section 2]. The details of the setup will not be

used, and the same setup as already been utilized for computations in [37, 70, 35, 23].

We will follow [23, Section 5.1].

As a first approximation, we want a stack G̃rd parameterizing curves with a choice of

grd together with a proper map G̃rd →Mg. In order to be able to define the universal

line bundle and vector bundle corresponding to choice of sections over G̃rd, we will

work instead with Mg,1. (This is not strictly necessary, also see the second page of

[35, Section 2].)

Recall for g ≥ 3 [12, Theorem 2],

A•(Mg,1)⊗Q = Qλ⊕
g−1⊕
i=0

Qδi ⊕Qψ,

where δ0 is the class of the irreducible nodal curves ∆0 ⊂Mg,1, and δi for i ≥ 1 is the

class of the closure of the reducible nodal curves ∆i ⊂ Mg,1 where the component

containing the marked point is genus i. Also, λ is the first chern class of the Hodge

bundle and ψ is the relative dualizing sheaf of Mg,1 →Mg.

We restrict to an open substack M̃g,1 ⊂Mg,1 whose compliment is codimension 2,

so this step does not affect divisor calculations. Specifically, we first let M̃g,1 be the

complement of the closure of the locus of two smooth curves intersecting transversely

at two points.

There is a Deligne-Mumford stack Grd → M̃g,1 parameterizing the choice of a curve

C, a rank 1 torsion free sheaf L, and an r + 1-dimensional subspace of the global

sections of the sheaf. The torsion free sheaf L is restricted to have degree d on the

component of C containing the marked point and zero on the unmarked components.
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Let π : Crd → Grd be the universal (quasi-stable) curve. Equivalently, Crd → Grd is the

pullback of the universal curve over M̃g under Grd → M̃g,1 → M̃g.

On Crd, there is a universal sheaf L whose restriction to each fiber of π is a torsion-

free sheaf with degree d on the component with the marked point and degree zero on

the other components. Furthermore, L is normalized to be trivial along the marked

section of π. In addition, there is a subbundle V → π∗L that restricts to the marked

aspect of the (limit) linear series in each fiber.

We want to apply Lemma 21.2 in the case where E = V and F = π∗L⊗m. To do,

we need c1(π∗L⊗m) and we need to know π∗L⊗m is locally free away from a set of

codimension 2.

Unfortunately, π∗L⊗m jumps in rank over ∆i for i > 0. Therefore, we restrict

Grd → M̃g,1 to Gr,irrd →Mirr
g,1, where Mirr

g,1 ⊂ M̃g,1 is the complement of ∆i for i > 0

and Gr,irrd is the inverse image of Mirr
g,1 in Grd.

Then, A•(Mirr
g,1) ⊗ Q = Qλ ⊕ Qδ0 ⊕ Qψ, which means we cannot compute the

coefficients of δi for i > 0. Conjecturally this does not matter for computing the

slope of Mg [36, Conjecture 1.5].

22.2. Computation. By an abuse of notation, let us also refer to the restriction

Cr,irrd → Gr,irrd of Crd → Grd as π and let ω be the dualizing sheaf of π. Then, following

[70, 35], we define

α = π∗(c1(L)2) β = π∗(c1(L) ∩ c1(ω)) γ = c1(V),

where L and V are restricted to Cr,irrd and Gr,irrd respectively. Let η be the map

Gr,irrd →Mirr
g,1.

In order to have ρ = g − (r + 1)(g − d + r) = 0, g needs to be s(r + 1) for some

s > 1. Solving for d, we have d = r(s + 1). Finally, for (C,L) ∈ Gr,irrd general, we

need dim(SymmH0(L)) ≥ dim(H0(L⊗m)). If C is general, then the Geiseker-Petri
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theorem implies h1(L⊗2) = 0, so we must require(
r +m

m

)
≥ md− g + 1.(22.1)

The following lemma is already contained in [70, Section 3A], but we include it for

completeness and to correct a typo in the proof.

Lemma 22.1. We have π∗L⊗m is a vector bundle away from a set of codimension

at least 2 and c1(π∗L⊗m) = m2

2
α− m

2
β + η∗(λ).

Proof. We first claim that for (C,L) ∈ Gr,irrd , then h1(L⊗m) = 0 for degree reasons

away from a set of codimension at least 2. This implies R1π∗L⊗m = 0 and π∗L⊗m

is a vector bundle away from a set of codimension at least 2 by Grauert’s theorem.

First, suppose C is smooth. If m = 2, then 2d−2g+ 2 = 2(r− s+ 1). This is greater

than zero as s ≤ r
2

(which is equivalent to (22.1) when m = 2). If m ≥ 3, we note

md− 2g − 2 ≥ 3rs+ 3r − 2rs− 2s+ 2 = rs+ 3r − 2s+ 2 = (r − 2)(s+ 3) + 8 ≥ 0.

Now, if C is a general irreducible nodal curve, then [35, Proposition 2.3] says that L

is locally free, and we can repeat the same argument above to see h1(L⊗m) = 0.

To apply Grothendieck Riemann-Roch, we need the Todd class of π. This is pulled

back from the Todd class of Mg,1 → Mg, which is computed in [55, page 158].

Applying Grothendieck Riemann-Roch yields

c1(π∗L⊗m) = π∗

[
(1 +mc1(L) +

m2

2
c1(L)2)(1− 1

2
c1(ω) +

c1(ω)2 + [Z]

12

]
2

=
m2

2
α− m

2
β + η∗

π∗c1(ω)2 + δ

12

where Z ⊂ Cr,irrd is the singular locus of π : Cr,irrd → Gr,irrd . At this point, we use the fact

that the universal curve π : Cr,irrd → Gr,irrd is pulled back from Grd → M̃g,1 → M̃g. This

means π∗c1(ω)2 is the pullback of the κ divisor class on M̃g under Grd → M̃g,1 → M̃g.
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Using the relation κ+δ
12

= λ [55, page 158], we have η∗ π∗c1(ω)2+δ
12

= η∗λ, resulting in

the claimed formula in Lemma 22.1. �

Theorem 22.2 ([70, Theorem 2.11]). Choose g, r, d ≥ 1 integers such that ρ =

g − (r + 1)(g − d+ r) = 0. Then, pushing forward under η : Gr,irrd →Mirr
g,1, we have

6(g − 1)(g − 2)

dN
η∗α =6(gd− 2g2 + 8d− 8g + 4)λ+ (2g2 − gd+ 3g − 4d− 2)δ0

− 6d(g − 2)ψ

2(g − 1)

Nd
η∗β =12λ− δ0 − 2(g − 1)ψ

2(g − 1)(g − 2)

N
η∗γ =((−(g + 3)ξ + 5r(r + 2))λ− d(r + 1)(g − 2)ψ+

1

6
((g + 1)ξ − 3r(r + 2))δ0),

where

N =
g!
∏r

i=1 i!∏r
i=0(g − d+ r + i)

(= deg(η))

ξ = 3(g − 1) +
(r − 1)(g + r + 1)(3g − 2d+ r − 3)

g − d+ 2r + 1
.

Proof of Theorem 20.1. Following the notation of Section 22.1, apply Lemma 21.2 in

the case where E = V and F = π∗L⊗k and π : Cr,irrd → Gr,irrd . This yields a positive

multiple of

(r + 1)(
m2

2
α− m

2
β + σ∗λ)−m(md− g + 1)γ(22.2)

on Gr,irrd . Since we only care about the slope, we can scale by a constant factor and

work with (22.2). We push forward (22.2) via η : Gr,irrd →Mirr
g,1 using Theorem 22.2

to get a class aλ+ b0δ0 + cψ. This yields c = 0 (as expected) and rather complicated

formulas for a and b0. Checking these formulas using Mathematica yields the three
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statements of Theorem 20.1. For more details, the interested reader can refer to

Section E. �

E. Mathematica computation

Proof of Theorem 20.1 continued. Continuing the proof of Theorem 20.1, we find

a =
N

2(r + s+ 1)(rs+ s− 2)(rs+ s− 1)
(m2r5s4−m2r5s2 +3m2r4s4 +5m2r4s3 +

m2r4s2−m2r4s+m2r3s4 + 12m2r3s3 + 13m2r3s2− 2m2r3s− 4m2r3− 3m2r2s4−

5m2r2s3 +m2r2s2 + 3m2r2s− 2m2rs4 − 12m2rs3 − 14m2rs2 + 4m2r −mr5s4 +

mr5s2 − 5mr4s4 − 5mr4s3 − mr4s2 + mr4s − 9mr3s4 − 26mr3s3 − 13mr3s2 +

22mr3s + 4mr3 − 7mr2s4 − 37mr2s3 − 5mr2s2 + 57mr2s − 2mrs4 − 16mrs3 +

6mrs2 + 40mrs− 4mr + 2r4s2 + 2r3s3 + 8r3s2 − 6r3s+ 6r2s3 + 6r2s2 − 18r2s+

4r2 + 6rs3 − 4rs2 − 14rs+ 8r + 2s3 − 4s2 − 2s+ 4)

b0 = − N

12(r + s+ 1)(rs+ s− 2)(rs+ s− 1)
mr(r + 1)(s + 1)(mr3s3 −mr3s2 +

2mr2s3 + mr2s2 − mrs3 + 5mrs2 + mrs − 2mr − 2ms3 − 5ms2 − ms + 2m −

r3s3 + r3s2 − 4r2s3 + r2s2 − 5rs3 − 7rs2 + 7rs+ 2r − 2s3 − 7s2 + 17s− 2)

This yields− a
b0

as a complicated rational function F (m, r, s) for the slope s0(Dm,r,s).

We now prove each case individually. Recall in each case g = (r+1)s and d = r(s+1).

Proof of Part 1 of Theorem 20.1. Consider F (m, r, s) − (6 + 12
g+1

). This again is a

complicated rational function G(m, r, s) in m, r, s. To see G(m, r, s) ≥ 0 if m ≥ 3,

r ≥ 3, s ≥ 1 subject to the constraint
(
r+m
m

)
− (dm− g + 1) ≥ 0, we first note that

G(m + 4, r + 4, s + 1) = (6(6 + r + s)(3 + r + 5s + rs)(4 + r + 5s + rs)(156 +

120m + 24m2 + 110r + 78mr + 14m2r + 18r2 + 12mr2 + 2m2r2 + 2s + 36ms +

12m2s+ 24rs+ 29mrs+ 7m2rs+ 6r2s+ 5mr2s+m2r2s))/((4 +m)(4 + r)(5 +

r)(2 + s)(6 + r + 5s + rs)(162 + 54m + 81r + 27mr + 9r2 + 3mr2 + 513s +

207ms+ 330rs+ 120mrs+ 58r2s+ 20mr2s+ 3r3s+mr3s+ 543s2 + 237ms2 +



142

410rs2 + 154mrs2 + 89r2s2 + 31mr2s2 + 6r3s2 + 2mr3s2 + 210s3 + 90ms3 +

167rs3 + 63mrs3 + 40r2s3 + 14mr2s3 + 3r3s3 +mr3s3))

is clearly positive. To deal with the edge cases when m = 3 or r = 3, we first find

G(3, r+ 3, s+ 1) = (2(5 + r+ s)(2 + r+ 4s+ rs)(3 + r+ 4s+ rs)(11 + 15r+ 4r2−

11s− rs+ r2s))/((3 + r)(4 + r)(2 + s)(5 + r + 4s+ rs)(30 + 21r + 3r2 + 66s+

70rs + 16r2s + r3s + 52s2 + 76rs2 + 23r2s2 + 2r3s2 + 20s3 + 29rs3 + 10r2s3 +

r3s3)).

The only factor of G(3, r+3, s+1) that can be negative is (11+15r+4r2−11s−rs+

r2s). Now, we use the constraint
(
r+m
m

)
−(dm−g+1) ≥ 0. Substituting m→ 3 yields

r3

6
+ r2 − 2rs− 7r

6
+ s ≥ 0, so s ≤ r3+6r2−7r

6(2r−1)
. Plugging in s = (r+3)3+6(r+3)2−7(r+3)

6(2(r+3)−1)
− 1

into (11+15r+4r2−11s−rs+r2s) yields
r(r+1)(r+4)(r2+9r+17)

6(2r+5)
, which is nonnegative.

Furthermore, this is zero only when r = 0. Therefore, we have G(3, r, s) ≥ 0 for

r ≥ 3, s ≥ 1 and equality can hold only if r = 3. In this case, s ≤ r3+6r2−7r
6(2r−1)

= 2.

Plugging in s = 1, 2 yields G(3, 3, 1) > 0 and G(3, 3, 2) = 0.

Now, we are left with the case r = 3, m ≥ 4 and s ≥ 1. Note

G(m + 5, 3, s + 1) = ((5 + s)(1 + 2s)(3 + 4s)(65 + 39m + 6m2 + s + 12ms +

3m2s))/((5 + m)(2 + s)(5 + 4s)(60 + 15m + 172s + 53ms + 164s2 + 56ms2 +

60s3 + 20ms3))

is clearly positive, so we are left with the case r = 3, m = 4 and s ≥ 1. Since(
3 + 4

4

)
− (4d− g + 1) ≥ 0⇔ 22− 8s ≥ 0,

so our remaining candidates are (m, r, s) = (4, 3, 1) or (4, 3, 2). We evaluate

G(4, 3, s+ 1) = − 2(s− 5)(s+ 4)(2s− 1)(4s− 1)

(s+ 1)(4s+ 1) (40s3 − 12s2 + 23s− 6)
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and note that it is positive for s = 1, 2. Tracing through the cases, we findG(m, r, s) ≥

0 for m ≥ 3, r ≥ 3, s ≥ 1 subject to the constraint
(
r+m
m

)
− (dm − g + 1) ≥ 0, and

equality holds when (m, r, s) = (3, 3, 2). �

Proof of Part 2 of Theorem 20.1. Define G(m, r, s) = F (m, r, s)−(6+ 8
g+1

). We want

to see G(m, r, s) > 0 if m ≥ 2, r ≥ 3, s ≥ 1 subject to the constraint
(
r+m
m

)
− (dm−

g + 1) ≥ 0. First note

G(m + 2, r + 5, s + 1) = (2(30240 + 51240m + 26880m2 + 27168r + 48018mr +

25176m2r + 9774r2 + 17994mr2 + 9390m2r2 + 1770r3 + 3378mr3 + 1746m2r3 +

162r4 + 318mr4 + 162m2r4 + 6r5 + 12mr5 + 6m2r5 + 76896s + 179100ms +

102960m2s + 79264rs + 171950mrs + 94152m2rs + 31166r2s + 64661mr2s +

34067m2r2s+5928r3s+11947mr3s+6101m2r3s+550r4s+1087mr4s+541m2r4s+

20r5s+ 39mr5s+ 19m2r5s+ 61560s2 + 213960ms2 + 132360m2s2 + 79312rs2 +

211992mrs2 +119522m2rs2 +35270r2s2 +81050mr2s2 +42560m2r2s2 +7224r3s2 +

15042mr3s2 +7470m2r3s2 +700r4s2 +1360mr4s2 +646m2r4s2 +26r5s2 +48mr5s2 +

22m2r5s2 +21048s3 +109500ms3 +68280m2s3 +36976rs3 +112180mrs3 +61426m2rs3 +

18634r2s3 + 43891mr2s3 + 21769m2r2s3 + 4096r3s3 + 8282mr3s3 + 3798m2r3s3 +

416r4s3 + 758mr4s3 + 326m2r4s3 + 16r5s3 + 27mr5s3 + 11m2r5s3 + 7056s4 +

24120ms4 + 12240m2s4 + 10200rs4 + 24564mrs4 + 11028m2rs4 + 4828r2s4 +

9598mr2s4 +3916m2r2s4 +1034r3s4 +1815mr3s4 +685m2r3s4 +104r4s4 +167mr4s4 +

59m2r4s4 + 4r5s4 + 6mr5s4 + 2m2r5s4))/((2 + m)(5 + r)(6 + r)(2 + s)(7 + r +

6s + rs)(84 + 84m + 33r + 33mr + 3r2 + 3mr2 + 208s + 348ms + 129rs +

163mrs+ 21r2s+ 23mr2s+ r3s+mr3s+ 200s2 + 424ms2 + 162rs2 + 222mrs2 +

33r2s2 + 37mr2s2 + 2r3s2 + 2mr3s2 + 84s3 + 168ms3 + 68rs3 + 94mrs3 + 15r2s3 +

17mr2s3 + r3s3 +mr3s3)),

which is clearly positive. This leaves the cases when r = 3 and r = 4. To deal with

the case r = 4, we evaluate
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G(m+2, 4, s+2) = (7560+31584m+20832m2 +7561s+55078ms+37970m2s+

2083s2 + 35878ms2 + 25162m2s2 + 335s3 + 10610ms3 + 7190m2s3 + 125s4 +

1250ms4 + 750m2s4)/(5(2 + m)(3 + s)(11 + 5s)(84 + 196m + 109s + 317ms +

53s2 + 169ms2 + 10s3 + 30ms3))

G(m+ 2, 4, 1) =
2 (11m2 + 21m+ 13)

15(m+ 1)(m+ 2)
.

To deal with the case r = 3, we evaluate

G(m + 3, 3, s + 1) = (885 + 825m + 210m2 + 2362s + 2895ms + 847m2s +

2007s2 + 3410ms2 + 1119m2s2 + 642s3 + 1640ms3 + 582m2s3 + 152s4 + 320ms4 +

104m2s4)/((3+m)(2+s)(5+4s)(30+15m+66s+53ms+52s2 +56ms2 +20s3 +

20ms3)),

which reduces us to the case r = 3, m = 2. Now, we use the bound
(

3+2
2

)
− (2d− g+

1) ≥ 0⇔ 3− 2s ≥ 0. Plugging in G(2, 3, 1) > 0 finishes this case. �

Proof of Part 3 of Theorem 20.1. Define G(m, r, s) = F (m, r, s) − (6 + 12
g+1

). We

want to see when G(m, r, s) < 0 if m = 2, r ≥ 3, s ≥ 1 subject to the constraint(
r+m
m

)
− (dm− g + 1) ≥ 0. First, note(

r +m

m

)
− (dm− g + 1) ≥ 0⇔ s ≤ r

2
,

which is one of the constraints claimed in Part 3 of Theorem 20.1. Next, we evaluate

G(2, r, s) = (6(1 + r + s)(1 + r2 + s − 3rs)(−2 + s + rs)(−1 + s + rs))/(r(1 +

r)(1 + s)(1 + s + rs)(2 − 2r + 15s + 9rs − 17s2 + 3rs2 + 3r2s2 − r3s2 − 6s3 −

7rs3 + r3s3))

G(2, 3, s+ 1) =
(s+ 5)(2s+ 1)(4s− 1)(4s+ 3)

(s+ 2)(4s+ 5) (4s2 − 13s− 15)
G(2, r+ 4, s+ 1) = (6(6 + r+ s)(6 + 5r+ r2− 11s− 3rs)(3 + r+ 5s+ rs)(4 + r+

5s+ rs))/((4 + r)(5 + r)(2 + s)(6 + r + 5s+ rs)(54 + 27r + 3r2 + 99s+ 90rs+

18r2s+ r3s+ 69s2 + 102rs2 + 27r2s2 + 2r3s2 + 30s3 + 41rs3 + 12r2s3 + r3s3)).
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Therefore, if r ≥ 4, then G(2, r, s) < 0 if and only if

1 + r2 + s− 3rs < 0⇔ s >
r2 + 1

3r − 1
.

If r = 3, then s ≤ 3
2
, so s = 1 and G(2, 3, 1) > 0. �

�

Part 5. Unpublished work and open questions

In this section, I include some observations that are not yet available on arXiv and

some open questions I find interesting. This way, this information will not disappear

forever should I ever forget.

23. Generalized Matrix Orbits

Given a matrix M ∈ Ad×n of full row rank, we can consider the locus OM , which

is the closure of Ar×d ·M · T , where we multiply M by the left by all Ar×d matrices

and on the right by all diagonal matrices.

We are interested in the equivariant class

[OM ] ∈ A•GLr×T (Ar×n) ∼= Z[u1, . . . , ur]
Sr [t1, . . . , tn].

Assuming OM is of expected dimension, this class was computed in joint work with

Mitchell Lee, Hunter Spink, and Anand Patel [73], by drawing an analogy of integrat-

ing against the classes with the quantum product of projective space and carefully

looking at the degenerations. The approach in [73] tells us more, but the goal of this

section is to give a quick proof of the formula. The method should be able to be

generalized to slightly more general orbits, for example replacing Ar×d with upper

triangular matrices with a fixed block structure.

Theorem 23.1 ([73]). Let M be a d × n matrix with nonzero columns x1, . . . , xn.

If rk(M) < d, then OM = 0. Otherwise, for each permutation σ ∈ Sn, let B(σ)
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be the lexicographically first d-element subset {i1, . . . , id} ⊂ {1, . . . , n} with respect

to the ordering σ(1) ≺ · · · ≺ σ(n) such that xi1 , . . . , xid is a basis of Kd. Then for

indeterminates z1, . . . , zn, the expression

∑
σ∈Sn

 ∏
i∈{1,...,n}\B(σ)

r∏
j=1

(ti + uj)

 1

(zσ(2) − zσ(1)) . . . (zσ(n) − zσ(n−1))

is a polynomial of degree at most r in each zi with coefficients in A•GLr(pt), and the

equivariant Chow class [OM ] is given by evaluating this polynomial at t1, . . . , tn.

Proof. The plan is to resolve OM with a vector bundle over a compact base (which

will be a permutohedral toric variety), and then applying the localization formula

[45, Proposition 5.1].

If K is our base field, we can regard Ar×n as Hom(Kr, Kn). Let X ⊂ G(d, n) be

the T -orbit of the row span of M .

We resolve the locus OM by remembering the row span of M after acting by a

torus action. Namely,

{(Λ, N)| row span of N is contained in Λ} ⊂ X × Ar×n

maps onto OM . Furthermore, the fiber over any point of X is a vector space, given

by Λ⊗Kr ⊂ Ar×n.

Thus, if S is the tautological subbundle of G(d, n), then OM is the image under

(S ⊗Kr)|X ↪→ Ar×n ×X → Ar×n.

Finally, to finish, we resolve X with the permutohedral toric variety X̃ → X. To

compute the pushforward of the class of (S⊗Kr)|X̃ under the projection (S⊗Kr)|X̃ ⊂

Ar×n× X̃ → Ar×n, we apply [45, Proposition 5.1], gives the answer as a sum over all

torus-fixed points. Here, we abuse notation by letting (S⊗Kr)|X̃ denote the pullback

of S ⊗Kr to X̃.
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The torus-fixed point of X̃ are indexed by permutations. To see which torus-fixed

points of X̃ map to which points in G(d, n), we first note that moment polytope of X

is the matroid polytope [63, Proposition 1.2.4], and X is a normal toric variety. Let

B be the d-element subsets of {1, . . . , n} that index linearly independent columns of

M . Recall the matroid polytope PM of M is the convex hull of

{
∑
i∈B

ei | B ∈ B},

and each vertex
∑

i∈B ei of PM corresponds to the torus invariant linear space Λ ⊂

Pn−1 given by setting the coordinates not in B to zero.

The fan corresponding to X is the normal fan to PM . To see how the normal fan

of the permutohedron refines the normal fan of PM , let the permutohedron P be

the convex hull of (1, . . . , n) together with all its permutations. Given a small real

number ε, εP + PM is a deformation of P whose face structure is the same as the

permutohedron P .

Given a torus-fixed point p of X̃, p corresponds to a vertex of P , which corresponds

to a vertex of εP+PM . Letting ε→ 0, that vertex limits to a vertex of PM . If p corre-

sponds to the vertex (1, . . . , n) of P , then εp+
∑

i∈B ei is a vertex of εP +PM exactly

when B is minimal among all elements of B in lexicographic ordering. For general

p corresponding to a permutation, the corresponding vertex of PM corresponds to

the element of B that is minimal in lexicographic ordering after we reorder the set

{1, . . . , n} according to the permutation.

Finally, the formula in Theorem 23.1 follows from [45, Proposition 5.1]. The sum-

mation is a summation over the torus-fixed points of X̃. The denominator is corre-

sponds to the tangent space at each of the torus fixed points together with the torus

action. The numerator corresponds to the equivariant class of the linear subspace

(S ⊗Kr)|p ⊂ Kn ⊗Kr for for every torus fixed point p ∈ X̃. �
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24. An singularities are the most common

As a starting point, we recall the following powerful result counting isolated hyper-

surface singularities in families. Let π : W → B be a smooth morphism of complex

varieties and H ⊂ W be a divisor. As we vary over points b ∈ B, Hb ⊂ Wb is a family

of hypersurfaces. Let Ω be an isolated hypersurface singularity class.

Theorem 24.1 ([66, Theorem 1],[79, Section 11]). The cohomology class of

{p ∈ H | p ∈ π−1(π(p)) is a singularity of type Ω} ⊂ W

is a polynomial PΩ in the class of H and the chern classes of the relative tangent

bundle TW/B. Furthermore, PΩ is known when Ω is the An, Dn or En singularity

class for n ≤ 8.3

Letting W = CP n × S for S a smooth complex surface recovers counts of curves

with an An, Dn or En singularity in a linear series. Kazarian also has a generalization

of Theorem 24.1 to count hypersurfaces with multiple singularities [67]. Our goal is

to build upon Theorem 24.1.

Let S be a smooth surface, L a line bundle, and V ⊂ H0(L) a general linear series

with dim(V ) = n+ 1. From Theorem 24.1, one can deduce

Corollary 24.2. Given a singularity type Ω that occurs in codimension n, there exist

constants a(Ω), b(Ω), c(Ω), d(Ω) such that the number of curves in V with a singularity

of type Ω is a(Ω)L2 + b(Ω)c1(TS)L+ c(Ω)c1(TS)2 + d(Ω)c2(TS).

24.0.1. Counting curve singularities asymptotically. The problem of counting curves

with a prescribed singularity has been well-studied [66, 15, 91, 69], but the constants

a(Ω), b(Ω), c(Ω), d(Ω) have only been determined for Ω equal to An, Dn or En sin-

gularities with n ≤ 8. Our interest in this comes from Proposition 24.3 below. The

3Kazarian’s result in [66, Theorem 1] and [79, Section 11] actually gives a formula that works for
all dimensions. So for example, there is one formula that counts A8 singularities for hypersurfaces
of all dimensions.
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results in this section should generalize to the case of hypersurface, but we will focus

on the case of plane curves.

To set up Proposition 24.3, letG be the group of automorphisms on C[x, y]/(x, y)N+1

given by change of variables x → f(x, y) and y → g(x, y). Suppose we are given a

closed subvariety Z ⊂ C[x, y]/(x, y)N+1 invariant under the action of G. Given a

family W → B of complex surfaces and a relative curve H ⊂ W , it makes since to

ask for the locus

{p ∈ H | H|π−1(π(p)) ⊂ W |π−1(π(p)) has equation in Z in local analytic coordinates}.

In words, given a point b ∈ B and p ∈ Hb, the local equation for Hb in Wb lies in

C[[x, y]]. It makes sense to ask whether its image in C[x, y]/(x, y)N+1 is in Z. This is

independent on the choice of local coordinates since Z is G-invariant. Let ΩZ denote

the singularity type associated to Z. 4

Proposition 24.3. We have a(ΩZ) =
(
n+2

2

)
deg(Z), where Z is the image of Z in

P(C[x, y]/(x, y)N+1).

Proof. To illustrate the method, we start with a family W → B of complex surfaces

and a relative curve H ⊂ W , and then specialize to the case of linear series on a

surface. In the process, we will also show the existance of the polynomial PΩZ in

Theorem 24.1. On W , there is a relative sheaf of principal parts PN(L), where L is

the line bundle given by the Cartier divisor H.

There is a section σ of PN(L) induced by H and we are interested in the locus

p ∈ H where

σp ∈ PN(L)|p ∼= C[x, y]/(x, y)N+1

4We are defining singularity type as having an analytic expansion in Z. One could alternatively
define it to be analytically equivalent or topological equivalent to a given curve at the origin, and
our definition encompasses both of these.
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is in the locus Z. Equivalently, we have a locus Z ⊂ PN(L) that restricts to Z in each

fiber. (Since Z is invariant under the group G consisting of change of coordinates,

we can construct Z by taking a trivialization, and the result will be independent of

the trivialization.) The class we are interested in

[Z] ∈ A•(PN(L)) ∼= A•(W ).

At this point, one way to approach the problem and is to note that this class is a

specialization of the Gm × G-equivariant cohomology class of Z ⊂ C[x, y]/(x, y)N+1

and G is homotopy equivalent to GL2. Instead of exploiting this, we will instead note

that one can specialize PN(L) to L⊕ L⊗ ΩW/B ⊕ · · · ⊕ L⊗ SymN ΩW/B and Z will

specialize to the locus Z0 ⊂ L⊕L⊗ΩW/B ⊕ · · · ⊕ L⊗ SymN ΩW/B that is Z in each

fiber.

Now Z0 can be computed as the Gm × GL2-equivariant cohomology of Z ⊂

C[x, y]/(x, y)N+1, where GL2 acts linearly on x and y and Gm acts as scaling. This

shows that the class of Z0 (and hence the class of Z) can be expressed in A•(W ) as

a polynomial PΩZ in H = c1(L) and c1(ΩW/B and c2(ΩW/B).

Furthermore, the degree deg(Z) of Z ⊂ P(C[x, y]/(x, y)N+1) is the coefficient of

PΩZ when we set c1(ΩW/B and c2(ΩW/B) to be zero, as this is the same as taking the

Gm-equivariant class of Z.

Finally, we specialize to the case W = S×B for S a smooth surface and B = P(V )

for V ⊂ H0(L). Therefore, we are after the number∫
S×P(V )

PΩZ (c1(L) + OP(V )(1), c1(S), c2(S)).

The coefficient of c1(L)2 of PΩZ (c1(L) + OP(V )(1), c1(S), c2(S)) after pushing forward

under S×P(V )→ S is
(
n+2

2

)
times the coefficient of c1(L)n+2, which is

(
n+2

2

)
deg(Z).

�
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24.0.2. The squaring locus and An singularities. The locus Z ⊂ C[x, y]/(x, y)N+1

associated to An singularities is easy to describe explicitly.

Proposition 24.4. The locus Zn ⊂ C[x, y]/(x, y)n+1 given as the squares

{f 2 | f ∈ C[x, y], f(0, 0) = 0}

corresponds to An singularities.

Proof. A function f ∈ C[[x, y]] with an An singularity is n-determined [52, Corollary

2.24], meaning f ≡ g (mod (x, y)n+1) implies f and g are analytically equivalent.

Therefore, An singularities correspond to some locus Z ′n ⊂ C[x, y]/(x, y)n+1.

The cases n = 1, 2 are trivial, so we assume n ≥ 3. Then, x2 must be in Z ′n since

a double line is a degeneration of an An singularity for all n. However, we know

Z ′n must be G-invariant, so Z ′n contains the orbit of x2, which is Zn. Finally, by

codimension reasons, Zn and Z ′n coincide. �

Given the explicit form of the locus Zn and Proposition 24.3, it makes sense to ask

Question 24.5. What is the degree of Zn ⊂ P(C[x, y]/(x, y)n+1)?

The answer to Question 24.5 for n = 1, . . . , 7 is 1, 2, 5, 12, 30, 79, 217, which returns

no hits when searched in the online encyclopedia of integer sequences.

Perhaps more interesting is the following question:

Question 24.6. For N >> 0, among all codimension n+2 subvarieties of P(C[x, y]/(x, y)N+1)

that are preserved under the action of G, is the subvariety of maximal dimension the

closure of the inverse image of Zn under

P(C[x, y]/(x, y)N+1) 99K P(C[x, y]/(x, y)n+1)?

Informally, if we invoke Proposition 24.3, this is asking if An singularities are the

most common curve singularity occuring in codimension n we see with sufficient



positivity. Given the formulas in [79, Section 11], one should suspect that not much

positivity is actually required.
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Quartic Plane Curve C pC(c1, c2, c3)
CA6 : (x2 + yz)2 + 2yz3 = 0 3 · 112(9c3

1 + 12c1c2 − 11c3)(2c3
1 + c1c2 + c3)

CD6 : z(xyz + x3 + z3) 3·64(18c6
1+33c4

1c2+12c2
1c

2
2−85c3

1c3−11c1c2c3−7c2
3)

CE6 : y3z + x4 + x2y2 = 0 2 · 48(2c3
1 + c1c2 + c3)(9c3

1 − 6c1c2 + 7c3)
CAN : Nodal cubic union flex line 2·192(18c6

1+33c4
1c2+12c2

1c
2
2+19c3

1c3−7c1c2c3−35c2
3)

Cflex: smooth cubic union flex line pCAN + 2pD6

Q: Quadrilateral 24·16(18c6
1 +33c4

1c2 +12c2
1c

2
2 +131c3

1c3 +153c1c2c3−
147c2

3)
CD4 : a general curve with D4 singu-
larity

1
4
(8pCA6

− pQ)

Two lines plus conic pQ + 2pCD4

A line plus a general cubic pQ + 3pCD4

Quartic with δ nodes and κ cusps
and no hyperflexes

8pCA6
− 2δpCD6

− κpCflex

A smooth quartic with n hyperflexes 8pCA6
− npCE6

General smooth quartic 8pCA6

Figure 1. Equivariant classes of orbits of quartic plane curves

Quartic Plane Curve C (# Aut(C) ·# planar sections of quartic threefold)
CA6 : (x2 + yz)2 + 2yz3 = 0 3 · 21280
CD6 : z(xyz + x3 + z3) 3 · 7040
CE6 : y3z + x4 + x2y2 = 0 2 · 4800
CAN : Nodal cubic union flex line 2 · 36480
Cflex: smooth cubic union flex line 2 · 57600
Q: Quadrilateral 24 · 5600
CD4 : a general curve with D4 singu-
larity

94080

Two lines plus conic 322560
A line plus a general cubic 416640
Quartic with δ nodes and κ cusps
and no hyperflexes

510720− 2δ(3 · 7040)− κ(2 · 57600)

A smooth quartic with n hyperflexes 510720− n(2 · 4800)
General smooth quartic 510720

Figure 2. Number of times we see a particular curve as a planar
section of a quartic threefold with specified moduli.


