
Universality of Lévy Matrices
The Harvard community has made this

article openly available.  Please share  how
this access benefits you. Your story matters

Citation Lopatto, Patrick. 2020. Universality of Lévy Matrices. Doctoral
dissertation, Harvard University, Graduate School of Arts &
Sciences.

Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365818

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Universality%20of%20L%C3%A9vy%20Matrices&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=2ac3d01d16ee67f235f7aa4544d5512d&departmentMathematics
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365818
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


Universality of Lévy Matrices
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Universality of Lévy Matrices

Abstract

Motivated by conjectures from physics, we study the eigenvalues and eigenvectors of

Lévy matrices, which are symmetric random matrices whose upper triangular entries are

independent, identically distributed α-stable distributions. For α < 2, these distributions

are heavy-tailed, with infinite second moment. For α ∈ (1, 2), we show that at all finite non-

zero energies, Lévy matrices exhibit completely delocalized eigenvectors and local eigenvalue

statistics that asymptotically match those of the Gaussian Orthogonal Ensemble. For almost

all α ∈ (0, 2), we prove the same result for small energies, including zero. Additionally, for

almost all α ∈ (0, 2), we analyze the statistics of eigenvector entries of Lévy matrices at small

energies and show that the limiting distribution of any such entry is non-Gaussian. For entries

of the eigenvector corresponding to the median eigenvalue, we identify this distribution

explicitly. We also demonstrate the presence of non-trivial correlations between eigenvector

entries corresponding to nearby eigenvalues. These findings contrast sharply with the known

eigenvector behavior for other random matrix ensembles. Further, our results for both

eigenvalues and eigenvectors generalize to a large class of heavy-tailed random matrices.
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Chapter 1

Introduction

1.1 Background

The spectral analysis of random matrices has been a topic of intense study since Wigner’s

pioneering investigations in the 1950s [99]. Wigner’s central thesis asserts that the spectral

statistics of random matrices are universal models for highly correlated systems. A con-

crete realization of his vision, the Wigner–Dyson–Mehta conjecture, states that the bulk

local spectral statistics of an N ×N real symmetric (or complex Hermitian) Wigner matrix

should become independent of the laws of its entries as N tends to infinity [84, Conjecture

1.2.1]. This phenomenon is known as bulk universality. While Wigner was able to show the

universality of the global spectral distribution, made precise by his famous semicircle law,

rigorous results on local spectral statistics remained out of reach until only recently.

Over the past decade, a framework based on resolvent estimates and Dyson Brownian

motion has been developed to establish the Wigner–Dyson–Mehta conjecture and extend

its conclusion to a wide class of matrix models. These include Wigner matrices [41, 52,

57, 61, 62, 64, 70–72, 79, 95, 97], correlated random matrices [10, 48], random graph models

[22, 54, 56, 69, 70], general Wigner-type matrices [11, 12], certain families of band matrices

[39, 40, 43, 45, 100], and various other models. All these models require that the variance
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of each matrix entry is finite, an assumption already present in the original universality

conjectures [84]. The moment assumption required for the bulk universality of Wigner

matrices has been progressively improved, and universality is now known to hold for matrix

entries with finite (2 + ε)-th moments [4, 54].

While finite variance might seem to be the natural assumption for the Wigner–Dyson–

Mehta conjecture, in 1994 the physicists Cizeau and Bouchaud [50] asked to what extent local

eigenvalue statistics and related phenomena remain universal once the finite variance con-

straint is removed. Their work was motivated by heavy-tailed phenomena in physics [35,90],

including the study of spin glass models with power-law interactions [49], and applications

to finance [36–38,46,66,75,76]. Recent work has also shown the appearance of heavy-tailed

spectral statistics in neural networks [81–83]. Heavy-tailed random matrices may therefore

be regarded as exemplars of a new universality class for highly correlated systems.

The authors of [50] proposed a family of symmetric random matrix models, called Lévy

matrices, whose entries are random variables in the domain of attraction of an α-stable law.1

Based on numerical simulations, they predicted that bulk universality should still hold in

certain regimes when α < 2. In particular, for α < 1 they proposed that the local statistics

of Lévy matrices should exhibit a sharp phase transition from GOE at small energies to

Poisson at large energies.

Such a transition is called a mobility edge (also known as an Anderson transition or Mott

transition, depending on the physical context) and is a principal concept in the pathbreak-

ing work of the physicists Anderson and Mott on metal–insulator transitions in condensed

matter physics [3, 16, 17, 87, 88]. It is widely believed to exist in the context of random

Schrödinger operators, particularly in the Anderson tight-binding model [1, 2, 8, 9, 21], but

rigorously establishing this statement has remained a fundamental open problem in mathe-

matical physics for decades. While localization and Poisson statistics at large energies in the

Anderson model have been known since the 1980s, even the existence of a delocalized phase

1When α < 2, we recall that the densities of such laws decay asymptotically like x−α−1 dx. In particular,
they have infinite second moment.
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with GOE local statistics has not been rigorously verified for any model exhibiting a conjec-

tural mobility edge [7,51,65,67,80,85,92]. As explained below, Lévy matrices provide one of

the few examples of a random matrix ensemble for which such a transition is also believed

to appear. Consequently, the predictions of [50] have attracted significant attention among

mathematicians and physicists over the past 25 years [18, 19,24,25,25,30–34,47,91,98].

1.2 Delocalization and eigenvalue statistics

The work [50] further analyzed the large N limiting profile for the empirical spectral dis-

tribution of a Lévy matrix H, defined by µH = N−1
∑N

j=1 δλj , where λ1, λ2, . . . , λN denote

the eigenvalues of H. They predicted that µH should converge to a deterministic, explicit

measure µα as N tends to infinity, which was later proven by Ben Arous and Guionnet [18].

This measure µα is absolutely continuous with respect to the Lebesgue measure on R and

therefore admits a density %α, which is symmetric and behaves as %α(x) ∼ α
2xα+1 as x tends

to infinity [18,24,32]. In particular, %α is supported on all of R and has an α-heavy tail. This

contrasts with the limiting spectral density for Wigner matrices, given by the semicircle law,

%sc(x) = (2π)−11|x|<2

√
4− x2, (1.2.1)

which is compactly supported on [−2, 2].

Two other phenomena of interest are eigenvector delocalization and local spectral statis-

tics. Associated with any eigenvalue λk of H is an eigenvector uk = (u1k, u2k, . . . , uNk) ∈ RN ,

normalized such that ‖uk‖2
2 =

∑N
i=1 u

2
ik = 1. If H = GOEN is instead taken from the Gaus-

sian Orthogonal Ensemble2 (GOE), then the law of uk is uniform on the (N − 1)-sphere,

and so max1≤i≤N
∣∣uik∣∣ ≤ N δ−1/2 holds with high probability for any δ > 0. This bound is

referred to as complete eigenvector delocalization. The local spectral statistics of H concern

2This is defined to be the N ×N real symmetric random matrix GOEN = {gij}, whose upper triangular
entries gij are mutually independent Gaussian random variables with variances 2N−1 if i = j and N−1

otherwise.

3



Eα

0

∞

0 1 2

α ∈ (0, 2)

E

Poisson/
Localized

GOE/
Delocalized

Figure 1.1: Phase diagram. The thick line indicates the location of the conjectural mobility
edge, which separates the localized phase from the delocalized phase. The gray area indicates
the scope of our results.

the behavior of its neighboring eigenvalues close to a fixed energy level E ∈ R.

The main predictions of [50] were certain transitions in the eigenvector behavior and

local spectral statistics of Lévy matrices. Their predictions are not fully consistent with the

recent work [98] by Tarquini, Biroli, and Tarzia, based on the supersymmetric method. The

latter predictions can be summarized as follows.

A (1 ≤ α < 2) All eigenvectors of H corresponding to finite eigenvalues are completely de-

localized. Further, for any E ∈ R, the local statistics of H near E converge to those

of the GOE as N tends to infinity.

B (0 < α < 1) There exists a mobility edge Eα such that (i) if |E| < Eα then the local

statistics of H near E converge to those of the GOE and all eigenvectors in this region

are completely delocalized; (ii) if |E| > Eα, then the local statistics of H near E

converge to those of a Poisson point process and all eigenvectors in this region are

localized.

The earlier predictions of [50] are different: A’ (1 ≤ α < 2): There are two regions:

(i) for sufficiently small energies, the eigenvectors are completely delocalized and the local

statistics are GOE; (ii) for sufficiently large energies, the eigenvectors are weakly localized

4



according to a power law decay, and the local statistics are given by certain non-universal

laws that converge to Poisson statistics in the infinite energy limit; B’ (0 < α < 1): essen-

tially the same as prediction B above except that in the delocalized region the eigenvectors

were predicted to only be partially delocalized, in that a positive proportion of the mass is

completely delocalized and a positive proportion of the mass is completely localized. In ad-

dition, [50] proposes an equation for the mobility edge Eα; a much simpler (but equivalent)

version of this equation was predicted in [98].

The problem of rigorously establishing this mobility edge remains open. In fact, there

have been no previous mathematical results on local statistics for Lévy matrices in any

regime. However, partial results on eigenvector (de)localization were established by Borde-

nave and Guionnet in [33,34]. If 1 < α < 2, they showed that almost all eigenvectors uk sat-

isfy max1≤i≤N |uik| < N δ−ρ for any δ > 0 with high probability, where ρ = α−1
max{2α,8−3α} [33].

For almost all α ∈ (0, 2), they also proved the existence of some c = c(α) such if uk is an eigen-

vector of H corresponding to an eigenvalue λk ∈ [−c, c], then max1≤i≤N |uik| < N δ−α/(4+2α)

for any δ > 0 with high probability [34]. These estimates remain far from the complete delo-

calization bounds that have been established in the Wigner case. Furthermore, if 0 < α < 2
3

and G(z) =
{
Gij(z)

}
= (H − z)−1, then they showed that E

[(
ImG11(z)

)α/2]
= O(ηα/2−δ)

for any δ > 0 if Re z is sufficiently large and η = Im z � N−(2+α)/(4α+12), which implies

eigenvector localization in a certain weak sense at large energy [33].

In this dissertation, we establish complete delocalization and bulk universality for Lévy

matrices for all energies in any fixed compact interval away from E = 0 if 1 < α < 2. In

addition, for 0 < α < 2 outside a (deterministic) countable set, we prove that there exists

Ẽα such that complete delocalization and bulk universality hold for all energies in [−Ẽα, Ẽα].

These results establish the prediction A of [98] essentially completely for 1 < α < 2 and also

the existence of the GOE regime for 0 < α < 1, with completely delocalized eigenvectors.

Before describing these results in more detail, we recall the three-step strategy for establishing

bulk universality of Wigner matrices developed in [52,58,60–62,95] (see [26,53] or the book
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[52] for a survey).

The first step is to establish a local law for H, meaning that the spectral density of H

asymptotically follows that of its deterministic limit on small scales of order nearly N−1, the

typical inter-eigenvalue distance. The second step is to consider a Gaussian perturbation H+

t1/2GOEN of H, for some small t, and then use the local law to show that the local statistics

of the perturbed matrix are universal. The third step is to compare the local statistics of

H and its perturbed variant H + t1/2GOEN , and show that they are asymptotically the

same. The comparison of the local statistics can be most efficiently obtained by comparing

the entries of the resolvents of the ensembles; this is often referred to as a Green’s function

(resolvent) comparison theorem [64].

There are two issues with adapting this framework to the heavy-tailed setting. First,

we do not know of a direct way to establish a local law for the α-stable matrix H on the

optimal scale of roughly N−1. Second, justifying the removal of the Gaussian perturbation

in the third step has intrinsic problems since the entries of H have divergent variances (and

possibly divergent expectations).

To explain the first problem, we introduce some notation. We recall the Stieltjes trans-

form of the empirical spectral distribution µH is defined by the function

mN(z) = mN,H(z) =
1

N

N∑
j=1

1

λj − z
=

1

N
Tr
(
H− z

)−1
, (1.2.2)

for any z ∈ H. Since µH converges weakly to µα as N tends to infinity, one expects mN(z)

to converge to mα(z) =
∫
R(x− z)−1%α(x) dx. The imaginary part of the Stieltjes transform

represents the convolution of the empirical spectral distribution with an approximate identity,

the Poisson kernel, at scale η = Im z. Hence, control of the Stieltjes transform at scale η can

be thought of as control over the eigenvalues averaged over windows of size approximately

η.

A local law for H is an estimate on
∣∣mN(z) −mα(z)

∣∣ when η = Im z scales like N−1+ε.
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The typical procedure [55, 56, 59, 60, 64, 79] for establishing a local law relies on a detailed

understanding of the resolvent of H, defined to be the N ×N matrix G(z) =
(
H− z

)−1
={

Gij(z)
}

. Indeed, since mN(z) = N−1 Tr G(z), it suffices to estimate the diagonal entries of

G. In many of the known finite variance cases, (almost) all of the entries Gij converge to a

deterministic quantity in the large N limit.

This is no longer true in the heavy-tailed setting, where the limiting resolvent entries

are instead random away from the real axis [32]. While the idea that the resolvent entries

should satisfy a self-consistent equation (which has been a central concept in proving local

laws for Wigner matrices [59]) is still applicable to the current setting [18, 24, 33, 34], the

random nature of these resolvent entries poses many difficulties in analyzing the resulting

self-consistent equation. This presents serious difficulties in applying previously developed

methods to establish a local law for α-stable matrices on the optimal scale. While local

laws on intermediate scales η � N−1/2 were established for such matrices in [33, 34] if α

is sufficiently close to two, the value of η allowed in these estimates deteriorates to 1 as α

decreases to zero.

For the second problem, all existing methods of comparing two matrix ensembles H and

H̃ [4,41,54,56,70,79,94,95,97] involve Taylor expanding the matrix entries of their resolvents

to order at least three and then matching the expectations of the first and second order terms

of this expansion, which correspond to the first and second moments of the matrix entries.

If the entries of H and H̃ are heavy-tailed, then all second and higher moments of these

matrix entries diverge, and this expansion is meaningless.

These two difficulties are in fact intricately related, and our solution to them consists of

the following steps.

1. We first rewrite the matrix as H = X+A, where A consists of the “small terms” of H

that are bounded by N−ν in magnitude for some constant 0 < ν < 1
α

, and X consists of the

remaining terms. We prove a comparison theorem for the resolvent entries of H = X + A

and those of Vt = X + t1/2GOEN , where GOEN is independent from X. The parameter

7



t ∼ N ν(α−2) will be chosen so that the variances of matrix entries of t1/2GOEN and A match.

By construction, A and X are symmetric, so the first and third moments of the matrix entries

vanish. Hence in the comparison argument, the problem is reduced to considering the second

and fourth order terms.

Notice that A and X are dependent, so the previous heuristic cannot be applied directly.

To remove their correlation, we expand upon a procedure introduced in [4] to produce a

three-level decomposition of H. By conditioning on the decomposition into large and small

field regions, A and X are independent and a version of the comparison theorem can be

proven.

2. From the work of [78], the GOE component in Vt improves the regularity of the initial

data V0, which is a manifestation of the parabolic regularization of the Dyson Brownian

motion flow. Roughly speaking, if the spectral density of V0 is bounded above and below

at a scale η ≤ N−δt, then the following three properties for Vt hold: (i) universality of local

statistics, (ii) complete eigenvector delocalization, and (iii) a local law at all scales up to

η ≥ N δ−1 for any δ > 0 [42,63,77,78].

The fundamental input for this method is an intermediate local law for X on a scale

η � N ν(α−2) ∼ t. The existing intermediate local laws for heavy tailed matrices established

in [33, 34] are unfortunately only valid on scales larger than this critical scale when α is

close to one. Our second main result is to improve these laws to scales below N ν(α−2). Our

method uses self-consistent equations for the resolvent entries and special tools developed in

[33] for Lévy matrices. Note that the resolvent entries of X are random and self-consistent

equations for them are difficult to work with. Still, we are able to derive effective upper

bounds on the diagonal resolvent entries of X, which enable us to improve the intermediate

local laws to scales below N ν(α−2).

3. Combining steps 1 and 2, we are able to transport the three properties for Vt to our

original matrix H. Recall that in the standard comparison theorem, resolvent bounds on the

optimal scale are required on both ensembles. Since our initial estimates on the resolvent of
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the original matrix H are far from on the optimal scale, a different approach is required. In

particular, it is known that one can induct on the scale η to transfer resolvent estimates from

one ensemble to another using the comparison method [74]. Although technical estimates

must be supplied, the upshot of this step is that all three properties for Vt hold for the original

matrix H. The eigenvector delocalization and universality of local statistics constitute our

main results. For the sake of brevity, we will not pursue the local law on the optimal scale

of approximately N−1, since it will not be needed to prove our main results.

We prove our results on delocalization and GOE statistics in Chapter 2. In Section 2.1

we explain our results in more detail. In Section 2.2 we state the comparison between H

and Vt, as well as the intermediate local laws for X in the α ∈ (1, 2) case and the small

energy α ∈ (0, 2) case. Then, assuming these estimates, we establish our results (given by

Theorem 2.1.4 and Theorem 2.1.5). In Section 2.3 we establish the comparison between H

and Vt. In Section 2.4 and Section 2.5 we establish the intermediate local law on X at all

energies away from 0 when α ∈ (1, 2). In Section 2.6 and Section 2.7 we show a similar

intermediate local law on X, but at sufficiently small energies and for almost all α ∈ (0, 2).

1.3 Eigenvector statistics

Universality for the eigenvector entries of Wigner matrices was recently proven in [44] by

Bourgade and Yau. There, they introduced the eigenvector moment flow, a system of stochas-

tic differential equations which govern the evolution of the moments of eigenvector entries of

a matrix under the addition of Gaussian noise. Through a careful analysis of these dynamics,

they prove asymptotic normality for the eigenvector entries of Wigner matrices. Extensions

of this method later enabled the analysis of eigenvector statistics for sparse and deformed

Wigner matrices in [27,42], and for other eigenvector observables in [28, 45].

While the results and predictions in the previous section address (de)localization of Lévy

matrix eigenvectors, little is known about refined properties of their entry fluctuations. In
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[25], Benaych-Georges and Guionnet showed that averages of O(N2) of these eigenvector

entries converge to Gaussian processes, after scaling by N−1/2. However, until now, we have

not been aware of any results or predictions concerning fluctuations for individual entries of

Lévy matrix eigenvectors.

In this dissertation we establish several such results, which in many respects contrast

with their known counterparts for Wigner matrices (and all other random matrix models

for which the eigenvector entry distributions have previously been identified). We establish,

for almost all α < 2, the following statements concerning the unit (in L2) Lévy eigenvectors

uk =
(
uk(1), uk(2), . . . , uk(N)

)
whose associated eigenvalues λk ≈ E are sufficiently small.

1. An eigenvector entry
√
Nuj(i) is not asymptotically normal: its square converges to

N 2 · U?(E) as N tends to infinity, where N is a standard normal random variable and

U?(E) is an independent (non-constant and typically non-explicit) random variable

that depends on E.

2. Different entries of the same eigenvector are asymptotically independent.

3. Entries of different eigenvectors with the same index are not asymptotically indepen-

dent: if k1, k2, . . . , kn ∈ [1, N ] and i ∈ [1, N ] are indices such that λkn ≈ E, then the

vector
(
Nuk1(i)

2, Nuk2(i)
2, . . . , Nukn(i)2

)
converges to

(
N 2

1 ·U?(E),N 2
2 ·U?(E), . . . ,N 2

n ·

U?(E)
)
, where the Nj are i.i.d. standard Gaussians that are independent from U?(E).

4. The law of U?(0) is given explicitly as the inverse of a one-sided α
2
-stable law. In

particular, all asymptotic moments of the median eigenvector are also explicit.

To contextualize our results, we recall the asymptotic normality statements for Wigner

eigenvectors proved in [44]. First, an individual eigenvector entry converges to a standard

normal random variable. Second, different entries of the same eigenvector are asymptotically

independent. Third, the same is true for entries of different eigenvectors with the same index.

Our results show that, although the second of these phenomena persists in the Lévy case, the
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first and third do not. We further note that while Lévy matrices exhibit GOE local statistics

at small energy, which only differ through a rescaling factor corresponding to the eigenvalue

density, the eigenvector statistics follow a family of distinct random variables that vary in

the energy parameter E ∈ R. This is again unlike the Wigner eigenvectors, which display

the same Gaussian statistics throughout the spectrum.

Our work confronts one of the major differences between Lévy matrices and Wigner

matrices: the non-concentration of the resolvent entries. In the Wigner case, these diagonal

resolvent entries converge to a deterministic quantity (the Stieltjes transform of the semicircle

law) as N tends to infinity. However, for Lévy matrices H, the diagonal entries Gjj(z) of

the resolvent G(z) = (H − z)−1 converge for fixed z ∈ H to nontrivial (complex) random

variables R?(z) as N tends to infinity [32]. This is the mechanism that generates the non-

Gaussian scaling limit for the limiting eigenvector entries. Indeed, the random variable U?(E)

mentioned above is defined as a (multiple of a) weak limit of R?(E + iη), as η tends to 0.

Our proof strategy is dynamical. First, we define a matrix X, which is coupled to the

Lévy matrix H and obtained by setting all sufficiently small (in absolute value) entries of H

to zero. We also introduce the Gaussian perturbation Xs = X +
√
sW, where W is a GOE

and s� 1. Under a certain choice of s = t, we are able to show that the eigenvector statistics

of H are asymptotically the same as those of Xt. Second, we identify the moments of the

eigenvector entries of Xt in terms of entries of the resolvent matrix R(t, z) = (Xt − z)−1,

where z = E + iη and η tends to 0 as N tends to infinity. Third, we compute the large

N limit of these resolvent entries and deduce the above claims from the behavior of the

resulting scaling limits. We now describe the steps of our argument, and their associated

challenges, in more detail.

1. The first step is a comparison of eigenvector statistics, which has been achieved before

for Wigner matrices with entries matching in the first four moments [73,97]. However, these

results do not apply to Lévy matrices, since the second moments of their entries are infinite.

Instead, we use the comparison scheme introduced above that conditions on the locations of
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the large entries of H and matches moments between the small entries of H and the Gaussian

perturbation
√
tW in Xt = X+

√
tW; these have all moments finite by construction. While

we previously considered the comparison for Green’s function elements, we apply it to general

smooth functions of the matrix entries and write the eigenvector statistics as such functions

using ideas from [42,70].

2. The second step uses the eigenvector moment flow to show that moments of the

eigenvector entries of Xt approximate moments of the Im R(t, z) entries. As in [42, 44], a

primary idea here is to apply the maximum principle to show under these dynamics that

eigenvector moment observables equilibriate after a short period of time to a polynomial in

the entries of Im R(t, z). However, unlike in those previous works, the entries of Im R(s, z)

do not concentrate and therefore might be unstable under the dynamics. To address this,

we condition on the initial data X0, which one might hope renders the Rjj(s, z) essentially

constant under the flow Xs for s � 1. Unfortunately, we cannot show this directly, and in

fact it appears that these resolvent entries can be unstable in the beginning of the dynamics

even after this conditioning. Therefore, we run the flow for a short time τ before beginning

the main analysis. This has a regularizing effect and ensures the stability of the resolvent

entries of Xs for s ∈ [τ, t]. Our analysis then proceeds by running the dynamics for a

further amount of time t− τ � N−1/2 to prove convergence to equilibrium, given this initial

regularity.

3. The third step asymptotically equates moments of ImRii(t, z) with those of ImR?(z),

as η = Im z tends to 0 and N tends to infinity simultaneously. To analyze the former, we

first use the Schur complement formula and a certain integral identity to express arbitrary

moments of ImRii(t, z) through the α
2
-th moments of (real and imaginary parts of) Rii(t, z),

as in [33, 34]. Next, using a local law from the previous section, we approximate these α
2
-th

moments by corresponding ones for R?(z). To analyze the moments of ImR?(z), we use the

same integral identity and a recursive distributional equation for R?(z) from [32] to express

them through α
2
-moments of (real and imaginary parts of) R?(z). We then observe the two

12



expressions are equal as N tends to infinity.

We prove our results on eigenvector statistics in Chapter 3. In Section 3.1 we state

our results in detail. In Section 3.2 we give a full proof outline and establish our main

results, assuming several preliminary claims which are shown in the remainder of the chapter.

Section 3.3 recalls results on Lévy matrices from previous works that are required for the

argument. Section 3.4 details the comparison part of the argument. Section 3.5 analyzes

the eigenvector moment flow. Section 3.6 computes the scaling limits of the resolvent entries

mentioned above. Section 3.7 provides some preliminary results needed in the previous

sections, and Section 3.8 addresses convergence in distribution. In Section 3.9, we discuss

quantum unique ergodicity (QUE) for eigenvectors of Lévy matrices, whose analogue for

Wigner matrices was established in [44].

1.4 About this dissertation

This dissertation is a compilation of two papers. The first, [6], appears here as Chapter 2.

This is joint work with Amol Aggarwal and Horng-Tzer Yau. The second, [5], constitutes

Chapter 3. This is joint work with Amol Aggarwal and Jake Marcinek. In each case, I

made minor typographical changes from the versions currently on arXiv to make the sec-

tions stylistically coherent, but did not alter the mathematical content. Further, instead

of reproducing the introduction to each paper individually, I combined them to form the

introduction to this work.

The work [6] will be published in Journal of the European Mathematical Society, while

[5] is an unpublished preprint currently under peer review. Therefore, it is likely that the

published version of the latter will incorporate changes made during peer review and differ

from the one here. The latest version of each paper will always be available on the arXiv.

The copyright to [6] is held by JEMS and the work is reproduced here for non-commercial

purposes, in accordance with the journal’s copyright policy. I and the other authors of [5]
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retain the copyright to that work.

While I performed the research presented in this dissertation, I was partially funded by

the NSF Graduate Research Fellowship Program under grant DGE-114415, and through my

advisor’s NSF grants, DMS-1606305 and DMS-1855509. I thank the NSF for their support.
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Chapter 2

Eigenvalue Statistics of Lévy Matrices

2.1 Results

We fix parameters α ∈ (0, 2) and σ > 0. A random variable Z is a (0, σ) α-stable law if

E
[
eitZ
]

= exp
(
− σα|t|α

)
, for all t ∈ R. (2.1.1)

While many previous works have considered only matrices whose entires are distributed

as α-stable laws, the methods of this work apply to a fairly broad range of symmetric power-

law distributions. We now define the entry distributions we consider in this paper; the end

of this section discusses an extension to more general ones. For simplicity, the reader may

consider the concrete case of an α-stable distribution. The proof for this case contains all

essential features of the general one.

Definition 2.1.1. Let Z be a (0, σ) α-stable law with

σ =

(
π

2 sin
(
πα
2

)
Γ(α)

)1/α

> 0. (2.1.2)

Let J be a symmetric1 random variable (not necessarily independent from Z) such that

1By symmetric, we mean that J has the same distribution as −J .
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E[J2] <∞, Z + J is symmetric, and

C1(
|t|+ 1

)α ≤ P
[
|Z + J | ≥ t

]
≤ C2(
|t|+ 1

)α , for each t ≥ 0 and some constants C1, C2 > 0.

(2.1.3)

Denoting z = Z + J , the symmetry of J and the condition E[J2] < ∞ are equivalent to

imposing a coupling between z and Z such that z− Z is symmetric and has finite variance,

respectively.

For each positive integer N , let {Hij}1≤i≤j≤N be mutually independent random variables

that each have the same law as N−1/α(Z + J) = N−1/αz. Set Hij = Hji for each i, j, and

define the N × N random matrix H = HN = {Hij} = {H(N)
i,j }, which we call an α-Lévy

matrix.

The N−1/α scaling in the Hij is different from the more standard N−1/2 scaling that

occurs in the entries of Wigner matrices. This is done in order to make the typical row sum

of H of order one. Furthermore, the explicit constant σ (3.1.2) was chosen to make our

notation consistent with that of previous works, such as [18, 33, 34], but can be altered by

rescaling H.

It was shown as Theorem 1.1 of [18] that, as N tends to ∞, the empirical spectral

distribution of H converges to a deterministic measure µα. This is the (unique) probability

distribution µ on R whose Stieltjes transform
∫
R(x − z)−1 dµ(x) is equal to the function

mα(z), which can be explicitly described as follows. Denote the upper half plane by H =

{z ∈ C : Im z > 0} and its image under multiplication by −i by K = {z ∈ C : Re z > 0}. For

any z ∈ H, define the functions ϕ = ϕα,z : K→ C and ψ = ψα,z : K→ C by

ϕα,z(x) =
1

Γ(α/2)

∫ ∞
0

tα/2−1eitze−Γ(1−α/2)tα/2x dt, ψα,z(x) =

∫ ∞
0

eitze−Γ(1−α/2)tα/2x dt,

(2.1.4)

for any x ∈ K. For each z ∈ H there exists a unique solution y(z) ∈ K to the equation
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y(z) = ϕα,z
(
y(z)

)
, so let us define

mα(z) = iψα,z
(
y(z)

)
. (2.1.5)

The probability density function of the measure µα is given by %α, which is defined by setting

%α(E) =
1

π
lim
η→0

Immα(E + iη), for each E ∈ R.

The term bulk universality refers to the phenomenon that, in the bulk of the spectrum,

the correlation functions of an N ×N random matrix should converge to those of an N ×N

GOE matrix in the large N limit. This is explained more precisely through the following

definitions.

Definition 2.1.2. Let N be a positive integer and H be an N × N real symmetric ran-

dom matrix. Denote by p
(N)
H (λ1, λ2, . . . , λN) the density of the symmetrized joint eigenvalue

distribution of H.2 For each integer k ∈ [1, N ], define the k-th correlation function of H by

p
(k)
H (x1, x2, . . . , xk) =

∫
RN−k

p
(N)
H (x1, x2, . . . , xk, yk+1, yk+2, . . . , yN)

N∏
j=k+1

dyj.

Definition 2.1.3. Let {H = HN}N∈Z≥1
be a set of matrices, {% = %N}N∈Z≥1

be a set of a

probability density functions, and E ∈ R be a fixed real number. We say that the correlation

functions of H are universal at energy level E with respect to % if, for any positive integer k

and compactly supported smooth function F ∈ C∞0 (Rk), we have that

lim
N→∞

∣∣∣∣∣
∫
Rk
F (a)

(
p

(k)
HN

(
E +

a

N%N(E)

)
− p(k)

GOEN

( a

N%sc(0)

))
da

∣∣∣∣∣ = 0, (2.1.6)

where da denotes the Lebesgue measure on Rk and we recall that %sc was defined by (1.2.1).

2In particular, with respect to the symmetrized density, λ1, λ2, . . . , λN are exchangeable random variables.
Such a density exists because each entry distribution of the random matrix has a density.
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Now we can state our main results. In what follows, we set ‖v‖∞ = maxj∈[1,d] |vj| for any

v = (v1, v2, . . . , vd) ∈ Rd.

Theorem 2.1.4. Let H denote an N ×N α-stable matrix, as in Definition 3.1.1. Suppose

that α ∈ (1, 2), and fix some compact interval K ⊂ R \ {0}.

1. For any δ > 0 and D > 0, there exists a constant C = C(α, δ,D,K) > 0 such that

P
[
max

{
‖u‖∞ : Hu = λu, ‖u‖2 = 1, λ ∈ K

}
> N δ−1/2

]
< CN−D.

2. Fix some E ∈ K. Then the correlation functions of H are universal at energy level E

with respect to %α, as in Definition 2.1.3.

Theorem 2.1.5. Let H denote an α-stable matrix, as in Definition 3.1.1. There exists a

countable set A ⊂ (0, 2) with no accumulation points in (0, 2) such that for any α ∈ (0, 2)\A,

there exists a constant c = c(α) > 0 such that the following holds.

1. For any δ > 0 and D > 0, there exists a constant C = C(α, δ,D) > 0 such that

P
[
max

{
‖u‖∞ : Hu = λu, ‖u‖2 = 1, λ ∈ [−c, c]

}
> N δ−1/2

]
< CN−D.

2. Fix E ∈ [−c, c]. Then, the correlation functions of H are universal at energy level E

with respect to %α, as in Definition 2.1.3.

The above two theorems comprise the first complete eigenvector delocalization and bulk

universality results for a random matrix model whose entries have infinite variance. For

α ∈ (1, 2), Theorem 2.1.4 completely settles the bulk universality and complete eigenvector

delocalization for all energies (except if α ∈ A and E = 0), consistent with prediction A in

??. When α < 1, Theorem 2.1.5 can be viewed as establishing a lower bound on the mobility

edge in prediction B.
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Let us make four additional comments about the results above. First, although they

are only stated for real symmetric matrices, they also apply to complex Hermitian random

matrices. In order to simplify notation later in the paper, we only pursue the real case here.

Second, the exceptional set A of α to which Theorem 2.1.5 does not apply should be

empty. Its presence is due to the fact that we use results of [34] stating that certain deter-

ministic, α-dependent fixed point equations can be inverted when α /∈ A.

Third, our conditions in Definition 3.1.1 allow for the entries of H to be not exactly

α-stable, but they are not optimal. Although our methods currently seem to require the

symmetry of J and Z + J , they can likely be extended to establish our main results under

weaker moment constraints on J . In particular, they should apply assuming only this sym-

metry, (3.1.3), and that E[|J |β] < ∞, for some fixed β > α. Pursuing this improvement

would require altering the statements and proofs of (2.5.13), Lemma 2.5.8, and Lemma 2.9.1

below (with the primary effort being in the former).3 However, for the sake of clarity and

brevity, we do not develop this further here.

Fourth, local statistics of a random matrix H are also quantified through gap statistics.

For some fixed (possibly N -dependent) integer i and uniformly bounded integer m ≥ 0,

these statistics provide the joint distribution of the gaps between the (nearly) neighboring

eigenvalues
{
N(λj − λk)

}
|j−i|,|k−i|≤m. Our methods can be extended to establish universality

of gap statistics of Lévy matrices, by replacing the use of Proposition 2.2.11 below with

Theorem 2.5 of [78], but we do not pursue this here.

2.2 Proofs of delocalization and bulk universality

In this section we establish the theorems stated in Section 2.1 assuming some results that

will be proven in later parts of this paper. For the remainder of this paper, all matrices

under consideration will be real and symmetric.

3For the improvement of Theorem 2.1.5, which considers α ∈ (0, 2) \ A and small energies, it suffices to
modify only the statements and proofs of Lemma 2.5.8, and Lemma 2.9.1.
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Throughout this section, we fix a compact interval K ⊂ R and parameters α, b, ν, ρ > 0

satisfying

α ∈ (0, 2), ν =
1

α
− b > 0, 0 < ρ < ν <

1

2
,

1

4− α
< ν <

1

4− 2α
, αρ < (2− α)ν.

(2.2.1)

Viewing α ∈ (0, 2) as fixed, one can verify that it is possible to select the remaining

parameters b, ν, ρ > 0 such that the conditions (2.2.1) all hold. The reason for these con-

straints will be explained in Section 2.3.2. The proofs of Theorem 2.1.4 and Theorem 2.1.5

will proceed through the following three steps.

1. First we define a matrix X obtained by setting all entries of H less than N−ν to zero,

and we establish an intermediate local law for X on a certain scale η = N−$ with

$ > ν(2− α).

2. Next we study V = Vt = X + t1/2W, for a GOE matrix W and t ∼ N ν(α−2). The

results of [42,77] imply that if the Stieltjes transform and diagonal resolvent entries of X

are bounded on some scale η0 � t, then all resolvent entries of V are bounded by N δ on

the scale η ∼ N δ−1 for any δ > 0, and bulk universality holds for V. In particular, this

does not require that the resolvent entries of X approximate a deterministic quantity.

Thus, the previously mentioned local law for X (which takes place on scale N−$, which

is less than t ∼ N (α−2)ν) implies that the resolvent entries of V are bounded by N δ

when η = N δ−1, and that the local statistics of V are universal.

3. Then we establish a comparison theorem between the resolvent entries of H and V.

Combining this with the estimates on the resolvent entries of V from the previous step,

this allows us to conclude that that the resolvent entries of H are bounded by N δ on the

scale η = N δ−1, implying complete eigenvector delocalization for H. Further combining

this comparison with bulk universality for V will also imply bulk universality for H.
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We will implement the first, second, and third steps outline above in Section 2.2.1, Sec-

tion 2.2.2, and Section 2.2.3, respectively.

Remark 2.2.1. In the above outline we use [77] to prove the strongest form of convergence

of local statistics, which is given by (2.1.6). However, if one is content to establish this

convergence after averaging the eigenvalues over a small interval of size N δ−1 (known as

averaged energy universality), then one can instead use Theorem 2.4 of the shorter work [78].

Moreover, if one is only interested in proving complete delocalization for the eigenvectors of

H, then it suffices to instead use Theorem 2.1 and Proposition 2.2 of [42].

2.2.1 The intermediate local laws

In this section we introduce a removal variant, denoted by X, of our α-stable matrix H,

given by Definition 2.2.2 and Definition 3.2.3 below. Then, we state two intermediate local

laws for X, depending on whether α ∈ (1, 2) or α ∈ (0, 2). These are given by Theorem 2.2.4

and Theorem 2.2.5, respectively.

Definition 2.2.2. Fix constants α and b satisfying (2.2.1), and let Z, J , and z = Z + J be

as in Definition 3.1.1. Let Y = z1|z|≤Nb , and let X = z − Y . We call X the b-removal of a

deformed (0, σ) α-stable law.

Definition 2.2.3. Let {Xij}1≤i≤j≤N be mutually independent random variables that each

have the same law as N−1/αX, where X is given by Definition 2.2.2. Set Xij = Xji for each

1 ≤ j < i ≤ N , and define the N × N matrix X = {Xij}. We call X a b-removed α-Lévy

matrix. For any complex number z ∈ H, define the resolvent R = R(z) = {Rij}1≤i,j≤N =

(X − z)−1. Further denote m = mN = mN(z) = N−1 Tr R, and also set z = E + iη with

E, η ∈ R and η > 0.

Now, let {Zij}1≤i≤j≤N and {Jij}1≤i≤j≤N mutually independent random variables that

have the same laws as N−1/αZ and N−1/αJ , respectively, where Z and J are as in Defini-

tion 3.1.1. Let {Hij}1≤i≤j≤N be mutually independent random variables such that Hij =
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Zij + Jij. Couple each Hij with Xij so that Xij = Hij −Hij1N1/α|Hij |≤Nb . Set Hij = Hji for

each 1 ≤ j < i ≤ N , and define the N ×N matrix H = {Hij}. The matrix H is an α-Lévy

matrix that is coupled with X, and we refer to this coupling as the removal coupling. For

any z ∈ H, let G(z) =
{
Gij(z)

}
= (H− z)−1.

Now let us state intermediate local laws for the removal matrix X at all energies away

from 0 when α ∈ (1, 2) (given by Theorem 2.2.4 below) and at sufficiently small energies

for almost all α ∈ (0, 2) (given by Theorem 2.2.5 below). The scale at which the former

local law will be stated is η = N−$ for some $ ∈
(
(2 − α)ν, ν

)
, and the scale at which

the latter will be is η = N δ−1/2 for any δ > 0. These should not be optimal and do

not match that at which local laws were proven in finite variance cases, which is η = N δ−1

[4,10,12,23,48,52,53,55,56,59,60,64,69], but they will suffice for our purposes. In fact, one can

establish a local law on this optimal scale by combining Theorem 2.2.15 and Theorem 2.2.16

with Theorem 2.2.4 and Theorem 2.2.5, but we will not pursue this here.

The below result will be established in Section 2.4.1.

Theorem 2.2.4. Fix α, b, ν > 0 satisfying (2.2.1). Assume that α ∈ (1, 2) and K ⊂ R\{0}.

Let $ be such that

(2− α)ν < $ < ν,

and define the domain

DK,$,C =
{
z = E + iη ∈ H : E ∈ K, N−$ ≤ η ≤ C

}
, (2.2.2)

There exists a small constant κ = κ(α, b, ν,$,K) > 0 and large constants B = B(α) > 0
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and C = C(α, b, ν,$,K) > 0 such that

P

[
sup

z∈DK,$,B

∣∣mN(z)−mα(z)
∣∣ > C

Nκ

]
≤ C exp

(
−(logN)2

C

)
,

P

[
sup

z∈DK,$,B
max

1≤j≤N

∣∣Rjj(z)
∣∣ > C(logN)30/(α−1)

]
≤ C exp

(
−(logN)2

C

)
.

(2.2.3)

Theorem 2.2.4 is similar to Theorem 3.5 of [33], but there are several differences. For

appropriate choices of constants satisfying constraints (2.2.1), we control the Stieltjes trans-

form for η � N−1/2, which essentially equals the scale achieved for α ∈
(

8
5
, 2
)

in [33] and

improves the scale η � N−α/(8−3α) achieved for α ∈
(
1, 8

5

)
in [33]. The latter improvement

is important for our work because it permits us to access the the critical scale t ∼ N (α−2)ν

for all α ∈ (1, 2). This would not have been possible for α near 1 using the scales achieved

in [33]. Theorem 2.2.4 also asserts estimates on the diagonal resolvent entries Rjj(z), which

are crucial for our main results but were not estimated in [33] for any α. Finally, in Theorem

3.5 of [33], a finite, non-explicit set of energies must be excluded, while we need only exclude

the energy 0.

Next let us state the intermediate local law for X at sufficiently small energies when

α ∈ (0, 2) \ A, which is a consequence of Theorem 2.6.6 (and Remark 2.6.7), stated in

Section 2.6.1 below.

Theorem 2.2.5. There exists a countable set A ⊂ (0, 2), with no accumulation points in

(0, 2), that satisfies the following property. Fix α and b satisfying (2.2.1), set θ = (b−1/α)(2−α)
20

,

and let δ ∈ (0, θ). Define the domain

DC,δ =

{
z = E + iη ∈ H : E ≤ 1

C
, N δ−1/2 ≤ η ≤ 1

C

}
. (2.2.4)
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Then there exists a large constant C = C(α, b, δ) > 0 such that

P

[
sup
z∈DC,δ

∣∣∣mN(z)−mα(z)
∣∣∣ > 1

Nαδ/8

]
< C exp

(
−(logN)2

C

)
, (2.2.5)

and

P

[
sup
z∈DC,δ

max
1≤j≤N

∣∣Rjj(z)
∣∣ > (logN)C

]
< C exp

(
−(logN)2

C

)
. (2.2.6)

Theorem 2.2.5 is similar to Proposition 3.2 of [34], except that it also bounds the diagonal

resolvent entries Rjj(z). Furthermore, Theorem 2.2.5 estimates the Stieltjes transform mN(z)

for smaller values of η = Im z � N−1/2 than in Proposition 3.2 of [34], which requires

η � N−α/(2+α). This improvement is again important for us to access the the critical scale

t ∼ N (α−2)ν for all α ∈ (0, 2).

2.2.2 Estimates for V

In this section we implement the second step of our outline, in which we define a matrix

V = X + t1/2W, establish that its resolvent entries are bounded by N δ on scale N δ−1, and

show that its local statistics are universal.

Recall that α, b, ν, ρ > 0 are parameters satisfying (2.2.1), and define t = t(ρ, ν) by the

conditional expectation

t = NE
[
H2

111|H11|<N−ν
∣∣|H11| < N−ρ

]
=
NE
[
H2

111|H11|<N−ν
]

P
[
|H11| < N−ρ

] . (2.2.7)

We require the following lemma that provides large N asymptotics for t; with the defi-

nitions of (2.2.1), it in particular implies t = o(1). Its proof will be given in Section 2.3.1

below.

Lemma 2.2.6. There exist a small constant c = c(α, ν, ρ) > 0 and a large constant C =
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C(α, ν, ρ) > 0 such that

cN (α−2)ν ≤ t ≤ CN (α−2)ν . (2.2.8)

Now let us define a matrix V that we will compare to H.

Definition 2.2.7. Define the N × N random matrix V = {vij} = X + t1/2W, where t is

given by (3.2.10); X is the removal matrix from Definition 3.2.3; and W = {wij} is an N×N

GOE matrix independent from X. For any z ∈ H, let T = T(z) = {Tij(z)} = (V− z)−1.

Now we would like to bound the entries of T and show that bulk universality holds for

V. To do this, we first require the following definition from [78], which defines a class of

initial data on which Dyson Brownian motion is well-behaved.

Definition 2.2.8 ([78, Definition 2.1]). Let N be a positive integer, let H0 be an N × N

matrix, and set m0(z) = N−1 Tr
(
H0−z

)−1
. Fix E0 ∈ R, δ ∈ (0, 1), and γ > 0 independently

of N . Let η0 and r be two (N -dependent) parameters satisfying N δ−1 ≤ η0 and N2δη0 < r ≤

1. Define

D(E0, r, η0, γ) =
{
z = E + iη ∈ H : E ∈

[
E0 − r, E0 + r

]
, η ∈ [η0, γ]

}
. (2.2.9)

Although D(E0, r, η0, γ) in the above definition depends on δ through the choice of η0, we

omit this from the notation.

We say that H0 is (η0, γ, r)-regular with respect to E0 if there exists a constant A > 1

(independent of N) such that

‖H0‖ ≤ NA,
1

A
< sup

z∈D(E0,r,η0,γ)

Imm0(z) ≤ A. (2.2.10)

Now let N be a positive integer and H0 denote an N×N matrix. Recall that W = {wij}

is an N ×N GOE matrix (which we assume to be independent from H0), and define Hs =

H0 + s1/2W for each s > 0. For each z ∈ H, let Gs = Gs(z) =
{
Gij(s, z)

}
=
(
Hs − z

)−1
.
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If H0 is (η0, γ, r)-regular and s is between η0 and r, then the following proposition esti-

mates the entries of Gs(E + iη), when η can be nearly of order N−1, in terms of estimates

on the diagonal entries of G0(E + iη0). Its proof will appear in Section 2.8 and is based on

results of [42,78].

Proposition 2.2.9. Adopt the notation of Definition 2.2.8, and let B ∈
(
1, 1

η0

)
be an

N-dependent parameter. Assume that H0 is (η0, γ, r)-regular with respect to E0 and that

max1≤j≤N
∣∣Gjj(0, z)

∣∣ ≤ B for all z ∈ D(E0, r, η0, γ). Let s ∈
(
N δη0, N

−δr). Then, for any

D > 1 there exists a large constant C = C(δ,D) > 0 such that

P
[
sup
z∈D

max
1≤i,j≤N

∣∣Gij(s, z)
∣∣ > N δB

]
≤ CN−D,

where we have abbreviated D = D(E0,
r
2
, N δ−1, γ − r

2
).

Now we can bound the entries of T.

Corollary 2.2.10. Let α, b, ν, ρ > 0 satisfy (2.2.1). For given E0 ∈ R and δ, γ, r > 0, we

abbreviate D = D
(
E0,

r
2
, N δ−1, γ − r

2

)
(as in (2.2.9)).

1. If α ∈ (1, 2) and K ⊂ R\{0} is a compact interval, let γ denote the constant B = B(α)

from Theorem 2.2.4. Let E0 ∈ K and δ, r > 0 be constants (independent of N) such

that [E0− r, E0 + r] ⊂ K and r < γ. Then, for any D > 0 there exists a large constant

C = C(α, ν, ρ, δ,D,K) > 0 such that

P
[
sup
z∈D

max
1≤i,j≤N

∣∣Tij(z)
∣∣ > N δ

]
≤ CN−D. (2.2.11)

2. If A ⊂ (0, 2) is as in Theorem 2.2.5 and α ∈ (0, 2) \ A, then let γ = 1
2C

, where the

constant C is from Theorem 2.2.5. Further let E0 ∈ R and r ∈ (0, γ) be constants

(independent of N) such that [E0 − r, E0 + r] ⊂
[
− 2γ, 2γ

]
. Then, for any δ,D > 0,

there exists a large constant C = C(α, ν, ρ, δ,D) > 0 such that (2.2.11) holds.
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Proof. We assume α ∈ (1, 2), since the case α ∈ (0, 2) \ A is entirely analogous. By Theo-

rem 2.2.4, there exist large constants B = B(α) > 0 and C = C(α, b,$, δ,D,K) > 0 such

that

P

[
sup

z∈DK,$,B
max

1≤j≤N

∣∣Rjj(z)
∣∣ > N δ/4

]
< C exp

(
−(logN)2

C

)
, (2.2.12)

for any (2−α)ν < $ < ν, where we recall the definition of DK,$,B from (2.2.2). Furthermore,

observe (after increasing C if necessary) that P
[
‖X‖ > N (2D+3)/α

]
≤ CN−2D, since α < 2

and the probability that the magnitude of a given entry of H is larger than N (2D+1)/α is at

most CN−2D−2.

Therefore, we may apply Proposition 2.2.9 with that H0 equal to our X; that η0 equal

to our N−$; that t equal to our t, which is defined by (3.2.10) and satisfies t ∼ N (α−2)ν by

Lemma 3.2.6; that δ to be sufficiently small, so that it is less than our δ
4

and 1
4

(
$− (2−α)ν

)
(if α were in (0, 2), then we would require that δ be less than 1

4

(
1
2
− (2−α)ν

)
instead); that

E0 equal to the E0 here; that γ equal to our B; that r equal to the min
{
r, B

4

}
here; and that

A sufficiently large. Under this choice of parameters, Gt = T, so Proposition 2.2.9 implies

(2.2.11).

We will next show that the local statistics of V are universal, which will follow from

the results of [63,77,78] together with the intermediate local laws Theorem 2.2.4 and Theo-

rem 2.2.5. Specifically, the results of [63,77,78] state that, if we start with a (η0, γ, r)-regular

matrix (recall Definition 2.2.8) and then add an independent small Gaussian component of

order greater than η0 but less than r, then the local statistics of the result will asymptotically

coincide with those of the GOE. To state this more precisely, we must introduce the free

convolution [29] of a probability distribution with the semicircle law.

Fix N ∈ Z>0 and an N ×N matrix A. For each s ≥ 0, define A(s) = A + s1/2W, where

W is an N ×N GOE matrix. For any z ∈ H, also define m(s)(z) = N−1 Tr
(
A(s) − z

)−1
to

be the Stieltjes transform of the (N -dependent) empirical spectral density of A(s), which we
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denote by ρ(s)(x) = π−1 limη→0 Imm(s)(E + iη).

The following proposition establishes the universality of correlation functions of the ran-

dom matrix M(s), assuming that M is regular in the sense of Definition 2.2.8.

Proposition 2.2.11 ([77, Theorem 2.2]). Fix some δ ∈ (0, 1) and γ > 0, let N be a

positive integer, and let r ∈ (0, N−δ) and η0 ∈ (N δ−1, 1) be N-dependent parameters satisfying

η0 < N−2δr. Let M be an N×N matrix, and assume that M is (η0, γ, r)-regular with respect

to some fixed E ∈ K. Then, for any s ∈
(
N δη0, N

−δr
)
, the correlation functions of M(s) are

universal at energy level E with respect to ρ(s), as in Definition 2.1.3.

Using Proposition 2.2.11, one can deduce the following result. In what follows, we recall

the matrices X and V = X(t) from Definition 3.2.3 and Definition 2.2.7, respectively (where

t was given by (3.2.10)).

Proposition 2.2.12. Assume α ∈ (1, 2) and K ⊂ R\{0}, and let E ∈ K. Then the correla-

tion functions of V are universal at energy level E with respect to %α, as in Definition 2.1.3.

Moreover, the same statement holds if A and C are as in Theorem 2.2.5, α ∈ (0, 2) \A, and

E ⊂
[
− 1

2C
, 1

2C

]
.

To establish this proposition, one conditions on X and uses its intermediate local law

(Theorem 2.2.4 or Theorem 2.2.5) and Lemma 3.2.6 to verify the assumptions of Propo-

sition 2.2.11. Then, the latter proposition implies that the correlation functions of V are

universal at E with with respect to ρ(s). The remaining difference between universality with

respect to ρ(s)(E) and the desired result is in the scaling in (2.1.6). Specifically, one must

approximate the factors of ρ(s)(E) by %α(E) in Definition 2.1.3. This approximation can be

justified using the intermediate local law (Theorem 2.2.4 or Theorem 2.2.5) for X through

a very similar way to what was explained in Lemma 3.3 and Lemma 3.4 of [70]. Thus, we

omit further details.
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2.2.3 Proofs of Theorem 2.1.4 and Theorem 2.1.5

In this section we establish Theorem 2.1.4 and Theorem 2.1.5. This will proceed through a

comparison between the resolvent entries of H and V (from Definition 2.2.7). In Section 2.2.3,

we state this comparison; we will provide a heuristic for its proof in Section 2.3.2, and

the result will be established in detail in Section 2.3. We will then in Section 2.2.3 use

the comparison to deduce eigenvector delocalization and bulk universality for H from the

corresponding results for V established in Section 2.2.2.

The comparison theorem

To formulate our specific comparison statement, we require a certain way of decomposing

the matrix H so that the elements of this decomposition remain largely independent. A less

general version of this procedure was described in [4] under different notation to establish

bulk universality for Wigner matrices whose entries have finite (2 + ε)-th moment. This is

done through the following two definitions.

Definition 2.2.13. Let ψ and χ be independent Bernoulli 0 − 1 random variables defined

by

P
[
ψ = 1

]
= P

[
|Hij| ≥ N−ρ

]
, P

[
χ = 1

]
=

P
[
|Hij| ∈ [N−ν , N−ρ)

]
P
[
|Hij| < N−ρ

] .

In particular, ψ has the same law as the indicator of the event that |Hij| ≥ N−ρ. Similarly, χ

has the same law as the indicator of the event that |Hij| ≥ N−ν , conditional on |Hij| < N−ρ.
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Additionally, let a, b, and c be random variables such that

P[aij ∈ I] =
P
[
Hij ∈ (−N−ν , N−ν) ∩ I

]
P
[
|Hij| < N−ν)

] ,

P[bij ∈ I] =
P
[
Hij ∈

(
(−N−ρ,−N−ν ] ∪ [N−ν , N−ρ)

)
∩ I
]

P
[
|Hij| ∈ [N−ν , N−ρ)

] ,

P[cij ∈ I] =
P
[
Hij ∈

(
(−∞,−N−ρ] ∪ [N−ρ,∞)

)
∩ I
]

P
[
|Hij| ≥ N−ρ

] ,

for any interval I ⊂ R. Again, a has the same law as Hij conditional on |Hij| < N−ν ; similar

statements hold for b and c.

Observe that if a, b, c, ψ, and χ are mutually independent, then Hij has the same law as

(1−ψ)(1−χ)a+(1−ψ)χb+ψc and Xij has the same law as (1−ψ)χb+ψc. Thus, although

the random variables Hij1|Hij |≥N−ρ , Hij1N−ν≤|Hij |<N−ρ , and Hij1|Hij |<N−ν are correlated, this

decomposition expresses their dependence through the Bernoulli random variables ψ and χ.

Definition 2.2.14. For each 1 ≤ i ≤ j ≤ N , let aij, bij, cij, ψij, and χij be mutually

independent random variables whose laws are given by those of a, b, c, ψ, and χ from

Definition 3.2.4 respectively. For each 1 ≤ j < i ≤ N , define aij = aji by symmetry, and

similarly for each bij, cij, ψij, and χij. Let P and E denote the probability measure and

expectation with respect to the joint law of these random variables, respectively.

Now for each 1 ≤ i, j ≤ N , set

Aij = (1− ψij)(1− χij)aij, Bij = (1− ψij)χijbij, Cij = ψijcij, (2.2.13)

and define the four N ×N matrices A = {Aij}, B = {Bij}, C = {Cij}, and Ψ = {ψij}.

Sample H and X by setting H = A + B + C and X = B + C. We will commonly refer

to Ψ as the label of H (or of X). Defining H and X in this way ensures that they have

the same laws as in Definition 3.1.1 and Definition 3.2.3, respectively. Furthermore, this
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sampling induces a coupling between H and X, which coincides with the removal coupling

of Definition 3.2.3.

To state our comparison results, we require some additional notation. Define A, B, C,

H, and X as in Definition 3.2.5, and let W = {wij} be an independent N ×N GOE matrix.

Recalling the parameter t from (3.2.10), define for each γ ∈ [0, 1] the N×N random matrices

Hγ =
{
Hγ
ij

}
= γA + X + (1− γ2)1/2t1/2W, Gγ =

{
Gγ
ij

}
=
(
Hγ − z

)−1
.

Observe in particular that H0 = V, G0 = T, H1 = H, and G1 = G, where we recall the

matrices V and T from Definition 2.2.7. Our comparison result will approximate the entries

of Gγ by those of G0 for any γ ∈ [0, 1], after conditioning on Ψ and assuming it to be in an

event with high probability with respect to P.

So, it will be useful to consider the laws of H and X conditional on their label Ψ. This

amounts to conditioning on which entries of H are at least N−ρ. For any N ×N symmetric

0− 1 matrix Ψ, let PΨ and EΨ denote the probability measure and expectation with respect

to the joint law of the random variables
{
aij, bij, cij, ψij, χij} from Definition 3.2.5 conditional

on the event that {ψij} is equal to Ψ. This induces a probability measure and expectation

on the Hγ and Gγ, denoted by PΨ and EΨ, respectively.

It will also useful for us to further condition on a single χij. Thus, for any χ ∈ {0, 1}

and 1 ≤ p, q ≤ N , let PΨ

[
·
∣∣χpq] = PΨ

[
·
∣∣χpq = χ

]
denote the probability measure PΨ after

additionally conditioning on the event that χpq = χ, and let EΨ

[
·
∣∣χpq] = EΨ

[
·
∣∣χpq = χ

]
denote the associated expectation. Observe in particular that Eχ

[
EΨ[·|χpq]

]
= EΨ

[
·
]
, where

Eχ denotes the expectation with respect to the Bernoulli 0 − 1 random variable χ from

Definition 3.2.4.

The following theorem, which will be a consequence of Proposition 2.3.4 stated in Sec-

tion 2.3.4 below, provides a way to compare conditional expectations of G0 to those of Gγ

for any γ ∈ [0, 1]. After conditioning on the label Ψ to not have too many entries equal to
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1, it roughly states that one compare expectations of smooth functions of these resolvent

entries, assuming a bound on the probability they are large.

Theorem 2.2.15. Let α, b, ρ, ν satisfy (2.2.1), and fix a positive integer m. Then, there

exist (sufficiently small) constants ε = ε(α, ν, ρ,m) > 0 and ω = ω(α, ν, ρ,m) > 0 such that

the following holds. Let N be a positive integer. For each integer j ∈ [1,m], fix real numbers

Ej ∈ R and ηj > N−2, and denote zj = Ej + iηj for each j ∈ [1,m]. Furthermore, let

F : Rm → R be a function such that

sup
0≤|µ|≤d
|xj |≤2Nε

∣∣F (µ)(x1, . . . , xm)
∣∣ ≤ NC0ε, sup

0≤|µ|≤d
|xj |≤2N2

∣∣F (µ)(x1, . . . , xm)
∣∣ ≤ NC0 , (2.2.14)

for some real numbers C0, d > 0. Here µ = (µ1, µ2, . . . , µm) is an m-tuple of nonnegative

integers, |µ| =
∑m

j=1 µj, and F (µ) =
∏m

j=1

(
∂
∂xj

)µjF . Assume that d > d0(α, ν, ρ,m,C0) is

sufficiently large. For any symmetric 0 − 1 matrix Ψ and complex number z, define the

quantities J = J(Ψ) and Q0 = Q0(ε, z1, z2, . . . , zm,Ψ) and the event Ω0 = Ω0(ε, z) by

J = max
0≤|µ|≤d

sup
1≤is,js≤N

0≤γ≤1

EΨ

[∣∣∣F (µ)
(

ImGγ
i1j1
, . . . , ImGγ

imjm

)∣∣∣], (2.2.15)

and

Ω0 =

{
sup

1≤i,j≤N
0≤γ≤1

∣∣Gγ
ij(z)

∣∣ ≤ N ε

}
, Q0 = 1−

m∑
j=1

PΨ

[
Ω0(zj)

]
. (2.2.16)

Now let Ψ be a symmetric 0 − 1 random matrix with at most N1+αρ+ε entries equal to 1.

Then, there exists a large constant C = C(α, ν, ρ,m) > 0 such that

sup
0≤γ≤1

∣∣∣∣EΨ

[
F
(

ImGγ
a1b1

, . . . , ImGγ
ambm

)]
− EΨ

[
F
(

ImG0
a1b1

, . . . , ImG0
ambm

)]∣∣∣∣
< CN−ω(J + 1) + CQ0N

C+C0 ,

(2.2.17)
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for any indices 1 ≤ a1, a2, . . . , am, b1, b2, . . . , bm ≤ N . The same estimate (2.2.17) holds if

some of the ImG0
ajbj

and ImGγ
ajbj

are replaced by ReG0
ajbj

and ReGγ
ajbj

, respectively.

Although the conditioning on the label Ψ might notationally obscure the statement of

Theorem 2.2.15, we will see in Section 2.3.3 that this particular statement of the result will

be useful for the proof of Proposition 2.2.17 below. Additionally, we note the constants ε,

ω, and d0 from Theorem 2.2.15 are explicit; see (2.3.25) and (2.3.26) for their values in the

case m = 1.

Eigenvector delocalization and bulk universality for H

In this section we establish Theorem 2.1.4 and Theorem 2.1.5. We first show that the

resolvent entries of H are bounded by N δ on the nearly optimal scale η = N δ−1 for arbitrarily

small δ > 0.

Theorem 2.2.16. In both regimes (1) and (2) in Corollary 2.2.10, we have for sufficiently

large C = C(α, ν, ρ, δ,D,K) > 0 that

P
[

sup
0≤γ≤1

sup
z∈D

max
1≤i,j≤N

∣∣Gγ
ij(z)

∣∣ > N δ

]
≤ CN−D. (2.2.18)

Theorem 2.2.16 is a consequence of Corollary 2.2.10 and the following comparison result,

which allows one to deduce bounds on the entries of Gγ from bounds on those of T; the

latter result will be established using Theorem 2.2.15 in Section 2.3.3 below.

Proposition 2.2.17. Assume that α, b, ν, ρ > 0 satisfy (2.2.1), and recall that K ⊂ R is

a compact interval. Fix ς ≥ 0, and suppose that for each δ > 0 and D > 0 there exists a

constant C = C(α, ρ, ν, δ,D,K) such that

P

[
sup

η≥Nς−1

sup
E∈K

max
1≤i,j≤N

∣∣Tij(E + iη)
∣∣ ≥ N δ

]
≤ CN−D. (2.2.19)
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Then, for each δ > 0 and D > 0 there exists a large constant A = A(α, ρ, ν, δ,D,K) such

that

P

[
sup

0≤γ≤1
sup

η≥Nς−1

sup
E∈K

max
1≤i,j≤N

∣∣Gγ
ij(E + iη)

∣∣ ≥ N δ

]
≤ AN−D. (2.2.20)

Now we can establish Theorem 2.1.4 and Theorem 2.1.5.

Proof of Theorem 2.1.4 and Theorem 2.1.5. It is known from Corollary 3.2 of [64] that com-

plete eigenvector delocalization of the form given by the first parts of Theorem 2.1.4 and

Theorem 2.1.5 follows from bounds on the resolvent entries
∣∣Gij(z)

∣∣ =
∣∣G1

ij(z)
∣∣ of the form

(2.2.18). Thus, the first parts of Theorem 2.1.4 and Theorem 2.1.5 follow from Theo-

rem 2.2.16.

To establish the second parts of these two theorems, fix a positive integer m, and let

z1, z2, . . . , zm ∈ C be such that Im zj ≥ 1
N2 for each j ∈ [1, N ]. Furthermore, if we are in

the setting of Theorem 2.1.4 then we additionally impose that each Re zj ∈ K: if we are

in the setting of Theorem 2.1.5, then we require that each
∣∣Re zj

∣∣ < 1
2C

, where C is from

Theorem 2.2.5. We now apply Theorem 2.2.15 with F (x1, x2, . . . , xm) =
∏m

i=1 xi.

Then, Theorem 2.2.16 implies that the quantity Q0 from Theorem 2.2.15 is bounded

above by N−D for any D > 0 if N is sufficiently large. Furthermore, that theorem and the

deterministic bounds |Tij|, |Gij| ≤ N2 (due to (2.3.2) below) imply that for each δ > 0 there

exists a constant C = C(δ) such that the quantity J(Ψ) from (2.2.15) is bounded by CN δ.

Also observe from (3.1.3) and the Chernoff bound that there exists a large constant C > 0

such that

P
[∣∣∣{(i, j) : |Hij| ∈ [N−ρ,∞)

}∣∣∣ /∈ [N1+αρ

C
,CN1+αρ

]]
< Ce−N/C . (2.2.21)

Thus, the probability that the matrix Ψ from Theorem 2.2.15 has more than N1+αρ+ε

entries equal to one is bounded by c−1e−cN for some constant c > 0. On this event, we apply

the deterministic bounds |Tij|, |Gij| ≤ N2. Off of this event, we apply (2.2.17) (averaged over

34



all (a1, a2, . . . , am) = (b1, b2, . . . , bm) in [1, N ]) and then average over Ψ conditional on the

event that Ψ has at most N1+αρ+ε entries equal to one. Combining these estimates implies

∣∣∣∣∣E
[
N−m

m∏
j=1

Im Tr G(zj)−N−m
m∏
j=1

Im Tr T(zj)

]∣∣∣∣∣ ≤ CN−c, (2.2.22)

after increasing C and decreasing c if necessary. It is known from Theorem 6.4 of [64] that

a comparison of this form implies that the correlation functions of G and T asymptotically

coincide. Now the universality of the correlation functions for H at energy level E follows

from the corresponding statement for V, given by Proposition 2.2.12.

2.3 Comparison results

In this section we establish Theorem 2.2.15. After recalling several identities and estimates

in Section 2.3.1, we provide a heuristic for the proof of Theorem 2.2.15 in Section 2.3.2.

Next, assuming Theorem 2.2.15, we use it to establish Proposition 2.2.17 in Section 2.3.3.

We then outline the proof of Theorem 2.2.15 in Section 2.3.4 and implement this outline in

the remaining sections: Section 2.3.5, Section 2.3.6, and Section 2.3.7.

2.3.1 Estimates and identities

In this section we state several identities and estimates that will be used throughout this

article. We first recall that, for any square matrices M and K of the same dimension, we

have the resolvent identity

K−1 −M−1 = K−1
(
M−K

)
M−1. (2.3.1)

Furthermore, for any symmetric matrix M and z = E + iη ∈ H with E, η ∈ R, we have the
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deterministic estimate (see equation (8.34) of [52])

∣∣Kij

∣∣ ≤ 1

η
, where K = {Kij} = (M− z)−1. (2.3.2)

Moreover, observe from (3.1.3) and the fact that Hij has the same law as N−1/α(Z+J) that

C1

Ntα + 1
≤ P

[
|Hij| ≥ t

]
≤ C2

Ntα + 1
, for any t > 0. (2.3.3)

Using (2.3.3), we can establish the following lemma, which bounds moments of trunca-

tions of Hij. As a consequence, we deduce Lemma 3.2.6.

Lemma 2.3.1. Fix R ≥ N−1/α and let sij = Hij1|Hij |<R. For any positive real number p > α,

we have that cN−1Rp−α ≤ E
[
|sij|p

]
≤ CN−1Rp−α, for a small constant c = c(α, p, C2) > 0

and a large constant C = C(α, p, C1) > 0.

Proof. From (2.3.3), we have that

E
[
|sij|p

]
= p

∫ R

0

sp−1P
[
|Hij| ≥ s

]
ds ≤ C1p

N

∫ R

0

sp−1−αds =
C1pR

p−α

N(p− α)
,

which establishes the upper bound in the lemma. To establish the lower bound, observe

from (2.3.3) and the bound R ≥ N−1/α that

E
[
|sij|p

]
= p

∫ R

0

sp−1P
[
|Hij| ≥ s

]
ds ≥ C1p

N

∫ R

R/2

ds

sα+1−p +N−1s1−p

≥ C1p

5N

∫ R

R/2

sp−α−1ds =
C1p(1− 2α−p)Rp−α

5N(p− α)
.

Proof of Lemma 3.2.6. From Lemma 2.3.1 applied with R = N−ν and p = 2, we deduce

the existence of constants C = C(α,C1) > 0 and c = c(α,C2) > 0 such that cN (α−2)ν−1 ≤

E
[
H2

111|H11|<N−ν
]
≤ CN (α−2)ν−1. Combining this with the fact that P

[
|H11| < N−ρ

]
≥ 1

2
for
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sufficiently large N (due to (2.3.3)), we deduce the lemma.

We close this section with the following lemma, which bounds the conditional moments

of the random variables Aij and Bij from Definition 3.2.5.

Lemma 2.3.2. Let p > α. There exists a large constant C = C(ν, ρ, p) such that, for any

indices 1 ≤ i, j ≤ N , we have that

EΨ

[
|Aij|p

∣∣χij] ≤ CN ν(α−p)−1, EΨ

[
|Bij|p

]
≤ CNρ(α−p)−1. (2.3.4)

Proof. Let us first establish the bound on EΨ

[
|Bij|p

]
. There are two cases to consider,

depending on the entry ψ ∈ {0, 1}. If ψij = 1, then Bij = 0 and thus (2.3.4) holds. If

ψij = 0, then there exists a constant C = C(ρ, p) > 0 such that

EΨ

[
|Bij|p

]
=

E
[
|Bij|p

]
P
[
ψij = 0

] ≤ E
[
|Hij|p1|Hij |≤N−ρ

]
P
[
|Hij| ≤ N−ρ

] ≤ CNρ(α−p)−1,

where to deduce the last estimate above we used Lemma 2.3.1 and the fact that P
[
|Hij| >

N−ρ
]
> 1

2
for sufficiently large N (due to (2.3.3)). This yields the second estimate in (2.3.4).

Through a very similar procedure, we deduce after increasing C if necessary that E
[
|aij|p

]
≤

CN ν(α−p)−1, where aij has the same law as the random variable a given in Definition 3.2.4.

Now the first estimate in (2.3.4) follows from the deterministic bound |Aij| ≤ |aij|.

2.3.2 A heuristic for the comparison

Here we provide a heuristic for the estimate (2.2.17) if a = i = b for some i ∈ [1, N ]. Condi-

tioning on Ψ (and abbreviating EΨ as E here for brevity), we obtain

∂γE
[
Gγ
ii

]
=

∑
1≤j,k≤N

E

[
Gγ
ij

(
Ajk −

γt1/2

(1− γ2)1/2
wjk

)
Gγ
ki

]
,

where we used (2.3.1) to compute the derivative on the left side.
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Now let us consider two cases. The first is the “large field case,” meaning that ψjk = 1

(which implies that Ajk = 0 = Bjk and |Hjk| ≥ N−ρ). Recall the formula for Gaussian

integration by parts (see, for example, Appendix A.4 of [93]): for a differentiable function

F : R → R subject to a mild growth condition, and a centered Gaussian g, E [gF (g)] =

E [g2]E [F ′(g)]. We integrate by parts with respect to the Gaussian random variable x =

N1/2wjk, which is centered and has variance one. This yields

γ

(1− γ2)1/2

(
t

N

)1/2

E
[
Gγ
ijxG

γ
ki

]
=
γt

N
E
[
Gγ
ijG

γ
kkG

γ
ki + · · ·

]
,

where the additional terms are degree three monomials in the Gγ
ij (and we again used (2.3.1)

to compute the derivatives of the resolvent entries). Assuming that each
∣∣Gγ

ij

∣∣ is bounded,

and using Lemma 3.2.6 and the fact that the number of pairs (j, k) for which ψjk = 1 is

essentially bounded by Nαρ+1, we can bound the total contribution of these terms by a

multiple of

tN−1Nαρ+1 ∼ N ν(α−2)+αρ.

The second is the “small field case,” meaning that ψjk = 0 (so |Hjk| < N−ρ). Recall that

Ajk = ajk(1−χjk) and Bjk = bjkχjk, and abbreviate ajk = a, bjk = b, χjk = χ, and wjk = w.

Letting Uγ =
{
Uγ
jk

}
denote the resolvent of H whose (j, k) and (k, j) entries are set to zero,
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we can expand Gγ around Uγ using (2.3.1) to obtain

E

[
Gγ
ik

(
(1− χ)a− γt1/2w

(1− γ2)1/2

)
Gγ
ji

]

= E

[(
(1− χ)a+

γt1/2w

(1− γ2)1/2

)(
γ(1− χ)a+ χb+ (1− γ2)1/2t1/2w

)(
Uγ
ijU

γ
kkU

γ
ji + · · ·

)]

+ E

[(
(1− χ)a+

γt1/2w

(1− γ2)1/2

)(
γ(1− χ)a+ χb+ (1− γ2)1/2t1/2w

)3(
Uγ · · ·Uγ + · · ·

)]

= γE
[
(1− χ)a2 − tw2

]
E[Uγ

ijU
γ
kkU

γ
ji + · · · ]

+ γE
[
γ2(1− χ)a4 + 3γ2(1− χ)tw2a2 + 3χtw2b2 + (1− γ2)t2w4

]
E[Uγ · · ·Uγ + · · · ],

where the additional terms refer to polynomials in the entries of U. To deduce the first

equality, we used the fact that terms not involving a factor of γ(1−χ)a+χb+(1−γ2)1/2t1/2w

(first order terms) and those involving
(
γa(1−χ)+bχ+(1−γ2)1/2t1/2w

)2
(third order terms)

vanish because a, b, and w are symmetric and U, a, b, w, and χ are mutually independent.

From the choice of t, we have that

γE
[
(1− χ)a2 − tw2

]
= 0.

Hence the second order terms vanish if ψjk = 0. Assuming that the entries of Uγ are

bounded, we can also estimate the sum of all fourth order terms by a multiple of

N2E
[
(1− χ)a4 + (1− χ)tw2a2 + χtw2b2 + t2w4

]
≤ N ν(α−4)+1 +N (ρ+ν)(α−2) +N2ν(α−2)

≤ N ν(α−4)+1 +N−r,

for some r > 0. Here, we used (3.1.3), Lemma 3.2.6, and the facts that (1 − χ)a =

Hij1|Hij |<N−ν and χb = Hij1N−ν≤|Hij |<N−ρ to deduce that E
[
(1− χ)a4

]
∼ N ν(α−4)−1, E

[
(1−

χ)a2] ∼ N (α−2)ν−1, and E[χb2] ∼ Nρ(α−2)−1, as shown in Lemma 2.3.2.

Hence the total contribution from the second and fourth order terms is bounded by a
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multiple of

N ν(α−2)+αρ +N ν(α−4)+1 +N−r.

For this to tend to 0, we require

ν >
1

4− α
, αρ < (2− α)ν, 0 < ρ < ν,

where the last restriction is by definition. This recovers a number of the constraints imposed

by (2.2.1). To motivate the others, recall that the local law for X was proved for any scale

N−$ with (2 − α)ν < $ < ν < 1
2

for α ∈ (1, 2) (Theorem 2.2.4) and at the scale N δ−1/2

for almost all α ∈ (0, 2) in the small energy regime (Theorem 2.2.5). In order to apply the

results on Dyson Brownian motion from Section 2.2.2, we need the scale of these local laws

to be smaller than t ∼ N ν(α−2). For α ∈ (1, 2), this condition is guaranteed. For α ≤ 1, this

requires ν < 1
4−2α

, which is the remaining condition in (2.2.1).

2.3.3 Improving the scale

In this section we establish Proposition 2.2.17, assuming Theorem 2.2.15 holds, using an

induction on the scale η.

To that end, recall the definitions of the matrices Gγ(z) for any γ ∈ [0, 1], and define

P(δ, η) = P

[
max

1≤i,j≤N
0≤γ≤1

∣∣Gγ
ij(E + iη)

∣∣ > N δ

]
, (2.3.5)

for any E ∈ R, η ≥ N ς−1, and δ > 0. Moreover, fix ε and ω as in Theorem 2.2.15, choosing

k = 1 in that theorem, and let σ = ε
4
. We omit the dependence of α, b, ρ, ν, ε, ω, and k

in the notation for the constants appearing in the following lemma and view them as fixed

parameters.

We begin with the following lemma.
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Lemma 2.3.3. Adopt the notation and assumptions of Proposition 2.2.17. For any δ >

0 and integer D > 0, there exists a large constant C = C(δ,D) such that P(δ, η) ≤

CNCP
(
ε
2
, Nση

)
+ CN−D for all η ≥ N ς−1.

Proof. Let p =
⌈
D+30
δ

⌉
, and define Fp(x) = |x|2p + 1. Observe that there exists a constant

Cp, only dependent on p (and therefore only dependent on δ and D) such that

∣∣F (a)
p (x)

∣∣ ≤ CpFp(x), for all x ∈ R and a ∈ Z≥0. (2.3.6)

Now we apply Theorem 2.2.15 with F (x) = Fp(x). Observe that the C0 from that

theorem can be taken to be 4p and that d can also be taken to be bounded by constant

multiple of p (where the implicit constants depend ν, ρ, and ε, although in the future we

will not mention the dependence on these parameters, since they are already fixed). In view

of (2.2.17) and (2.3.6), there exists a large constant Bp (only dependent p) such that

EΨ

[
Fp
(

ImGγ
ab(z)

)]
≤ EΨ

[
Fp
(

ImTab(z)
)]

+Bp

(
N−ωJp(Ψ) +Q0(ε,Ψ)NBp + 1

)
, (2.3.7)

for any 0− 1 symmetric N ×N matrix Ψ with at most N1+αρ+ε entries equal to 1, where

Jp
(
Ψ
)

= sup
1≤i,j≤N
0≤γ≤1

EΨ

[
Fp(ImGγ

ij)
]
, Q0

(
ε, z,Ψ

)
= PΨ

[
max

1≤i,j≤N
0≤γ≤1

∣∣Gγ
ij(z)

∣∣ > N ε

]
.

Now observe that taking the supremum over all 1 ≤ a, b ≤ N and 0 ≤ γ ≤ 1 on the left

side of (2.3.7) yields Jp
(
Ψ
)
. Therefore,

(1− BpN
−ω)Jp

(
Ψ
)
≤ max

1≤a,b≤N
EΨ

[
Fp
(

ImTab(z)
)]

+Bp

(
Q0

(
ε, z,Ψ

)
NBp + 1

)
. (2.3.8)

We now take the expectation of (2.3.8) over Ψ. On the event when there are at most

N1+αρ+ε entries equal to C in Ψ, we apply (2.3.8). The complementary event has probability

bounded by c−1e−cN , for some constant c > 0, due to (2.2.21); on this event, we apply the
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deterministic bounds Fp
(

ImGγ
ab

)
≤ N5p and Fp(ImTab) ≤ N5p. Combining these estimates

and fact that BpN
−ω < 1

2
for sufficiently large N yields that

Jp ≤ N2 max
1≤a,b≤N

E
[
Fp
(

ImTab(z)
)]

+Bp

(
NBpP(ε, η) + 1

)
+BpN

Bpe−cN , (2.3.9)

where

Jp = max
1≤i,j≤N
0≤γ≤1

E
[
Fp(ImGγ

ij)
]
.

Here we increased Bp and used

J ≤ E [Jp(Ψ)] ; E
[

max
1≤a,b≤N

EΨ

[
Fp
(

ImTab(z)
)]]
≤ N2 max

1≤a,b≤N
E
[
Fp
(

ImTab(z)
)]
.

After increasing Bp again if necessary, we find from (2.2.19) and the trivial bound (2.3.2)

that E
[
Fp
(

ImTab(z)
)]
≤ BpN for any 1 ≤ a, b ≤ N . Inserting this into (2.3.9) yields

Jp ≤ BpN
3 +BpN

BpP(ε, η) ≤ BpN
3 +BpN

BpP(ε− σ,Nση), (2.3.10)

where in the second estimate above we have used the fact that P(ε, η) ≤ P(ε − σ,Nση),

which follows from the bound

max

{
max

1≤i,j≤N

∣∣Gγ
ij(E + iη)

∣∣, 1} ≤ Rmax

{
max

1≤i,j≤N

∣∣Gγ
ij(E + iRη)

∣∣, 1} , for any R > 0,

(2.3.11)

given as Lemma 2.1 of [23]. Applying (2.3.10), a Markov estimate, the fact that σ = ε
4
, and
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the fact that pδ ≥ D + 30, we see for any i, j that

sup
γ∈[0,1]

P
[

max
1≤i,j≤N

∣∣ ImGγ
ij(z)

∣∣ > N δ/2

]
≤ N2 max

1≤i,j≤N
0≤γ≤1

P
[∣∣ ImGγ

ij(z)
∣∣ > N δ/2

]
≤ N2 max

1≤i,j≤N
0≤γ≤1

E
[
Fp
(
ImGγ

ij

)]
Fp(N δ/2)

<
Jp

Npδ−2
< BpN

−D−25 +BpN
BpP

(ε
2
, Nση

)
.

(2.3.12)

Applying a union bound over the i, j and the same reasoning with ImGγ
ab replaced by

ReGγ
ab, we deduce the estimate

sup
γ∈[0,1]

P
[

max
1≤i,j≤N

∣∣Gγ
ij(z)

∣∣ > N δ/2

]
< BpN

−D−20 +BpN
Bp+2P

(ε
2
, Nση

)
. (2.3.13)

Now the proposition follows from applying a union bound in (2.3.13) over all γ ∈ [0, 1] ∩

N−20Z, then extending these range of γ to all of [0, 1] through the deterministic estimate

∣∣Gγ
ij(z)−Gγ′

ij (z)
∣∣ ≤ 2|γ − γ′|1/2N6

(
1 + max

1≤i,j≤N
|wij|

)
,

due to (2.3.1), (2.3.2), the fact that η ≥ N−2, and the bound P
[
|wij| > 2

]
< e−N .

We can now establish Proposition 2.2.17.

Proof of Proposition 2.2.17. Set κ =
⌈

1−ς
σ

⌉
. We first claim that, for any integers D > 0 and

k ∈ [−1, κ], there exists a constant C = C(D, k) > 0 such that P
(
ε
2
, N−kσ

)
< CN−D.

To establish this, we proceed by induction on k. Because κ is constant, only finitely many

inductive steps are required. Therefore, we may permit the constants C(D, k) to increase at

each step.

The base case k = −1 is trivial, because (2.3.2) implies that P
(
ε
2
, η
)

= 0 for any η ∈

(1, Nσ]. For the induction step, suppose the claim holds for k = m ∈ [−1, κ − 1], and fix
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some integer D > 0. We must show that there exists a constant C = C(D,m+ 1) > 0 such

that P
(
ε
2
, N−(m+1)σ

)
≤ CN−D.

To that end, applying Lemma 2.3.3 yields an integer C1 = C1(D,m) > 0 such that

P
(ε

2
, N−(m+1)σ

)
≤ C1N

C1P
(ε

2
, N−mσ

)
+ C1N

−D. (2.3.14)

Next, recall by the induction hypothesis for k = m that, for any integer D′ > 0, there

exists a constant C = C(D′,m) > 0 such that P
(
ε
2
, N−mσ

)
< CN−D

′
. In particular, taking

D′ = C1 + D, there exists a constant C2 = C2(D,m) > 0, given by the C(C1 + D,m)

from the induction hypothesis, such that P
(
ε
2
, N−mσ

)
< C2N

−C1−D. Inserting this into

(2.3.14) yields P
(
ε
2
, N−(m+1)σ

)
≤ (C1C2 + C1)N−D, which completes the induction after

setting C(D,m+ 1) = C1C2 + C1.

Now fix δ,D > 0. For any η ≥ N ς−1, applying Lemma 2.3.3 shows there exist constants

B = B(δ,D) > 0 and C = C(δ,D) > 0 such that

P (δ, η) ≤ CNCP
(ε

2
, Nση

)
+ CN−D ≤ BN−D, (2.3.15)

where we used the fact that Nση ≥ N−κσ, the bound P
(
ε
2
, N−κσ

)
< CN−C−D, and the

monotonicity of P (δ, η) in η (which follows from (2.3.11)).

Now let D denote the set of z ∈ H of the form E + iη, where E ∈ K and N ς−1 ≤ η ≤ 1

are both of the form k
N10 for some integer k. Then a union bound applied to (2.3.15) shows

that

P

[
sup
z∈D

sup
γ∈[0,1]

max
1≤i,j≤N

∣∣Gγ
ij(z)

∣∣ ≥ N δ

]
≤ Bδ,D+25

ND
. (2.3.16)

Now from (2.3.16) and the deterministic estimate
∣∣Gij(z)−Gij(z

′)
∣∣ ≤ N6|z − z′| we deduce
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that

P

[
sup

η≥Nς−1

sup
γ∈[0,1]

max
1≤i,j≤N

∣∣Gγ
ij(z)

∣∣ ≥ 2N δ

]
≤ Bδ,D+25

ND
. (2.3.17)

Here, we used the fact that bound holds trivially in the region where η ≥ 1 by (2.3.2). Thus

(2.2.20) follows by setting γ = 0 in (2.3.17).

2.3.4 Outline of the proof of Theorem 2.2.15

For the remainder of Section 2.3, we assume that m = 1 in Theorem 2.2.15, and we abbreviate

z1 = z, a1 = a, and b1 = b. Since the proof of Theorem 2.2.15 for m > 1 is entirely analogous,

it is omitted. However, in Section 2.3.8 we briefly outline how to modify the proof in this

case.

Observe that

∂

∂γ
EΨ

[
F
(

ImGγ
ab

)]
=

∑
1≤p,q≤N

EΨ

[
Im(Gγ

apG
γ
qb)

(
Apq −

γt1/2wpq
(1− γ2)1/2

)
F ′
(

ImGγ
ab

)]
, (2.3.18)

and so it suffices to establish the following proposition. We recall that J = Jp(Ψ) and Q0

were defined in Theorem 2.2.15.

Proposition 2.3.4. Adopt the notation of Theorem 2.2.15. Then there exists a large con-

stant C = C(α, ν, ρ) > 0 such that, for sufficiently large N ,

∑
1≤p,q≤N

∣∣∣∣∣EΨ

[
Im(Gγ

apG
γ
qb)
(
Apq −

γt1/2wpq
(1− γ2)1/2

)
F ′
(

ImGγ
ab

)]∣∣∣∣∣
≤ C

(1− γ2)1/2

(
N−ω(J + 1) +Q0N

C+C0
)
.

(2.3.19)

To establish Proposition 2.3.4, we estimate each summand on the right side of (2.3.18).

Thus, in what follows, let us fix some integer pair (p, q) ∈ [1, N ]× [1, N ].

If Gγ were independent from Apq and wpq, then each expectation on the left side of (2.3.19)
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would be equal to zero, from which the proposition would follow. Since this independence

does not hold, we will approximate Gγ with a matrix that is independent from Apq and

wpq (after conditioning on Ψ, as we will do throughout the proof of Proposition 2.3.4) and

estimate the error incurred by this replacement.

In fact, it will be useful to introduce two matrices. The first will be independent from

wpq but not quite independent from Apq (although it will be independent from Apq after

additionally conditioning on χpq); the second will be independent from both wpq and Apq

More specifically, we define the N × N matrices D = Dγ,p,q = {Dij} =
{
Dγ,p,q
ij

}
and

E = Eγ,p,q =
{
Eij
}

=
{
Eγ,p,q
ij

}
by setting Dij = Hγ

ij = Eij if (i, j) /∈
{

(p, q), (q, p)
}

and

Dpq = Dqp = Xpq = Bpq + Cpq, Epq = Eqp = Cpq.

We also define the N × N matrices Γ = Γγ,p,q = {Γij} =
{

Γγ,p,qij

}
= Hγ − D and

Λ = Λγ,p,q = {Λij} =
{

Λγ,p,q
ij

}
= D− E, so that

Γij = γΘij + (1− γ2)1/2Φij, Λij = Bpq1(i,j)∈{(p,q),(q,p)}, (2.3.20)

where

Θij = Aij1(i,j)∈{(p,q),(q,p)}, Φij = t1/2wij1(i,j)∈{(p,q),(q,p)}. (2.3.21)

In addition, we define the resolvent matrices

R = Rγ,p,q = {Rij} =
{
Rγ,p,q
ij

}
= (D− z)−1, U = Uγ,p,q = {Uij} =

{
Uγ,p,q
ij

}
= (E− z)−1.

(2.3.22)

Remark 2.3.5. Observe that, after conditioning on Ψ, the matrices Γ and Λ are both

independent from U. After further conditioning on χpq, the matrices Θ = {Θij}, Φ = {Φij},

and R become mutually independent.
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We would first like to replace the entries Gγ
ij in the (p, q) summand on the left side of

(2.3.19) with the entries Rij = Rγ,p,q
ij . To that end, we set

ξij = ξij(γ) =
(
Gγ −R

)
ij

=
(
−RΓR + (RΓ)2R− (RΓ)3Gγ

)
ij
, ζij = Im ξij, (2.3.23)

for any 1 ≤ i, j ≤ N , where the third equality in (2.3.23) follows from the resolvent identity

(2.3.1). We abbreviate ζ = ζab.

By a Taylor expansion, there exists some ζ0 ∈ [ImGγ
ab, ImRab] such that

F ′(ImGγ
ab) = F ′(ImRab + ζ) = F (1)(ImRab) + ζF (2)(ImRab) +

ζ2

2
F (3)(ImRab) +

ζ3

6
F (4)(ζ0),

(2.3.24)

where F (i)(x) = ∂iF
∂xi

(x) for any i ∈ Z≥0 and x ∈ R.

Using (2.3.21), (2.3.23) and (2.3.24), we deduce that the (p, q)-summand on the left side

of (2.3.19) can be expanded as a finite sum of (consisting of less than 222) monomials in Θpq

and Φpq, whose coefficients depend on the entries of Gγ and R. We call such a monomial

of degree k (or a k-th order term) if it is of total degree k in Θpq and Φpq. We will estimate

the (p, q)-summand on the left side of (2.3.19) by bounding the expectation of each such

monomial, which will be done in the following sections.

Before proceeding, let us fix an integer pair (p, q) ∈ [1, N ] × [1, N ] throughout this the

remainder of section. It will also be useful for us to define some additional parameters that

will be fixed throughout this section. In what follows, we define the positive real numbers

ω > ε > 0 through

ε =
α

100
min

{
(4− α)ν − 1, (2− α)ν − αρ, ν − ρ, ρ

2
, 1
}
,

ω = min
{

(α− 2ε)ρ− 15ε, (2− α)ν − αρ− 15ε, (4− α)ν − 1− 10ε, (4− 2α)ν − 15ε
}
.

(2.3.25)
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Moreover, let us fix integers ϑ, d > 0 such that

ϑ(ρ− 2ε) > C0ε+ 3, d > 3ϑ+ 5. (2.3.26)

The remainder of this section is organized as follows. We will estimate the contribution to

the left side of (2.3.19) resulting from the first, third, and higher degree terms in Section 2.3.6,

and we will estimate the contribution from the second degree terms in Section 2.3.7. However,

we first require estimates on the entries of R and U (from (2.3.22)), which will be provided

in Section 2.3.5. We then outline the modifications necessary in the proof of Theorem 2.2.15

in Section 2.3.8.

2.3.5 Estimating the entries of R and U

Recall that the event Ω0 from (2.2.16) bounds the entries of Gγ. In this section we will

provide similar estimates on the entries of R and U on an event slightly smaller than Ω0.

More specifically, define

Ω1 = Ω1(ρ) =

{
max

1≤i,j≤N
|wij| ≤ N−ρ

}
, Ω = Ω(ρ, ε, z) = Ω0 ∩ Ω1,

Q = 1− PΨ

[
Ω(ρ, ε, z)

]
= PΨ[Ωc],

where Ωc denotes the complement of Ω. Since ρ < 1
2

and wij is a Gaussian random variable

with variance at most 2
N

, there exists small constant c = c(ρ) > 0 such that

1− P
[
Ω1

]
< e−cN

c

. (2.3.27)

Thus, it suffices to establish (2.3.19) with Q0 there replaced by Q. The following lemma

estimates |Rij| and |Uij| on the event Ω.
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Lemma 2.3.6. For N sufficiently large, we have that

1Ω sup
1≤i,j≤N

∣∣Rij

∣∣ ≤ 2N ε, 1Ω sup
1≤i,j≤N

∣∣Uij(z)
∣∣ ≤ 2N ε. (2.3.28)

Proof. We only establish the second estimate (on |Uij|) in (2.3.28), since the proof of the

first is entirely analogous. Let us also restrict to the event Ω, since the lemma holds off of

Ω.

Recall from the resolvent identity (2.3.1) and the definitions (2.3.20), (2.3.21), and

(2.3.22) that

U−Gγ =
s∑
j=1

(
Gγ(Γ + Λ)

)j
Gγ +

(
Gγ(Γ + Λ)

)s+1
U, (2.3.29)

for any integer s > 0.

Now, set s =
⌈

2
ρ−2ε

⌉
, which is positive by (2.3.25). Observe that 1Ω max1≤i,j≤N

∣∣Gγ
ij

∣∣ ≤ N ε

and that the only nonzero entries of 1Ω(Γ+Λ) are 1Ω(Γ+Λ)pq and 1Ω(Γ+Λ)qp, which satisfy

1Ω(Γ + Λ)pq = 1Ω(Γ + Λ)qp ≤ N−ρ + t1/2|wpq|1Ω1 ≤ 2N−ρ. (2.3.30)

Thus, (2.3.29) yields

1Ω

∣∣Uij −Gγ
ij

∣∣ ≤ s∑
j=1

(4N2ε−ρ)j + (4N ε−ρ)(s+1) max
1≤i′,j′≤N

|Ui′j′ | ≤ 1, (2.3.31)

if N is sufficiently large, where we have also used the deterministic estimate
∣∣Ui′j′∣∣ ≤ η−1 ≤

N2. Now the estimate (2.3.28) on |Uij| follows from (2.3.31), the choice of s, and the fact

that 1Ω

∣∣Gγ
ij

∣∣ ≤ N ε.

We also require the following lemma, which states that we can approximate quantities

near
∣∣F (k)(ImRab)

∣∣ and
∣∣F (k)(ImUab)

∣∣ in terms of derivatives of F (k)
(

ImGγ
ab

)
.
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Lemma 2.3.7. Let ϕ ∈ R be either such that ϕ ∈
[

ImGγ
ab, ImUab

]
or ϕ ∈

[
ImGγ

ab, ImRab

]
.

Then there exists a large constant C = C(ϑ) > 0 such that, for any integer k ≥ 0, we have

that

1Ω

∣∣F (k)(ϕ)
∣∣ ≤ C1Ω

ϑ∑
j=0

N (2ε−ρ)j
∣∣F (k+j)(ImGγ

ab)
∣∣+

C

N3
. (2.3.32)

Moreover, if ϕ ∈
[

ImGγ
ab, ImRab

]
, then

1Ω

∣∣F (k)(ϕ)
∣∣ ≤ C1Ω

ϑ∑
j=0

N (2ε−ρ)j
∣∣F (k+j)(ImRab)

∣∣+
C

N3
. (2.3.33)

Proof. The proof of this lemma will be similar to that of Lemma 2.3.6. We only establish

(2.3.32) when ϕ ∈
[

ImGγ
ab, ImUab

]
, since the proofs of (2.3.33) and of (2.3.32) when ϕ ∈[

ImGγ
ab, ImRab

]
are entirely analogous.

Through a Taylor expansion, we have that

F (k)(ϕ)− F (k)
(

ImGγ
ab

)
=

ϑ∑
j=1

Υj

j!
F (j+k)

(
ImGγ

ab

)
+

Υϑ+1

(ϑ+ 1)!
F (ϑ+k)(Υ1), (2.3.34)

where Υ1 ∈
[

ImGγ
ab, ϕ

]
, and Υ = ϕ− ImGγ

ab, which satisfies

|Υ| ≤
∣∣ ImUab − ImGγ

ab| =
∣∣∣ Im (U(Γ + Λ)Gγ

)
ab

∣∣∣, (2.3.35)

where in (2.3.35) we used the resolvent identity (2.3.1) and the definition (2.3.20) of Γ and

Λ.

Recalling that Γ + Λ has only two nonzero entries, both of which are at most 2N−ρ on

Ω (due to (2.3.30)), and further recalling that the entries of Gγ and U are bounded by 2N ε

on Ω (due to Lemma 2.3.6), we deduce that 1Ω

∣∣Υ∣∣ ≤ 16N2ε−ρ1Ω. Inserting this and the first

estimate of (2.2.14) into (2.3.34), we deduce the existence of a constant C = C(ϑ) > 0 such
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that

1Ω

∣∣∣F (k)
(

ImUab
)
− F (k)

(
ImGγ

ab

)∣∣∣ ≤ C1Ω

ϑ∑
j=1

N (2ε−ρ)j
∣∣F (j+k)(ImGγ

ab)
∣∣+ CN (ϑ+1)(2ε−ρ)+C0ε.

(2.3.36)

Now the second estimate in (2.3.32) follows from (2.3.36) and the fact (2.3.26) that (ρ −

2ε)ϑ > C0ε+ 3.

2.3.6 The first, third, and higher order terms

In this section we show that the expectations of the first and third order terms in the

expansion of (2.3.19) are equal to 0 through Lemma 2.3.8, and we also estimate the higher

order terms through Lemma 2.3.9 and Lemma 2.3.10.

Observe that any degree one or degree three term appearing in the expansion of the

(p, q)-summand on the left side of (2.3.19) (using (2.3.23) and (2.3.24)) contains either zero

or two factors of Γ. The following lemma indicates that the expectation of any such term is

equal to 0.

Lemma 2.3.8. For any integers 1 ≤ i, j ≤ N and k ∈ {0, 1, 2}, define ξ
(k)
ij =

(
(−RΓ)kR

)
ij

.

Let M be a (possibly empty) product of s ≥ 0 of the ξ
(k)
ij , so that M =

∏s
r=1 ξ

(kr)
irjr

for some

1 ≤ ir, jr ≤ N and kr ∈ {0, 1, 2}. If
∑s

r=1 kr is even (in particular, if it is either 0 or 2) and

m ∈ {1, 2, 3}, then

EΨ

[
F (m)(ImRab)

(
Apq −

γt1/2wpq
(1− γ2)1/2

)
M

]
= 0. (2.3.37)

The same estimate (2.3.37) holds if some of the ξ
(kr)
irjr

are replaced by Re ξ
(kr)
irjr

or Im ξ
(kr)
irjr

in

the definition of M .

Proof. First observe from the symmetry of the random variables Hij that EΨ

[
Ampq
∣∣χpq] =

0 = EΨ

[
wmpq
∣∣χpq] for any odd integer m > 0. Now, recall from Remark 2.3.5 that Apq, wpq,
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and R are mutually independent after conditioning on χpq and Ψ. Therefore,

EΨ

[
F (k)(ImRab)

(
Apq −

γt1/2wpq
(1− γ2)1/2

)
M

]

= Eχ
[
EΨ

[
F (k)(ImRab)

(
Apq −

γt1/2wpq
(1− γ2)1/2

)
M

∣∣∣∣χpq]
]

= 0,

(2.3.38)

where we have used the fact that the term inside the first expectation in the middle of

(2.3.38) is a linear combination of products of expressions that each either contain a term

of the form E
[
Ampq
∣∣χpq] or E

[
wmpq
∣∣χpq] for some odd integer m > 0 (by (2.3.20), (2.3.21), and

the fact that
∑s

r=1 kr is even), and each of these expectations is equal to 0. This establishes

(2.3.37).

Now let us consider the fourth and higher order terms that can occur in (2.3.19) through

the expansions (2.3.23) and (2.3.24). Two types of such terms can appear. The first is when

the final term in (2.3.24) appears, giving rise to a factor of ζ3F (4)(ζ0). The second is when

ζ3F (4)(ζ0) does not appear and instead the term is a product of F (m)(ImRab) (for some

1 ≤ m ≤ 3) with at most four expressions of the form (−RΓ)kR or (−RΓ)kGγ (and their

real or imaginary parts).

The following lemma addresses terms of the first type.

Lemma 2.3.9. There exists a large constant C = C(α, ν, ρ, ϑ) > 0 such that

EΨ

[∣∣∣∣ Im(Gγ
apG

γ
qb)
(
Apq −

γt1/2wpq
(1− γ2)1/2

)
ζ3F (4)

(
ζ0

)∣∣∣∣
]

≤ CN10ε

(1− γ2)1/2

(
N (α−4)ν−1J +

t2J

N2
+QNC0+10 +

1

N3

)
.

(2.3.39)

Proof. We first establish an estimate that holds off of the event Ω. In this case, to bound

the left side of (2.3.39), we use the deterministic facts that |Gγ
ij|, |Rij|, ζ ≤ η−1 ≤ N2 and

|Aij| < 1, which implies from (2.2.14) that
∣∣F (ImRij)

∣∣ ≤ NC0 . This yields for sufficiently
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large N

EΨ

[∣∣∣∣ Im(Gγ
apG

γ
qb)
(
Apq −

γt1/2wpq
(1− γ2)1/2

)
ζ3F (4)

(
ζ0

)
1Ωc

∣∣∣∣
]

≤ NC0+10EΨ

[
1Ωc +

γE
[
|wpq|1Ωc

]
(1− γ2)1/2

]
≤ 4NC0+10Q

(1− γ2)1/2
.

(2.3.40)

Next we first work on the event Ω. To that end, observe from (2.3.1), (2.3.23), and

Lemma 2.3.6 that

|ζ|1Ω ≤
∣∣∣(GγΓR

)
ab

∣∣∣1Ω =
(∣∣Gγ

apΓpqRqb

∣∣+
∣∣Gγ

aqΓqpRpb

∣∣)1Ω ≤ 8N2ε|Γpq|1Ω.

Furthermore, since ζ0 ∈
[

ImGγ
ab, ImRab

]
, (2.3.33) yields that

EΨ

[∣∣∣∣ Im(Gγ
aiG

γ
jb)
(
Apq −

γwij
(1− γ2)1/2

)
ζ3F (4)

(
ζ0

)
1Ω

∣∣∣∣
]

≤ 512N10ε

(1− γ2)1/2
EΨ

[
|Γpq|3

(
|Apq|+ t1/2|wij|

)∣∣F (4)(ζ0)
∣∣1Ω

]
≤ CN10ε

(1− γ2)1/2

2ϑ∑
j=0

N (2ε−ρ)jEΨ

[∣∣∣F (j+4)
(

ImRab

)∣∣∣(|Apq|+ t1/2|wpq|
)4

]
+

C

N3

(2.3.41)

for some constant C = C(ϑ) > 0. To estimate the right side of (2.3.41), we condition on

χpq, and apply Remark 2.3.5 to deduce that

EΨ

[∣∣∣F (j+4)
(

ImRab

)∣∣∣(|Apq|+ t1/2|wpq|
)4

]

≤ 8Eχ
[
EΨ

[∣∣∣F (j+4)
(

ImRab

)∣∣∣(|Apq|4 + t2|wpq|4
)∣∣∣∣χpq]

]

= 8Eχ
[
EΨ

[∣∣∣F (j+4)
(

ImRab

)∣∣∣∣∣∣∣χpq]EΨ

[(
|Apq|4 + t2|wpq|4

)∣∣∣∣χpq]
]
.

Then Lemma 2.3.1 (with p = 4) and the fact that E
[
|wpq|4

]
≤ 60

N2 yields after enlarging
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C = C(α, ν, ρ, ϑ) that

EΨ

[∣∣∣F (j+4)
(

ImRab

)∣∣∣(|Apq|4 + t2|wpq|4
)]

≤ C

(
N (α−4)ν−1 +

t2

N2

)
Eχ
[
EΨ

[∣∣∣F (j+4)
(

ImRab

)∣∣∣∣∣∣∣χpq]
]
≤ C

(
N (α−4)ν−1 +

t2

N2

)
J +

C

N3
,

(2.3.42)

where we used (2.3.32) to deduce the last estimate.

Now (2.3.39) follows from applying (2.3.40) off of Ω and (2.3.41) and (2.3.42) on Ω.

The following lemma addresses the higher order terms of the second type. Its proof is

very similar to that of Lemma 2.3.9 and is therefore omitted.

Lemma 2.3.10. Recall the definitions of the ξ
(k)
ij for k ∈ {0, 1, 2} from Lemma 2.3.8, and

further define ξ
(3)
ij =

(
(−RΓ)3Gγ

)
ij

, for each 1 ≤ i, j ≤ N .

There exists a large constant C = C(α, ν, ρ, ϑ) > 0 such that the following holds. Let M

be a product of s ∈ {1, 2, 3, 4} of the ξ
(k)
ij , so that M =

∏s
r=1 ξ

(kr)
irjr

for some 1 ≤ ir, jr ≤ N

and kr ∈ {1, 2, 3}. If
∑s

r=1 kr ≥ 3 and m ∈ {1, 2, 3}, then

EΨ

[
|M |

∣∣∣∣(Apq − γt1/2wpq
(1− γ2)1/2

)
F (m)

(
ImRab

)∣∣∣∣
]
≤ CN16ε

(1− γ2)1/2

(
N ν(α−4)−1J +

t2J

N2
+

1

N3

)
.

(2.3.43)

The same estimate holds if some of the ξ
(0)
irjr

are replaced by Gγ
ij.

2.3.7 Terms of degree 2

In this section we estimate the contribution of terms of degree two to the (p, q)-summand

of the left side of (2.3.19). In Section 2.3.7 we will state this bound use it to establish

Proposition 2.3.4; we will then establish this estimate in Section 2.3.7.
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Estimates on the degree two terms

In this section we bound the contribution of the second order terms to the (p, q)-summand

left side of (2.3.19). There are two types of terms to consider. The first corresponds to when

the factor of ζF ′′(ImRab) appears in the expansion (2.3.24) for F ′(ImGγ
ab), and the second

corresponds to when either Im(−RΓR)ap or Im(−RΓR)qb appears in the expansion (2.3.23)

for ImGγ
ij. Both such terms are estimated through the following proposition.

Proposition 2.3.11. Define

E1 = N4ε+(α−2)ρ−2tJ +NC0+6tQ+
t

N2
, E2 = Nαρ+3ε−1tJ.

Then, there exists a large constant C = C(α, ν, ρ, ϑ) > 0 such that

EΨ

[
Im
(
(RΓR)apRqb

)(
Apq −

γt1/2wpq
(1− γ2)1/2

)
F ′(ImRab)

]
≤ C

(
E1 + E2(ψpq + 1p=q)

)
,

(2.3.44)

and similarly if (RΓR)apRqb is replaced by (RΓR)qbRap. Moreover,

EΨ

[
Im(RapRqb)

(
Apq −

γt1/2wpq
(1− γ2)1/2

)
Im(RΓR)abF

′′(ImRab)

]
≤ C

(
E1 + E2(ψpq + 1p=q)

)
(2.3.45)

We can now establish Theorem 2.2.15 assuming Proposition 2.3.11.

Proof of Proposition 2.3.4 assuming Proposition 2.3.11. As mentioned previously, through

(2.3.23) and (2.3.24), the right side of (2.3.19) expands into a sum of expectations of degrees

one, two, three, four, and higher. By Lemma 2.3.8, we deduce that the expectation of

each term of degree one or three in this expansion is equal to 0. Furthermore, summing

Lemma 2.3.9 and Lemma 2.3.10 over all N2 possibilities for (p, q) yields the existence of

a constant C = C(α, ν, ρ) > 0 such that the sum of the fourth and higher order terms is
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bounded by

C

(1− γ2)1/2
N16ε

(
N ν(α−4)+1J + t2J +QNC0+10 +

1

N

)
<

C

(1− γ2)1/2Nω

(
J + 1 +QNC0+11

)
,

(2.3.46)

here, we used the definition (2.3.25) of ω and recalled that t ∼ N (α−2)ν from Lemma 3.2.6.

Next, summing Proposition 2.3.11 over all N2 possibilities for (p, q) and using the fact that

Ψ has at most N1+αρ+ε entries equal to 1, we estimate the second order terms by

CN4ε

(
N (α−2)ρtJ +NαρtJ + t+NC0+6Q+

1

N

)
< CN−ω

(
J + 1 +NC0+7Q

)
, (2.3.47)

after increasing C if necessary. We have again used the definition (2.3.25) of ω and recalled

that t ∼ N (α−2)ν .

Now the proposition follows from summing the contributions from (2.3.46) and (2.3.47)

and using (2.3.27) to replace Q with Q0 (up to an additive error that decays exponentially

in N).

Proof of Proposition 2.3.11

In this section we establish Proposition 2.3.11. In fact, we will only establish the first

estimate (2.3.44) of that proposition, since the proof of the second estimate (2.3.45) is entirely

analogous.

To that end, we will first through Lemma 2.3.12 estimate the error incurred be replacing

all entries of R on the left side of (2.3.44) with those of U. Then, using the mutual indepen-

dence of U, Apq, and wpq conditional on Ψ (recall Remark 2.3.5) and the definition (3.2.10)

of t, we will deduce Proposition 2.3.11.

In order to implement the replacement, first observe that, since Apq(R − U) = 0 by
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(2.3.22),

Im
((

RΓR
)
ap
Rqb

)
ApqF

′( ImRab

)
= Im

((
UΓU

)
ap
Uqb

)
ApqF

′( ImUab
)
.

Now write

Im
(
(RΓR)apRqb

)( γt1/2wpq
(1− γ2)1/2

)
F ′(ImRab)

= Im
(
(UΓU)apUqb

)( γt1/2wpq
(1− γ2)1/2

)
F ′(ImUab)

+

(
γt1/2wpq

(1− γ2)1/2

)(
Im
(
(RΓR)apRqb

)
F ′
(

ImRab

)
− Im

(
(UΓU)apUqb

)
F ′(ImUab)

)
.

(2.3.48)

Using Γij = γΘij + (1 − γ2)1/2Φij and Apq(R − U) = 0 again, and recalling from (2.3.20)

and (2.3.21) that

Θij = Aij1(i,j)∈{(p,q),(q,p)}, Φij = t1/2wij1(i,j)∈{(p,q),(q,p)},

we can compute the last line in (2.3.48) to find the terms with Θij factors vanish, leaving

(
γt1/2wpq

(1− γ2)1/2

)(
Im
(
(RΓR)apRqb

)
F ′
(

ImRab

)
− Im

(
(UΓU)apUqb

)
F ′(ImUab)

)
= −γtw2

pqY,

where

Y = Im
(
UapUqpUqb + UaqUppUqb

)
F ′
(

ImUab
)
− Im

(
RapRqpRqb +RaqRppRqb

)
F ′
(

ImRab

)
.

(2.3.49)
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In total,

Im
((

RΓR
)
ap
Rqb

)(
Apq −

γt1/2wpq
(1− γ2)1/2

)
F ′
(

ImRab

)
= Im

((
UΓU

)
ap
Uqb

)(
Apq −

γt1/2wpq
(1− γ2)1/2

)
F ′
(

ImUab
)

+ γtw2
pqY,

(2.3.50)

and so we would like to estimate
∣∣EΨ[γtw2

pqY]
∣∣. This will be done through the following

lemma.

Lemma 2.3.12. There exists a large constant C = C(α, ρ, ε, ϑ) > 0 such that

∣∣∣EΨ

[
γtw2

pqY
]∣∣∣ ≤ CN4ε+(α−2)ρ−2tJ +

Ct

N2
+ CNC0+6tQ. (2.3.51)

Proof. Since wpq is independent from R and U, and since E[w2
pq] = 1

N
, we have that

EΨ

[
γtw2

pqY
]

= γtN−1EΨ

[
Y
]
, and so it suffices to show that

∣∣∣∣EΨ

[
Im
(
UapUqpUqb

)
F ′
(

ImUab
)
− Im

(
RapRqpRqb

)
F ′
(

ImRab

)]∣∣∣∣
< CN4ε+(α−2)ρ−1J +

C

N
+ CNC0+6Q,

(2.3.52)

and the same estimate if Im(UapUqpUqb) and Im(RapRqpRqb) are replaced by Im(UaqUppUqb)

and Im(RaqRppRqb), respectively. We will only show (2.3.52), since the proof of the second

statement is entirely analogous.

To that end, recall that (2.3.1) and the definitions (2.3.20) and (2.3.22) yield

R = U−UΛU + UΛUΛR. (2.3.53)

Furthermore, we find from a Taylor expansion

F (k)(ImRab)− F (k)(ImUab) =
ϑ∑
j=1

1

j!
κjF (j+k)(ImUab) +

1

(ϑ+ 1)!
κϑ+1F (ϑ+1)(κ1), (2.3.54)
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where

κ = Im(Rab − Uab) = − Im(UΛR)ab, (2.3.55)

by (2.3.1) and (2.3.22), and κ1 ∈ (ImRab, ImUab).

Applying (2.3.53) and (2.3.54), we find that

Im
(
RapRqpRqb

)
F ′
(

ImRab

)
=

(
ϑ∑
j=0

κj

j!
F (j+1)(ImUab) +

κϑ+1

(ϑ+ 1)!
F (ϑ+1)(κ1)

)

× Im
(
(U−UΛU + UΛUΛR)ap(U−UΛU + UΛUΛR)qp

× (U−UΛU + UΛUΛR)qb
)
.

(2.3.56)

Using (2.3.55) to express κ in terms of Λ and expanding the right side of (2.3.56) yields

a sum of monomials, each of which contains a product of Λ factors. Any such monomial

with u factors of Λ will be called an order u monomial. Observe that there is only one order

0 monomial on the right side of (2.3.56), which is F ′(ImUab)UapUqpUqb. We would like to

estimate the other, higher order, monomials on the right side of (2.3.56).

We first consider the monomials of order 1. Observe that any such monomial is a product

of Λpq with terms of the form F (j+1)(ImUab) and Uij. Furthermore, recall from Remark 2.3.5

that Λ is independent from U (conditional on Ψ). Thus, the symmetry of the entries of H

(and therefore the entries of Λ) implies that

EΨ

[
M
]

= 0, for any monomial M of order 1. (2.3.57)

Next let us estimate monomials of order u with 2 ≤ u ≤ ϑ on the event Ω. Any such

monomial is a product of Λu
pq with a term of the form F (k)(ImUab) and at most 2u entries

of U or R; Lemma 2.3.6 implies that the latter terms are all bounded by 2N ε on the event
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Ω. Thus, if M is a monomial of order 2 ≤ u ≤ ϑ, we have for some 1 ≤ k ≤ ϑ that

EΨ

[
1Ω|M |

]
≤ 4uN2εuEΨ

[∣∣F (k)(ImUab)
∣∣|Λpq|u

]
= 4uN2εuEΨ

[∣∣F (k)(ImUab)
∣∣]EΨ

[
|Λpq|u

]
,

(2.3.58)

for some j ≤ ϑ, where we have used the fact from Remark 2.3.5 that U and Λ are independent

(after conditioning on Ψ).

Now, recalling from (2.3.20) that
∣∣Λpq

∣∣ = Bpq ≤ |Hpq|1|Hpq |≤N−ρ , and applying Lemma

2.3.2, the first estimate in (2.3.32), (2.3.58), and the definition (2.2.15) of J yields the

existence of a constant C = C(ρ, ϑ) > 0

EΨ

[
1Ω|M |

]
≤ CN4ε+(2ε−ρ)(u−2)+(α−2)ρ−1J, for any monomial M of order 2 ≤ u ≤ ϑ.

(2.3.59)

The final monomials to estimate on Ω are those of order u, with u ≥ ϑ + 1. Since

Lemma 2.3.6 implies that 1Ω

∣∣κ1

∣∣ ≤ 2N ε, we find from the first estimate of (2.2.14) that

1Ω

∣∣F (k+1)(κ1)
∣∣ ≤ NC0ε for 0 ≤ k ≤ ϑ. Moreover, Lemma 2.3.6 and the first estimate

of (2.2.14) imply that 1Ω

∣∣F (k+1)(ImUab)
∣∣ ≤ NC0ε for any 0 ≤ k ≤ ϑ. Combining these

estimates, the fact that any monomial of order u is a product of Λu
pq with one term of the

form F (k+1)(ImUab) or F (k+1)(κ1) and at most 2u entries of U and R, and the fact that

(ρ− 2ε)ϑ ≥ C0ε+ 3 implies the existence of a constant C = C(α, ρ, ε, ϑ) > 0 such that

EΨ

[
1Ω|M |

]
≤ C

N3
, for any monomial M of order u ≥ ϑ+ 1. (2.3.60)

Off of the event Ω, we apply the estimate

∣∣∣∣EΨ

[
Im
(
UapUqpUqb

)
F ′
(

ImUab
)
− Im

(
RapRqpRqb

)
F ′
(

ImRab

)]∣∣∣∣
≤ 2NC0+6EΨ

[
Φ2
pq

]
≤ 2NC0+6,

(2.3.61)
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where we have used the fact that the entries of R and U are bounded by η−1 ≤ N2, and

also the second estimate in (2.2.14).

Now the lemma follows from applying (2.3.57), (2.3.59), and (2.3.60) on Ω, and applying

(2.3.61) off of Ω.

We can now establish Proposition (2.3.11).

Proof of Proposition 2.3.11. Let us only establish (2.3.44), since the proof of (2.3.45) is

entirely analogous.

To that end, observe from (2.3.50) and Lemma 2.3.12 that for some C = C(α, ν, ρ, ϑ) > 0

we have that∣∣∣∣∣EΨ

[
Im
(

(RΓR)apRqb

)(
Apq −

γt1/2wpq
(1− γ2)1/2

)
F ′(ImRab)

]∣∣∣∣∣
≤

∣∣∣∣∣EΨ

[
Im
(

(UΓU)apUqb
)(
Apq −

γt1/2wpq
(1− γ2)1/2

)
F ′(ImUab)

]∣∣∣∣∣+ CE1.

(2.3.62)

Now, since Apq, wpq, and U are mutually independent conditional on ψpq, and since Apq and

wpq are symmetric we have from the definition (2.3.20) of Γ that

EΨ

[
Im
(

(UΓU)apUqb
)(
Apq −

γt1/2wpq
(1− γ2)1/2

)
F ′(ImUab)

]
= γEΨ[A2

pq − tw2
pq]EΨ

[
Im(UapUqpUqb + UaqUppUqb)F

′(ImUab)
]
.

(2.3.63)

Now there are three cases to consider. If ψpq = 0 and p 6= q, then E[w2
pq] = 1

N
, so by the

definition (3.2.10) of t we have that

EΨ[A2
pq − tw2

pq] = E
[
H2
ij1|Hij |<N−ν

∣∣|Hij| < N−ρ
]
− t

N
= 0, (2.3.64)

in which case the left side of (2.3.63) is zero.
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If ψpq = 1, then Apq = 0 and E[w2
pq] ≤ 2

N
, so

∣∣∣EΨ[A2
pq − tw2

pq]EΨ

[
Im(UapUqpUqb + UaqUppUqb)F

′(ImUab)
]∣∣∣

≤ 2t

N
EΨ

[(
|UapUqpUqb|+ |UaqUppUqb|

)∣∣F ′(ImUab)
∣∣] ≤ 4t

N

(
8N3εJ +N6Q

)
,

(2.3.65)

where we have used Lemma 2.3.6 to bound max1≤i,j≤N |Uij| by 2N ε on Ω and (2.3.2) and

the fact that η ≥ N−2 to bound it off of Ω.

Similarly, if ψpq = 0 and p = q, then E[w2
pq] = 2

N
and so similar reasoning as applied in

(2.3.64) yields EΨ[A2
pq − tw2

pq] = − t
N

, and so we again deduce that (2.3.65) holds.

Now the proposition follows from summing (2.3.62), (2.3.63), and either (2.3.64) if ψpq = 0

and p 6= q or (2.3.65) if ψpq = 0 or p = q.

2.3.8 Outline of the proof of Theorem 2.2.15 for m > 1

Let us briefly outline the modifications required in the above proof of Theorem 2.2.15 in the

case m > 1. Then, the analog of (2.3.18) becomes

∂

∂γ
EΨ

[
F
(

ImGγ
a1b1

, . . . , ImGγ
ambm

)]
=

m∑
k=1

∑
1≤p,q≤N

EΨ

[
Im(Gγ

akp
Gγ
qbk

)

(
Apq −

γt1/2wpq
(1− γ2)1/2

)
∂kF

(
ImGγ

a1b1
, . . . , ImGγ

ambk

)]
,

and so we must show for each integer k ∈ [1,m] that

∑
1≤p,q≤N

∣∣∣∣∣EΨ

[
Im(Gγ

akp
Gγ
qbk

)
(
Apq −

γt1/2wpq
(1− γ2)1/2

)
∂kF

(
ImGγ

a1b1
, . . . , ImGγ

ambk

)]∣∣∣∣∣
<

C

(1− γ2)1/2

(
N−ω(J + 1) +Q0N

C+C0
)
,

(2.3.66)

for some constants ω = ω(α, ν, ρ,m) > 0 and C = C(α, ν, ρ,m) > 0.

Following (2.3.24), for fixed k ∈ [1,m] we then expand ∂kF (ImGγ
a1b1

, . . . , ImGγ
ambm

)
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as a degree three polynomial in the ζj = Im ξajbj , whose lower (at most second) degree

coefficients are derivatives of F (ImRa1b1 , . . . , ImRambm). The degree three coefficients of this

polynomial are fourth order derivatives of F , evaluated at some
(
ζ0;1, . . . , ζ0;m

)
with ζ0;j ∈

[ImGγ
ajbj

, ImRajbj ]. Inserting this expansion into (2.3.66), one can show using Lemma 2.3.8

that the resulting first and third order terms in (2.3.66) will have expectation equal to 0.

Following the proofs of Lemma 2.3.9 and Lemma 2.3.10, the fourth and higher order terms

in this expansion can further be estimated by C(1 − γ2)−1/2
(
N−ω(J + 1) + Q0N

C+C0
)
, for

some ω = ω(α, ν, ρ,m) > 0 and C = C(α, ν, ρ,m) > 0.

Let us make analogous estimates on the second order terms by following the content in

Section 2.3.7. In particular, the analog of (2.3.50) becomes

Im
((

RΓR
)
akp
Rqbk

)(
Apq −

γt1/2wpq
(1− γ2)1/2

)
∂kF (ImRa1b1 , . . . , ImRambm)

= Im
((

UΓU
)
akp
Uqbk

)(
Apq −

γt1/2wpq
(1− γ2)1/2

)
∂kF (ImUa1b1 , . . . , ImUambm) + γtw2

pqYk,

(2.3.67)

where

Yk = Im
(
UakpUqpUqbk + UakqUppUqbk

)
∂kF (ImUa1b1 , . . . , Uambm)

− Im
(
RakpRqpRqbk +RakqRppRqbk

)
∂kF (ImRa1b1 , . . . , ImRambm).

As in Lemma 2.3.12,
∣∣EΨ[γtw2

pqYk]
∣∣ can be bounded by CN−ω(J+1)+CQ0N

C+C0 . Following

(2.3.63), the expectation of the first term on the right side of (2.3.67) is equal to 0 if ψpq = 0

and p 6= q (by (2.3.64)), and so the using the proof of (2.3.65) the total of this expectation

over all (p, q) ∈ [1, N ]2 can be bounded by CN−ω(J + 1) + CQ0N
C+C0 .

Thus, the second order terms in the expansion of the left side (2.3.66) can also be

bounded by C
(
N−ω(J + 1) + Q0N

C+C0
)
, which verifies (2.3.66) and therefore establishes

Theorem 2.2.15.
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2.4 Intermediate local law for α ∈ (1, 2)

In this section we establish Theorem 2.2.4, which provides a local law for X (recall Defini-

tion 3.2.3) at almost all energies E for α ∈ (1, 2). We begin by formulating an alternative

version of this local law in Section 2.4.1 and showing that it implies Theorem 2.2.4. Its proof

is deferred until Section 2.5; the remainder of this section consists of preparatory material. In

Section 2.4.2 we recall some preliminary identities and estimates. In Section 2.4.3 we provide

an outline of the previous work and of our proof. Finally, we conclude in Section 2.4.4 with

a statement for an approximate fixed point equation (given by Proposition 2.4.11), which

will be established in Section 2.5.2.

In what follows we fix parameters α, b, ν > 0 satisfying (2.2.1) and α ∈ (1, 2). We recall

the functions ϕα,z, ψα,z, y(z), and mα(z) from (3.1.5) and (2.1.5); the removal matrix X and

its resolvent R from Definition 3.2.3; that mN(z) = N−1 Tr R; and the domain DK,$,C from

(2.2.2). Furthermore, for each s > 0 we denote by Ks ⊂ C the set of z ∈ C of the form reiθ,

with r ∈ R≥0 and −πs
2
≤ θ ≤ πs

2
.

2.4.1 An alternative intermediate local law

Through an inductive procedure that has been applied several times for Wigner matrices (see

the book [52] and references therein), Theorem 2.2.4 will follow from the following result.

Theorem 2.4.1. Adopt the notation and hypotheses of Theorem 2.2.4. For each z ∈ H,

define the event

Ω(z) =

{∣∣mN(z)−mα(z)
∣∣ ≤ 1

Nκ

}
∩
{

max
1≤j≤N

∣∣Rjj(z)
∣∣ ≤ (logN)30/(α−1)

}
∩
{

max
1≤j≤N

∣∣∣∣E[(− iRjj(z)
)α/2]− y(z)

∣∣∣∣ ≤ 1

Nκ

}
.

(2.4.1)

Then, for sufficiently large N , there exist large constants C = C(α, b, ν,$,K) > 0 and
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B = B(α) > 0 such

P
[
Ω(z)c

]
≤ C exp

(
−(logN)2

C

)
if Im z = B. (2.4.2)

Further, suppose that z0, z ∈ DK,$,B satisfy Re z = Re z0 and Im z0 − 1
N5 ≤ Im z ≤ Im z0. If

P
[
Ω(z0)c

]
≤ 1

N20 , then

P
[
1Ω(z) < 1Ω(z0)

]
≤ C exp

(
−(logN)2

C

)
. (2.4.3)

for large enough N .

Proof of Theorem 2.2.4 assuming Theorem 2.4.1. Let B be as in Theorem 2.4.1, and let

K = [u, v]. Now let A =
⌊
N5(v − u)

⌋
and let B =

⌊
N5(B − N−$)

⌋
. For each integer

j ∈ [0, A] and k ∈ [0, B], let zj,k = u+ j
N5 + i

(
B− k

N5

)
.

Then, by induction on M ∈ [0, B], there exists a large constant C = C(α, b, ν,$,K) > 0

such that

P

[
A⋃
j=0

M⋃
k=0

Ω(zj,k)
c

]
≤ C(M + 1) exp

(
−(logN)2

C

)
. (2.4.4)

Now, the theorem follows from (2.4.4); the deterministic estimate
∣∣Rij(z)−Rij(z0)

∣∣ < 1
N

and
∣∣mN(z) −mN(z0)

∣∣ < 1
N

for z0, z ∈ D[u,v],δ,B with |z − z0| < 1
N5 (due to (2.3.1), (2.3.2),

and the fact that η ≥ 1
N

); and the deterministic estimate
∣∣mα(z) − mα(z0)

∣∣ ≤ 1
N

for z0

and z subject to the same conditions (which holds since mα is the Stieltjes transform of the

probability measure µα).

2.4.2 Identities and estimates

In this section we recall several facts that will be used throughout the proof of Theorem 2.4.1.

In particular, we recall several resolvent identities and related bounds in Section 2.4.2, and

we recall several additional estimates in Section 2.4.2.
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Resolvent identities and estimates

In this section we collect several resolvent identities and estimates that will be used later.

In what follows, for any index set I ⊂ {1, 2, . . . , N}, let X(I) denote the N ×N matrix

formed by setting the i-th row and column of X to zero for each i ∈ I. Further denote

R(I) =
{
R

(I)
jk

}
=
(
X(I) − z

)−1
. If I = {i}, we abbreviate X({i}) = X(i), R({i}) = R(i), and

R
({i})
jk = R

(i)
jk . Observe that E[mN ] = E[Rjj], for any j ∈ [1, N ], due to the fact that all

entries of X are identically distributed.

Lemma 2.4.2. Let H = {Hij} be an N × N real symmetric matrix, z ∈ H, and η = Im z.

Denote G = {Gij} = (H− z)−1.

1. We have the Schur complement identity, which states for any i ∈ [1, N ] that

1

Gii

= Hii − z −
∑

1≤j,k≤N
j,k 6=i

HijG
(i)
jkHki. (2.4.5)

2. Let I ⊂ [1, N ]. For any j ∈ [1, N ] \ I, we have the Ward identity

∑
k∈[1,N ]\I

∣∣G(I)
jk

∣∣2 =
ImG

(I)
jj

η
. (2.4.6)

The estimates (2.4.5) and (2.4.6) can be found as (8.8) and (8.3) in the book [52], re-

spectively.

Observe that (2.3.1), (2.3.2), and the estimate (which holds for any x, y ∈ C and p ∈ R)

|xp − yp| ≤ |p||x− y|
(
|x|p−1 + |y|p−1

)
, (2.4.7)
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implies that

∣∣R(I)
ij (z1)p −R(I)

ij (z2)p
∣∣ ≤ |p|∣∣R(I)

ij (z1)−R(I)
ij (z2)

∣∣ ( 1

(Im z0)p−1
+

1

(Im z1)p−1

)
≤ 2|p||z1 − z2|

(
1

(Im z0)p+1
+

1

(Im z1)p+1

)
N.

(2.4.8)

For each subset I ⊂ {1, 2, . . . , N} and i /∈ I, define

Si,I =
∑

j /∈I∪{i}

X2
ijR

(I∪{i})
jj , Ti,I = Xii − Ui,I , Si,I =

∑
j /∈I∪{i}

Z2
ijR

(I∪{i})
jj , (2.4.9)

where we recall the entries Hij of H are coupled with the entries Xij of X through the

removal coupling of Definition 3.2.3, which also defined the Zij, and where

Ui,I =
∑

j,k/∈I∪{i}
j 6=k

XijR
(I∪{i})
jk Xki. (2.4.10)

If I is empty, we denote Si = Si,I , Si = Si,I , Ti = Ti,I , and Ui = Ui,I . The Schur

complement identity (2.4.5) can be restated as

Rii =
1

Ti − z − Si
. (2.4.11)

Observe that since the matrix Im R(I) is positive definite and each Xii is real, we have that

ImSi,I ≥ 0, ImSi,I ≥ 0, Im(Si,I − Ti,I) = Im(Si,I + Ui,I) ≥ 0. (2.4.12)

Additional estimates

In this section we collect several estimates that mostly appear as (sometimes special cases of)

results in [33,34]. The first states that Lipschitz functions of the resolvent entries concentrate

around their expectation and appears as Lemma C.3 of [33] (with the f there replaced by

Lf here), which was established through the Azuma–Hoeffding estimate.
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Lemma 2.4.3 ([33, Lemma C.3]). Let N be a positive integer, and let A = {aij}1≤i,j≤N

be an N × N real symmetric random matrix such that the i-dimensional vectors Ai =

(ai1, ai2, . . . , aii) are mutually independent for 1 ≤ i ≤ N . Let z = E + iη ∈ H, and de-

note B = {Bij} = (A− z)−1. Then, for any Lipschitz function f with Lipschitz norm L, we

have that

P

[∣∣∣∣ 1

N

N∑
j=1

f(Bjj)−
1

N

N∑
j=1

E
[
f(Bjj)

]∣∣∣∣ ≥ t

]
≤ 2 exp

(
−Nη

2t2

8L2

)
.

By setting f(x) = x or f(x) = Im x, L = 1, and t = 4(Nη2)−1/2 logN in Lemma 2.4.3, we

obtain

P
[∣∣∣mN(z)− E

[
mN(z)

]∣∣∣ > 4 logN

(Nη2)1/2

]
≤ 2 exp

(
− (logN)2

)
,

P
[∣∣∣ ImmN(z)− E

[
ImmN(z)

]∣∣∣ > 4 logN

(Nη2)1/2

]
≤ 2 exp

(
− (logN)2

)
.

(2.4.13)

The next lemma can be deduced from Lemma 2.4.3 by choosing f to be a suitably

truncated variant of xα/2. It can be found as Lemma C.4 of [33], with their γ equal to our

α
2
.

Lemma 2.4.4 ([33, Lemma C.4]). Adopt the notation of Lemma 2.4.3, and fix α ∈ (0, 2).

Then there exists a large constant C = C(α) > 0 such that, for any t > 0,

P

[∣∣∣∣ 1

N

N∑
j=1

(−iBjj)
α/2 − 1

N

N∑
j=1

E
[
(−iBjj)

α/2
]∣∣∣∣ ≥ t

]
≤ 2 exp

(
−N(ηα/2t)4/α

C

)
.

The following, which is a concentration result for linear combinations of Gaussian random

variables, follows from Bernstein’s inequality and (2.3.2).

Lemma 2.4.5. Let (y1, y2, . . . , yN) be a Gaussian random vector whose covariance matrix
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is given by Id, and for each 1 ≤ j ≤ N let

fj =
(

ImRjj

)α/2|yj|α, gj =
(

ImRjj

)α/2E[|yj|α].
Then, there exists a large constant C > 0 such that

P

[∣∣∣∣ 1

N

N∑
j=1

(fj − gj)
∣∣∣∣ > C(logN)4

N1/2ηα/2

]
< C exp

(
−(logN)2

C

)
,

where the probability is with respect to (y1, y2, . . . , yN) and conditional on X(i).

The following two results state that the diagonal resolvent entries of R are close to those

of R(i) on average. The first appears as Lemma 5.5 of [34] and was established by inspecting

the singular value decomposition of R−R(i) (one could alternatively use the interlacing of

eigenvalues between R(i) and R) and then applying Hölder’s inequality. Estimates of this

type for r = 1 have appeared previously, for example as (2.7) of [59].

Lemma 2.4.6 ([34, Lemma 5.5]). For any r ∈ (0, 1], we have the deterministic estimate

1

N

N∑
j=1

∣∣Rjj −R(i)
jj

∣∣r ≤ 4

(Nη)r
. (2.4.14)

Corollary 2.4.7. For any r ∈ [1, 2], we have the deterministic estimate

1

N

N∑
j=1

∣∣Rjj −R(i)
jj

∣∣r ≤ 8

Nηr
. (2.4.15)

Proof. The estimate (2.3.2) together with the bound |a − b|r−1 ≤ |a|r−1 + |b|r−1 for any

a, b ∈ C yields

∣∣Rjj −R(i)
jj

∣∣r ≤ ∣∣Rjj −R(i)
jj

∣∣(|Rjj|r−1 +
∣∣R(i)

jj

∣∣r−1
)
≤ 2η1−r∣∣Rjj −R(i)

jj

∣∣. (2.4.16)

Now combining (2.4.16) with the r = 1 case of Lemma 2.4.6 yields (2.4.15).
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We also recall the following Lipschitz estimate for the functions ϕα,z and ψα,z (see (3.1.5)),

which appears as Lemma 3.6 in [24].

Lemma 2.4.8 ([33, Lemma 3.4]). There exists a large constant c = c(α) such that the

following holds. For any z ∈ H, the functions ϕα,z and ψα,z (see (3.1.5)) are Lipschitz with

constants cϕ = c(α)|z|−α and cψ = c(α)|z|−α/2 on Kα/2 and K1, respectively.

We conclude this section with the following proposition (which is reminiscent of Lemma

3.2 of [33]) that bounds the quantity Ti from (2.4.9).

Proposition 2.4.9. Let z ∈ H satisfy Im z ≤ N1/α−1/2, and recall the definition of Ti = Ti(z)

from (2.4.9). There exists a large constant C = C(α) > 0 such that for any t ≥ 1 we have

that

P

[
|Ti| ≥

Ct

(Nη2)1/2

]
≤ C

tα/2
. (2.4.17)

Proof. First, (2.3.3) yields the existence of a large constant C(α) > 0 such that

P
[
|Xii| ≥

t

(Nη2)1/2

]
≤ C(Nη2)α/2

Ntα
≤ C

tα
. (2.4.18)

Now, from a Markov estimate, we have for any s > 0 that

P
[
|Ui| ≤

t

(Nη2)1/2

]
≤ Nη2

t2
E

[∣∣∣∣ ∑
1≤j 6=k≤N

XjR
(i)
jkXk

∣∣∣∣2 N∏
j=1

1|Xj |≤s

]
+

N∑
j=1

P
[
|Xj| ≤ s

]
≤ Nη2

t2
E

[ ∑
1≤j 6=k≤N

1≤j′ 6=k′≤N

XjXkXj′Xk′R
(i)
jkRj′k′

(i)
N∏
j=1

1|Xj |≤s

]
+
C

sα

≤ 2Nη2

t2

∑
1≤j 6=k≤N

∣∣R(i)
jk

∣∣2E[|Xj|21|Xj |≤s
]2

+
C

sα
,

(2.4.19)

after increasing C if necessary, where we abbreviated Xj = Xij for each j ∈ [1, N ], used

(2.3.3), and recalled the independence and symmetry of the {Xj}. Then (2.4.19) implies
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P
[
|Ui| ≤

t

(Nη2)1/2

]
≤ 8C2s4−2αη2

(2− α)2t2N

∑
1≤j 6=k≤N

∣∣R(i)
jk

∣∣2 +
C

sα
≤ C3s4−2α

t2
+
C

sα
, (2.4.20)

where we used used (2.3.2), (2.4.6), and

E
[
|Xj|21|Xj |≤s

]
= 2

∫ s

0

uP
[
|Xj| ≥ u

]
du ≤ 2C

N

∫ s

0

u1−αdu =
2Cs2−α

(2− α)N
.

Setting s = t1/2 in (2.4.20) yields

P
[
|Ui| ≤

t

(Nη2)1/2

]
≤ C3

tα
+

C

tα/2
. (2.4.21)

Now the lemma follows from the second identity in (2.4.9), (2.4.18), and (2.4.21).

Remark 2.4.10. The proof of Proposition 2.4.9 does not require that α ∈ (1, 2) or that

E = Re z is bounded away from 0. Instead, it only uses that the entries of N1/αX are

symmetric random variables satisfying (3.1.3) and that Im z = η. Thus, we will also use

Proposition 2.4.9 in the proof of the local law in the case α ∈ (0, 2) \ A, which appears in

Section 2.6.

2.4.3 Outline of proof

In preparation for the next section, we briefly outline the method used in [33] to prove a local

law on intermediate scales, and also the way in which we improve on this method. Recalling

the notation of Section 2.4.2, we begin with the identity (2.4.11).

Approximating Ti ≈ E[Ti] = 0 and replacing each Xij with hij, we find that Rii ≈

(−iz − iSi)
−1. The identity x−s = Γ(s)−1

∫∞
0
ts−1e−xt dt then yields for any s > 0

E
[
(−iRii)

s
]
≈ 1

Γ(s)

∫ ∞
0

ts−1E

[
exp

(
itz + it

∑
j 6=i

R
(i)
jj h

2
ij

)]
dt. (2.4.22)
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To linearize the exponential appearing in the integrand on the right side of (2.4.22), we

use the fact that, for a standard Gaussian random variable g, E
[

exp(izg)
]

= exp
(
− z2

2

)
.

Together with the mutual independence of the {hij}, this yields

E[(−iRii)
s] ≈ 1

Γ(s)

∫ ∞
0

ts−1eitz
∏
j 6=i

E

[
exp

(
i
(
− 2tiR

(i)
jj

)1/2
hijgj

)]
dt

≈ 1

Γ(s)

∫ ∞
0

ts−1eitzE

[
exp

(
− σα(2t)α/2

N

N∑
j=1

(−iRjj)
α/2 |gj|α

)]
dt,

(2.4.23)

where we used the explicit formula (3.1.1) for the characteristic function of an α-stable

random variable and the g = (g1, g2, . . . , gN) is an N -dimensional Gaussian random variable

with covariance given by Id.

Approximating |gj|α ≈ E
[
|gj|α

]
, using the identities

E
[
|gj|α

]
=

Γ(α)

2α/2−1Γ
(
α
2

) , and Γ
(α

2

)
Γ
(

1− α

2

)
=

π

sin
(
πα
2

) , (2.4.24)

recalling the definition of ϕα,z and ψα,z from (3.1.5), and applying (2.4.23) first with s = α
2

and then with s = 1, we deduce

Y (z) ≈ ϕα,z
(
Y (z)

)
, X(z) ≈ ψα,z

(
Y (z)

)
,

where X(z) = E
[
− iRjj(z)

]
and Y (z) = E

[
(−iRjj(z))α/2

]
.

Since the equation Y (z) = ϕα,z
(
Y (z)

)
is known [18] to have a unique fixed point y(z),

we expect from the previous two approximations that there is a global limiting measure

mα = iψα,z(y(z)); this matches with (2.1.5).

To obtain an intermediate local law for this measure, one must additionally quantify the

error incurred from the above approximations. Among the primary sources of error here is

the approximation Rii ≈
(
− iz − iSi

)−1
. This not only requires that |Ti| be small, but also

that
∣∣Si + z

∣∣ and
∣∣Si − Ti + z

∣∣ (which is the denominator of Rii) be bounded below. By
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analyzing certain Laplace transforms for quadratic forms in heavy-tailed random variables,

the work [33] bounded these denominators by η2/α−1. This bound does not account for the

true behavior of these resolvent entries (which should be bounded by N δ for any δ > 0),

which causes the loss in scale of the intermediate local law established in [33] for α closer to

one.

Thus, the improvement we seek will be to lower bound these denominators by (logN)−
30
α−1 ;

see Proposition 2.5.1 below. This will both yield nearly optimal bounds on the diagonal re-

solvent entries Rjj and also allow us to establish an intermediate local law on the smaller

scale η = N−$. Let us mention that the latter improvement (on the scale) is in fact nec-

essary for us to implement our method. Indeed, if for instance α is near one, the results of

[33] establish an intermediate local law for H on scale approximately η � N−1/5. However,

in order for us to apply the flow results of [42, 63, 77, 78] we require η < t, and to apply our

comparison result given by Theorem 2.2.15, we require t ≤ N1/(α−4) ∼ N−1/3. Hence in this

case we require a local law for X on a scale η � N−1/3, and this is the scale accessed by

Theorem 2.2.4.

We do not know of a direct way to improve such a local law to the nearly optimal scale

η = N δ−1, which is necessary to establish complete eigenvector delocalization and bulk

universality. However, one can instead access such estimates for H by combining our current

local law for X on scale η−$ with the comparison result given by Theorem 2.2.15 applied

to Vt, for which the estimates hold on the optimal scale by the regularizing effect of Dyson

Brownian motion.

2.4.4 Approximate fixed point equations

In light of the outline from Section 2.4.3, let us define the quantities

X(z) = E
[
− iRjj(z)

]
, Y (z) = E

[
(−iRjj(z))α/2

]
, (2.4.25)
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which are independent of the index j, since the entries of X are identically distributed.

Throughout this section and the next, we use the notation of Theorem 2.2.4 and set the

parameters θ = θ(α, b, ν) > 0 and δ = δ(α, b, ν,$) > 0 by

θ =
2− α

50
, δ =

1

10
min

{
θ, ν −$,$ − (2− α)ν,

1

2
−$

}
. (2.4.26)

As mentioned in Section 2.4.3, let us now define an event on which the denominators of

Rjj(z) and
(
− z − Sj(z)

)−1
are bounded below. To that end, for any z ∈ H, we define

Λ(z) =

{
min

1≤j≤N
Im
(
Sj + z

)
≥ (logN)−30/(α−1)

}
∩
{

min
1≤j≤N

Im
(
Sj + z

)
≥ (logN)−30/(α−1)

}
∩
{

min
1≤j≤N

Im
(
Sj − Tj + z

)
≥ (logN)−30/(α−1)

}
.

(2.4.27)

Assuming that P
[
Λ(z)c

]
has very small probability, the following proposition provides an

approximate fixed point equation for Y (z), as explained in Section 2.4.3. Its proof will be

provided in Section 2.5.2.

Proposition 2.4.11. Adopt the notation and hypotheses of Theorem 2.2.4 and recall the

parameters δ and θ defined in (2.4.26). Let z ∈ DK,$,B for some compact interval K ⊂ R\{0}

and some B > 0. If P
[
Λ(z)c

]
< 1

N10 , then there exists a large constant C = C(α, b, δ, ε) > 0

such that

∣∣∣Y (z)− ϕα,z
(
Y (z)

)∣∣∣ ≤ C(cϕ + C)(logN)100/(α−1)

(
1

(Nη2)α/8
+

1

N2θ

)
,∣∣∣X(z)− ψα,z

(
Y (z)

)∣∣∣ ≤ C(cψ + C)(logN)100/(α−1)

(
1

(Nη2)α/8
+

1

N2θ

)
,

(2.4.28)

where cϕ = cϕ(α, z) and cψ = cψ(α, z) are given by Lemma 2.4.8.
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2.5 Proof of Theorem 2.4.1

In this section we establish Theorem 2.4.1 in Section 2.5.2 after bounding the probability

P
[
Λ(z)c

]
in Section 2.5.1.

2.5.1 Estimating P
[
Λ(z)c

]
In this section, we provide a estimate for P

[
Λ(z)c

]
, given by Proposition 2.5.1. Due to the

Schur complement formula, this proposition implies optimal bounds on the resolvent entries

that were not present in the previous work [33]. These bounds will in turn allow us to

establish the local law on an improved scale.

In Section 2.5.1 we prove Proposition 2.5.1, assuming Proposition 2.5.2 and Proposi-

tion 2.5.3 below. These propositions are then established in Section 2.5.1 and Section 2.5.1,

respectively.

Proposition 2.5.1. Assume that z ∈ DK,$,B for some B > 0 and that ε ≤ E
[

ImmN(z)
]
≤

1
ε
, for some ε > 0. Then, there exists a large constant C = C(α, b, δ, ε) > 0 such that

P [Λ(z)c] ≤ C exp

(
−(logN)2

C

)
.

A heuristic for the proof

We now briefly outline our argument for the lower bound on Im(Si + z). The Schur com-

plement formula reads Rii = (Ti − z − Si)−1. For the purposes of this outline, let us assume

that Rii ≈ (−z − Si)−1, so that a lower bound on ImSi implies an upper bound on |Rii|.

Letting A denote the diagonal (N − 1) × (N − 1) matrix whose entries are given by

ImR
(i)
jj with j 6= i, we find that ImSi = 〈X,AX〉, where we defined the (N −1)-dimensional

vector X = (Xij)j 6=i. Thus we obtain from (3.1.1) that, if Y = (y1, y2, . . . , yN−1) denotes an

(N −1)-dimensional Gaussian random variable whose covariance is given by Id, then for any
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t > 0

E

[
exp

(
− t2

2
〈AX,X〉

)]
= E

[
exp

(
it〈A1/2X, Y 〉

)]
≈ E

[
exp

(
− c|t|α‖A1/2Y ‖αα

N

)]
,

for some constant c > 0. Assuming that ‖A1/2Y ‖αα concentrates around its expectation, we

obtain after replacing t by t
√

2 and altering c that

E
[

exp(−t2 ImSi)
]

= E

[
exp

(
− t2〈AX,X〉

)]
< exp

(
− c|t|α

N

∑
j 6=i

∣∣∣ImR
(i)
jj

∣∣∣α/2). (2.5.1)

If t is chosen such that

|t|α

N

∑
j

∣∣∣ImR
(i)
jj

∣∣∣α/2 = (logN)2,

then the right side of (2.5.1) is very small. Hence (2.5.1) implies, using Markov’s inequality,

that

P
[
ImSi ≤ t−2

]
= P

[
t2 ImSi ≤ 1

]
= P

[
exp(−t2 ImSi) ≥

1

e

]
≤ C exp

(
− c(logN)2

)
.

Therefore, using the definition of t and ignoring logarithmic factors, we have with high

probability that

ImSi ≥

(
1

N

∑
j 6=i

∣∣∣ImR
(i)
jj

∣∣∣α/2)2/α

.

Since α
2
< 1, we have

1

N

∑
j 6=i

∣∣∣ImR
(i)
jj

∣∣∣α/2 ≥ Imm
(i)
N

(
max
j 6=i

∣∣ ImR
(i)
jj

∣∣)α/2−1

, (2.5.2)

76



where m
(i)
N = N−1 Tr R(i). Proceeding using (2.5.2) yields

ImSi ≥

(
Imm

(i)
N

(
max
j 6=i

∣∣∣ImR
(i)
jj

∣∣∣)α/2−1
)2/α

≈
∣∣ ImmN

∣∣2/α( max
1≤j≤N

|Rjj|
)1−2/α

. (2.5.3)

Since |Rii| ≤ (ImSi)
−1, this suggests that

|Rii| ≤
∣∣ ImmN

∣∣−2/α
max

1≤j≤N
|Rjj|2/α−1,

with high probability. Assuming that ImmN is bounded below and taking maximum over

i ∈ [1, N ], this yields

max
1≤j≤N

|Rjj| ≤ C
(

max
1≤j≤N

|Rjj|
)2/α−1

,

for some constant C > 0. Thus, since 2
α
− 1 < 1 (this is where we use α > 1), this implies

an upper bound on each |Rjj| with high probability.

Proof of Proposition 2.5.1

An issue with the outline from Section 2.5.1 is in (2.5.3), where we claimed that maxj 6=i
∣∣R(i)

jj

∣∣
is approximately maxj |Rjj|. So, to implement this outline more carefully, we will instead

proceed by showing that if one can bound the entries of R(I) for each |I| = k (recall

Section 2.4.2) by some large ϑ > 0, then we can bound the entries of R(J ) for each |J | = k−1

by ϑ2/α−1(logN)20. In particular, if α > 1, then 2
α
− 1 < 1, so we can repeat this procedure

approximately (log logN)2 times to obtain nearly optimal estimates on the entries of R.

To that end, we will define generalized versions of the event Λ. Fix the integer M =⌈
(log logN)2

⌉
, and for each 0 ≤ k ≤M , define the positive real numbers ς0, ς1, . . . , ςM by

ςM = η, and ςk = ς
2/α−1
k+1 (logN)−20, for each 0 ≤ k ≤M − 1. (2.5.4)
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Since α ∈ (1, 2), we have that κ = 2
α
− 1 ∈ (0, 1), and so

ς0 ≥ ςκ
M

M (logN)−20/(1−κ) ≥ N−κ
M

(logN)−10α/(α−1),

where we have used the fact that ςM = η ≥ N−1. It therefore follows that ς0 ≥ (logN)−25/(α−1)

for sufficiently large N , since α ∈ (1, 2) and M =
⌊
(log logN)2

⌋
.

Now, for each subset I ⊂ {1, 2, . . . , N} with |I| = k ≤M , define the three events

ΛS,i,I(z) =
{

Im
(
Si,I(z) + z

)
≥ ςk

}
, ΛS,i,I(z) =

{
Im
(
Si,I(z) + z

)
≥ ςk

}
,

ΛT,i,I(z) =
{

Im
(
Si,I(z)− Ti,I(z) + z

)
≥ ςk

}
.

(2.5.5)

Furthermore, for each 0 ≤ u ≤M , define the event

Λ(u)(z) =
M⋂
k=u

⋂
I⊂{1,2,...,N}
|I|=k

⋂
i/∈I

(
ΛS,i,I(z) ∩ ΛS,i,I(z) ∩ ΛT,i,I(z)

)
.

The following propositions estimate the probabilities of the events ΛS,i,I , ΛS,i,I , and ΛT,i,I .

We will establish Proposition 2.5.2 in Section 2.5.1 and Proposition 2.5.3 in Section 2.5.1.

Proposition 2.5.2. Assume that z ∈ DK,$,B, for some B > 0, and that ε ≤ E
[

ImmN(z)
]
≤

1
ε
, for some ε > 0. Then, there exists a large constant C = C(α, b, δ, ε) > 1 such that the

following holds. For any integer u ∈ [0,M − 1], any subset I ⊂ {1, 2, . . . , N} with |I| = u,

and any i /∈ I, we have that

P
[
ΛS,i,I(z)c

]
≤ P

[
Λ(u+1)(z)c

]
+ C exp

(
−(logN)2

C

)
,

P
[
ΛS,i,I(z)c

]
≤ P

[
Λ(u+1)(z)c

]
+ C exp

(
−(logN)2

C

)
.

(2.5.6)

Proposition 2.5.3. Adopt the notation and hypotheses of Proposition 2.5.2. Then, there

exists a large constant C = C(α, b, δ, ε) > 1 such that the following holds. For any integer
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u ∈ [0,M − 1], any subset I ⊂ {1, 2, . . . , N} with |I| = u, and any i /∈ I, we have that

P
[
ΛT,i,I(z)c

]
≤ P

[
Λ(u+1)(z)c

]
+ C exp

(
−(logN)2

C

)
. (2.5.7)

Assuming Proposition 2.5.2 and Proposition 2.5.3, we can establish Proposition 2.5.1.

Proof of Proposition 2.5.1 assuming Proposition 2.5.2 and Proposition 2.5.3. A union bound

over all I ⊂ {1, 2, . . . , n} with |I| = u and i /∈ I in (2.5.6) and (2.5.7) yields (with C as in

those estimates)

P
[
Λ(u)(z)c

]
≤ 3Nu+1P

[
Λ(u+1)(z)c

]
+ 3CNu+1 exp

(
−(logN)2

C

)
. (2.5.8)

The estimate (2.3.2) implies that Λ(M)(z) holds deterministically, so (2.5.8) and induction

on u yields

P
[
Λ(u)(z)c

]
≤ (3CN)(M+2)(M−u+1) exp

(
−(logN)2

C

)
, (2.5.9)

for each 0 ≤ u ≤ M . Since M =
⌊
(log logN)2

⌋
, it follows from (2.5.9) (after increasing C

if necessary) that P
[
Λ(0)(z)c

]
≤ C exp

(
− C−1(logN)2

)
, from which the proposition follows

since Λ(0)(z) ⊆ Λ(z).

Proof of Proposition 2.5.2

In this section we establish Proposition 2.5.2. Before doing so, we require the following

estimate on the Laplace transform for quadratic forms of removals of stable laws, which is

an extension of Lemma B.1 of [33] to removals of stable laws; this lemma will be established

in Section 2.9.

Lemma 2.5.4. Let α ∈ (0, 2), σ > 0 be real, 0 < b < 1
α

be reals, and N be a positive

integer. Let X̃ be a b-removal of a deformed (0, σ) α-stable law (recall Definition 2.2.2),

and let X = (X1, X2, . . . , XN) be mutually independent random variables, each having the
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same law as N−1/αX̃. Let A = {aij} be an N ×N nonnegative definite, symmetric matrix;

B = {Bij} = A1/2; and Y = (y1, y2, . . . , yN) be an N-dimensional centered Gaussian random

variable (independent from X) with covariance matrix given by Id. Then,

E
[

exp
(
− t2

2
〈AX,X〉

)]
= E

[
exp

(
− σα|t|α‖BY ‖αα

N

)]
exp

(
O
(
t2N (2−α)(b−1/α)−1(logN) Tr A

))
+Ne−(logN)2/2,

where, for any vector w = (w1, w2, . . . , wN) ∈ CN and r > 0, we define ‖w‖r =
(∑N

j=1 |wj|r
)1/r

.

Now we can prove Proposition 2.5.2.

Proof of Proposition 2.5.2. Since the proofs of the two estimates in (2.5.6) are very similar,

we only establish the first one (on ImSi,I). For notational convenience we assume that i = N

and I = {N − u,N − u+ 1, . . . , N − 1}. Denote J = I ∪ {N}, and set

ΛJ (z) =
⋂
j /∈J

(
ΛS,j,J (z) ∩ ΛS,j,J (z) ∩ ΛT,j,J (z)

)
⊆ Λ(u+1)(z). (2.5.10)

In what follows, let G denote the event on which

∣∣∣∣∣ 1

N

N−u−1∑
j=1

ImR
(J )
jj (z)− E

[
ImmN(z)

]∣∣∣∣∣ > 4(u+ 1)

(N − u− 1)η
+

4 logN

Nη2
. (2.5.11)

Observe that (2.4.14) (applied with r = 1) and the second estimate in (2.4.13) imply that

P
[
G
]
≤ 2 exp

(
− (logN)2

)
. Now let us apply Lemma 2.5.4 with X = (XNj)1≤j≤N−u−1 and

A = {Aij} given by the (N −u−1)× (N −u−1) diagonal matrix whose (j, j)-entry is equal

to Ajj = ImR
(J )
jj . Then ImSN,I = 〈X,AX〉, so taking t = (2 log 2)1/2ς

−1/2
u in Lemma 2.5.4
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yields from a Markov estimate that for sufficiently large N ,

P
[

ImSN,I ≤ ςu1Λ(u+1)(z)

]
≤ 2E

[
exp

(
− t2

2
〈AX,X〉

)
1ΛJ (z)1G

]
+ 2P[G]

= 2E

[
E
[

exp
(
− t2

2
〈AX,X〉

)∣∣∣∣{Xjk}j,k/∈J
]
1ΛJ (z)1G

]
+ 2P[G]

≤ 2E

[
exp

(
− σα‖A1/2Y ‖αα

2(N − u− 1)ς
α/2
u

)
exp

(
O
(
ς−1
u N (2−α)(b−1/α)−1 Tr A

))
1ΛJ (z)1G

]

+ 6N exp

(
−(logN)2

4

)
,

(2.5.12)

where Y = (y1, y2, . . . , yN−u−1) is an (N − u− 1)-dimensional Gaussian vector whose covari-

ance is given by Id. On the right side of the equality in (2.5.12), the inner expectation is

over the {Xjk} with either i ∈ J or j ∈ J , conditional on the remaining {Xjk}; the outer

expectation is over these remaining {Xjk} (with j, k /∈ J ).

To estimate the terms on the right side of (2.5.12), first observe from the definition

(2.5.11) of the event G that 1GN
−1 Tr A < E

[
ImmN(z)

]
+N−δ for sufficiently large N . Ap-

plying this, our assumption E
[

ImmN(z)
]
≤ 1

ε
, and the fact that ςu ≥ ςM−1 ≥ η2/α−1(logN)−20

yields for sufficiently large N

1Gς
−1
u N (2−α)(b−1/α)−1 Tr A ≤ 2ε−1η1−2/αN (2−α)(b−1/α)(logN)20

≤ 2ε−1N (2−α)(b−1/α+$/α)(logN)20 ≤ N5δ(α−2) ≤ 1,

(2.5.13)

where we have recalled that η ≥ N−$ and used (2.2.1) and (2.4.26). Inserting (2.5.13) into

(2.5.12) yields the existence of a large constant C = C(α, b, δ, ε) > 0 such that

P
[

ImSN,I < ςu1ΛJ (z)

]
≤ CE

[
exp

(
− ‖A

1/2Y ‖αα
CNς

α/2
u

)
1ΛJ (z)

]
+ C exp

(
−(logN)2

C

)
.

(2.5.14)
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Therefore it suffices to lower bound N−1‖A1/2Y ‖αα. To that end, we apply Lemma 2.4.5 to

deduce (after increasing C if necessary) that

P

[∣∣∣∣ 1

N

N−u−1∑
j=1

(
ImR

(J )
jj

)α/2|yj|α − 1

N

N−u−1∑
j=1

(
ImR

(J )
jj

)α/2E[|yj|α]∣∣∣∣ > C(logN)4

N1/2ηα/2

]

≤ C exp

(
−(logN)2

C

)
,

from which we find (again, after increasing C if necessary) that

P

[
‖A1/2Y ‖αα

N
<

1

CN

N−u−1∑
j=1

(
ImR

(J )
jj

)α/2 − C(logN)4

N1/2ηα/2

]
≤ C exp

(
−(logN)2

C

)
. (2.5.15)

Now, observe that by (2.4.5) and the definition (2.5.10) of the event ΛS,N,J (z) that

1ΛJ (z)

∣∣R(J )
jj (z)

∣∣ = 1ΛJ (z)

∣∣Sj,J (z)− Tj,J (z) + z
∣∣−1 ≤ ς−1

u+1

for each j /∈ J . Therefore,

1ΛJ (z)

N

N−u−1∑
j=1

(
ImR

(J )
jj

)α/2 ≥ ς
1−α/2
u+1 1ΛJ (z)

N

N−u−1∑
j=1

ImR
(J )
jj . (2.5.16)

Furthermore we have by (2.4.14) (applied with r = 1) that

1ΛJ (z)

N

N−u−1∑
j=1

ImR
(J )
jj (z) ≥ 1ΛJ (z)

(
mN(z)− 4(u+ 1)

(N − u− 1)η

)
. (2.5.17)

It then follows from the second estimate in (2.4.13), the assumption E
[

ImmN(z)
]
≥ ε, and

0 ≤ u ≤M =
⌊
(log logN)2

⌋
that

P

[
1ΛJ (z)

N

N−u−1∑
j=1

ImR
(J )
jj (z) ≤

ε1ΛJ (z)

2

]
≤ 2 exp

(
− (logN)2

)
, (2.5.18)

for sufficiently large N . Inserting (2.5.16) and (2.5.18) into (2.5.15) (upon observing that
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ς
1−α/2
u+1 ≥ η1−α/2 ≥ 1

N1/2−δηα/2
) yields

P

[
‖A1/2Y ‖αα

N
<
ες

1−α/2
u+1 1ΛJ (z)

C

]
≤ C exp

(
−(logN)2

C

)
(2.5.19)

for sufficiently large N , again after increasing C if necessary. Therefore, inserting (2.5.19)

into (2.5.14) yields

P
[

ImSN,I < ςu1ΛJ (z)

]
≤ CE

[
exp

(
−
ες

1−α/2
u+1

Cς
α/2
u

)]
+ 2C exp

(
−(logN)2

C

)
,

from which the proposition follows since ς
α/2
u = ς

1−α/2
u+1 (logN)−10α (due to (2.5.4)), and we

may increase C so that the bound holds for all N .

Proof of Proposition 2.5.3

In this section we establish Proposition 2.5.3. We first require the following lemma that will

be established in Section 2.5.1.

Lemma 2.5.5. Let N be a positive integer and 0 < r < 2 < a ≤ 4 be positive real numbers.

Denote by w = (w1, w2, . . . , wN) a centered N-dimensional Gaussian random variable with

covariance Uij = E[wiwj] for each 1 ≤ i, j ≤ N . Define Vj = E[w2
j ] for each 1 ≤ j ≤ N , and

define

U =
1

N

∑
1≤i,j≤N

U2
ij, V =

E
[
‖w‖2

2

]
N

=
1

N

N∑
j=1

Vj, X =
1

N

N∑
j=1

V
a/2
j ,

p =
a− r
a− 2

, q =
a− r
2− r

.

If V > 100(logN)10U1/2, then there exists a large constant C = C(a, r) > 0 such that

P

[
‖w‖rr
N
≤ V p

C
(
X (logN)8

)p/q
]
≤ C exp

(
−(logN)2

2

)
.
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Observe that Lemma 2.5.5 is a certain type of Hölder estimate for correlated Gaussian

random variables. The exponents p and q in that lemma come from such a bound (see

(2.5.29)). With this lemma, we can now establish Proposition 2.5.3.

Proof of Proposition 2.5.3. For notational convenience we assume that i = N and u = 0 (in

which case I is empty); in what follows, we abbreviate the event

ΛN(z) =
N−1⋂
j=1

(
ΛS,j,{N}(z) ∩ ΛS,j,{N}(z) ∩ ΛT,j,{N}(z)

)
. (2.5.20)

Now let us apply Lemma 2.5.4 with X = (XNj)1≤j≤N−1 and the (N − 1) × (N − 1)

matrix A = {Aij}, where we define Aij = ImR
(N)
ij for 1 ≤ i, j ≤ N − 1 (the superscript

refers to the removal of the Nth row.) Then Im(SN,I − Ti,I) = 〈X,AX〉. Therefore, tak-

ing t = (2 log 2)1/2ς
−1/2
0 in Lemma 2.5.4 yields by following the beginning of the proof of

Proposition 2.5.2 until (2.5.14) the existence of a large constant C = C(α, b, δ, ε) > 0 such

that

P
[

Im(SN − TN) < ς01Λ(1)(z)

]
≤ CE

[
exp

(
− ‖A

1/2Y ‖αα
CNς

α/2
0

)
1ΛN (z)

]
+ C exp

(
−(logN)2

C

)
,

(2.5.21)

where Y = (y1, y2, . . . , yN−1) is an (N − 1)-dimensional centered Gaussian random variable

whose covariance is given by Id.

Now let us apply Lemma 2.5.5 with wi = (A1/2Y )i, r = α, and a = 4− α. Then we find

that p = 2 = q, Vj = ImR
(N)
jj (z), and Ujk = ImR

(N)
jk (z) for each 1 ≤ j, k ≤ N − 1. We must

next estimate the quantities V , X , and U from that lemma.

To that end, observe from (2.4.6) and (2.3.2) that

U ≤ 4

N2

∑
1≤i,j≤N−1

∣∣ ImR
(N)
ij (z)

∣∣2 ≤ 4

N2η

N−1∑
j=1

ImR
(N)
jj (z) ≤ 4

Nη2
. (2.5.22)
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Furthermore, since (2.4.14) (with r = 1) and (2.3.2) together imply (2.5.17), we obtain

from the second estimate in (2.4.13), the assumption E
[

ImmN(z)
]
≥ ε, and the fact that

V ≥ N−1
∑N−1

j=1 ImR
(N)
jj (z) that

P
[
V ≤ ε

2
1ΛN (z)

]
≤ 2 exp

(
− (logN)2

)
, (2.5.23)

for sufficiently large N (depending on ε), which in particular by (2.5.22) implies that

P
[
V ≤ 100(logN)10U1/2

]
≤ 2 exp

(
− (logN)2

)
. (2.5.24)

To upper bound X , first observe from (2.4.5) and the definition (2.5.20) of the event ΛN(z)

that
∣∣R(N)

jj (z)
∣∣1ΛN (z) ≤ ς−1

1 . Therefore, for sufficiently large N ,

X1ΛN (z) =
1ΛN (z)

N − 1

N−1∑
j=1

(
ImR

(N)
jj (z)

)2−α/2 ≤
21ΛN (z)

Nς
1−α/2
1

N−1∑
j=1

ImR
(N)
jj (z). (2.5.25)

Therefore, (2.5.25), (2.4.14) (applied with r = 1), the second estimate in (2.4.13), and the

assumption that E
[

ImmN(z)
]
≤ 1

ε
imply that for sufficiently large N

P

[
X1ΛN (z) >

4

ες
1−α/2
1

]
≤ 2 exp

(
− (logN)2

)
. (2.5.26)

Now (2.5.23), (2.5.24), (2.5.26), and Lemma 2.5.5 yield (after increasing C if necessary) that

P

[
‖A1/2Y ‖αα

N
≤
ε3ς

1−α/2
1 1ΛN (z)

C(logN)8

]
≤ C exp

(
−(logN)2

2

)
. (2.5.27)

Inserting (2.5.27) into (2.5.21), we obtain (again after increasing C if necessary) that

P
[

Im(SN − TN) < ς01ΛN (z)

]
≤ C exp

(
− ε3ς

1−α/2
1

Cς
α/2
0 (logN)8

)
+ C exp

(
−(logN)2

C

)
+ C exp

(
−(logN)2

2

)
,
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from which we deduce the proposition since ς
α/2
0 = ς

1−α/2
1 (logN)−10α (due to (2.5.4)) (after

increasing C so the bound holds for all N).

Proof of Lemma 2.5.5

In this section we establish Lemma 2.5.5. Before doing so, however, we require the following

(likely known) estimate for sums of squares of correlated Gaussian random variables.

Lemma 2.5.6. Let N be a positive integer, and let g = (g1, g2, . . . , gN) denote an N-

dimensional centered Gaussian random variable with covariance matrix C = {cij}. Define

a = (a1, a2, . . . , aN) ∈ R≥0 by a2
j = cjj for each j ∈ [1, N ]. Then, for sufficiently large N ,

P

[∣∣‖g‖2
2 − ‖a‖2

2

∣∣ ≥ 50(logN)10

( ∑
1≤j,k≤N

c2
jk

)1/2
]
≤ exp

(
− (logN)2

)
.

Proof. Let w = (w1, w2, . . . , wN) be an N -dimensional centered Gaussian random variable

with covariance matrix given by Id. Let D and U be diagonal and orthogonal matrices,

respectively, such that C = UDU−1. Then g has the same law as UD1/2w, which implies

that ‖g‖2
2 has the same law as

∑N
j=1 djw

2
j . Moreover,

N∑
j=1

a2
j = Tr C = Tr D =

N∑
j=1

dj,
∑

1≤j,k≤N

c2
jk = Tr C2 = Tr D2 =

N∑
j=1

d2
j ,

so that

P

[∣∣‖g‖2
2 − ‖a‖2

2

∣∣ ≥ 50(logN)10

( ∑
1≤j,k≤N

c2
jk

)1/2
]

= P

[∣∣∣∣ N∑
j=1

dj(w
2
j − 1)

∣∣∣∣ ≥ 50(logN)10

( N∑
j=1

d2
j

)1/2
]
.

(2.5.28)

Now, since the {w2
j −1} are mutually independent, the fact that the right side of (2.5.28)

is bounded by exp
(
− (logN)2

)
is standard. For instance, it can be deduced by truncating

each dj(w
2
j − 1) at 4dj logN and then applying the Azuma–Hoeffding inequality.
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Proof of Lemma 2.5.5. First observe that

(
1

N

N∑
j=1

|wj|r
)1/p(

1

N

N∑
j=1

|wj|a
)1/q

≥ 1

N

N∑
j=1

|wj|2. (2.5.29)

We must therefore provide an upper bound on the a-th moments of the wj and a lower

bound on the second moments. To that end, observe that since each wj is a Gaussian random

variable of variance Vj, we have that

P

[
1

N

N∑
j=1

|wj|a ≥ 16X (logN)8

]
≤

N∑
j=1

P
[
|wj| ≥ 2(logN)2V

1/2
j

]
≤ CN exp

(
− (logN)2

)
.

(2.5.30)

Furthermore, by Lemma 2.5.6, we have that

P

[∣∣∣∣ 1

N

N∑
j=1

|wj|2 − V
∣∣∣∣ ≥ 50(logN)10U1/2

]
≤ exp

(
− (logN)2

)
. (2.5.31)

Now the lemma follows from combining (2.5.29), (2.5.30), (2.5.31), and the assumption

that V > 100(logN)10U1/2.

2.5.2 Establishing Theorem 2.4.1

In this section we prove Theorem 2.4.1. We first establish Proposition 2.4.11 in Section 2.5.2.

Then, we will show that Theorem 2.4.1 holds when |z| is sufficiently large in Section 2.5.2;

we will establish Theorem 2.4.1 for more general z in Section 2.5.2.

Proof of Proposition 2.4.11

In this section we establish Proposition 2.4.11. To that end, denote

J(z) = E
[(
− iz − iSj(z)

)−1
]
, I(z) = E

[(
− iz − iSj(z)

)−α/2]
.
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We begin by showing that Y (z) is approximately equal to I(z) and that X(z) is approxi-

mately equal to J(z) (recall (2.4.25)), assuming that P
[
Λ(z)c

]
is small.

Lemma 2.5.7. Let z ∈ DK,$,B for some compact interval K ⊂ R and some B > 0. If

P
[
Λ(z)c

]
< 1

N10 , then there exists a large constant C = C(α, b, δ) > 0 such that

∣∣Y (z)− I(z)
∣∣ ≤ C(logN)70/(α−1)

(Nη2)α/8
,
∣∣X(z)− J(z)

∣∣ ≤ C(logN)70/(α−1)

(Nη2)α/8
. (2.5.32)

Proof. In this proof, we will abbreviate S1 = S1(z), T1 = T1(z), and R11 = R11(z). To bound

|Y (z) − I(z)|, we apply (2.4.11), (2.4.7) (with x = z + S1, y = z + S1 − T1, and p = −α
2
),

and (2.3.2) to obtain for any v > 0 that

∣∣∣(− iz − iS1

)−α/2 − (− iR11

)α/2∣∣∣
≤ α

2

∣∣T1

∣∣(∣∣∣∣ 1

z + S1

∣∣∣∣α/2+1

+

∣∣∣∣ 1

z + S1 − T1

∣∣∣∣α/2+1
)

1|T1|≤v1Λ(z)

+

(∣∣∣∣ 1

z + S1

∣∣∣∣α/2 +

∣∣∣∣ 1

z + S1 − T1

∣∣∣∣α/2
)

1|T1|>v1Λ(z) +

(∣∣∣∣ 1

z + S1

∣∣∣∣α/2 +

∣∣∣∣ 1

z + S1 − T1

∣∣∣∣α/2
)

1Λ(z)c

≤ αv(logN)60/(α−1)1Λ(z) + 2(logN)30/(α−1)1|T1|>v1Λ(z) +
2

η
1Λ(z)c .

(2.5.33)

Setting v = (Nη2)−1/4 in (2.5.33), taking expectations, using Proposition 2.4.9 to bound

P
[
|T1| > v

]
, and applying our assumed estimate P

[
Λ(z)c

]
< 1

N10 yields

E
[∣∣∣(− iz − iS1

)−α/2 − (− iR11

)α/2∣∣∣1Λ(z)

]
≤ 6(logN)70/(α−1)

(Nη2)α/8
,

from which we deduce the first estimate in (2.5.32). The proof of the second estimate in

(2.5.32) is entirely analogous and therefore omitted.

We now estimate the error resulting in replacing the entries of X with those of H.
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Lemma 2.5.8. There exists a large constant C = C(α) > 0 such that

P
[
|Si −Si| ≥ N−4θ

]
< CN−4θ

(
1 + E

[
|R11|

])
.

Proof. Let q > 0 be a real parameter, which will be chosen later. Fix i, and let B denote the

event that for every 1 ≤ j ≤ N with j 6= i, |Hij| < N q and |Zij| < N q. By the hypotheses

on the tail behavior of the Hij stated in Definition 3.1.1 and a union bound,

P [B] ≥ 1− CN−qα, (2.5.34)

for some constant C = C(α) > 0. We now work on the set B. Due to the coupling between

X and H (of Definition 3.2.3),

E
[
1B|Si −Si|

]
≤ E

[
1B
∑
j 6=i

|Z2
ij −X2

ij|
∣∣R(i)

jj

∣∣]

≤
∑
j 6=i

E
[
1B|Z2

ij −H2
ij|+ 1B|H2

ij −X2
ij|
]
E
[∣∣R(i)

jj

∣∣]. (2.5.35)

In this calculation, we used the independence of Hij, Zij, and Xij from R
(i)
jj . To estimate

the right side of (2.5.35), we take expectations in (2.4.14) applied with r = 1 to obtain

∣∣∣∣E[∣∣R(i)
jj

∣∣]− E
[
|Rjj|

]∣∣∣∣ ≤ 10

Nη
,

where we used the exchangeability of the Rjj and (2.3.2). Also, from (3.1.3) and Defini-

tion 3.2.3 we compute (after increasing C if necessary)

E
[
|H2

ij −X2
ij|
]

= E
[
H2
ij1Hij<Nb−1/α

]
≤ CN2b−2/α−bα.
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Similarly, we compute (again after increasing C if necessary)

E
[
1B|Z2

ij −H2
ij|
]
≤ E

[
1B
(
2|Zij||Jij|+ |Jij|2

)]
≤ C

(
N q−qα/2−1/2−1/α +N−2/α

)
≤ 2CN (1−α/2)(q−1/α)−1,

where in the second inequality we used E [1B|Z||J |] ≤
√
E [1B|Z|2]E [1B|J |2]. We therefore

deduce from (2.4.26) and (2.5.35) that, after gaining a factor of N due to the sum over j

and choosing q = 1
4
,

E
[
1B|Si −Si|

]
≤ CN−10θ

(
10

Nη
+ E

[
|R11|

])
.

We conclude from a Markov estimate that

P
[
1B|Si −Si| ≥ N−4θ

]
< CN−4θ

(
1 + E

[
|R11|

])
, (2.5.36)

for sufficiently large N . The claim now follows from (2.5.34) and (2.5.36).

Given Lemma 2.5.8, the proof of the following corollary is very similar to that of Lemma

2.5.7 given Proposition 2.4.9. Therefore, we omit its proof.

Corollary 2.5.9. Let p ∈ (0, 1] and z ∈ DK,$,B for some compact interval K ⊂ R and some

B > 0. If P
[
Λ(z)c

]
< 1

N10 , then there exists a large constant C = C(α, b, δ, ε, p) > 0 such

that

E
[∣∣∣(− iz − iS1(z)

)−p − (− iz − iS1(z)
)−p∣∣∣] ≤ C(logN)100/(α−1)

N2θ
.

We can now establish Proposition 2.4.11.

Proof of Proposition 2.4.11. Given what we have done, the proof of this proposition will be
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similar to that of Proposition 3.1 in [33]. Specifically, defining

γ(z) = E[(−iz − iS1)−α/2], Ξ(z) = E[(−iz − iS1)−1],

we have from Corollary B.2 of (see in particular equation (31) of) [33] that

γ(z) = E

[
ϕα,z

(
1

N

N∑
j=2

(
− iR

(1)
jj

)α/2 |gj|α
E
[
|gj|α

])],
Ξ(z) = E

[
ψα,z

(
1

N

N∑
j=2

(
− iR

(1)
jj

)α/2 |gj|α
E
[
|gj|α

])], (2.5.37)

where g = (g2, g3, . . . , gN) denotes an (N − 1)-dimensional centered Gaussian random vari-

able with covariance matrix given by Id that is independent from H, and E denotes the

expectation with respect to both H and g.

We will only establish the first estimate in (2.4.28) (on
∣∣Y (z)−ϕα,z

(
Y (z)

)∣∣). The proof of

the second is entirely analogous and is therefore omitted. To that end, set ρj =
(
−iR

(1)
jj (z)

)α/2
for each 2 ≤ j ≤ N .

We will show that γ(z) ≈ ϕα,z
(
E[ρ2]

)
and E[ρ2] ≈ Y , and then use Corollary 2.5.9 and

Lemma 2.5.7 to deduce that I(z) ≈ γ(z) and Y (z) ≈ I(z), respectively. To implement the
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first task, observe from (2.5.37) that

∣∣∣γ(z)− ϕα,z
(
E[ρ2]

)∣∣∣
=

∣∣∣∣∣E
[
ϕα,z

( 1

N

N∑
j=2

(
− iR

(1)
jj

)α/2 |gj|α
E
[
|gj|α

])]− ϕα,z(E[ρ2]
)∣∣∣∣∣

≤ E

[
cϕ

∣∣∣∣ 1

N

N∑
j=2

(
− iR

(1)
jj

)α/2 |gj|α
E
[
|gj|α

] − E[ρ2]

∣∣∣∣
]

≤ cϕ

E
[
|gj|α

]E[∣∣∣∣ 1

N − 1

N∑
j=2

ρj|gj|α −
1

N − 1
E
[ N∑
j=2

ρj|gj|α
]∣∣∣∣
]

+
cϕE

[
|ρ2|
]

N

≤ 2cϕ

NE
[
|gj|α

](E[∣∣∣ N∑
j=2

ρj|gj|α −
N∑
j=2

ρjE
[
|gj|α

]∣∣∣]+ E
[
|gj|α

]
E
[∣∣∣ N∑

j=2

(
ρj − E[ρj]

)∣∣∣])+
cϕ
Nη

,

(2.5.38)

where to deduce the first estimate we used the fact (from Lemma 2.4.8) that ϕα,z is Lipschitz

with constant cϕ and the fact that E[ρj] is independent of j ∈ [2, N ], and to deduce the third

estimate we used (2.3.2).

Now recall that by the Cauchy–Schwarz inequality, E [|X|] ≤ E[X2]1/2 for a centered

random variable X, so

1

N

(
E
[∣∣∣ N∑

j=2

ρj|gj|α −
N∑
j=2

ρjE
[
|gj|α

]∣∣∣]) ≤ 1

N

(∣∣∣∣ N∑
j=2

|ρj|2E
[
|gj|2α

]
−

N∑
j=2

|ρj|2E
[
|gj|α

]2∣∣∣∣
)1/2

.

(2.5.39)

Furthermore, Lemma 2.4.4 with t replaced by (Nη2)−α/4t(logN)2 yields the existence of a

large constant C = C(α) > 0 such that

P

[
1

N

N∑
j=2

(
ρj − E[ρj]

)
>
t(logN)2

(Nη2)α/4

]
≤ C exp

(
−t

2(logN)2

C

)
, (2.5.40)
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for each t ≥ 1. Integrating (2.5.40) yields

E

[
1

N

N∑
j=2

(
ρj − E[ρj]

)]
≤ C(logN)2

(Nη2)α/4
, (2.5.41)

after increasing C if necessary. Combining (2.5.38), (2.5.39), and (2.5.41) yields (again upon

increasing C if necessary)

∣∣∣γ(z)− ϕα,z
(
E[ρ2]

)∣∣∣ ≤ CcϕE
[
|ρ2|2

]1/2
N1/2

+
Ccϕ(logN)2

(Nη2)α/4
+

cϕ
Nη
≤ 2Ccϕ(logN)2

(Nη2)α/4
, (2.5.42)

where in the second estimate we used the fact that
∣∣ρ2

∣∣2 ≤ η−α ≤ η−2 (due to (2.3.2)).

To show that E[ρ2] ≈ Y (z), we apply (2.3.2), (2.4.14) with r = α
2
, and the exchangeability

of the entries of X, and then take expectations to find

∣∣E[ρ2]− Y (z)
∣∣ ≤ 5

(Nη)α/2
. (2.5.43)

From (2.5.42), (2.5.43), and the fact that ϕα,z is Lipschitz with constant cϕ, we deduce that

∣∣∣γ(z)− ϕα,z
(
Y (z)

)∣∣∣ ≤ cϕC(logN)2

(Nη2)α/8
, (2.5.44)

upon increasing C if necessary.

Now, by Corollary 2.5.9 (with p = α
2
) and Lemma 2.5.7 we have (again after increasing

C if necessary) that

∣∣I(z)− γ(z)
∣∣ ≤ C(logN)100/(α−1)

N4θ
,

∣∣Y (z)− I(z)
∣∣ ≤ C(logN)70/(α−1)

(Nη2)α/4
. (2.5.45)

Now the first estimate in (2.4.28) follows from (2.5.44) and (2.5.45).
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Proof of Theorem 2.4.1 for large |z|

In this section we establish Theorem 2.4.1 if |z| is sufficiently large. We begin by addressing

the case of large η, given by the following lemma.

Lemma 2.5.10. Adopt the notation of Theorem 2.2.4. There exist constants C = C(α, b) >

0 and B = B(α) > 0 such that (2.4.2) holds for some κ > 0.

Proof. From the definition (2.1.5) of mα(z), we deduce that

∣∣∣E[mN(z)
]
−mα(z)

∣∣∣ ≤ ∣∣∣X(z)− ψα,z
(
Y (z)

)∣∣∣+
∣∣∣ψα,z(Y (z)

)
− ψα,z

(
y(z)

)∣∣∣. (2.5.46)

In view of Lemma 2.4.8, there exists a large constant B = B(α) > 1 such that for any

z ∈ H with |z| ≥ B we have that max{cϕ, cψ} < 1
2
. Thus, let E ∈ R and let z = E + iB.

Then,

∣∣Y (z)− y(z)
∣∣ ≤ ∣∣Y (z)− ϕα,z(Y (z))

∣∣+
∣∣ϕα,z(Y (z))− ϕα,z(y(z))

∣∣
≤
∣∣Y (z)− ϕα,z(Y (z))

∣∣+

∣∣Y (z)− y(z)
∣∣

2
,

which implies that

∣∣Y (z)− y(z)
∣∣ ≤ 2

∣∣Y (z)− ϕα,z
(
Y (z)

)∣∣. (2.5.47)

By (2.4.12), Λ(z) holds deterministically. Thus we can apply Proposition 2.4.11 (and

(2.5.47)) to bound the right side of (2.5.46). This yields the existence of a large constant

C = C(α, b,κ) > 0 such that

∣∣Y (z)− y(z)
∣∣ ≤ C(logN)100/(α−1)

(
1

(Nη2)α/8
+

1

N2θ

)
≤ 2C(logN)100/(α−1)

Nκ ,∣∣∣E[mN(z)
]
−mα(z)

∣∣∣ ≤ C(logN)100/(α−1)

(
1

(Nη2)α/8
+

1

N2θ

)
≤ 2C(logN)100/(α−1)

Nκ .

(2.5.48)
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Now the lemma follows from (2.5.48), the first estimate in (2.4.13), and the deterministic

estimate
∣∣Rij(z)

∣∣ ≤ 1
η
< 1.

The following proposition analyzes the case when ReE is large.

Proposition 2.5.11. Let B be as in Lemma 2.5.10. There exists a large constant E0 =

E0(α) > 0 such that, for any compact interval K = [u, v] disjoint from [−E0, E0], there

exists a large constant C = C(α, b, u, v, δ) > 0 and absolute constant c > 0 such that the

following holds. Suppose E ∈ [u, v] and z0, z ∈ D[u,v],$,B satisfy Re z0 = E = Re z and

Im z0 − 1
N5 ≤ Im z ≤ Im z0, and κ < c. If P

[
Ω(z0)c

]
< 1

N20 , then

P
[
1Ω(z) < 1Ω(z0)

]
≤ C exp

(
−(logN)2

C

)
(2.5.49)

for large enough N .

Proof. First, recall that, since mα(z) is the Stieltjes transform of a probability measure µα

whose density is bounded and whose support is R (see Proposition 1.1 of [24]), for any B > 0

there exists a small constant ε = ε(u, v,B) > 0 such that

ε < sup
w∈D[u,v],$,B

Immα(w) <
1

ε
. (2.5.50)

Now, we claim that

P
[
1Ω(z0)

∣∣∣ ImmN(z)− Immα(z)
∣∣∣ > 2

Nκ

]
≤ 2 exp

(
− (logN)2

)
. (2.5.51)

Indeed, (2.5.51) follows from the fact that 1Ω(z0)

∣∣mN(z0)− Immα(z0)
∣∣ < N−κ, the fact that∣∣mN(z)−mN(z0)

∣∣ < 2
N

since |z−z0| < 1
N5 (from (2.4.8)), the fact that

∣∣mα(z)−mα(z0)
∣∣ ≤ 2

N

(since mα is the Stieltjes transform of the probability measure µα), and the second estimate

in (2.4.13).
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In particular, (2.5.50) and (2.5.51) imply that

P
[
2ε1Ω(z0) ≤ 1Ω(z0) ImmN(z) <

1

2ε

]
≥ 1− 2 exp

(
− (logN)2

)
(2.5.52)

Next, as in the proof of Lemma 2.5.10, Lemma 2.4.8 implies the existence of a large

constant E0 = E0(α) > 0 such that if z ∈ H satisfies |z| > E0 then max{cϕ, cψ} < 1
2
.

Recalling X(z) and Y (z) from (2.4.25) and following the proof of Lemma 2.5.10, we deduce

that

∣∣∣E[mN(z)
]
−mα(z)

∣∣∣ ≤ ∣∣∣X(z)− ψα,z
(
Y (z)

)∣∣∣+
∣∣∣ψα,z(Y (z)

)
− ψα,z

(
y(z)

)∣∣∣,∣∣Y (z)− y(z)
∣∣ ≤ 2

∣∣Y (z)− ϕα,z
(
Y (z)

)∣∣. (2.5.53)

Observe that the hypotheses of Proposition 2.4.11 are satisfied for z; this is because

(2.5.52) and Proposition 2.5.1, together with the trivial bound |mN(z)| ≤ η−1 on the set

Ω(z0)c, imply that P[Λ(z)c] < P
[
Ω(z0)

]
+ 1

N20 < 1
N10 for large enough N . Then we can

use Proposition 2.4.11 to estimate the terms appearing on the right side of (2.5.53). Since

cψ <
1
2
, this yields the existence of a large constant C = C(α, b, u, v,κ) > 0 such that

1Ω(z0)

∣∣Y (z)− y(z)
∣∣ ≤ C(logN)100/(α−1)

(
1

(Nη2)α/8
+

1

N2θ

)
≤ 2C(logN)100/(α−1)

Nκ ,

1Ω(z0)

∣∣∣E[mN(z)
]
−mα(z)

∣∣∣ ≤ C(logN)100/(α−1)

(
1

(Nη2)α/8
+

1

N2θ

)
≤ 2C(logN)100/(α−1)

Nκ .

(2.5.54)

Therefore, the first estimate in (2.4.13) and the second estimate in (2.5.54) together imply

that

P
[
1Ω(z0)

∣∣∣mN(z)−mα(z)
∣∣∣ > 1

Nκ

]
≤ 2 exp

(
−(logN)2

8

)
. (2.5.55)

96



Furthermore, observe that (2.4.11), (2.5.52), and Proposition 2.5.1 together yield

P
[
1Ω(z0) max

1≤j≤N

∣∣Rjj(z)
∣∣ > (logN)30/(α−1)

]
< C exp

(
−(logN)2

C

)
. (2.5.56)

Now (2.5.49) follows from the first estimate in (2.5.54), (2.5.55), and (2.5.56).

Bootstrap for small energies

Let E0 and B be as in Proposition 2.5.11; in this section we establish the analog of that

proposition when |E| ≤ E0 + 1. To that end, let S = Sα denote the set of x ∈ C with

Re x ∈ K and Im x ∈ [0,B] such that ϕ′α,z(x)− 1 = 0. Recall from either Lemma 6.2 of [18]

or equation (3.17) of [24] that if z 6= 0 there exists an entire function g(x) = gα(x) such that

ϕα,z(x) = Cz−αg(x). Therefore, since K is a compact interval that does not contain 0, Sα is

finite.

Thus the implicit function theorem yields the existence of some integer M = M(α,K) > 0

(corresponding to the order of the largest zero of ϕ′α,z − 1 in Sα), a small constant c =

c(α,K,B) > 0, and a large constant C = C(α,K,B) > 0 such that the following holds. If

z ∈ H satisfies Re z ∈ K and Im z ≤ B, then for any t > 0 and w ∈ C,

∣∣w − y(z)
∣∣ ≤ c and

∣∣w − ϕα,z(w)
∣∣ ≤ t together imply

∣∣w − y(z)
∣∣ ≤ Ct1/M . (2.5.57)

Now we can establish the following proposition that establishes (2.4.3) when |Re z| ≤

E0 + 1.

Proposition 2.5.12. Let κ = κ(α, δ,K) = δ
20M

. For any compact interval K = [u, v] ⊂ R

that does not contain 0, there exists a large constant C = C(α, b, u, v,κ) > 0 such that the

following holds. Suppose E ∈ [u, v] and z0, z ∈ D[u,v],$,B satisfy Re z0 = E = Re z and
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Im z0 − 1
N5 ≤ Im z ≤ Im z0. If P

[
Ω(z0)

]
< 1

N20 , then

P
[
1Ω(z) < 1Ω(z0)

]
< C exp

(
−(logN)2

C

)
.

Proof. Since Re z = Re z0, Im z0 − 1
N5 ≤ Im z ≤ Im z0, continuity estimates for Y (z) and

y(z) (see, for instance, equation (39) of [33]) imply that
∣∣Y (z)−Y (z0)

∣∣+ ∣∣y(z)− y(z0)
∣∣ ≤ 1

N
.

Therefore, since
∣∣Y (z0)− y(z0)

∣∣1Ω(z0) ≤ N−κ, it follows that
∣∣Y (z)− y(z)

∣∣1Ω(z0) ≤ 2N−κ for

N sufficiently large.

Thus (2.5.57) implies the existence of a large constant C = C(α, u, v) > 0 such that

1Ω(z0)

∣∣Y (z)− y(z)
∣∣ ≤ C

∣∣∣Y (z)− ϕα,z
(
Y (z)

)∣∣∣ 1
M

1Ω(z0). (2.5.58)

Following the reasoning used to establish (2.5.53) in the proof of Proposition 2.5.11, we

obtain

1Ω(z0)

∣∣∣E[mN(z)
]
−mα(z)

∣∣∣ ≤ (∣∣∣X(z)− ψα,z
(
Y (z)

)∣∣∣+
∣∣∣ψα,z(Y (z)

)
− ψα,z

(
y(z)

)∣∣∣)1Ω(z0)

≤
(∣∣∣X(z)− ψα,z

(
Y (z)

)∣∣∣+ cψ
∣∣Y (z)− y(z)

∣∣)1Ω(z0).

(2.5.59)

Having established the estimates (2.5.58) and (2.5.59), the remainder of the proof of

this proposition is very similar to that of Proposition 2.5.11 after (2.5.53) and is therefore

omitted.

Using the results above, we can now establish Theorem 2.4.1.

Proof of Theorem 2.4.1. The estimate (2.4.2) follows from Lemma 2.5.10. Furthermore,

Proposition 2.5.11 establishes the existence of a large constant E0 = E0(α) such that (2.4.3)

holds when | Im z| = | Im z0| > E0 and κ < c. Then Proposition 2.5.12 implies (2.4.3) when

|Re z| = |Re z0| ≤ E0 + 1 and κ = δ
20M

. Together these yield Theorem 2.4.1.
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2.6 Intermediate local law for almost all α ∈ (0, 2) at

small energies

In this section and in Section 2.7 we establish Theorem 2.2.5 (in fact the slightly more

general Theorem 2.6.6 below), which provides a local law at sufficiently small energies for

the removal matrix X for almost all α ∈ (0, 2). In Section 2.6.1 we state the local law (given

by Theorem 2.6.6 below) and an estimate (Theorem 2.6.8) that implies the local law. We

will then establish Theorem 2.6.8 in Section 2.6.2.

However, before doing this, let us recall some notation. In what follows we fix parameters

α ∈ (1, 2) and 0 < b < 1
α

; we recall the removal matrix X and its resolvent R from

Definition 3.2.3; we recall mN(z) = N−1 Tr R; and we recall the domain DC,δ from (2.2.4).

Furthermore, we denote by K the set of z ∈ C with Re z > 0, and we set K+ = K ∩H to be

the closure of the positive quadrant of the complex plane. We also let S1 be the unit circle,

consisting of all z ∈ C with |z| = 1, and we define the closure S1
+ = K+ ∩ S.

2.6.1 An estimate for the intermediate local law

In this section we state the local law for X on scales N δ−1/2 (Theorem 2.6.6 below) and an

estimate (Theorem 2.6.8) that implies it; this will be done in Section 2.6.1. However, we

will first define a certain inner product and metric in Section 2.6.1 that will be required to

define a family of fixed point equations in Section 2.6.1.

Inner Product and Metric

In order to establish a convergence result for mN(z) (which is approximately equal to E[Rii]),

we in fact must understand the convergence of more general expectations, including the frac-

tional moments E
[
(−iRjj)

p
]
, the absolute moments E

[
|Rjj|p

]
, and the imaginary moments
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E
[
| ImRjj|p

]
. To facilitate this, we define for any u, v ∈ C, the inner product

(u | v) = uRe v + u Im v = Re u
(

Re v + Im v
)

+ i Im u
(

Re v − Im v
)
.

In particular, for any u, v ∈ C, we have that

(u | 1) = u, (−iu | eπi/4) = Im u
√

2,
∣∣∣(u | v)∣∣∣ ≤ 2|u||v|. (2.6.1)

We will attempt to simultaneously understand the quantities Az(u) = E
[(

(−iRii)
α/2 | u

)]
for all u ∈ K+. Our reason for this (as opposed to only considering the cases u = 1 and

u = eπi/4) is that the absolute moments E
[
|Rjj|p

]
will be expressed as an integral of a function

of Az(u) over u (see the definitions (2.6.7) of Jp and rp,z and also the second estimate in

(2.6.16) below); this was implemented in [34].

To explain this fixed point equation further, we require a metric space of functions. To

that end, for any w ∈ C, we let Hw denote the space of C1 functions g : K+ → C such

that g(λu) = λwg(u) for each λ ∈ R≥0. Following equation (10) of [34], we define for any

r ∈ [0, 1) a norm on Hr by

‖g‖∞ = sup
u∈S1+

∣∣g(u)
∣∣, ‖g‖r = ‖u‖∞ + sup

u∈S1+

√∣∣(i |u)r∂1g(u)
∣∣2 +

∣∣(i |u)r∂2g(u)
∣∣2,

where ∂1g(x+ iy) = ∂xg(x+ iy) and ∂2g(x+ iy) = ∂yg(x+ iy). Observe in particular that

sup
u∈S1+

∣∣g(u)
∣∣ ≤ ∥∥g‖r, for any r > 0. (2.6.2)

We let Hw,r be the completion of Hw with respect to the ‖g‖r norm. Further define for

any δ > 0 the subset Hδ
w,r ⊂ Hw,r consisting of all g ∈ Hw,r such that Re g(u) > δ for all

u ∈ S1
+, and define H0

w,r =
⋃
δ>0Hδ

w,r. Further abbreviate Hδ
w = Hδ

w,0.

The following stability lemma, which appears as Lemma 5.2 of [34], will be useful to us.
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Lemma 2.6.1 ([34, Lemma 5.2]). Assume that r ∈ (0, 1) and u ∈ S1
+. Let x1, x2 ∈ K+,

and let a ∈ (0, 1) be such that |x1|, |x2| ≤ a−1. Set Fk(u) =
(
xk |u

)r
for each k ∈ {1, 2}.

Then, there exists a constant C = C(r) > 0 such that for any s ∈ (0, r), we have that for

any k ∈ {1, 2},

‖Fk‖1−r+s ≤ C|xk|r, ‖F1 − F2‖1−r+s ≤ Ca−r
(
|x1 − x2|r + as|x1 − x2|s

)
. (2.6.3)

If we further assume that Re x1,Re x2 ≥ t for some t > 0, and we set Gk(u) =
(
x−1
k | u

)r
for

each k ∈ {1, 2}, then there exists a constant C = C(r) > 0 such that

‖G1 −G2‖1−r+s ≤ Ctr−2a2r−1|x1 − x2|. (2.6.4)

Equations for m

Following Section 3.2 of [34] (or Section 5.1 of [33]), define for any complex numbers u ∈ S1
+

and h ∈ K, and any function g ∈ Hα/2, the function

Fh,g(u) =

∫ π/2

0

(∫ ∞
0

(∫ ∞
0

(
e−r

α/2g(eiθ)−(rh | eiθ) − e−rα/2g(eiθ+uy)−(yrh |u)−(rh | eiθ)
)
rα/2−1dr

)

× y−α/2−1dy

)
(sin 2θ)α/2−1dθ.

It was shown as Lemma 4.1 of [34] that Fh,g ∈ Hα/2,r if g ∈ H0
α/2,r, and also that it is

in the closure H
0

α/2,r for any g ∈ H0

α/2,r if Reh > 0. As in equation (13) of [34], define the

function

Υf (u) = Υz,f (u) = cαF−iz,f (ũ), where c = cα =
α

2α/2Γ(α/2)2
and ũ = iu. (2.6.5)
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Observe that
(
u, v
)

= uRe v + u Im v =
(
u, ṽ
)
. Now, for any u ∈ C, define

ϑz(u) = Γ
(

1− α

2

)
(−iRjj | u)α/2, γz(u) = E

[
ϑz(u)

]
= Γ

(
1− α

2

)
E
[
(−iRjj | u)α/2

]
,

(2.6.6)

for any j ∈ [1, N ]; observe that γz(u) does not depend on j due to the fact that the entries

of X are identically distributed.

Furthermore, for any p > 0 and f ∈ Hα/2, define Ip, Jp, rp,z(f) ∈ C and sp,z : K→ C by

Ip = Ip(z) = E
[
(−iRjj)

p
]
, sp,z(x) =

1

Γ(p)

∫ ∞
0

yp−1e−iyz−xyα/2 dy,

Jp = Jp(z) = E
[
|iRjj|p

]
, rp,z(f) =

21−p/2

Γ(p/2)2

∫ π/2

0

∫ ∞
0

yp−1e(iyz | eiθ)−yα/2f(eiθ)(sin 2θ)p/2−1 dy dθ,

(2.6.7)

for any x ∈ K. The convergence of these integrals can quickly be deduced from the fact that

Re(iz) < 0.

We now state four lemmas that can be found in [34]. The first two provide existence,

stability, and estimates for the solution to a certain fixed point equation, while the latter

two provide bounds and stability estimates for the functions F , sp,z, rp,z, and Υ.

Lemma 2.6.2 ([34, Proposition 3.3], [32, Lemma 4.3]). There exists a countable subset A ⊂

(0, 2) with no accumulation points on (0, 2) such that, for any r ∈ (0, 1] and α ∈ (0, 2) \ A,

there exists a constant c = c(α, r) > 0 with the following property.

There exists a unique function Ω0 ∈ Hα/2 such that Ω0 = Υ0,Ω0. Additionally, if Im z > 0

and |z| ≤ c, then there is a unique function f = Ωz ∈ Hα/2,r that solves f = Υz,f with

‖f − Ω0‖r ≤ c. Moreover, this function satisfies Ωz(e
πi/4) ≥ c and, for any p > 0, there

exists a constant C = C(α, p) > 0 such that rp,z(Ωz) ≤ C.

Lemma 2.6.3 ([34, Proposition 3.4]). Adopt the notation of Lemma 2.6.2. After decreasing

c if necessary, there exists a constant C > 0 such that the following holds. If Im z > 0,
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|z| ≤ c, and ‖f − Ωz‖r ≤ c, then

‖f − Ωz‖r ≤ C
∥∥f −Υz;f

∥∥
r
.

The following stability properties of Fh and Υ will be useful to us later.

Lemma 2.6.4 ([34, Lemma 4.1]). Let r ∈ (0, 1) and p > 0. There exists a constant C =

C(α, p, r) > 0 such that, for any g ∈ H0

α/2,r and h ∈ K, we have that

‖Fh(g)‖r ≤ C(Reh)−α/2 + C‖g‖r(Reh)−α/2,∣∣rp,ih(g)
∣∣ ≤ C(Reh)−p,

∣∣sp,ih(g(1)
∣∣ ≤ C(Reh)−p.

(2.6.8)

Lemma 2.6.5 ([34, Lemma 4.3]). For any fixed a, r > 0, there exists a constant C =

C(α, a, r) such that for any f, g ∈ Ha
α/2,r and z ∈ C, we have that

‖Υf −Υg‖r ≤ C‖f − g‖r + ‖f − g‖∞
(
‖f‖r + ‖g‖r

)
. (2.6.9)

Furthermore, for any p > 0 there exists a constant C ′ = C ′(α, a, r, p) such that for any

f, g ∈ Ha
α/2,r and any z ∈ C and x, y ∈ K with Re x,Re y ≥ a, we have that

∣∣rp,z(f)− rp,z(g)
∣∣ ≤ C ′‖f − g‖∞,

∣∣sp,z(x)− sp,z(y)
∣∣ ≤ C ′|x− y|. (2.6.10)

An intermediate local law for X

The following theorem provides a local law for X.

Theorem 2.6.6. There exists a countable set A ⊂ (0, 2), with no accumulation points in

(0, 2), such that the following holds. Fix α ∈ (0, 2)\A and 0 < b < 1
α

. Denote θ = (b−1/α)(2−α)
20

and fix some δ ∈ (0, θ) with δ < 1
2
. Then, there exists a constant C = C(α, b, δ, p) > 0 such
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that

P

[
sup
z∈DC,δ

∣∣∣mN(z)− is1,z

(
Ωz(1)

)∣∣∣ > 1

Nαδ/8

]
< C exp

(
−(logN)2

C

)
, (2.6.11)

where we recall the definition of Ωz from Lemma 2.6.2. Furthermore, we have that

sup
u∈S1+

∣∣γz(u)− Ωz(u)
∣∣ ≤ C

Nαδ/8
,

∣∣J2 − r2,z(Ωz)
∣∣ ≤ C

Nαδ/8
, (2.6.12)

and

P

[
sup
z∈DC,δ

max
1≤j≤N

∣∣Rjj(z)
∣∣ > (logN)C

]
< C exp

(
−(logN)2

C

)
. (2.6.13)

Remark 2.6.7. One can show that the fixed point equations (2.1.5) and Lemma 2.6.2 defin-

ing mα(z) and Ωz, respectively, are equivalent when u = 1; this implies that is1,z

(
Ωz(1)

)
=

mα(z).

Theorem 2.6.6 is a consequence of the following theorem (whose proof will be given in

Section 2.6.2 below), which is similar to Proposition 3.2 of [34] but with two main differences.

The first is that Theorem 2.6.8 below establishes estimates on the scale η � N−1/2, while the

corresponding estimate in [34] was shown with η � N−α/(2+α). The second is that we also

establish estimates on each
∣∣Rjj

∣∣, which was not pursued in [34]. In fact, these bounds on the

resolvent entries (which follow as consequences of Proposition 2.6.9 and Proposition 2.6.10

below) are partially what allow us to improve the scale from η � N−α/(2+α) in [34] to

η � N−1/2 here.

Theorem 2.6.8. Fix α ∈ (0, 2), 0 < b < 1
α

, s ∈
(
0, α

2

)
, p > 0, ε ∈ (0, 1], and a positive

integer N . Define θ = (b−1/α)(2−α)
10

, and suppose that z = E + iη ∈ H with E, η ∈ R. Assume

that

η ≥ N ε−s/α, |z| < 1

ε
, E

[
(ImR11)α/2

]
≥ ε, E

[
|R11|2

]
≤ ε−1. (2.6.14)
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Then, there exists a constant C = C(α, ε, b, s, p) > 0 such that

‖γz −Υγz‖1−α/2+s ≤ C(logN)C
(

1

(Nη2)α/8
+

1

N θ
+

1

N sηα/2

)
, (2.6.15)

and

∣∣Ip − sp,z(γz(1)
)∣∣ ≤ C(logN)C

(
1

(Nη2)α/8
+

1

N θ
+

1

N sηα/2

)
,

∣∣Jp − rp,z(γz)∣∣ ≤ C(logN)C
(

1

(Nη2)α/8
+

1

N θ
+

1

N sηα/2

)
.

(2.6.16)

Furthermore,

inf
u∈S1+

Im γz(u) ≥ 1

C
, (2.6.17)

and

P
[

max
1≤j≤N

∣∣Rjj

∣∣ > C(logN)C
]
< C exp

(
−(logN)2

C

)
. (2.6.18)

Given Lemma 2.6.2, Lemma 2.6.3, and Theorem 2.6.8, the proof of Theorem 2.6.6 is very

similar to the proof of Theorem 5.11 in Section 5.4 of [34] and is therefore omitted. However,

let us briefly explain the idea of the proof, referring to [34] for the remaining details.

To that end, after proving Theorem 2.6.6 in the case when η = 1
C

is of order 1, one

first observes by (2.4.8) that it suffices to establish Theorem 2.6.6 for any individual z

on a certain lattice. In particular, for a constant C > 0, let A = A(C) = b2NC

C
c and

B = B(C) = bNC−NC+δ−1/2

C
c, and define zjk = zj,k = j

NC − 1
C

+ i
(

1
C
− k

NC

)
for each 0 ≤ j ≤ A

and 0 ≤ k ≤ B.

If C is sufficiently large, it suffices to verify (2.6.11) and (3.3.12) for each zjk. We will

induct on k; the initial estimate states that they are true for k = 0. So let M ∈ [1, B] be an

integer, assume that the theorem holds for k ≤M − 1, and let us establish it for k = M . To
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that end, we will apply Theorem 2.6.8 with s = α−αδ
2

and ε ≤ δ
2
.

To apply this theorem, we must verify (2.6.14). The first estimate there holds since

η ≥ N δ−1/2, and the second holds for sufficiently small ε if z ∈ DC,δ. The third follows from

(2.4.8), the second statement of (2.6.1), the first estimate in (2.6.12) (applied with z = zj,M−1

on the previous scale), and the lower bound on Ωz(e
πi/4) provided by Lemma 2.6.2. The

fourth estimate in (2.6.14) similarly follows from (2.4.8), the second estimate in (2.6.12)

(applied with z = zj,M−1 on the previous scale), and the upper bound on r2,z(Ωz) given by

Lemma 2.6.2.

Thus, applying Theorem 2.6.8 yields that (2.6.15), (2.6.16), (2.6.17), and (2.6.18) all hold

for z = zjM ; the last estimate implies (3.3.12). Furthermore, (2.6.15), (2.6.2), (2.4.8), the

estimate (2.6.11) (applied with z = zj,M−1 on the previous scale), and Lemma 2.6.3 together

imply the first estimate in (2.6.12) for z = zjM . Now (2.6.11) for z = zjM follows from the

first estimate in (2.6.16) (applied with p = 1), the first estimate in (2.6.12), the first identity

in (2.6.1), (2.6.17), the second estimate in (2.6.10), and the first estimate in (2.4.13). The

second estimate in (2.6.12) for z = zjM follows from the second estimate in (2.6.16) (applied

with p = 2), the first estimate in (2.6.12), (2.6.17), and the first estimate in (2.6.10).

2.6.2 Establishing Theorem 2.6.8

In this section we establish Theorem 2.6.8 assuming Proposition 2.6.9, Proposition 2.6.10,

and Proposition 2.6.17; the latter results will be proven later, in Section 2.7.

Define

Si =
∑
j 6=i

X2
ijR

(i)
jj , and Ti = Xii − Ui, where Ui =

∑
j,k 6=i
j 6=k

XijR
(i)
jkXki, (2.6.19)

and observe that Rii can be expressed in terms of Ti, z, and Si through (2.4.11).

We begin in Section 2.6.2 by “removing Ti” from the equations defining Rii by approxi-

mating functions of the Rii by analogous functions of
(
− z − Si

)−1
. Next, in Section 2.6.2
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we analyze the error in replacing all of the removal entries Xij in the expression defining Si

with the original α-stable entries Zij (recall Definition 3.2.3). This will be useful for deriving

approximate fixed point equations in Section 2.6.2, which we will use to conclude the proof

of Theorem 2.6.8 in Section 2.6.2.

Removing Ti

Denoting

ωz(u) =
(
(−iz − iSi)

−1 | u
)α/2

, $z(u) = E
[(

(−iz − iSi)
−1 |u

)α/2]
, (2.6.20)

we would like to show that γz ≈ $z and that other similar approximations hold; see Propo-

sition 2.6.11 below. Such estimate which would follow from Proposition 2.4.9 if one could

show that Im(Si− Ti) and ImSi could be bounded from below with overwhelming probabil-

ity. The following two propositions, which will be proven in Section 2.7.2 and Section 2.7.3,

establish the latter statement.

Proposition 2.6.9. Adopt the notation of Theorem 2.6.8. There exists a large constant

C = C(α, ε, b) > 1 such that

P
[
ImSi <

1

C(logN)C

]
< C exp

(
−(logN)2

C

)
. (2.6.21)

Proposition 2.6.10. Adopt the notation of Theorem 2.6.8. There exists a large constant

C = C(α, ε, b) > 1 such that

P
[
Im(Si − Ti) <

1

C(logN)C

]
< C exp

(
−(logN)2

C

)
. (2.6.22)

In particular, we have that

P
[

max
1≤j≤N

|Rjj| < C(logN)C
]
< C exp

(
−(logN)2

2C

)
. (2.6.23)
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The following proposition is a consequence of Proposition 2.4.9, Proposition 2.6.9, and

Proposition 2.6.10; its proof will be similar to that of Lemma 2.5.7.

Proposition 2.6.11. Adopt the notation of Theorem 2.6.8. Then, there exists a large con-

stant C = C(α, ε, b, s, p) > 0 such that

E
[∣∣∣|Rii|p −

∣∣(−z − Si)−1
∣∣p∣∣∣] ≤ C(logN)C

(Nη2)α/8
, E

[∣∣(−iRii)
p − (−iz − iSi)

−p∣∣] ≤ C(logN)C

(Nη2)α/8
,

(2.6.24)

and

∥∥γz −$z

∥∥
1−α/2+s

<
C(logN)C

(Nη2)α/8
, (2.6.25)

where γz and $z are defined in (2.6.6) and (2.6.20), respectively.

Proof. Let us first establish the first estimate in (2.6.24). The proof of the second is entirely

analogous and is therefore omitted. To that end, observe from (2.4.5) and (2.4.7) that, for

any v > 0, we have that

∣∣∣|Rii|p −
∣∣(−z − Si)−1

∣∣p∣∣∣ ≤ (p− 1)v

(∣∣∣ 1

Im(Si − Ti + z)

∣∣∣∣p+1

+

∣∣∣∣ 1

Im(z + Si)

∣∣∣p+1
)

1|Ti|<v

+

(∣∣∣ 1

Im(Si − Ti + z)

∣∣∣∣p +

∣∣∣∣ 1

Im(z + Si)

∣∣∣p)1|Ti|≥v.

(2.6.26)

We will use Proposition 2.4.9, Proposition 2.6.9, and Proposition 2.6.10 to bound the

expectation of the right side of (2.6.26). Let C1, C2, and C3 denote the constants C from

Proposition 2.4.9, Proposition 2.6.9, and Proposition 2.6.10 respectively. Also let E1 de-

note the event on which inf1≤i≤N ImSi < C−1
2 (logN)−C2 , let E2 denote the event on which

inf1≤i≤N Im(Si − Ti) < C−1
3 (logN)−C3 , and let E = E1 ∪ E2.

Now, using the deterministic estimate (2.4.12) and the fact that Im z = η ≤ N−1/2 to

estimate the expectation of the right side of (2.6.26) on E, and using Proposition 2.6.9 and
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Proposition 2.6.10 to estimate it off of E, yields

E
[∣∣∣|Rii|p −

∣∣(−z − Si)−1
∣∣p∣∣∣]

≤ (p− 1)v
(
Cp+1

2 (logN)(p+1)C2 + Cp+1
3 (logN)(p+1)C3

)
+ (p− 1)v

(
Cp+1

2 (logN)(p+1)C2 + Cp+1
3 (logN)(p+1)C3

)
P
[
|Ti| ≥ v

]
+
(
Np/2 + (p− 1)vN (p+1)/2

)(
exp

(
− (logN)2

C2

)
+ exp

(
− (logN)2

C3

))
.

(2.6.27)

Setting v = (Nη2)−1/4 in (2.6.27) together with the estimate on P
[
|Ti| ≥ s

]
given by

(2.4.17) (applied with t = (Nη2)1/4) yields (2.6.24).

The proof of (2.6.25) is similar, except we now use Lemma 2.6.1. Recall the functions ϑz

and ωz from (2.6.6) and (2.6.20), respectively. Furthermore, recall the event E from above,

and let F denote the complement of E. On F , we apply (2.6.4) with x1 = iTi − iz − iSi,

x2 = −iz − iSi, r = α/2, and t = a = (C2 + C3)−1(logN)−C2−C3 to obtain that

∥∥ϑz − ωz∥∥1−α/2+s
1F1|Ti|≤v ≤ C(C2 + C3)3−3α/2(logN)(3−3α/2)(C2+C3)

∣∣∣∣ 1

z + Si − Ti
− 1

z + Si

∣∣∣∣1F
≤ C(C2 + C3)5−3α/2(logN)(5−3α/2)(C2+C3)v1F .

(2.6.28)

Similarly, applying the first estimate in (2.6.3) with x1 = (iTi−iz−iSi)
−1, x2 = (−iz−iSi)

−1,

r = α/2, and a = (C2 +C3)−1(logN)−C2−C3 yields the existence of a constant C = C(α) > 0

such that

∥∥ϑz − ωz∥∥1−α/2+s
1F1|Ti|>v

≤ C
(∣∣z + Si − Ti

∣∣−1
+
∣∣z + Si

∣∣−1
)
1F1|Ti|>v ≤ 2C(C2 + C3)α/2(logN)C2+C31F1|Ti|>v.

(2.6.29)

Moreover, again using the first estimate in (2.6.3) with the same x1, x2, and r as above, but
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now with a = η ≥ N−1/2, we obtain that

∥∥ϑz − ωz∥∥1−α/2+s
1E ≤ 2CNα/41E. (2.6.30)

Now (2.6.25) follows similarly to (2.6.24) as explained above. Set v = (Nη2)−1/4 and sum

(2.6.28), (2.6.29), and (2.6.30). Then apply (2.4.17) (with t = (Nη2)1/4), Proposition 2.6.9,

and Proposition 2.6.10. Finally, use the facts that $z = E
[
ωz(u)

]
and γz(u) = E

[
ϑz(u)

]
.

Replacing X

To facilitate the proof of Theorem 2.6.8, it will be useful to replace all of the Xij with Zij

(which we recall are coupled from Definition 3.2.3). To that end, we define

Si =
∑
j 6=i

Z2
ijR

(i)
jj , Ψz(u) = Γ

(
1− α

2

) (
(−iz − iSi)

−1 |u
)α/2

,

ψz(u) = E[Ψz] = Γ
(

1− α

2

)
E
[(

(−iz − iSi)
−1 |u

)α/2]
.

(2.6.31)

We now have the following lemma that compares Si and Si. It is a quick consequence of

Lemma 2.5.8 in Section 2.5.2 and our assumption that E
[
|Rjj|

∣∣ ≤ E
[
|Rjj|2

]1/2
< ε−1/2.

Lemma 2.6.12. Adopt the notation of Theorem 2.6.8. There exists a large constant C =

C(α, b, ε) > 0 such that

P
[∣∣Si − Si| > N−4θ

]
< CN−4θ. (2.6.32)

The proof of the following proposition, which lower bounds ImSi, is very similar to that

of Proposition 2.6.9 and is therefore omitted.

Proposition 2.6.13. Adopt the notation of Theorem 2.6.8. There exists a large constant
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C = (α, ε) > 0 such that

P
[
ImSi <

1

C(logN)C

]
≤ C exp

(
−(logN)2

C

)
. (2.6.33)

Given Proposition 2.6.9, Lemma 2.6.12, and Proposition 2.6.13, the proof of the following

proposition is similar to that of Proposition 2.6.11 and is therefore omitted.

Proposition 2.6.14. Adopt the notation of Theorem 2.6.8. Then, there exists a constant

C = C(α, ε, b, s, p) > 0 such that

E
[∣∣∣∣∣(−z −Si)

−1
∣∣p − ∣∣(−z − Si)−1

∣∣p∣∣∣] ≤ C(logN)CN−4θ,

E
[∣∣(−iz − iSi)

−p − (−iz − iSi)
−p∣∣] ≤ C(logN)CN−4θ,

(2.6.34)

and

∥∥ψz −$z

∥∥
1−α/2+s

< C(logN)CN−4θ, (2.6.35)

where $z and ψz are defined in (2.6.20) and (2.6.31), respectively.

Approximate fixed point equations

In this section we establish several approximate fixed point equations for ψz. To that end,

we begin with the following lemma, which appears as Corollary 5.8 of [34].

Lemma 2.6.15 ([34, Corollary 5.8]). Fix σ > 0, α ∈ (0, 2), p > 0, and a positive integer

N . Let Z be a (0, σ) α-stable law, and let h1, h2, . . . , hN be mutually independent, identically

distributed random variables with laws given by N−1/αZ. Suppose that A1, A2, . . . , AN ∈ C

111



are complex numbers with nonnegative real part. Then, denoting

F(u) = Γ
(

1− α

2

)
E

[(( N∑
j=1

h2
jAj − iz

)−1
∣∣∣∣u)α/2

]
,

Sp = E

[( N∑
j=1

h2
jAj − iz

)−p]
, Rp = E

[∣∣∣∣ N∑
j=1

h2
jAj − iz

∣∣∣∣−p
]
,

we have that F(u) = E
[
ΥZ

]
, Sp = E

[
sp,z(Z)

]
, and Rp = E

[
rp,z(Z)

]
, where Υ is given by

(2.6.5) and

Z = Z(u) =
2α/2σα

N

N∑
j=1

(
Aj |u

)α/2|yj|α, Z = Z(1) =
2α/2σα

N

N∑
j=1

A
α/2
j |yj|α,

where (y1, y2, . . . , yN) is an N-dimensional centered Gaussian random variable whose covari-

ance matrix is Id.

Using Lemma 2.6.15, we can express a number of quantities of interest in terms of the

function Z above.

Corollary 2.6.16. Recalling the definition of Υ from (2.6.5) and Ψz from (2.6.31), we have

that

Ψz(u) = EY

[
ΥZ

]
, (2.6.36)

where

Z = Z(u) =
Γ
(
1− α

2

)
N − 1

∑
j 6=i

(
− iR

(i)
jj |u

)α/2 |yj|α
E
[
|yj|α

] , (2.6.37)

where Y = (yj)j 6=i is an (N − 1)-dimensional centered real Gaussian random variable with

covariance matrix given by Id. In (2.6.36), the expectation is with respect to Y.
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Moreover, denoting Z = Z(1), we have that

E
[(
− iz − iSi

)−p]
= EY

[
sp,z(Z)

]
, E

[∣∣− z −Si

∣∣−p] = EY

[
rp,z(Z)

]
. (2.6.38)

Proof. The identity (2.6.36) follows from the first statement of Lemma 2.6.15, applied with

hj = Xij and Aj = −iR
(i)
jj , and also the fact that

2α/2σα =
2α/2−1π

sin
(
πα
2

)
Γ(α)

=
π

sin
(
πα
2

)
Γ
(
α
2

)
E
[
|yj|α

] =
Γ
(
1− α

2

)
E
[
|yj|α

] . (2.6.39)

To establish the first identity in (2.6.39) we used the definition (3.1.2) of σ, and to establish

the second and third we used (2.4.24). The proof of (2.6.38) is entirely analogous, as a

consequence of the second and third statements of Lemma 2.6.15, as well as (2.6.39).

The following proposition, which will be proven in Section 2.7.4, states that Z is approx-

imately equal to γz. Thus, taking the expectation of both sides of (2.6.36), using the facts

that ψz = E
[
Ψz

]
(recall (2.6.31)) and that γz is approximately equal to ψz (recall (2.6.25)

and (2.6.35)), (2.6.36) yields an approximate fixed point equation for ψz.

Proposition 2.6.17. Adopt the notation of Theorem 2.6.8. There exists a constant C =

C(α, ε, s) > 1 such that

P
[
‖Z− γz‖1−α/2+s >

C(logN)C

N s/2ηα/2

]
< C exp

(
−(logN)2

C

)
. (2.6.40)

Convergence to fixed points

In this section we establish Theorem 2.6.8. To that end, recall that (2.6.36) can be viewed

as a fixed point equation for ψz. In order to analyze this fixed point equation, we require

the following lemma.

Lemma 2.6.18. Adopt the notation and assumptions of Theorem 2.6.8. There exists a
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constant C = C(α, ε, s) > 1 such that

‖γz‖1−α/2+s < C, inf
u∈S1+

Re γz(u) >
1

C
, P

[
inf
u∈S1+

ReZ(u) <
1

C

]
< C exp

(
−(logN)2

C

)
.

(2.6.41)

Proof. In view of (2.6.2) and Proposition 2.6.17, it suffices to only establish the first two

estimates in (2.6.41) on γz. Let us first establish the upper bound. To that end, observe

that the first statement of (2.6.3) implies the existence of a constant C = C(s) such that

∥∥∥(− iRii |u
)α/2∥∥∥

1−α/2+s
≤ C

∣∣Rii

∣∣α/2. (2.6.42)

Taking expectations in (2.6.42), using the definition (2.6.6) of γz, and using the fact that

E
[
|Rii|2

]
< ε−1, we deduce that

‖γz‖1−α/2+s ≤ Γ
(

1− α

2

)
E
[∥∥(− iRii |u

)α/2∥∥
1−α/2+s

]
≤ CΓ

(
1− α

2

)
E
[
|Rii|α/2

]
≤ CΓ

(
1− α

2

)
E
[
|Rii|2

]α/2 ≤ CΓ
(

1− α

2

)
ε−α/2,

from which we deduce the first estimate in (2.6.41).

Now let us verify the lower bound on Re γz. In that direction, observe that for any

u ∈ S1
+, we have that

Re γz(u) = Γ
(

1− α

2

)
E
[

Re
(
− iRii | u

)α/2]
≥ Γ

(
1− α

2

)
E
[(

Re(−iRjj | u)
)α/2] ≥ Γ

(
1− α

2

)
E
[
(ImRjj)

α/2
]
≥ Γ

(
1− α

2

)
ε.

The first identity above follows from the definition (2.6.6) of γz; the second follows from the

fact that Re ar ≥ (Re a)r for any a ∈ K and r ∈ (0, 1) (see Lemma 5.10 of [34]); the third

follows from the fact that Re
(
a |u

)
≥ Re a for any u ∈ S1

+ and a ∈ K+; and the fourth

follows from our assumed lower bound on E
[
(ImRjj)

α/2
]
.
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Now we can deduce the following consequence of (2.6.36).

Corollary 2.6.19. Adopt the notation of Theorem 2.6.8. There exists a constant C =

C(α, ε, s) > 0 such that

P
[
‖ψz −Υγz‖1−α/2+s <

C(logN)C

N s/2ηα/2

]
< C exp

(
−(logN)2

C

)
. (2.6.43)

Proof. Let us first show that Υγz is approximately equal to ΥZ using Lemma 2.6.5. To verify

the conditions of that lemma, first observe that γz,Z ∈ Hα/2 since the inner product (x | y)

is bilinear. Furthermore, let C1 denote the constant C from Proposition 2.6.17, and let C2

denote the constant C from Lemma 2.6.18. Define the events

E1 =

{
‖Z− γz‖1−α/2+s ≥

C1(logN)C1

N s/2ηα/2

}
E2 =

{
inf
u∈S1+

ReZ(u) ≤ 1

C2

}
∪

{
inf
u∈S1+

Re γz(u) ≤ 1

C2

}
∪
{
‖γz‖1−α/2+s ≥ C2

}
.

(2.6.44)

Denoting E = E1 ∪ E2, Proposition 2.6.17 and Lemma 2.6.18 together imply that

P[E] ≤ (C1 + C2) exp

(
−(logN)2

C1 + C2

)
. (2.6.45)

Therefore, denoting the complement of E by F and applying (2.6.9) and (2.6.2) yields a

constant C > 1 (only dependent on C2 and s) such that

1F‖ΥZ −Υγz

∥∥
1−α/2+s

≤ C1F‖Z− γz‖1−α/2+s + 1F‖Z− γz‖∞
(
‖Z‖1−α/2+s + ‖γz‖1−α/2+s

)
≤ CC1(logN)C1

N s/2ηα/2

(
1 + C2 +

C1C2(logN)C1

N s/2ηα/2

)
,

(2.6.46)

where we have used the fact that Z and γz are in H1/C2

α/2,1−α/2+s on the event F .

The estimate (2.6.46) bounds ‖ΥZ − Υγz‖1−α/2+s away from the event E; now let us

bound it on E through a deterministic estimate. Using the first bound in Lemma 2.6.4 and
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the definition (2.6.5) of Υ in terms of F , we deduce that

‖Υγz‖1−α/2+s ≤ Cη−α/2
(
1 + ‖γz‖1−α/2+s

)
, (2.6.47)

after enlarging C if necessary. Now, applying the first statement of (2.6.3) (with x1 = Rii,

r = α/2, and a = η) and (2.3.2), we have that

‖γz‖1−α/2+s ≤ CΓ
(

1− α

2

) ∣∣Rjj

∣∣α/2 ≤ CΓ
(

1− α

2

)
η−α/2. (2.6.48)

Inserting (2.6.48) into (2.6.47) yields

‖Υγz‖1−α/2+s ≤ 2C2η−αΓ
(

1− α

2

)
. (2.6.49)

Furthermore, applying the definition (2.6.31) of Ψz, (2.3.2), and the first statement of (2.6.3)

(now with x1 = −iz − iS, r = α/2, and a = η) yields that

‖Ψz‖1−α/2+s ≤ CΓ
(

1− α

2

)
η−α/2. (2.6.50)

Combining (2.6.31), (2.6.46), (2.6.49), and (2.6.50) yields

‖ψz −Υγz‖1−α/2+s ≤ E
[
‖Ψz −Υγz‖1−α/2+s

]
≤ E

[
1F‖Ψz −Υγz‖1−α/2+s

]
+ E

[
1E‖Ψz‖1−α/2+s

]
+ E

[
1E‖γz‖1−α/2+s

]
≤ CC2

1(C2 + 2)(logN)C1

N s/2ηα/2
+ CΓ

(
1− α

2

)
η−α(2C + 1)P[E].

(2.6.51)

For the first inequality, we used Jensen’s inequality and the fact that all norms, in particular

‖ · ‖1−α/2+s, are convex. Now (2.6.43) follows from (2.6.45) and (2.6.51).

Now we can establish Theorem 2.6.8.
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Proof of Theorem 2.6.8. The first estimate (2.6.15) follows from (2.6.25), (2.6.35), and (2.6.43).

Furthermore, the fourth estimate (2.6.17) follows from the second estimate in (2.6.41); the

fifth estimate (2.6.18) follows from (2.6.23).

The proofs of the two estimates given in (2.6.16) are similar, so let us only establish the

latter. To that end, recall the notation from the proof of Corollary 2.6.19, and define the

events E1 and E2 as in (2.6.44). As in the proof of Corollary 2.6.19, we let E = E1 ∪E2 and

F be the complement of E.

Then, γz and 1FZ are both in H1/C2

α/2,1−α/2+s, so applying the first estimate in (2.6.10) and

(2.6.2) yields a constant C ′ (only dependent on C2, s, and p) such that

1F
∣∣rp,z(γz)− rp,z(Z)

∣∣ ≤ C ′ sup
u∈S1+

∣∣γz − Z
∣∣1F ≤ C ′

∥∥γz − Z
∥∥

1−α/2+s
1F ≤

C ′C1(logN)C1

N s/2ηα/2
.

(2.6.52)

The estimate (2.6.52) bounds
∣∣rp,z(γz)− rp,z(Z)

∣∣ off of E. To bound it on E, we use the

deterministic estimate given by the second inequality in (2.6.8). This yields the existence of

a constant C = C(α, p, s) such that

1E
∣∣rp,z(γz)− rp,z(Z)

∣∣ ≤ 1E
∣∣rp,z(γz)∣∣+

∣∣rp,z(Z)
∣∣ ≤ 2Cη−p1E. (2.6.53)

Combining the second equality in (2.6.38), (2.6.52), and (2.6.53) yields

∣∣∣rp,z(γz)− E
[
| − z −Si|p

]∣∣∣ ≤ EY

[∣∣rp,z(γz)− rp,z(Z)
∣∣]

= EY

[
1F
∣∣rp,z(γz)− rp,z(Z)

∣∣]+ EY

[
1E
∣∣rp,z(γz)− rp,z(Z)

∣∣]
≤ C ′C1(logN)C1

N s/2ηα/2
+ 2Cη−pP[E].

(2.6.54)

The second statement of (2.6.16) now follows from the first statement of (2.6.24), the

first statement of (2.6.34), (2.6.45), and (2.6.54).
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2.7 Estimates for the fixed point quantities

In this section we establish the estimates stated in the proof of Theorem 2.6.8 in Sec-

tion 2.6.2. To that end, we first require some concentration estimates, which will be given

in Section 2.7.1. We will then establish Proposition 2.6.9, Proposition 2.6.10, and Proposi-

tion 2.6.17 in Section 2.7.2, Section 2.7.3, and Section 2.7.4, respectively.

2.7.1 Concentration results

In this section, we collect concentration statements that will be used in the proofs of the

estimates stated in Section 2.6.2. The first (which is an analog of Lemma 2.4.4) is Lemma

5.3 of [34], applied with their β equal to our α
2

and their δ equal to our s.

Lemma 2.7.1 ([34, Lemma 5.3]). Let N be a positive integer, let r and s be positive real

numbers, and let A = {aij}1≤i,j≤N be an N × N symmetric random matrix such that the

i-dimensional vectors Ai = (ai1, ai2, . . . , aii) are mutually independent for 1 ≤ i ≤ N . Let

z = E + iη ∈ H, and denote B = {Bij} = (A− z)−1. Fix u ∈ S1
+, α ∈ (0, 2), and s ∈

(
0, α

2

)
.

Then, if we denote f = fu : C → C by fu(z) = (iz |u)α/2, there exists a constant

C = C(α) > 0 such that

P

[∥∥∥∥ 1

N

N∑
j=1

f(Bjj)−
1

N

N∑
j=1

E
[
f(Bjj)

]∥∥∥∥
1−α/2+s

≥ t

]
≤ C(ηα/2t)−1/s exp

(
−N(ηα/2t)2/s

C

)
.

The following (which is analog of Lemma 2.4.5) is a special case of Lemma 5.4 of [34],

applied with their {gj} equal to our {yj}; their {hj} equal to our −iRjj; their β equal to our

α
2
; their δ equal to our s; and their t equal to CN−s/2η−α/2(logN)s.

Lemma 2.7.2 ([34, Lemma 5.4]). Let (y1, y2, . . . , yN) be a Gaussian random vector whose

covariance matrix is given by Id, let s ∈
(
0, α

2

)
, and for each 1 ≤ j ≤ N let

fj(u) =
(
− iR

(i)
jj | u

)α/2|yj|α, gj(u) =
(
− iR

(i)
jj | u

)α/2E[|yj|α].
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Then, there exists a constant C = C(α) > 0 that

P

[∥∥∥∥ 1

N

N∑
j=1

(fj − gj)
∥∥∥∥

1−α/2+s

>
C(logN)s

N s/2ηα/2

]
<
CN1/2

logN
exp

(
−(logN)2

C

)
, (2.7.1)

where the expectation is with respect to (y1, y2, . . . , yN) and conditional on X(i).

2.7.2 Proof of Proposition 2.6.9

In this section we establish Proposition 2.6.9. Its proof will be similar to that of Proposi-

tion 2.5.2 in Section 2.5.1.

Proof of Proposition 2.6.9. Since all entries of R are identically distributed, we may assume

that i = N . In what follows, let E denote the event on which

∣∣Tr Im R(N) − E[ImR11]
∣∣ ≤ 4 logN

(Nη2)1/2
+

8

Nη
. (2.7.2)

In view of Lemma 2.4.6 (applied with r = 1) and the second estimate in (2.4.13), we deduce

that P
[
Ec
]
≤ 2 exp

(
− (logN)2

)
, where Ec denotes the complement of E .

We now apply Lemma 2.5.4 with X =
(
XNj

)
j 6=N and A = {Aij} equal to the (N −

1) × (N − 1) diagonal matrix with Ajj = ImR
(N)
jj . Then, ImSN = 〈AX,X〉. Inserting

t = (logN)2/α(2 log 2)1/2 into Lemma 2.5.4, we find from a Markov estimate that

P
[

ImSN < 1E(logN)−4/α
]

≤ 2E

[
1E exp

(
− t2

2
〈AX,X〉

)]

≤ 2E

[
1E exp

(
− σα(2 log 2)α/2(logN)2‖A1/2Y ‖αα

N − 1

)
exp

(
O
(

(logN)4/α+1N−10θ−1 Tr A
))]

+ 2N exp

(
−(logN)2

4

)
+ 2P

[
Ec
]
,

(2.7.3)
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where Y = (y1, y2, . . . , yN−1) is a Gaussian random variable whose covariance matrix is given

by Id, and we recall the definition θ = (b− 1/α)(2− α)/10 from Theorem 2.6.8.

Now, in view of the definition (2.7.2) of the event E and our assumption that E[ImR11] <

E
[
|R11|2

]−1/2 ≤ ε−1/2, we have that 1E
∣∣Tr A

∣∣ < 2ε−1/2 for sufficiently large N . This (and

our previous estimate P
[
Ec
]
≤ 2 exp

(
− (logN)2

)
) guarantees the existence of a constant

C = C(α, b, ε) > 0 such that

P
[

ImSi < (logN)−4/α
]
≤ CE

[
exp

(
− (logN)2‖A1/2Y ‖αα

CN

)]
+ C exp

(
−(logN)2

C

)
.

(2.7.4)

Thus, to provide a lower bound on ImSN , it suffices to establish a lower bound on

‖A1/2Y ‖αα
N

=
1

N

N−1∑
j=1

∣∣ ImR
(N)
jj

∣∣α/2|yj|α. (2.7.5)

To that end, we apply Lemma 2.4.5 (with A = H(N) and t = (logN)α/2(Nη2)α/4) to obtain

that

P

[∣∣∣∣ 1

N

N−1∑
j=1

∣∣ ImR
(N)
jj

∣∣α/2|yj|α − 1

N

N−1∑
j=1

∣∣ ImR
(N)
jj

∣∣α/2E[|yj|α]∣∣∣∣ > C(logN)4

Nα/4ηα/2

]

< C exp

(
−(logN)2

C

)
,

(2.7.6)

after increasing C if necessary. Next, applying Lemma 2.4.6 with r = α
2

yields the determin-

istic estimate

1

N

N∑
j=1

∣∣∣( ImRjj

)α/2 − ( ImR
(N)
jj

)α/2∣∣∣ < 4

(Nη)α/2
. (2.7.7)
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The estimate (2.6.2) and Lemma 2.7.1 yield, after increasing C if necessary, that

P

[∣∣∣∣ 1

N

N−1∑
j=1

∣∣ ImRjj

∣∣α/2 − 1

N

N−1∑
j=1

E
[
| ImRjj|α/2

]∣∣∣∣ > (logN)α/2

Nα/4ηα/2

]
< C exp

(
−(logN)2

C

)
.

(2.7.8)

Combining the lower bound E
[
| ImRjj|α/2

]
≥ ε (see the second estimate in (2.6.14)),

(2.3.2), (2.7.5), (2.7.6), (2.7.7), (2.7.8), and the fact that all entries of R are identically

distributed yields (again, after increasing C if necessary)

P

[
‖A1/2Y ‖αα

N
≤ ε

C

]
≤ C exp

(
−(logN)2

C

)
,

from which we deduce the lemma upon insertion into (2.6.32).

2.7.3 Proof of Proposition 2.6.10

In this section we establish Proposition 2.6.10. Its proof will be similar to that of Proposi-

tion 2.5.3 in Section 2.5.1.

Proof of Proposition 2.6.10. Since all entries of R are identically distributed, we may assume

that i = N .

As in the proof of Proposition 2.6.9, we begin by applying Lemma 2.5.4, now with A =

Im R(N), X =
(
XNj

)
1≤j≤N−1

, and t = (logN)2/α(2 log 2)1/2. Then, Im(SN−TN) = 〈AX,X〉.

Following the proof of Proposition 2.6.9 yields a constant C = C(α, b, ε) > 0 such that

P
[

Im(SN − TN) < (logN)−4/α
]

≤ CE

[
exp

(
− C(logN)2‖A1/2Y ‖αα

N

)]
+ C exp

(
−(logN)2

C

)
, (2.7.9)

where Y = (y1, y2, . . . , yN−1) is a Gaussian random variable whose covariance is given by Id.

Thus, it again suffices to establish a lower bound on N−1‖AY ‖αα.
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To that end, we apply Lemma 2.5.5 with wi = (A1/2Y )i, r = α, and a = 2 + ε. Then

we find that Vj = ImR
(N)
jj (z), and Ujk = ImR

(N)
jk (z) for each 1 ≤ j, k ≤ N − 1. We

must next estimate the quantities V , X , and U from that lemma. These are given by

V = (N − 1)−1
∑N−1

i=1 Vj, X = (N − 1)−1
∑N−1

i=1 V
a/2
j , and U = (N − 1)−2

∑
1≤j,k≤N−1 cjk.

To do this, observe from (2.4.6) and (2.3.2) that

U ≤ 4

N2

N−1∑
j=1

N−1∑
k=1

c2
jk =

4

N2

N−1∑
j=1

N−1∑
k=1

∣∣ ImR
(N)
jk

∣∣2 ≤ 4

N2η

N−1∑
j=1

ImR
(N)
jj ≤

4

Nη2
. (2.7.10)

To bound V , we apply the first estimate in (2.4.13) to deduce that

P

[∣∣∣∣ 1

N

N∑
j=1

ImRjj − E
[

ImRjj

]∣∣∣∣ > 4 logN

(Nη2)1/2

]
< 2 exp

(
−(logN)2

8

)
. (2.7.11)

Therefore, Lemma 2.4.6 (applied with r = 1), (2.7.11), and the assumption (2.6.14) that

E
[

ImRjj

]
≥ E

[
(ImRjj)

α/2
]2/α ≥ ε2/α together imply that

P
[
|V | < 1

C

]
< C exp

(
−(logN)2

C

)
, (2.7.12)

after increasing C if necessary. In particular, P
[
|V | ≤ 100(logN)10U1/2

]
< 2C exp

(
−

C−1(logN)2
)

for sufficiently large N .

Now let us estimate X = (N − 1)−1
∑N

j=1 V
a/2
j . To that end, observe by (2.3.2) and

Corollary 2.4.7 (applied with r = a
2
≤ 2), we find that

∣∣∣∣ 1

N

N−1∑
j=1

∣∣ ImRjj

∣∣a/2 − (N − 1)X
N

∣∣∣∣ ≤ ∣∣∣∣ 1

N

N∑
j=1

∣∣ ImRjj

∣∣a/2 − 1

N

N∑
j=1

∣∣ ImR
(i)
jj

∣∣a/2∣∣∣∣+
4

Nηa/2

≤ 12

Nηa/2
.

(2.7.13)

Now let f(y) = 1| Im y|≤η−1 | Im y|a/2 + 1| Im y|>η−1(2η)−a/2, and observe that f is Lipschitz
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with constant L = aη1−a/2. Applying Lemma 2.4.3 with t = N−1/2η−a/2 logN and using

(2.3.2) yields

P

[∣∣∣∣ 1

N

N∑
j=1

∣∣ ImRjj

∣∣a/2 − E
[∣∣ ImRjj

∣∣a/2]∣∣∣∣ ≥ logN

N1/2ηa/2

]
≤ 2 exp

(
−(logN)2

8a2

)
. (2.7.14)

Combining (2.7.13), (2.7.14), the fact that η ≥ N ε−s/α ≥ N ε−1/2, and the fact (due to

(2.6.14)) that E
[
|Rjj|a/2

]
≤ E

[
|Rjj|2

]a/4 ≤ ε−a/4 yields that

P
[
|X | > C

]
< C exp

(
−(logN)2

C

)
, (2.7.15)

after increasing C if necessary. Now Lemma 2.5.5 with (2.7.10), (2.7.12), and (2.7.15) to-

gether yield that

P

[
‖A1/2Y ‖αα

N
< (logN)−C

]
< C exp

(
−(logN)2

C

)
, (2.7.16)

after increasing C if necessary. Now the lemma follows from combining (2.7.9) and (2.7.16).

2.7.4 Proof of Proposition 2.6.17

In this section we establish Proposition 2.6.17.

Proof of Proposition 2.6.17. Let us define

Z = Z(u) = E
[
Z
]

=
Γ
(
1− α

2

)
N

∑
j 6=i

(
− iR

(i)
jj |u

)α/2
,

Φz = Φz(u) =
Γ
(
1− α

2

)
N

∑
j 6=i

E
[(
− iR

(i)
jj |u

)α/2]
,

ξz = ξz(u) =
Γ
(
1− α

2

)
N

∑
j 6=i

E
[(
− iRjj | u

)α/2]
.

123



To establish this proposition, we will first show that Z, Z, ξz, and γz are all approximately

equal. To that end, first observe that Lemma 2.7.2 implies the existence of a constant

C = C(α) > 0 such that

P
[∥∥Z − Z

∥∥
1−α/2+s

≥ (logN)s

N s/2ηα/2

]
≤ C exp

(
−(logN)2

C

)
. (2.7.17)

Next, applying Lemma 2.7.1 with A = X(i) and t = N−s/2η−α/2(logN)s yields (after in-

creasing C if necessary)

P
[∥∥Z − Φz

∥∥
1−α/2+s

≥ (logN)s

N s/2ηα/2

]
≤ C exp

(
−(logN)2

C

)
. (2.7.18)

Now we apply the second estimate in (2.6.3) with x1 = Rjj, x2 = R
(i)
jj , r = α

2
, and a = η to

obtain (again, after increasing C if necessary)

∥∥∥(Rjj |u
)α/2 − (R(i)

jj |u
)α/2∥∥∥

1−α/2+s
≤ Cη−α/2

(∣∣Rjj −R(i)
jj

∣∣α/2 + ηs
∣∣Rjj −R(i)

jj

∣∣s). (2.7.19)

To estimate the right side of (2.7.19) we apply apply Lemma 2.4.6 to deduce that

1

N

N∑
j=1

∣∣Rjj −R(i)
jj

∣∣α/2 ≤ 4

(Nη)α/2
,

1

N

N∑
j=1

∣∣Rjj −R(i)
jj

∣∣s ≤ 4

(Nη)s
. (2.7.20)

Summing (2.7.19) over all j 6= i, taking expectations, applying (2.7.20), and (2.3.2) yields

(after increasing C if necessary) that

‖Φz − ξz‖1−α/2+s ≤ C

(
1

Nα/2ηα
+

1

N sηα/2

)
. (2.7.21)

Furthermore, since the entries of R are identically distributed, we have (after increasing C

124



if necessary) that

∥∥ξz − γz∥∥1−α/2+s
=

Γ
(
1− α

2

)
N

∥∥∥∥E[(− iRjj | u
)α/2]∥∥∥∥

1−α/2+s

≤ C

Nηα/2
, (2.7.22)

where we have used (2.3.2) and the first estimate in (2.6.3).

Now the proposition follows from (2.7.17), (2.7.18), (2.7.21), (2.7.22), and the fact that

N > η−2.

2.8 Estimating the entries of Gt

In this section we establish Proposition 2.2.9. To that end, we first require some additional

notation. Recalling the definitions of Hs and Gs from the beginning of Section 2.2.2, let{
λj(s)

}
j∈[1,N ]

denote the N eigenvalues of Hs, and define ms = ms(z) = N−1 Tr Gs =

N−1
∑N

j=1

(
λj(s)− z

)−1
.

Further let mfc,s(z) ∈ H denote the unique solution in the upper half plane to the equation

mfc,s(z) = m0

(
z + tmfc,s(z)

)
=

1

N

N∑
j=1

gj(s, z), where gj(s, z) =
1

λj − z − tmfc,s(z)
.

(2.8.1)

The quantity mfc,s denotes the Stieltjes transform of the free convolution (see directly

before Proposition 2.2.11) of the empirical spectral distribution of H0 with a suitable multiple

of the semicircle law [29].

We require the following two results, which appear as Theorem 2.1 and Theorem 2.2 of

[42].

Proposition 2.8.1 ([42, Theorem 2.1]). Adopt the notation of Definition 2.2.8, and further

assume that H0 is (η0, γ, r)-regular with respect to E0. Let U = {uij} and D = {djj = dj}

denote orthogonal and diagonal matrices, respectively, so that H0 = UDU−1.
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Fix s ∈ [0, 1] satisfying N δη ≤ s ≤ N−δγ. Then, for any D > 1 and κ ∈ (0, 1), there

exists a constant C = C(δ, κ,D,A) > 0 such that

P

[
sup
z∈D

(∣∣∣〈qGs(z),q
〉
−

N∑
j=1

〈uj,q〉2gj(s, z)
∣∣∣− N2δ

(Nη)1/2
Im
( N∑
j=1

〈uj,q〉2gj(s, z)
))

> 0

]
< CN−D,

(2.8.2)

for any vector q ∈ RN such that ‖q‖2 = 1. In (2.8.2), we have abbreviated D = D(E0, r, N
4δ−1, 1−

κr, κ) (recall (2.2.9)).

Proposition 2.8.2 ([42, Proposition 2.2]). Adopt the notation and assumptions of Proposi-

tion 2.8.1. Then, there exists a constant C = C(δ, κ,D,A) > 0 such that

∣∣mfc,s(z)
∣∣ ≤ 1

N

N∑
j=1

∣∣gj(s, z)
∣∣ ≤ C logN,

1

C
≤ Immfc,s(z) ≤ C, (2.8.3)

for any z ∈ D.

Now we can establish Proposition 2.2.9.

Proof of Proposition 2.2.9. Recall that ujk denotes the j-th entry of the eigenvector corre-

sponding to λk. Applying (2.8.2) with q = (q1, q2, . . . , qN) satisfying qk = 1k=j for each

k ∈ [1, N ] yields the existence of a constant C = C(δ, κ,D,A) > 0 such that

P

[
sup
z∈D

(∣∣∣∣Gjj(s, z)−
N∑
k=1

u2
jkgk(s, z)

∣∣∣∣− N δ/2

(Nη)1/2
Im

( N∑
k=1

u2
jkgk(s, z)

))
> 0

]
< CN−10D.

(2.8.4)

Let us estimate the terms gk(s, z) appearing in (2.8.4). To that end, we define A0 =

A0(E0) = [E0 − η0, E0 + η0] and Am = Am(E0) =
[
E0 − 2mη0, E0 − 2m−1η0

]
∪
[
E0 +

2m−1η0, E0 + 2mη0

]
, for each integer m ≥ 1. Since (2.8.3) implies the existence a constant

C = C(δ, κ, E0, D,A) > 1 such that
∣∣mfc,s(z)

∣∣ ≤ C logN and 1
C
≤ Immfc,s(z) ≤ C, the
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definition (2.8.1) of the gk implies that

max
λk∈Am

∣∣gk(s, E0 + iη)
∣∣ ≤ ( C2(

min{2m−1η0 − C2s logN, 0}
)2

+ s2

)1/2

. (2.8.5)

for any integer m ≥ 1.

Next let us estimate the entries of U, where we recall from Proposition 2.8.1 that H0 =

UDU−1. The assumed bound on the entries of G0(z) implies

sup
z∈D(E0,r,η0,γ,0)

∣∣∣∣∣
N∑
k=1

u2
jk

z − λk

∣∣∣∣∣ = sup
z∈D(E0,r,η0,γ,0)

∣∣Gjj(z)
∣∣ ≤ B, (2.8.6)

where we have denoted λj = λj(0) as the eigenvalues of H0. Thus, setting z = E0 + iη0 in

(2.8.6) yields

max
1≤j≤N

∑
λk∈Am

u2
jk ≤ min

{
2mη0B, 1

}
, for any integer m ≥ 0. (2.8.7)

Now we can bound the terms appearing in (2.8.4). We define

M =

⌈
log2

(
s(logN)2

η0

)⌉
,

and write

∣∣∣∣∣
N∑
k=1

u2
jkgk(s, z)

∣∣∣∣∣ ≤
∞∑
m=0

∑
λk∈Am(E)

u2
jk

∣∣gk(s, z)
∣∣

≤
M∑
m=0

∑
λk∈Am(E)

u2
jk

∣∣gk(s, z)
∣∣+

d4 logNe∑
m=M+1

∑
λk∈Am(E)

u2
jk

∣∣gk(s, z)
∣∣

+
∞∑

m=d4 logNe

∑
λk∈Am(E)

∣∣gk(s, z)
∣∣.

We bound these three sums by combining (2.8.5), (2.8.7), and the facts that η0 > N−1,

1 < B < N , and s ∈
(
η0, N

−δ). For the first sum, we apply (2.8.5) – noting the minimum in
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the denominator of the right side takes the value 0 – and the first argument of the minimum

in the left side of (2.8.7). For the second sum, we apply (2.8.5), with the minimum on the

right side taking the nonzero value, and (2.8.7). The third sum is bounded using (2.8.5)

only.

We deduce for sufficiently large N that

∣∣∣∣∣
N∑
k=1

u2
jkgk(s, z)

∣∣∣∣∣ ≤ Cs−12Mη0B + CB logN +
C

N
≤ CB(logN)3, (2.8.8)

after increasing C (in a way that only depends on δ, κ, D, and A) if necessary.

Therefore, combining (2.8.4), (2.8.8), the fact that Nη ≥ N δ, and a union bound over

j ∈ [1, N ] yields (again after increasing C if necessary, in a way that only depends on δ, κ,

D, and A)

P
[

sup
z∈D

max
1≤j≤N

∣∣Gjj(s, z)
∣∣ > CB(logN)3

]
< CN−5D. (2.8.9)

To estimate the remaining entries of Gs, we apply (2.8.2) with q = (q1, q2, . . . , qN) satisfying

qk = 2−1/2 (1k=i + 1k=j) for some fixed i, j ∈ [1, N ]. Using (2.8.8), this yields (after increasing

C if necessary, in a way that only depends on δ, κ, D, and A)

P

[
sup
z∈D

∣∣Gjj(s, z) +Gii(s, z) + 2Gij(s, z)
∣∣ > CB(logN)3

]
< CN−5D. (2.8.10)

Now the corollary follows from combining (2.8.9), (2.8.10), and a union bound over all

i, j ∈ [1, N ].

2.9 Comparing deformed stable laws to their removals

In this section we establish Lemma 2.5.4. However, we first require the following lemma that

estimates the characteristic functions of removals of stable laws.
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Lemma 2.9.1. Fix σ > 0, α ∈ (0, 2), a positive integer N , and 0 < b < 1
α

. Let X

denote the random variable given by the b-removal of a deformed (0, σ) α-stable law, as in

Definition 2.2.2. Let X1, X2, . . . , XN be mutually independent random variables, each with

law N−1/αX, and let c1, c2, . . . , cN ∈ R be constants.

Then, for any t ∈ R, we have that

E

[
exp

(
it

N∑
j=1

cjXj

)]
= exp

(
− σα|t|α

N

N∑
j=1

|cj|α
)

exp

(
O

(
t2N (2−α)(b−1/α)−1

N∑
j=1

|cj|2
))

,

where the implicit constant on the right side only depends on α.

Proof. Let Z be a (0, σ) α-stable law and J be a random variable satisfying Definition 3.1.1.

Let Y = (Z + J)1|Z+J |<Nb , so that X = Z − Y . Let Y1, Y2, . . . , YN be mutually independent

random variables with law N−1/αY , let Z1, Z2, . . . , ZN be mutually independent random

variables with law N−1/αZ, and let J1, J2, . . . , JN be mutually independent variables with

law N−1/αJ . Then the random variables Xj have laws N−1/αX, where we assume that the

Xj, Yj, Zj, and Jj are coupled so that Xj = Zj + Jj − Yj for each 1 ≤ j ≤ N .

Observe that, for any t ∈ R, we have that

E
[
eitX

]
= E

[
eit(Z+J)

]
+ E

[
eit(Z+J)(e−itY − 1)

]
= E

[
eit(Z+J)

]
− itE

[
eit(Z+J)Y

]
+O

(
E
[
t2Y 2

])
= E

[
eit(Z+J)

]
− itE

[
eit(Z+J)(Z + J)1|Z+J |<Nb

]
+O

(
E
[
t2Y 2

])
= E

[
eit(Z+J)

]
− itE

[
(Z + J)1|Z+J |<Nb

]
+O

(
E
[
t2Y 2

])
= E

[
eit(Z+J)

]
+O

(
E
[
t2Y 2

])
,

(2.9.1)

where the second equality above follows from a Taylor expansion, the third from the definition

of Y , the fourth from another Taylor expansion, and the fifth from the fact that Z + J is
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symmetric. A similar argument shows that

E
[
eit(Z+J)

]
= E

[
eitZ
]

+O
(
E
[
t2J2

])
. (2.9.2)

Replacing t with cjN
−1/αt in (2.9.1) and (2.9.2), we find that

E
[
eicjtXj

]
= E

[
eicjtN

−1/αZ
]

+
c2
j t

2

N2/α
O
(
E
[
|Z + J |21|Z+J |≤Nb

]
+ E[J2]

)
= exp

(
−σ

α|cjt|α

N

)
+O

(
N (2−α)(b−1/α)−1|cjt|2

)
,

where in the second estimate above we used (3.1.1) and integrated (3.1.3). Now, let R =

Rj = N−1|cjt|α. Then, we find that

E
[
eicjtXj

]
≤ exp (−σαR) +O

(
N (2−α)bR2/α

)
≤ exp

(
− σαR

)
exp

(
O(N (2−α)bR2/α)

)
. (2.9.3)

Indeed, if R ≤ 1 then (2.9.3) follows from the estimate y ≤ ey − 1. Otherwise, if R > 1 and

N is sufficiently large, we have that N (2−α)bR2/α > 2σαR (since α < 2), from which we again

deduce (2.9.3) from the estimate y ≤ ey − 1. Inserting the definition of R = N−1|cjt|α into

(2.9.3) yields

E
[
eicjtXj

]
≤ exp

(
−σ

α|cjt|α

N

)
exp

(
O
(
N (2−α)(b−1/α)−1|cjt|2

))
. (2.9.4)

Now the lemma follows from taking the product of (2.9.4) over all j ∈ [1, N ].

Now we can establish Lemma 2.5.4.

Proof of Lemma 2.5.4. The proof of this lemma will follow a similar method as the one used
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to establish Lemma B.1 of [33]. To that end, observe that

E
[

exp
(
− t2

2
〈AX,X〉

)]
= E

[
exp

(
− t2

2
〈BX,BX〉

)]
= E

[
exp

(
− it〈BX, Y 〉

)]
= E

[
exp

(
− it〈X,BY 〉

)]
.

Denote W = BY = (w1, w2, , . . . , wN). In view of Lemma 2.9.1, we have the conditional

expectation estimate

E
[

exp
(
− it〈X,W 〉

)∣∣∣∣W] = exp

(
− σα|t|α

N

N∑
j=1

|wj|α
)

exp

(
O

(
t2N (2−α)(b−1/α)−1

N∑
j=1

|wj|2
))

.

(2.9.5)

Now, observe that since each wj is a Gaussian random variable with variance
∑N

i=1 b
2
ij, we

have from a union bound that

P

[
N∑
j=1

w2
j > (logN) Tr A

]
≤

N∑
j=1

P

[
w2
j > (logN)

N∑
i=1

b2
ij

]
≤ Ne−(logN)2/2, (2.9.6)

where in the first estimate we used the fact that Tr A = Tr B2 =
∑

1≤i,j≤N b
2
ij.

Taking the expectation on both sides of (2.9.5) over the events where
∑N

j=1 |wj|2 is at

most or at least (logN) Tr A and further using the fact that the exponential inside the

expectation on the left side of (2.9.5) is bounded by 1, we deduce that

E
[

exp
(
− it〈X,W 〉

)]
=

E

[
exp

(
− σα|t|α

N

N∑
j=1

|wj|α
)]

exp

(
O
(
t2N (2−α)(b−1/α)−1(logN) Tr A

))
+Ne−(logN)2/2, (2.9.7)

from which we deduce the lemma.
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Chapter 3

Eigenvector Statistics of Lévy

Matrices

3.1 Results

3.1.1 Definitions

Denote the upper half plane by H = {z ∈ C : Im z > 0}. Set R+ = [0,∞), set K = {z ∈ C :

Re z > 0}, and set K+ = K ∩H to be the closure of the positive quadrant of the complex

plane. We also let S1 = {z ∈ C : |z| = 1} be the unit circle and define S1
+ = K+ ∩ S.

Fix a parameter α ∈ (0, 2), and let σ > 0 and β ∈ [−1, 1] be real numbers. A random

variable Z is a (β, σ) α-stable law if it has the characteristic function

E
[
eitZ
]

= exp
(
− σα|t|α

(
1− iβ sgn(t)u

))
, for all t ∈ R, (3.1.1)

where u = uα = tan
(
πα
2

)
if α 6= 1 and u = u1 = − 2

π
log |t| if α = 1. Note β = 0 ensures that

Z is symmetric. The case β = 1 is known as a one-sided α-stable law and is always positive.

We now define the entry distributions we consider in this paper. Our proofs and results

should also apply to wider classes of distributions, but we will not pursue this here (see the
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similar remark in [6, Section 2] for more on this point).

Definition 3.1.1. Let Z be a (0, σ) α-stable law with

σ =

(
π

2 sin
(
πα
2

)
Γ(α)

)1/α

> 0. (3.1.2)

Let J be a symmetric1 random variable (not necessarily independent from Z) such that

E[J2] <∞, Z + J is symmetric, and

C1(
|t|+ 1

)α ≤ P
[
|Z + J | ≥ t

]
≤ C2(
|t|+ 1

)α for each t ≥ 0 and some constants C1, C2 > 0.

(3.1.3)

Denoting z = Z + J , the symmetry of J and the condition E[J2] < ∞ are equivalent to

imposing a coupling between z and Z such that z− Z is symmetric and has finite variance,

respectively.

For each positive integer N , let {Hij}1≤i≤j≤N be mutually independent random variables

that each have the same law as N−1/α(Z + J) = N−1/αz. Set Hij = Hji for each i, j, and

define the N × N random matrix H = HN = {Hij} = {H(N)
i,j }, which we call an α-Lévy

matrix.

The N−1/α scaling of the entries Hij is different from the usual N−1/2 scaling for Wigner

matrices. It makes the typical row sum of H of order one. The constant σ is chosen so that

our notation is consistent with previous works [18,33,34], but can be altered by rescaling H

without affecting our main results.

By [18, Theorem 1.1], the empirical spectral distribution of H converges to a deterministic

measure that we denote µα, which is absolutely continuous with respect to the Lebesgue

measure and symmetric about 0. We denote its probability density function and Stieltjes

1By symmetric, we mean that J has the same law as −J .

133



transform by %α(x) and

mα(z) =

∫
R

%α(x) dx

x− z
, (3.1.4)

defined for z ∈ H, respectively.

The Siteltjes transform mα(z) may be characterized as the solution to a certain self-

consistent equation [33, Section 3.1]. We note it here, although we will not need this rep-

resentation for our work. For any z ∈ H, define the functions ϕ = ϕα,z : K → C and

ψ = ψα,z : K→ C by

ϕα,z(x) =
1

Γ(α/2)

∫
R+

tα/2−1eitze−Γ(1−α/2)tα/2xdt, ψα,z(x) =

∫
R+

eitze−Γ(1−α/2)tα/2xdt,

(3.1.5)

for any x ∈ K. For each z ∈ H, there exists a unique solution y = y(z) ∈ K to the equation

y(z) = ϕα,z
(
y(z)

)
. Then, the Stieltjes transform mα(z) : H → H is defined by setting

mα(z) = iψα,z
(
y(z)

)
.

We recall that, like any Stieltjes transform of an absolutely continuous measure, Immα(z)

extends to the real line with

lim
η→0

Immα(E + iη) = π%α(E) (3.1.6)

for E ∈ R. It is known that %α(x) ∼ α
2xα+1 as x tends to ∞ [32, Theorem 1.6].

Definition 3.1.2. The classical eigenvalue locations γi = γ
(α)
i for %α(x) are defined by the

quantiles

γi = inf

{
y ∈ R :

∫ y

−∞
%α(x) dx ≥ i

N

}
. (3.1.7)

Given a random matrix A, it is common to study its resolvent (A − z)−1. Contrary to

those for the Wigner model, the diagonal entries Gii(z) of the resolvent G(z) = (H − z)−1

of a Lévy matrix do not converge to a constant value but instead converge to a nontrivial

limiting distribution as N tends to infinity and z ∈ H remains fixed. This was shown in [32],

where the limit R?(z) was identified as the resolvent of a random operator defined on a space
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known as the Poisson Weighted Infinite Tree [13,14], which is a weighted and directed rooted

tree, evaluated at its root. We note the basic construction here and refer to [32, Section 2.3]

for details.

Set dν = (1/2) dµ, where µ is the Lebesgue measure on R. The vertex set of the tree

is given by V =
⋃
k∈N Nk, where the root is N0 = ∅, and the children of v ∈ Nk are de-

noted (v, 1), (v, 2), . . . ∈ Nk+1. To determine the weights, let {Ξv}v∈V be a collection of

independent Poisson point processes with intensity measure ν on R. Let Ξ∅ = {y1, y2, . . . }

be ordered so that |y1| ≤ |y2| ≤ · · · , and set yi to be the weight of edge connecting ∅ to

the vertex (i). This process is repeated for all vertices so that, for any v ∈ Nk, the edge

between vertices v and (v, i) is weighted with the value y(v,i), where Ξv = {y(v,1), y(v,2), . . . }

is labeled so that |y(v,1)| ≤ |y(v,2)| ≤ · · · .

Let F be the (dense) subset of L2(V ) of vectors with finite support and, for any v ∈ V ,

let δv ∈ F denote the unit vector supported on v. Then, define the linear operator T : F →

L2(V ) by setting

〈δv,Tδw〉 =


sign(yw)|yw|−1/α if w = (v, k) for some k,

sign(yv)|yv|−1/α if v = (w, k) for some k,

0 otherwise.

(3.1.8)

We identify T with its closure, which is self-adjoint [32, Section 2.3]. It can be considered a

weak limit of the matrix H, as N tends to ∞.

Definition 3.1.3. For any z ∈ H, we define R?(z) : H → H to be the resolvent entry

〈δ∅, (T− z)−1δ∅〉.

For any z ∈ H, define the N ×N matrix G(z) =
{
Gij(z)

}
by G(z) = (H−z)−1, which is

the resolvent of H. It is known from [32, Section 2] that any diagonal entry Gjj(z) converges

to R?(z) in distribution for fixed z ∈ H, as N tends to ∞.

Next, we require the following result and definition concerning the limit of R?(z) as Im z

tends to 0. The following proposition will be proved in Section 3.6 below.
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Proposition 3.1.4. There exists a (deterministic) countable set A ⊂ (0, 2) with no accumu-

lation points in (0, 2) such that the following two statements hold. First, for all α ∈ (0, 2)\A,

there exists a constant c = c(α) > 0 such that, for every real number E ∈ [−c, c], the se-

quence of random variables
{

ImR?(E + iη)
}
η>0

is tight as η tends to 0. Second, for any

fixed p ∈ N, all limit points R(E) of this sequence under the weak topology have the same

moment E
[
R(E)p

]
.

The set A is non-explicit and originally appeared in [34] from an application of the implicit

function theorem for Banach spaces to a certain self-consistent equation. In our context, A

will come from a local law, given by Lemma 3.3.2 below.

Definition 3.1.5. Let R?(E) be an arbitrary limit point (under the weak topology) as

η tends to 0 of the sequence
{

ImR?(E + iη)
}
η>0

. By Proposition 2.4 and Prokhorov’s

theorem, there exists at least one. Given R?(E), define the random variable U?(E) =(
π%α(E)

)−1R?(E).

We also need the following definition to state our results.

Definition 3.1.6. Let w = (wi)1≤i≤n ∈ Rn be a random vector and w(j) = (w
(j)
i )1≤i≤n,

defined for j ≥ 1, be a sequence of random vectors in Rn. We say that w(j) converges in

moments to w if for every polynomial P : Rn → R in n variables, we have

lim
N→∞

E
[
P
(
w(N)

)]
= E

[
P (w)

]
. (3.1.9)

3.1.2 Results

In this section, we state our results, which are proved in Section 3.2. Our first, Theo-

rem 3.1.7, identifies the joint moments of different entries of the same eigenvector. Our

second, Theorem 3.1.8, does this for the same entries of different eigenvectors. We let

λ1(H) ≤ λ2(H) ≤ · · · ≤ λN(H) denote the eigenvalues of H in non-decreasing order and,
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for each k ∈ [1, N ], we write uk =
(
uk(1), uk(2), . . . , uk(N)

)
for a unit eigenvector of H

corresponding to λk(H).

In the theorem statements, certain index parameters (for instance i and k) may depend

on N . For brevity, we sometimes suppress this dependence in the notation, writing for

example uk instead of uk(N). Throughout, we recall the countable set A ⊂ (0, 2) from

Proposition 3.1.4.

Theorem 3.1.7. For all α ∈ (0, 2) \ A, there exists a constant c = c(α) > 0 such that the

following holds. Fix an integer n > 0 (independently of N) and index sequences {ij(N)}1≤j≤n

such that for every N , {ij(N)}1≤j≤n are distinct integers in [1, N ]. Further let k = k(N) ∈

[1, N ] be an index sequence such that limN→∞ γk = E for some E ∈ [−c, c]. Then the vector

(
Nuk(i1)2, Nuk(i2)2, . . . , Nuk(in)2

)
(3.1.10)

converges in moments to

(
N 2

1 · U1(E),N 2
2 · U2(E), . . . ,N 2

n · Un(E)
)
, (3.1.11)

where the Nj are are independent, identically distributed (i.i.d.) standard Gaussians and the

Uj(E) are i.i.d. random variables with law U?(E) that are independent from the Nj.

Theorem 3.1.8. For all α ∈ (0, 2) \ A, there exists a constant c = c(α) > 0 such that the

following holds. Fix an integer n > 0 (independently of N) and index sequences {kj(N)}1≤j≤n

such that for every N , {kj(N)}1≤j≤n are distinct integers in [1, N ] and |k1 − kj| < N1/2 for

each j ∈ [2, n]. Suppose that limN→∞ γk1 = E for some E ∈ [−c, c]. Further let i = i(N) ∈

[1, N ] be an index sequence. Then the vector

(
Nuk1(i)

2, Nuk2(i)
2, . . . , Nukn(i)2

)
(3.1.12)
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converges in moments to

(
N 2

1 · U?(E),N 2
2 · U?(E), . . . ,N 2

n · U?(E)
)
, (3.1.13)

where the Nj are i.i.d. standard Gaussians that are independent from U?(E).

Theorem 3.1.7 shows that entries of the same eigenvector are asymptotically independent,

as in the Wigner case [44, Corollary 1.3]. However, unlike in the Wigner case [44, Theorem

1.2], Theorem 3.1.8 indicates that entries of different eigenvectors with the same index can

be asymptotically correlated. This can be seen by taking n = 2 and k2 = k1+1 in that result,

in which case Nuk1(m)2 and Nuk2(m)2 are correlated through U?(E).

For almost all E ∈ [−c, c], the random variable U?(E) is not explicit. However, as a

consequence of [32, Theorem 4.3], an exception occurs at E = 0, where U?(0) is given by the

inverse of a stable law. In this case, the n = 1 cases of Theorem 3.1.7 and Theorem 3.1.8

reduce to the following corollary.

Corollary 3.1.9. Retain the notation of Theorem 3.1.7. Choose k so that E = 0, and set

n = 1 and m = i1. Then Nuk(m)2 converges in moments to

1

Γ
(
1 + 2

α

) · N 2 · ϑ, (3.1.14)

where N is a standard Gaussian and ϑ is independent with law S−1, where S is a (1, 1)

α
2

-stable law.

The non-triviality of the random variable ϑ shows that the entries of uk are asymptotically

non-Gaussian; this is again different from the eigenvector behavior in the Wigner case. It is

natural to wonder whether R?(E) is non-constant for E 6= 0. As a consequence of the last

statement of Lemma 3.6.8 below, for all p ∈ N, the moments E
[(
R?(E)

)p]
are continuous

in E, for |E| sufficiently small. This implies that moments of U?(E) are non-constant for

all E in a neighborhood of 0, so the eigenvectors of H corresponding to sufficiently small
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eigenvalues are also non-Gaussian.

It is also natural to ask whether our results hold for convergence in distribution. In the

case α ∈ (1, 2) \ A we will address this in Section 3.8 through Proposition 3.8.1 by studying

the rate of growth of the moments of the limiting distribution. If α < 1, then the moments

of U?(E) grow too quickly for this to determine the law of N 2 · U?(E).

Finally, we note that we consider the squared eigenvector entries uk(i)
2 to avoid ambi-

guity in the choice of sign for uk(i), since given an eigenvalue λk of a real symmetric matrix

and a corresponding eigenvector vk, the vector −vk is also an eigenvector. In the context

of Lévy random matrices, if one chooses this sign independently with probability 1/2 for

each possibility, then our methods show the above results hold with the conclusion of Theo-

rem 3.1.7 replaced by the convergence in moments of
(√

Nuk(i1),
√
Nuk(i2), . . . ,

√
Nuk(in)

)
to
(
N1 · U1/2

1 (E),N2 · U1/2
2 (E), . . . ,Nn · U1/2

n (E)
)
, where the Nk remain i.i.d. standard Gaus-

sians, and similarly for Theorem 3.1.8.

3.2 Proofs of main results

Assuming some claims proven in later parts of this paper, we will in this section establish

the results stated in Section 3.1.2. This will proceed through the following steps.

1. We define a matrix X, obtained by setting the small entries of the original Lévy matrix

H to zero, and the Gaussian perturbation Xs = X+
√
sW, where W is a GOE matrix.

For a specific choice of s = t, with N−1/2 � t� 1, we show as Theorem 3.2.7 that the

eigenvector statistics of H (corresponding to small eigenvalues) are approximated by

those of Xt.

2. We show as Theorem 3.2.8 that moments of the eigenvector entries of Xt (corresponding

to small eigenvalues) can be identified through resolvent entries of Xt.

3. We compute as Theorem 3.2.9 the limits of these resolvent entries as N and η tend to

∞ and 0, respectively.
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In Section 3.2.5, we prove Theorem 3.1.7, Theorem 3.1.8, and Corollary 3.1.9, given that

the results enumerated above and Proposition 3.1.4 hold. The remaining sections of the

paper verify these prerequisite results.

3.2.1 Notation

Throughout, we write C for a large constant and c for a small constant. These may depend

on other constants and may change line to line, but only finitely many times, so that they

remain finite. We say X � Y if there exists a small constant c > 0 such that N c|X| ≤ Y .

Constants in this paper may depend on the constant c > 0 implicit in the claim X � Y , but

we suppress this in the notation. We write X . Y if there exists C > 0 such that |X| ≤ CY ;

we also say X .u Y , or equivalently X = Ou(Y ), if |X| ≤ Cu|Y | for some constant Cu > 0

depending on a parameter u.

In what follows, for any function (or vector) f , we let ‖f‖∞ denote the L∞-norm of f .

We also denote MatN×N by the set of N×N real, symmetric matrices. Given M ∈ MatN×N ,

we denote its eigenvalues by λ1(M), λ2(M), . . . , λN(M) in non-decreasing order. We further

let ui(M) denote the unit eigenvector corresponding to the eigenvalue λi(M) for each i. We

also make the following definition.

Definition 3.2.1. We say a (sequence of) vectors q = q(N) = (q1, q2, . . . qN) ∈ RN has

stable support if there exists a constant C > 0 such that the set {(i, qi) : qi 6= 0} does not

change for N > C. We let supp q = {i : qi 6= 0} denote the support of q.

We next introduce the notion of overwhelming probability.

Definition 3.2.2. We say that a family of events {F(u)} indexed by some parameter(s)

u ∈ U (N), where U (N) is a parameter set which may depend on N , holds with overwhelming

probability if, for any D > 0, there exists N
(
D,U (N)

)
> 0 such that for N ≥ N

(
D,U (N)

)
,

inf
u∈U(N)

P
(
F(u)

)
≥ 1−N−D. (3.2.1)
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Next, given α ∈ (0, 2) we may select positive real numbers b = b(α) > 0; ν = ν(α) > 0;

a = a(α) > 0; and ρ = ρ(α) > 0 such that

ν =
1

α
−b > 0;

1

4− α
< ν <

1

4− 2α
; (2−α)ν < a <

1

2
; 0 < ρ < ν <

1

2
; αρ < (2−α)ν.

(3.2.2)

These parameters will be fixed throughout the paper, and we will let other constants depend

on them (and on α), even when not explicitly noted. We always assume α ∈ (0, 2)\A, where

A is the set from Lemma 3.3.2 below (or, equivalently, the one from Proposition 3.1.4).

3.2.2 Comparison

We first recall the definition of the removed model X from [6, Definition 3.2].

Definition 3.2.3. Recalling the notation of Definition 3.1.1, let X = (Z + J)1|Z+J |>Nb . We

call X the b-removal of Z + J . Further, let {Xij}1≤i≤j≤N be mutually independent random

variables that each have the same law as N−1/αX. Set Xij = Xji for each 1 ≤ j < i ≤ N ,

and define the N ×N symmetric matrix X = {Xij}. We call X a b-removed α-Lévy matrix.

We also recall a resampling and coupling of X and H that was described in [6, Section

3.3.1].

Definition 3.2.4. We define mutually independent random variables {aij, bij, cij, ψij, χij}1≤i≤j≤N

as follows. Let ψij and χij denote 0− 1 Bernoulli random variables with distributions

P
[
ψij = 1

]
= P

[
|Hij| ≥ N−ρ

]
, P

[
χij = 1

]
=

P
[
|Hij| ∈ [N−ν , N−ρ)

]
P
[
|Hij| < N−ρ

] . (3.2.3)
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Additionally, let aij, bij, and cij be random variables such that

P[aij ∈ I] =
P
[
Hij ∈ (−N−ν , N−ν) ∩ I

]
P
[
|Hij| < N−ν)

] , (3.2.4)

P[bij ∈ I] =
P
[
Hij ∈

(
(−N−ρ,−N−ν ] ∪ [N−ν , N−ρ)

)
∩ I
]

P
[
|Hij| ∈ [N−ν , N−ρ)

] , (3.2.5)

P[cij ∈ I] =
P
[
Hij ∈

(
(−∞,−N−ρ] ∪ [N−ρ,∞)

)
∩ I
]

P
[
|Hij| ≥ N−ρ

] (3.2.6)

for any interval I ⊂ R. For each 1 ≤ j < i ≤ N , define aij = aji by symmetry, and similarly

for each of bij, cij, ψij, and χij.

Because aij, bij, cij, ψij, and χij are mutually independent, Hij has the same law as

(1− ψij)(1− χij)aij + (1− ψij)χijbij + ψijcij (3.2.7)

and Xij has the same law as (1 − ψij)χijbij + ψijcij. Therefore, although the random vari-

ables Hij1|Hij |≥N−ρ , Hij1N−ν≤|Hij |<N−ρ , and Hij1|Hij |<N−ν are correlated, this decomposition

expresses their dependence through the Bernoulli random variables ψij and χij.

Definition 3.2.5. For each 1 ≤ i, j ≤ N , set

Aij = (1− ψij)(1− χij)aij, Bij = (1− ψij)χijbij, Cij = ψijcij, (3.2.8)

and define the four N ×N matrices A = {Aij}, B = {Bij}, C = {Cij}, and Ψ = {ψij}.

For the remainder of the paper we sample H and X by setting H = A + B + C and

X = B + C, inducing a coupling between the two matrices. We commonly refer to Ψ as the

label of H (or of X). Defining H and X in this way ensures that their entries have the same

laws as in Definition 3.1.1 and Definition 3.2.3, respectively.
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For any s ∈ R+, we define the matrix Xs ∈ MatN×N by setting

Xs = X + Ws, (3.2.9)

where Ws =
(
wij(s)

)
1≤i,j≤N ∈ MatN×N and wij are mutually independent Brownian motions

with symmetry constraint wij = wji and variance (1 + 1i=j)N
−1.

We now make a specific choice of the time t to enable our comparison argument. Define

t by

t = NE
[
H2

111|H11|<N−ν
∣∣|H11| < N−ρ

]
=
NE
[
H2

111|H11|<N−ν
]

P
[
|H11| < N−ρ

] . (3.2.10)

The following estimate is [6, Lemma 3.5] and can be quickly deduced from (3.1.3) and

(3.2.10).

Lemma 3.2.6 ([6, Lemma 3.5]). Under the choice of (3.2.10), we have that

cN (α−2)ν ≤ t ≤ CN (α−2)ν . (3.2.11)

Observe in particular that (3.2.11) implies that N−1/2 � t � 1, by the third inequality

in (3.2.2). The next theorem is proved in Section 3.4 and completes the first step of the

outline given in the beginning of Section 3.2.

Theorem 3.2.7. There exist constants c1, c2 > 0 such that the following holds. Let t be as

in (3.2.10), P : Rn → Rn be a polynomial in n variables, and q ∈ RN be a unit vector with

stable support. Then there exists a constant C = C
(
P, | supp q|

)
> 0 such that, for indices

i1, i2, . . . , in ∈
[
(1/2− c1)N, (1/2 + c1)N

]
,

∣∣∣∣∣E
[
P

((
N
〈
q,uik(Xt)

〉2
)

1≤k≤n

)]
− E

[
P

((
N
〈
q,uik(H)

〉2
)

1≤k≤n

)]∣∣∣∣∣ ≤ CN−c2 . (3.2.12)
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3.2.3 Short-time universality

For each integer k ∈ [1, N ] and real number s ≥ 0, abbreviate λk(s) = λk(Xs), and set

λ(s) =
(
λ1(s), λ2(s), . . . , λN(s)

)
. Further let uk(s) ∈ RN denote the unit eigenvector of Xs

associated with λk(s), and set u(s) =
(
u1(s), . . . ,uN(s)

)
.

Next, for any unit vector q ∈ RN and k ∈ [1, n], set zk(s) = zk(s,q) =
√
N
〈
q,uk(s)

〉
.

For any integer m ≥ 1; indices i1, i2, . . . , im ∈ [1, N ]; and integers j1, j2, . . . , jm ≥ 0, define

Qj1,...,jm
i1,...,im

(s) =
m∏
l=1

zil(s)
2jl

m∏
l=1

a(2jl)
−1, where a(2j) = (2j − 1)!!. (3.2.13)

The normalization factors a(2j) are chosen because they are the moments of a standard

Gaussian.

To any index set {(i1, j1), . . . , (im, jm)} with distinct ik ∈ [1, N ] and positive jk, we may

associate the vector ξ = (ξ1, ξ2, . . . , ξN) ∈ NN with ξik = jk for 1 ≤ k ≤ m and ξp = 0 for

p /∈ {i1, . . . , im}. We think of ξ as a particle configuration on the integers, with jk particles at

site ik for all k and zero particles on the sites not in {i1, . . . , im}. We call the set {i1, . . . , im}

the support of ξ, denoted supp ξ. Denote N (ξ) =
∑m

j=1 jk, the total number of particles.

The configuration ξij is defined as the result of moving one particle in ξ from i to j, that

is, if i 6= j then ξijk equals ξk + 1, ξk − 1, or ξk for k = j, k = i, and k /∈ {i, j}, respectively.

Under this notation, we define an observable Fs(ξ) by the expectation

Fs(ξ) = E
[
Qj1,...,jm
i1,...,im

(s)
]
. (3.2.14)

Now fix c ∈ R>0, later chosen to be sufficiently small. Recalling a from (3.2.2) and t from

(3.2.10), define

ψ = N c, η = N−aψ, so that N−1/2 � η � t, (3.2.15)

where the last inequality in (3.2.15) follows from the third bound in (3.2.2), (3.2.11), and

the fact that c is small. For each s ∈ R>0 we define the resolvent R(s, z), Stieltjes transform
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mN(s, z) of Xs, and the expectation of mN(s, z) by

R(s, z) = (Xs − z)−1, mN(s, z) = N−1 Tr R(s, z), m̂N(s, z) = E
[
mN(s, z)

]
.

(3.2.16)

We also define the (random) empirical spectral measure for Xs by

µs =
1

N

N∑
i=1

δλi(s), (3.2.17)

where δx is the discrete probability measure that places all its mass at x. Further, we define

µ̂s = E[µs] and observe that the Stieltjes transform of µ̂s is m̂N(s, z). The classical eigenvalue

locations for µ̂s are given by

γ̂i(s) = inf

{
y ∈ R : µ̂s

(
(−∞, y]

)
≥ i

N

}
. (3.2.18)

Recalling the specific choice of t from (3.2.10), we abbreviate γ̂i = γ̂i(t).

The following theorem is proved in Section 3.5 and completes the second step of the

above outline. We recall from (3.1.7) the notation γk = γ
(α)
k .

Theorem 3.2.8. Fix m ∈ N, let q ∈ RN be a unit vector with stable support, and let

t be the time defined in (3.2.10). There exist constants c1 > 0, c2 = c2(m) > 0, and

C = C(m, | supp q|) > 0 such that, if c < c2, then

max
ξ : N (ξ)=m

supp ξ∈[(1/2−c1)N,(1/2+c1)N ]

∣∣∣∣∣∣Ft(ξ)− E

 N∏
k=1

(
Im
〈
q,R(t, γ̂k + iη)q

〉
Immα(γk + iη)

)ξk
∣∣∣∣∣∣ ≤ CN−c2 , (3.2.19)

where ξ = (ξ1, ξ2, . . . , ξN).
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3.2.4 Scaling limit

The next theorem will be proven in Section 3.6 and establishes the scaling limit of the

quantity compared to Ft on the left side of (3.2.19), completing step 3 of the above outline.

Here, we recall U?(E) from Definition 3.1.5.

Theorem 3.2.9. There exist constants c1, c2 > 0 such that the following holds. Fix an

integer n > 0 (independently of N) and index sequences {kj(N)}1≤j≤n such that for every

N , {kj(N)}1≤j≤n are distinct integers in [1, N ] and |k1 − kj| < N1/2 for each j ∈ [2, n].

Let q = (q1, . . . , qN) ∈ RN be a unit vector with stable support; let t be as in (3.2.10); and

assume that limN→∞ γk1 = E, for some E ∈ [−c1, c1], and c < c2. Then the vector

(
Im
〈
q,R(t, γ̂kj + iη)q

〉
Immα(γkj + iη)

)
1≤j≤n

(3.2.20)

converges in moments to

(1, 1, . . . , 1) ·
∑

i∈suppq

q2
i Ui(E), (3.2.21)

where the random variables Ui(E) are independent and identically distributed with law U?(E).

3.2.5 Proofs

In this section we establish Theorem 3.1.8, Theorem 3.1.7, and Corollary 3.1.9.

Proof of Theorem 3.1.8. By symmetry, we may suppose i = 1 in the theorem statement.

Recalling t from (3.2.10) and applying Theorem 3.2.7 with q = e1 = (1, 0, 0, . . . , 0) gives

lim
N→∞

∣∣∣∣∣E
[
P

((
N
〈
ukj(H), e1

〉2
)

1≤j≤n

)]
− E

[
P

((
N
〈
ukj(Xt), e1

〉2
)

1≤j≤n

)]∣∣∣∣∣ = 0, (3.2.22)
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Next, Theorem 3.2.8 yields

lim
N→∞

∣∣∣∣∣E
[
P

((
N
〈
ukj(Xt), e1

〉2
)

1≤j≤n

)]
− E

[
P

((
N 2
j ·

ImR11(t, γ̂kj + iη)

Immα(γkj + iη)

)
1≤j≤n

)]∣∣∣∣∣ = 0,

(3.2.23)

where the Nj are i.i.d. standard Gaussians that are independent from ImR11(t, γ̂kj + iη).

Here we used (3.2.13) and the fact that a(2j) = E [N 2j] for a standard Gaussian N .

Now the theorem follows from (3.2.22), (3.2.23), and Theorem 3.2.9.

Proof of Theorem 3.1.7. By symmetry, we may suppose that ij = j for each j ∈ [1, n]. Let

v =
(
U1(E),U2(E), . . . ,Un(E)

)
(3.2.24)

be a vector of i.i.d. random variables with distribution U?(E), where U?(E) is as in Defini-

tion 3.1.5.

For any vector q with stable support such that qi = 0 for i /∈ [1, n], let w ∈ RN denote the

vector w = (q2
1, q

2
2, . . . , q

2
N). Fix m ∈ N, recall a(2m) = (2m− 1)!! from (3.2.13), abbreviate

uk = uk(H), and consider the polynomial

Q(q1, . . . , qn) = E
[(
N〈q,uk〉2

)m]− a(2m)E
[
〈w,v〉m

]
. (3.2.25)

Then together Theorem 3.2.7, Theorem 3.2.8, and (the n = 1 case of) Theorem 3.2.9 imply

for any unit vector q ∈ RN with supp q ⊆ {1, 2, . . . , n} that

lim
N→∞

Q(q1, . . . , qn) = 0. (3.2.26)

Here we recalled (3.2.13) and the fact that a(2j) = E [N 2j] for a standard Gaussian N . Now

observe that Q is a polynomial of degree 2m in the qi, that is, there exists coefficients Bd ∈ R
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such that

Q(q1, q2, . . . , qn) =
∑
|d|=2m

Bd

n∏
j=1

q
dj
j , (3.2.27)

where d = (d1, d2, . . . , dn) ∈ Zn≥0 is summed over all n-tuples of nonnegative integers with

|d| =
∑n

j=1 dj = 2m. Thus, since (3.2.26) holds for all (q1, q2, . . . , qn) with
∑n

j=1 q
2
j = 1, we

have

lim
N→∞

max
|d|=2m

|Bd| = 0, (3.2.28)

where again d ranges over all n-tuples of nonnegative integers summing to 2m. In particular,

fixing some n-tuple (m1,m2, . . . ,mn) of nonnegative integers summing to m and taking

d = (2m1, 2m2, . . . , 2mn) gives

(2m)!∏n
j=1(2mi)!

lim
N→∞

E

[
n∏
j=1

(
Nuk(j)

2
)mj] =

m!(2m− 1)!!∏n
j=1 mi!

E

[
n∏
j=1

v(j)mj

]
, (3.2.29)

which implies that

lim
N→∞

E

[
n∏
j=1

(
Nuk(j)

2
)mj] = E

[
n∏
j=1

a(2mj)v(j)mj

]
. (3.2.30)

This yields the desired conclusion, since (3.2.30) holds for all (m1,m2, . . . ,mn) ∈ Zn≥0 and

E[N 2j] = a(2j), for any integer j ≥ 0, if N is a standard Gaussian random variable.

Proof of Corollary 3.1.9. By [32, Theorem 1.6(ii)],

%α(0) =
1

π
Γ

(
1 +

2

α

)(
Γ
(
1− α

2

)
Γ
(
1 + α

2

))1/α

. (3.2.31)

By [32, Lemma 4.3(ii)], R?(0) has the same law as Υ−1, where Υ is a one-sided α
2
-stable law
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with Laplace transform

E
[

exp(−tΥ)
]

= exp

(
− tα/2

(
Γ
(
1 + α

2

)
Γ
(
1− α

2

))1/2
)
, for t ≥ 0. (3.2.32)

Since a (1, 1) α
2
-stable law S has Laplace transform exp

(
−tα/2

)
, Υ has the same law as

(
Γ
(
1 + α

2

)
Γ
(
1− α

2

))1/α

S, (3.2.33)

so the conclusion follows from Theorem 3.1.7, (3.2.31), and the fact (see Definition 3.1.5)

that U?(E) =
(
π%α(E)

)−1R?(E).

3.3 Preliminary results

In this section we collect several miscellaneous known results that will be used throughout the

paper. After recalling general estimates and identities on resolvent matrices in Section 3.3.1,

we state several facts about the density ρα in Section 3.3.2. In Section 3.3.3, we recall several

results about the removed model Xs. Finally, in Section 3.3.4 we recall properties of a certain

matrix interpolating between X0 and H.

3.3.1 Resolvent identities and estimates

For any invertible K,M ∈ MatN×N , we have

K−1 −M−1 = K−1(M−K)M. (3.3.1)

Next, assume z = E + iη ∈ H and K = {Kij} = (M− z)−1. Then, we have the bound

max
1≤i,j≤N

|Kij| ≤
1

η
, (3.3.2)
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and the Ward identity

N∑
j=1

|Kij|2 =
ImKii

η
. (3.3.3)

3.3.2 The density %α

The following properties of the density %α are proved in Section 3.7; here, we recall the γi

from (3.1.7).

Lemma 3.3.1. There exists a (deterministic) countable set A ⊂ (0, 2) with no accumulation

points in (0, 2) and constants C, c > 0 such that the following statements hold for α ∈

(0, 2) \ A.

1. For real numbers E1, E2 ∈ [−c, c],

∣∣%α(E1)− %α(E2)
∣∣ ≤ C|E1 − E2|, c ≤ %α(E1) ≤ C. (3.3.4)

2. For real numbers E1, E2 ∈ [−c, c], and any η > 0, we have

∣∣ Immα(E1 + iη)− Immα(E2 + iη)
∣∣ ≤ C|E1 − E2|+ Cη. (3.3.5)

3. For real numbers |E| < c and η ∈ (0, c], and any integer j ∈
[
(1/2− c)N, (1/2 + c)N

]
,

c ≤
∣∣ Immα(E + iη)

∣∣ ≤ C, c ≤
∣∣ Immα(γj + iη)

∣∣ ≤ C. (3.3.6)

3.3.3 Removed model

In this section we recall several results concerning the resolvent R(s, z) and Stieltjes trans-

form mN(s, z) of Xs (recall (3.2.9) and (3.2.16)). In what follows, we recall that the i-th

eigenvalue of Xs is denoted by λi(s) and its associated unit eigenvector is denoted by ui(s).
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For any constants C, δ > 0, we define the two spectral domains

DC,δ =

{
z = E + iη : |E| ≤ 1

C
, N−1+δ ≤ η ≤ 1

C

}
, (3.3.7)

D̃C,δ =

{
z = E + iη : |E| ≤ 1

C
, N−1/2+δ ≤ η ≤ 1

C

}
. (3.3.8)

We also recall the free convolution of X with the semicircle law is defined to be the

probability measure on R whose Stiletjes transform satisfies the equation

mfc,t(s, z) =
1

N

N∑
i=1

1

λi(0)− z − smfc,t(s, z)
. (3.3.9)

Basic facts about the free convolution, including its existence and uniqueness, may be found

in [29]. It has a density, ρfc,t(s, x) dx, and its classical eigenvalue locations are defined for

1 ≤ i ≤ N by

γi(s) = inf

{
y ∈ R :

∫ y

−∞
ρfc,t(s, x) dx ≥ i

N

}
. (3.3.10)

These are random variables which depend on the initial data
(
λi(0)

)N
i=1

determined by X0.

The following intermediate local law for R(s, z) (on scale η � N−1/2+δ) was essentially

shown as [6, Theorem 3.5].

Lemma 3.3.2 ([6, Theorem 3.5]). There exists a (deterministic) countable set A ⊂ (0, 2)

with no accumulation points in (0, 2) such that the following holds for α ∈ (0, 2)\A. For any

fixed real number δ > 0 with δ < max
{ (b−1/α)(2−α)

20
, 1

2

}
, there exists a constant C = C(δ) > 0

such that for s ∈ [0, N−δ], we have with overwhelming probability that

sup
z∈D̃C,δ

∣∣mN(s, z)−mα(z)
∣∣ < CN−αδ/8, sup

z∈D̃C,δ
max

1≤j≤N

∣∣Rjj(s, z)
∣∣ < (logN)C , (3.3.11)

where we recall D̃C,δ from (3.3.8).

In fact, [6, Theorem 3.5] was only stated in the case s = 0, but it is quickly verified that

the same proof applies for arbitrary s ∈ [0, N−δ], especially since H + s1/2W satisfies the
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conditions in Definition 3.1.1 for s ∈ [0, N−δ] if H does.

From now on, we always assume α ∈ (0, 2)\A, where A is the set from Lemma 3.3.2, even

when this is not noted explicitly. The next lemma provides more local estimates on R(s, z)

and Xs (on scales around N−1), if N−1/2 � s � 1; they are consequences of Lemma 3.3.2

using results of [78]. Specifically, the first bound in (3.3.12) follows from [78, Theorem 3.3]

and the second follows from the first and the first estimate in (3.3.11); (3.3.14) follows from

[78, Theorem 3.5]; and (3.3.15) follows from [78, Theorem 3.6]. The hypotheses of these

statements from [78] are all verified by the first bound in (3.3.11). The final estimate is an

immediate consequence of (3.3.12), (3.3.13), and (3.3.5).

In the following, we recall the γi(s) defined in (3.3.10).

Lemma 3.3.3 ([78]). There exists a constant K > 0 such that the following holds for any

real numbers r, δ > 0.

1. Set D = DK,δ and D̃ = D̃K,δ, where we recall the definitions (3.3.7) and (3.3.8),

respectively. With overwhelming probability, we have that

sup
s∈[N−1/2+δ ,N−δ ]

sup
z∈D

∣∣mN(s, z)−mfc,t(s, z)
∣∣ < N δ

Nη
, (3.3.12)

sup
s∈[N−1/2+δ ,N−δ ]

sup
z∈D̃

∣∣mα(z)−mfc,t(s, z)
∣∣ < N−αδ/16. (3.3.13)

2. With overwhelming probability, we have that

sup
s∈[N−1/2+δ ,N−δ ]

∣∣λi(s)− γi(s)∣∣ ≤ N−1+δ. (3.3.14)

3. For any ε ∈ (0, 1) and s ∈ [N−1/2+δ, N−δ], we have for sufficiently large N that

P
(∣∣λi(s)− λi+1(s)

∣∣ ≤ ε

N

)
≤ N δε2−r. (3.3.15)
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4. For E1, E2 ∈ [−K−1, K−1] and η ∈ [N−1/2+δ, N−δ], we have

∣∣ ImmN(E1 + iη)− ImmN(E2 + iη)
∣∣ ≤ C|E1 − E2|+ Cη + CN−αδ/16 (3.3.16)

with overwhelming probability.

The following lemma provides resolvent and delocalization estimates for Xs. The first

estimate in (3.3.17) below follows from [6, Proposition 3.9], whose hypotheses are verified

by the second bound in (3.3.11). We omit the proof of the second since, given the first, it

follows by standard arguments (for example, see the proof of [26, Theorem 2.10]).

Lemma 3.3.4 ([6, Proposition 3.9]). There exists a constant K > 0 such that the following

holds. Fix real numbers δ > 0 and s ∈ [N−1/2+δ, N−δ], and a unit vector q ∈ RN with stable

support. For each index i ∈ [1, N ] such that |γi(s)| < K−1, we have with overwhelming

probability that

sup
z∈D

max
1≤j,k≤N

∣∣Rjk(s, z)
∣∣ < N δ,

〈
ui(s),q

〉2 ≤ N−1+δ. (3.3.17)

3.3.4 Interpolating matrix

Recalling t from (3.2.10), define the interpolating matrix

Hγ = {Hγ
ij} = γA + X + (1− γ2)1/2t1/2W, (3.3.18)

where W is an independent N × N GOE matrix. Namely, it is an N × N real symmetric

random matrix WN = {wij}, whose upper triangular entries wij are mutually independent

Gaussian random variables with variances (1 + 1i=j)N
−1.

The following lemma estimates the entries of the resolvent matrix Gγ =
{
Gγ
ij(z)

}
=

(Hγ − z)−1 and provides complete eigenvector delocalization for Hγ. The first bound in

(3.3.19) below was obtained as [6, Theorem 3.16]; given this, the second bound there follows
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by standard arguments (again, see the proof of [26, Theorem 2.10]).

Lemma 3.3.5 ([6, Theorem 3.16]). There exists a constant K > 0 such that the following

holds. Fix real numbers δ > 0 and γ ∈ [0, 1], and abbreviate D = DK,δ (recall (3.3.7)). Let

ui(H
γ) be a unit eigenvector of Hγ such that the corresponding eigenvalue λi(H

γ) satisfies∣∣λi(Hγ)
∣∣ ≤ K−1. Then, with overwhelming probability we have the bounds

sup
0≤γ≤1

sup
z∈D

max
1≤j,k≤N

∣∣Gγ
jk(z)

∣∣ < N δ;
∥∥ui(Hγ)

∥∥
∞ ≤ N−1/2+δ. (3.3.19)

In view of the identity

η
N∑
j=1

(∣∣λi(M)− E
∣∣2 + η2

)−1

= N−1 Im Tr
(
M− z

)−1
, (3.3.20)

which holds for any N × N matrix M and complex number z = E + iη ∈ H, Lemma 3.3.3

and Lemma 3.3.5 together quickly imply the following lemma that bounds the number of

eigenvalues of Hγ or Xs in a given interval.

Lemma 3.3.6. For any real number δ > 0, there exist constants K > 0 and C = C(δ) > 0

such that the following holds. For any interval I ⊆ [−K−1, K−1] of length |I| ≥ N−1+δ, we

have with overwhelming probability that

sup
γ∈[0,1]

∣∣∣{i : λi(H
γ) ∈ I

}∣∣∣ ≤ C|I|N1+δ; sup
s∈[N−1/2+δ ,N−δ ]

∣∣∣{i : λi(Xs) ∈ I
}∣∣∣ ≤ C|I|N.

(3.3.21)

The following result states that the i-th eigenvalue of Hγ and Xs is close to 0 if i is close

to N
2

. Its proof will be given in Section 3.7.

Lemma 3.3.7. For each real number c1 > 0, there exists a constant c2 > 0 such that the
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eigenvalues λi(H
γ) of Hγ and λi(Xs) of Xs satisfy

sup
γ∈[0,1]

∣∣λi(Hγ)
∣∣ < c1; sup

s∈[0,1]

∣∣λi(Xs)
∣∣ < c1; sup

s∈[0,1]

∣∣γi(s)∣∣ < c1, (3.3.22)

for each i ∈
[
(1/2− c2)N, (1/2 + c2)N

]
, with overwhelming probability.

In Section 3.7, we use Lemma 3.3.7 and Lemma 3.3.3 to deduce the following rigidity

statements comparing the classical locations γ̂i(s) to the γi, and the γ̂i(s) to the γi(s) (recall

(3.1.7), (3.3.10), and (3.2.18)).

Lemma 3.3.8. Fix δ > 0. There exist constants C, c1 > 0 and c = c(δ) > 0 such that for

each i ∈
[
(1/2− c1)N, (1/2 + c1)N

]
, we deterministically have the bound

sup
s∈[N−1/2+δ ,N−δ ]

∣∣γ̂i(s)− γi∣∣ ≤ CN−c, (3.3.23)

and with overwhelming probability the bound

sup
s∈[N−1/2+δ ,N−δ ]

∣∣γ̂i(s)− γi(s)∣∣ ≤ CN−1/2+δ. (3.3.24)

3.4 Comparison

This section establishes Theorem 3.2.7, which compares the eigenvector statistics of Xt to

those of H. Section 3.4.1 establishes this result assuming a general comparison estimate,

certain derivative bounds, and a level repulsion estimate for Hγ. We then prove the com-

parison estimate in Section 3.4.2; the necessary derivative bounds in Section 3.4.3; and the

level repulsion estimate in Section 3.4.4.

3.4.1 Proof of Theorem 3.2.7

In this section we establish Theorem 3.2.7 assuming Lemma 3.4.1, Lemma 3.4.3, Lemma 3.4.4,

and Lemma 3.4.5 below. In what follows, for any κ ∈ [0, 1], M = {mij} ∈ MatN×N ,
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and a, b ∈ [1, N ], we define Θ
(a,b)
κ M ∈ MatN×N as follows. Recalling ρ from (3.2.2), if

|mab| = |mba| ≥ N−ρ, then set Θ
(a,b)
κ M = M. Otherwise, if |mab| = |mba| < N−ρ, set Θ

(a,b)
κ M

to be the N × N matrix whose (i, j) entry is equal to mij if (i, j) /∈
{

(a, b), (b, a)
}

and is

equal to κmab = κmba otherwise. Moreover, for any differentiable function F : MatN×N → C

and indices a, b ∈ [1, N ], we define ∂abF to be the derivative of F with respect to mab.

We first state the following comparison theorem between functions of H0 = Xt and Hγ

(recall (3.3.18)), which will be established in Section 3.4.2 below.

Lemma 3.4.1. There exists a constant c > 0 such that the following holds. Let F : MatN×N →

C denote a smooth function, and suppose K,L > 1 are such that

max
0≤j≤4

sup
0≤γ≤1

max
1≤a,b≤N

sup
0≤κ≤1

∣∣∣∂(j)
ab F

(
Θ(a,b)
κ Hγ

)∣∣∣ ≤ K (3.4.1)

holds with overwhelming probability, and

max
0≤j≤4

sup
0≤γ≤1

max
1≤a,b≤N

sup
0≤κ≤1

∣∣∣∂(j)
ab F

(
Θ(a,b)
κ Hγ

)∣∣∣ ≤ L (3.4.2)

holds deterministically. Then, for any D > 0, there exists a constant C = C(D) > 0 such

that

sup
0≤γ≤1

∣∣F (Hγ)− F (H0)
∣∣ ≤ KN−c + CLN−D. (3.4.3)

Next we require the following function, originally introduced in [96, Section 3.2], that

measures how close eigenvalues of some matrix A are to a given eigenvalue.

Definition 3.4.2. Let A ∈ MatN×N . If 1 ≤ i ≤ N is such that λi(A) is an eigenvalue of a

matrix A with multiplicity one, we define

Qi(A) =
1

N2

∑
1≤j≤N
j 6=i

∣∣λj(A)− λi(A)
∣∣−2

. (3.4.4)
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To deal with the case of multiplicity greater than one, we introduce a cutoff. For any M > 0,

we fix a smooth function fM : R≥0 → R such that there exists a constant C > 0 (independent

of M and N) satisfying the following two properties.

1. For any x ∈ R>0, we have that
∣∣f ′M(x)

∣∣+
∣∣f ′′M(x)

∣∣+
∣∣f ′′′M(x)

∣∣ ≤ C.

2. If x ∈ [0,M ] then
∣∣fM(x)− x

∣∣ ≤ 1, and if x ≥M , then fM(x) = M .

The function fM
(
Qi(A)

)
is then well-defined and smooth on real symmetric matrices.

The following two lemmas control the derivatives of the Qi(H) and of the eigenvector

entries of Hγ with respect to the matrix entries of H; the first is an overwhelming probability

bound, and the second is a deterministic bound. They will be established in Section 3.4.3

below.

Lemma 3.4.3. There exists a constant c > 0 such that the following holds. Fix real numbers

γ, κ ∈ [0, 1], a constant ω > 0, and integers i, a, b ∈ [1, N ]. Set M = N2ω, and assume that

∣∣∣λi(Θ(a,b)
κ Hγ

)∣∣∣ < c, and Qi

(
Θ(a,b)
κ Hγ

)
≤M = N2ω (3.4.5)

both hold with overwhelming probability. Then,

∣∣∣∣∂(k)
ab

(
Qi

(
Θ(a,b)
κ Hγ

))∣∣∣∣ ≤ CN10k(ω+δ), (3.4.6)

also holds with overwhelming probability, for any integer 0 ≤ k ≤ 4.

Moreover, for any q ∈ RN , there exists a constant C = C
(
| supp q|

)
> 0 such that

∣∣∣∣∣∂(k)
ab

(〈
q,ui

(
Θ(ab)
κ Hγ

)〉2
)∣∣∣∣∣ ≤ CN−1+10k(ω+δ), (3.4.7)

also holds with overwhelming probability, for any integer 0 ≤ k ≤ 4.
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Lemma 3.4.4. Fix real numbers γ, κ ∈ [0, 1], a constant ω > 0, and integers i, a, b ∈ [1, N ];

assume that Qi

(
Θ

(a,b)
κ Hγ

)
< N2ω. Then, for any integers k ∈ [0, 4] and 1 ≤ i ≤ N , we have

the deterministic bounds

∣∣∣∣∂(k)
ab

(
Qi

(
Θ(a,b)
κ Hγ

))∣∣∣∣ ≤ CN10+6ω;

∣∣∣∣∣∂(k)
ab

(〈
q,ui

(
Θ(ab)
κ Hγ

)〉2
)∣∣∣∣∣ ≤ CN15+10ω. (3.4.8)

Next we state a level repulsion estimate, which will be established in Section 3.4.4 below.

Lemma 3.4.5. There exist constants c, υ > 0 such that, for any fixed index i ∈
[
(1/2 −

c)N, (1/2 + c)N
]

and real number γ ∈ [0, 1], we have that

P
(
Qi(H

γ) ≥ Nυ
)
≤ 2N−υ/4. (3.4.9)

Given these statements, we now prove Theorem 3.2.7. The argument follows [42, Theorem

1.1].

Proof of Theorem 3.2.7. For brevity we consider just n = 1; the general case is no harder.

By Lemma 3.4.5, there exists some ω > 0 such that, for each γ ∈ {0, 1},

P
(
Qi(H

γ) ≥ Nω
)
≤ 2N−ω/4. (3.4.10)

Denote the degree of P by m, so that P (x) ≤ C(xm+1) for x ≥ 0. Delocalization for Hγ,

(3.3.19), implies that N
〈
q,ui(H

γ)
〉2 ≤ N δ with overwhelming probability for each δ > 0

and γ ∈ [0, 1], if N is sufficiently large. Therefore,

E
[
P
(
N
〈
q,ui(γ)

〉2
)2
]
≤ CN2mδ. (3.4.11)

Now set M = N2ω, and let g = gM be a smooth function with uniformly bounded derivatives

such that 0 ≤ g(x) ≤ 1 for each x ∈ R>0; g(x) = 1 for x ≤ M ; and g(x) = 0 for x ≥ 2M .
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Then,

∣∣∣∣∣E
[
P
(
N
〈
q,ui(H

1)
〉2
)]
− E

[
P
(
N
〈
q,ui(H

0)
〉2
)]∣∣∣∣∣ (3.4.12)

≤

∣∣∣∣∣E
[
P
(
N
〈
q,ui(H

1)
〉2
)
g
(
Qi(H

1)
)]
− E

[
P
(
N
〈
q,ui(H

0)
〉2
)
g
(
Qi(H

0)
)]∣∣∣∣∣ (3.4.13)

+ E
[
P
(
N
〈
q,ui(H

1)
〉2
)2
]1/2

P
(
Qi(H

1) ≥M
)

+ E
[
P
(
N
〈
q,ui(H

0)
〉2
)2
]1/2

P
(
Qi(H

0) ≥M
)

(3.4.14)

≤

∣∣∣∣∣E
[
P
(
N
〈
q,ui(H

1)
〉2
)
g
(
Qi(H

1)
)]
− E

[
P
(
N
〈
q,ui(H

0)
〉2
)
g
(
Qi(H

0)
)]∣∣∣∣∣+ CN−ω/4+mδ,

(3.4.15)

where in the last estimate we applied (3.4.10) and (3.4.11).

Now let us define the function h : MatN×N → R by setting

h(A) = hi(A) = P
(
N
〈
q,ui(A)

〉2
)
g
(
Qi(A)

)
, (3.4.16)

for any A ∈ MatN×N . By Lemma 3.4.3, Lemma 3.4.4; a union bound over 1 ≤ i, a, b ≤ N

and γ and κ in an N−30-net of [0, 1]; and the fact that h(A) = 0 if Qi(A) ≥ 2M , we have

that h deterministically satisfies

sup
0≤k≤4

sup
γ∈[0,1]

max
1≤a,b≤N

sup
κ∈[0,1]

∣∣∣∂(k)
ab h

(
Θ(a,b)
κ Hγ

)∣∣∣ ≤ CN15+15mω, (3.4.17)

and with overwhelming probability satisfies

sup
0≤k≤4

sup
γ∈[0,1]

max
1≤a,b≤N

sup
κ∈[0,1]

∣∣∣∂(k)
ab h

(
Θ(a,b)
κ Hγ

)∣∣∣ ≤ CN20m(ω+δ). (3.4.18)

Therefore, upon setting ω and δ sufficiently small, Lemma 3.4.1 implies
∣∣E[h(H1)

]
−E
[
h(H0)

]∣∣
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is bounded by CN−c. Inserting this into (3.4.15) yields

∣∣∣∣∣E
[
P
(
N
〈
q,ui(1)

〉2
)]
− E

[
P
(
N
〈
q,ui(0)

〉2
)]∣∣∣∣∣ ≤ CN−c + CN−ω/4+mδ. (3.4.19)

The lemma follows from further imposing that 5mδ < ω.

3.4.2 Proof of Lemma 3.4.1

In this section we establish Lemma 3.4.1.

Proof of Lemma 3.4.1. Observe (by (3.3.1), for instance) that

∂γE
[
F (Hγ)

]
=

∑
1≤i,j≤N

E

[
∂ijF (Hγ)

(
Aij −

γt1/2

(1− γ2)1/2
wij

)]
. (3.4.20)

Now, we condition on the label Ψ of H (recall Definition 3.2.5) and denote the associated

conditional expectation by EΨ. We first consider the case ψij = 1. This implies Aij = Bij =

0, and Gaussian integration by parts (see for instance [93, Appendix A.4]) yields

EΨ

[
∂ijF (Hγ)

(
γt1/2

(1− γ2)1/2
wij

)]
=
tγ

N
EΨ

[
∂2
ijF (Hγ)

]
, whenever ψij = 1. (3.4.21)

Hoeffding’s inequality applied to the Bernoulli random variable ψij, whose distribution was

defined in (3.2.3), implies that there are likely at most CN1+αρ pairs (i, j) such that ψij = 1.

Specifically,

P
[∣∣∣{(i, j) ∈ [1, N ]× [1, N ] : ψij = 1

}∣∣∣ < CN1+αρ

]
≥ 1− C exp

(
−Nαρ

)
. (3.4.22)

By (3.4.2), the contribution of (3.4.21) over the complement of the event described in

(3.4.1) or (3.4.22) is bounded by CLN−D, for some constant C = C(D) > 0. This, together

with (3.4.1), (3.4.21), (3.4.22), (3.2.11), and (3.2.2) imply that the sum of (3.4.21) over all
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(i, j) such that ψij = 1 or i = j is at most

CKtN−1Nαρ+1 + CLN−D ≤ CKNαρ−(2−α)ν + CLN−D < KN−c + CLN−D, (3.4.23)

for some constants c > 0 (only dependent on the fixed parameters α, ρ, and ν) and C =

C(D) > 0.

We next consider the case when ψij = 0 and i 6= j. Then, Aij = aij(1 − χij) and

Bij = bijχij; abbreviate aij = a, bij = b, χij = χ, and wij = w. Set

h = γ(1− χ)a+ χb+ (1− γ2)1/2t1/2w. (3.4.24)

Fix (i, j) ∈ [1, N ]2 such that ψij = 0, abbreviate F (k) = ∂
(k)
ij F , and abbreviate S = Θ

(i,j)
0 H.

Then a Taylor expansion yields

F ′(Hγ) = F ′(S) + hF ′′(S) + h2F (3)(S) + h3F (4)
(
Θ(i,j)
κ Hγ

)
, (3.4.25)

for some κ ∈ [0, 1]. Hence, the (i, j) term in the sum on the right side of (3.4.20) is equal to

EΨ

[(
(1−χ)a− γt1/2

(1− γ2)1/2
w

)(
F ′(S)+hF ′′(S)+h2F (3)(S)+h3F (4)

(
Θ(i,j)
κ Hγ

))]
. (3.4.26)

Using the mutual independence between S, a, b, χ, and w, and the fact that a, b, and w are

all symmetric, we conclude that (3.4.26) is equal to

EΨ

[(
(1−χ)a− γt1/2

(1− γ2)1/2
w

)
hF ′′(S)

]
+EΨ

[(
(1−χ)a− γt1/2

(1− γ2)1/2
w

)
h3F (4)

(
Θ(i,j)
κ Hγ

)]
.

(3.4.27)

Again using the mutual independence between S, a, b, χ, and w; the fact that a, b, and w
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are all symmetric; and (3.4.24), we find that the first term in (3.4.27) is

EΨ

[
F ′′(S)

(
(1− χ)a− γt1/2

(1− γ2)1/2
w

)
h

]
= γE

[
F ′′(S)

]
E
[
a2(1− χ)− tw2

]
= 0, (3.4.28)

where the final equality follows from the choice of t in (3.2.10).

The second term in (3.4.27) is bounded above by

CEΨ

[∣∣∣F (4)
(
Θ(i,j)
κ Hγ

)∣∣∣((1− χ)a4 + t2w4 + χtw2b2
)]
. (3.4.29)

On the complement of the event in (3.4.1), this expectation is bounded by CLN−D−2, for

some constant C = C(D) > 0. On this event, we use (3.2.11); the facts that E[w2] ≤ N−1

and E[w4] ≤ N−2; and the estimates (which can be quickly deduced from Definition 3.2.4;

see [6, Section 3.3.2] for details)

EΨ

[
(1− χ)a4

]
≤ CN ν(α−4)−1, EΨ

[
χb2
]
≤ CNρ(α−2)−1, (3.4.30)

to bound it by

CK
(
N ν(α−4)−1 +N2ν(α−2)−2 +N (ρ+ν)(α−2)−2

)
≤ CKN−2−c, (3.4.31)

for some constant c > 0 (only dependent on the fixed parameters α, ν, and ρ), where we

have used (3.2.2) in the last inequality. So, the sum of (3.4.29) over all (i, j) ∈ [1, N ]2 such

that i 6= j and ψij = 0 is at most

KN−c + CLN−D. (3.4.32)

Now the lemma follows from the fact that the contribution to (3.4.20) from all terms

corresponding to (i, j) with i = j or ψij = 1 is bounded by (3.4.23) and the fact that the

contribution of all terms coming from (i, j) with i 6= j and ψij = 0 is bounded by (3.4.32).
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3.4.3 Proof of Lemma 3.4.3 and Lemma 3.4.4

In this section we prove Lemma 3.4.3 and Lemma 3.4.4. We begin with the following estimate

on the resolvent entries of Θ
(a,b)
κ Hγ. In the below, we recall DC;δ from (3.3.7).

Lemma 3.4.6. There exists a constant K > 0 such that following holds. For any δ > 0, the

bound

sup
0≤κ≤1

max
1≤a,b≤N

sup
0≤γ≤1

max
1≤i,j≤N

sup
z∈DK;δ

∣∣∣∣((Θ(a,b)
κ Hγ − z

)−1
)
ij

∣∣∣∣ < N δ (3.4.33)

holds with overwhelming probability. Moreover, for each c1 > 0, there exists some c2 > 0

such that

sup
0≤κ≤1

max
1≤a,b≤N

sup
0≤γ≤1

∥∥∥ui(Θ(a,b)
κ Hγ

)∥∥∥
∞
< N δ−1/2;

sup
0≤κ≤1

max
1≤a,b≤N

sup
0≤γ≤1

∣∣∣λi(Θ(a,b)
κ Hγ

)∣∣∣ < c1,

(3.4.34)

both hold for each (1/2−c2)N ≤ i ≤ (1/2+c2)N with overwhelming probability. Additionally,

for any interval I ⊂ [−c1, c1] of length |I| ≥ N−1+δ,

sup
0≤κ≤1

max
1≤a,b≤N

sup
0≤γ≤1

∣∣∣∣{i ∈ [1, N ] : λi
(
Θ(a,b)
κ Hγ

)
∈ I
}∣∣∣∣ ≤ C|I|N1+δ, (3.4.35)

holds with overwhelming probability.

Proof. The second bound in (3.4.34) follows from Lemma 3.3.7 and the Weyl interlacing

inequality for eigenvalues of symmetric matrices. Furthermore, the proofs of the first bound

in (3.4.34) and (3.4.35) given (3.4.33) follow from standard arguments (see for example the

proofs of [26, Theorem 2.10] and [78, Lemma 7.4]). So, we only establish (3.4.33).

To that end, let K be as in Lemma 3.3.5, and fix indices a, b ∈ [1, N ]; real numbers

κ, γ ∈ [0, 1]; and a complex number z ∈ DK;δ. Set E = Θ
(a,b)
κ Hγ, V = (E − z)−1 = {Vij},

and ∆ = Hγ − E. We may assume throughout this proof that |hab| ≤ N−ρ, for otherwise

E = Hγ, and the result follows from Lemma 3.3.5.
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For any M ∈ N, the resolvent identity (3.3.1) gives

V−Gγ =
M∑
k=0

(Gγ∆)kGγ + (Gγ∆)M+1V. (3.4.36)

Now select M in (3.4.36) such that Mρ > 10. Then (3.3.1); Lemma 3.3.5; the determin-

istic bound (3.3.2); and the fact that ∆ is supported on at most two entries, each of which

is bounded by N−ρ, implies for sufficiently small δ > 0 that

max
1≤i,j≤N

|Vij| ≤ max
1≤i,j≤N

∣∣Gγ
ij

∣∣+
M∑
k=0

2kN (k+1)δ−kρ + 2M+1N (M+1)δ−ρ−10η−1 ≤ N δ, (3.4.37)

for sufficiently large N , with overwhelming probability. Taking a union bound of (3.4.37)

over all a, b ∈ [1, N ]; κ and γ in a N−10-net of [0, 1]; and z in a N−10-net of D, and also

applying (3.3.1), then yields (3.4.33).

Next we require the following result that essentially provides level repulsion estimates for

Xt.

Lemma 3.4.7. For all ω > 0, there exist constants c > 0 (independent of ω) and C =

C(ω) > 0 such that the following holds. Set M = N2ω; recall t from (3.2.10); and fix an

index i ∈
[
(1/2− c)N, (1/2 + c)N

]
. Then,

E
[
fM
(
Qi(Xt)

)]
≤ CN3ω/2. (3.4.38)

Further fix δ > 0 and, for fixed real numbers κ, γ ∈ [0, 1] and indices 1 ≤ a, b ≤ N , abbreviate

µj = λj
(
Θ

(a,b)
κ Hγ

)
for each j ∈ [1, N ]. Then we have with overwhelming probability that

1
Qi(Θ

(a,b)
κ Hγ)<M

∑
j 6=i

1

|µj − µi|
≤ N1+ω+δ. (3.4.39)
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Proof. Throughout this proof, we may assume that δ < ω
4
. Define the sets

U0 =
{
j ∈ [1, N ] \ {i} :

∣∣λj(t)− λi(t)∣∣ ≤ N−1+δ/2
}
. (3.4.40)

and

Un =
{
j ∈ [1, N ] : 2n−1N−1+δ/2 <

∣∣λj(t)− λi(t)∣∣ ≤ 2nN−1+δ/2
}
. (3.4.41)

for each integer n ≥ 1.

Now choose the c > 0 here with respect to the K from Lemma 3.3.6 to satisfy c < 1
4K

,

and define L =
⌊

log2(2cN1−δ/2)
⌋
. Then Lemma 3.3.6 and Lemma 3.3.7 together imply (after

further decreasing c if necessary) that

|Un| ≤ C2nN δ. (3.4.42)

holds with overwhelming probability, for each n ∈ [0, L]. Next, for any θ ∈ (0, 1), also define

the event

E(θ) =

{
min

{
λi(t)− λi−1(t), λi+1(t)− λi(t)

}
>

θ

N

}
, (3.4.43)

and let E(θ)c denote the complement of E(θ). Then (3.4.42) implies with overwhelming

probability that

1E(θ)

N2

L∑
n=0

∑
j∈Un

∣∣λj(t)− λi(t)∣∣−2 ≤ CN δθ−2. (3.4.44)

Further, we deterministically have that

1

N2

∞∑
n=L+1

∑
j∈Un

∣∣λj(t)− λi(t)∣∣−2 ≤ CN−1. (3.4.45)
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Then combining (3.4.44) and (3.4.45) bounds

E
[
Qi

(
Θ(a,b)
κ Xt

)
1E(θ)

]
< CN δθ−2. (3.4.46)

On E(θ)c, we use the third part of Lemma 3.3.3 and the fact that
∣∣fM(x)

∣∣ < M holds for all

x > 0 to deduce that

E
[
fM

(
Qi

(
Θ(a,b)
κ Xt

))
1E(θ)c

]
< CN2ωθ. (3.4.47)

Then selecting θ = N−ω/2, using the fact that δ < ω
4
, and combining (3.4.46) and (3.4.47)

yields (3.4.38). We omit the proof of (3.4.39), as it is entirely analogous, and follows from

replacing the above application of Lemma 3.3.6 and Lemma 3.3.7 (to establish (3.4.42))

with (3.4.35) and the second bound in (3.4.34), respectively, and using the fact that µi −

µi−1, µi+1 − µi ≥ N−ω holds on the event that Qi

(
Θ

(a,b)
κ Hγ

)
< M .

Now we can establish the derivative bounds given by Lemma 3.4.3 and Lemma 3.4.4.

Proof of Lemma 3.4.3 (Outline). In outline, the bound (3.4.6) is proven by expanding ∂
(k)
ab Qi(H

γ)

using contour integration into a sum of terms which are then bounded individually. Since

the proof of (3.4.7) uses a similar expansion, we only discuss that of (3.4.6) here (for the

former, see the proof of [42, Proposition 4.2] for further details).

Our claim (3.4.6) is essentially the same as that of [70, Proposition 4.6], but there are

two differences. First, one of our hypotheses is weaker: we only have complete delocalization

at small energies and not throughout the spectrum. Second, our conclusion is stronger:

[70, Proposition 4.6] bounded derivatives up to third order, but we here we bound fourth

order derivatives. This extension to fourth order derivatives parallels the proof for the third

order derivatives and requires no new ideas. Therefore, let us only show how the proof

in [70, Proposition 4.6] may be modified to accommodate the fact that our delocalization

estimate is weaker than the one used in that reference. In what follows, we also assume
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for notational convenience that κ = 1, so that Θ
(a,b)
κ (Hγ) = Hγ, as the proof for general

κ ∈ [0, 1] is entirely analogous by replacing our use of (3.3.19) below by Lemma 3.4.6.

For any vector v, let v∗ denote its transpose. Set θjk = u∗jVuk, where V = V(a,b) = {Vij}

is the N × N matrix whose entries are zero except for Vab = Vba = 1. In the proof of

[70, Proposition 4.6], ∂
(k)
ab Qi(H

γ) was expanded into a sum of certain terms using a contour

integral representation and Green’s function identities. For instance, in the expansion of

∂
(3)
ab Qi(H

γ) there are 13 distinct terms, which are listed after line (4.18) in [70, Proposition

4.6]. Setting λi = λi(H
γ), one such term is

1

N2

∑
1≤j1,j2,j3≤N
j1,j2,j3 6=i

θj1j2θj2j3θj3j1
(λi − λj1)3(λi − λj2)(λi − λj3)

. (3.4.48)

The terms produced by expanding ∂
(k)
ab Qi(H

γ) are fractions with a product of k θαβ terms

in the numerator, where each of α, β may be a summation index or i, and a product of

k + 2 eigenvalue differences λi − λj in the denominator, where j is a summation index. We

call k the order of such a term. The proof of [70, Proposition 4.6] shows that to prove the

claim (3.4.6), it suffices to bound each of the the order k terms appearing in its expansion

by CN (2k+2)δ+(k+2)ω.

For illustrative purposes, we consider just the term (3.4.48) in the k = 3 case here; other

terms of the same order and the cases k ∈ {1, 2, 4} are analogous. So, let us show that

∣∣∣∣∣∣∣∣
1

N2

∑
1≤j1,j2,j3≤N
j1,j2,j3 6=i

θj1j2θj2j3θj3j1
(λi − λj1)3(λi − λj2)(λi − λj3)

∣∣∣∣∣∣∣∣ ≤ CN8δ+5ω. (3.4.49)

To prove (3.4.49), we consider various cases depending on the locations of the eigenval-

ues λj3 , λj2 , λj3 . Let K be the constant from Lemma 3.3.5, and set c = (2K)−1. When

λj3 , λj2 , λj3 ∈ [−2c, 2c], (3.3.19) shows the corresponding eigenvectors are completely delo-

calized, and the proof of [70, Proposition 4.6] requires no modification. There are three
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remaining cases: exactly one of the j` is such that |λj` | > 2c, exactly two are, or all three

are.

In the first case, suppose for example that |λj2 | > 2c. Then, (3.3.19) implies

|θj1j2 | ≤
(∣∣uj1(a)

∣∣∣∣uj2(b)∣∣+
∣∣uj1(b)∣∣∣∣uj2(a)

∣∣) ≤ N−1/2+δ
(∣∣uj2(a)

∣∣+
∣∣uj2(b)∣∣), (3.4.50)

|θj2j3 | ≤
(∣∣uj2(a)

∣∣∣∣uj3(b)∣∣+
∣∣uj2(b)∣∣∣∣uj3(a)

∣∣) ≤ N−1/2+δ
(∣∣uj2(a)

∣∣+
∣∣uj2(b)∣∣), (3.4.51)

|θj3j1 | ≤
(∣∣uj1(a)

∣∣∣∣uj3(b)∣∣+
∣∣uj1(b)∣∣∣∣uj3(a)

∣∣) ≤ N−1+δ, (3.4.52)

with overwhelming probability. Inserting these bounds in (3.4.48) decouples the sum into a

product of a sum over j2 and a sum over j1, j3:

(3.4.48) ≤ c−1N−4+3δ

(
N∑
j2=1

(∣∣uj2(a)
∣∣+
∣∣uj2(b)∣∣)2

)( ∑
1≤j1,j3≤N

1

|λi − λj1 |3|λi − λj3 |

)
.

(3.4.53)

Here we used |λi − λj2 | > c. The first factor is at most a constant, since the matrix of

eigenvectors is orthonormal:

N∑
j2=1

(∣∣uj2(a)
∣∣+
∣∣uj2(b)∣∣)2

≤ 2
N∑
j2=1

(∣∣uj2(a)
∣∣2 +

∣∣uj2(b)∣∣2) = 4. (3.4.54)

For the second factor, the assumption (3.4.5) implies that |λi − λi±1| ≥ N−1−ω, and so

(3.4.39) yields ∑
j 6=i

|λj − λi|−1 ≤ CN1+ω+δ. (3.4.55)

Further, for k ≥ 2, the hypothesis (3.4.5) yields

∑
j 6=i

|λj − λi|−k ≤

(∑
j 6=i

|λj − λi|−2

)k/2

≤ Ck/2Nk(1+ω+δ). (3.4.56)

These inequalities imply the second factor of (3.4.53) is at most CN4+4ω+4δ, and so (3.4.48)

is at most CN7δ+4ω.
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In the second case, suppose for example that |λj2 | > c and |λj3 | > c. Since then |λi−λj2 |

and |λi − λj3 | are bounded below by c, in this case (3.4.48) is bounded above by

1

c2N2

∑
1≤j1,j2,j3≤N
j1,j2,j3 6=i

∣∣∣∣θj1j2θj2j3θj3j1(λi − λj1)3

∣∣∣∣ . (3.4.57)

Proceeding as in the previous case, we find that (3.4.48) is bounded above by

c−2N2δ−3

( ∑
1≤j2,j3≤N

(∣∣uj2(a)
∣∣+
∣∣uj2(b)∣∣)(∣∣uj3(a)

∣∣+
∣∣uj3(b)∣∣) (3.4.58)

×
(∣∣uj3(a)

∣∣∣∣uj2(b)∣∣+
∣∣uj3(b)∣∣∣∣uj2(a)

∣∣))(∑
j1 6=i

1

|λi − λj1 |3

)
. (3.4.59)

By (3.4.56), the sum over j1 is at most CN3+3ω+3δ. Moreover, by the orthogonality of the

eigenvectors of Hγ (following (3.4.54)), the sum over j2 and j3 is bounded by 8. Thus,

(3.4.48) is bounded above by CN5δ+3ω.

Finally, when |λj` | > c for all `, (3.4.48) is bounded by

1

N2c5

∑
1≤j1,j2,j3≤N

|θj1j2θj2j3θj3j1 | ≤
1

N2c5

∑
1≤j1,j2,j3≤N

(∣∣uj1(a)
∣∣∣∣uj2(b)∣∣+

∣∣uj1(b)∣∣∣∣uj2(a)
∣∣)

(3.4.60)

×
(∣∣uj2(a)

∣∣∣∣uj3(b)∣∣+
∣∣uj2(b)∣∣∣∣uj3(a)

∣∣)
(3.4.61)

×
(∣∣uj1(a)

∣∣∣∣uj3(b)∣∣+
∣∣uj1(b)∣∣∣∣uj3(a)

∣∣).
(3.4.62)

Again by the orthogonality of the eigenvectors of Hγ (following (3.4.54)), the latter is

bounded by 8, and so (3.4.48) is bounded above by obtain 8c−5N−2.

This completes our demonstration of how to bound the sum (3.4.48) and concludes the

proof.
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Proof of Lemma 3.4.4 (Outline). We again only discuss the first bound in (3.4.8), as the

proof of the second is similar. To that end observe, since we have assumed Qi(H
γ) ≤ N2ω,

we must have |λi−λj| ≥ N−1−ω, for each j ∈ [1, N ]\{i}. As in the proof of Lemma 3.4.3, the

derivative ∂
(k)
ab

(
Qi(Θ

(a,b)
κ Hγ)

)
for k ≤ 4 can be expressed as a sum of a uniformly bounded

number of terms similar to (3.4.48), in which at most four indices jk are being summed over

and in which the denominator is of degree at most six in the gaps λi − λjk . Thus, each such

term is bounded by at most N6+6ω, and so their sum is bounded by a multiple of N10+6ω.

This yields the first estimate in (3.4.8) and, as mentioned previously, the proof of the second

is omitted.

3.4.4 Proof of Lemma 3.4.5

Now we can establish Lemma 3.4.5.

Proof of Lemma 3.4.5. It suffices to show that there exists some ω > 0 such that, if M =

N2ω, then

E
[
fM
(
Qi(H

γ)
)]
≤ 2N3ω/2, (3.4.63)

since then a Markov inequality would imply

P
(
Qi(H

γ) ≥ N2ω
)
≤ P

(
fM
(
Qi(H

γ)
)
≥ N2ω

)
≤ N−2ωE

[
fM
(
Qi(H

γ)
)]
≤ 2N−ω/2, (3.4.64)

and the lemma follows after setting υ = 2ω. To prove (3.4.63), we apply Lemma 3.4.1 to

interpolate between Xt = H0 and Hγ, carrying the level repulsion estimate (3.4.38) from

the former to the latter. To implement this argument, let us take c1 > 0 sufficiently small

so that i ∈
[
(1/2 − c1)N, (1/2 + c1)N

]
implies that

∣∣λi(Θ(a,b)
κ Hγ)

∣∣ is less than the c1 from

Lemma 3.4.6 for each γ, κ ∈ [0, 1] and 1 ≤ a, b ≤ N with overwhelming probability; such a

c1 exists by the second bound of (3.4.34). Further take ω, δ > 0 sufficiently small so that

100(ω + δ) is less than the constant c from Lemma 3.4.1, and set M = N2ω.
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Then, we may apply Lemma 3.4.1, with the F (A) there equal to fM
(
Qi(A)

)
here; the

K there equal to CN40(ω+δ) here; and the L there equal to CN15+7ω here. Then (3.4.1) and

(3.4.2) follow from Lemma 3.4.3 and Lemma 3.4.4, respectively, and so Lemma 3.4.1 implies

that

E
[
fM
(
Qi(H

γ)
)]
≤ E

[
fM
(
Qi(Xt)

)]
+ CN−c/2 < 2N3ω/2,

where we used (3.4.38) to deduce the second inequality This verifies (3.4.63).

3.5 Dynamics

This section determines the eigenvector statistics of Xt. Our main goal is a proof of The-

orem 3.2.8. In Section 3.5.1 we recall the definition of the eigenvector moment flow from

[44] and some of its properties. Section 3.5.2 contains continuity estimates used in the proof

of Theorem 3.2.8. In Section 3.5.3 we use the eigenvector moment flow to establish Theo-

rem 3.2.8, assuming several results that will be shown in Section 3.5.4 and Section 3.5.5.

3.5.1 Eigenvector moment flow

Recall the matrix Xs from (3.2.9) and that its eigenvalues are given by λ1(s) ≤ λ2(s) ≤

· · · ≤ λN(s) with associated unit eigenvectors u1(s),u2(s), . . . ,uN(s), respectively. By [44,

Theorem 2.3], these eigenvalues and eigenvectors are governed by two stochastic differential

equations (SDEs):

dλk(s) =
dbkk(s)√

N
+

1

N

∑
l 6=k

ds

λk(s)− λl(s)
, (3.5.1)

duk(s) =
1√
N

∑
l 6=k

dbkl(s)

λk(s)− λl(s)
ul(s)−

1

2N

∑
l 6=k

ds

(λk − λl)2
uk(s), (3.5.2)
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where
(
bij(s)

)
1≤i≤j≤N are mutually independent Brownian motions with variance 1 + 1i=j.

The first equation, for the eigenvalues, is called Dyson Brownian motion. The second, for

the eigenvectors, is called the Dyson vector flow. Using these SDEs, we define the stochastic

processes λ =
(
λ(s)

)
0≤s≤1

and u =
(
u(s)

)
0≤s≤1

.

A key tool for analyzing the Dyson vector flow is the eigenvector moment flow, introduced

in [44, Section 3.1], which characterizes the time evolution of the observable fs = fλ,s defined

by

fs(ξ) = fλ,s(ξ) = E
[
Qj1,...,jm
i1,...,im

(s) | λ
]
, (3.5.3)

where we recall Qj1,...,jm
i1,...,im

(s) was defined in (3.2.13).

Theorem 3.5.1 ([44, Theorem 3.1]). Let q ∈ RN be a unit vector and, for each s ∈ [0, 1],

set

cij(s) = N−1
(
λi(s)− λj(s)

)−2
. (3.5.4)

Then,

∂sfs = B(s)fs, where B(s)fs(ξ) =
∑
i 6=j

cij(s)2ξi(1 + 2ξj)
(
fs(ξ

ij)− fs(ξ)
)
. (3.5.5)

Recall from Section 3.2.3 that we view N -tuples ξ = (ξ1, ξ2, . . . , ξN) ∈ NN as particle

configurations, with ξk particles at location k for each k ∈ [1, N ]; the total number of particles

in this configuration is n = N (ξ) =
∑N

j=1 ξj. We label the locations of these particles in

non-decreasing order by

x1(ξ) ≤ · · · ≤ xn(ξ). (3.5.6)

Given another particle configuration ζ with the same number n of particles, whose locations

are labeled by
(
yj(ζ)

)
in non-decreasing order, we define the distance

d(ξ, ζ) =
n∑
j=1

∣∣xj(ξ)− yj(ζ)
∣∣. (3.5.7)
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Next, we recall c, η, ψ from (3.2.15), fix n ∈ N, and define the parameter

` = `(n) = ψ4n+1N1+dη, where d = d(n) = 50(n+ 1)c. (3.5.8)

Recalling t from (3.2.10) (which satisfies (3.2.11)), we also set

τ = τ(n) = t−N7dψη, t0 = t− ψη. (3.5.9)

These are chosen so that for fixed n > 0, recalling the choices from (3.2.15) (after selecting

c = c(n) > 0 to be sufficiently small),

N−1/2 � ψη � N7dψη � τ < t0 < t < t0 +
`

N
� 1. (3.5.10)

Recalling the operator B = B(s) from (3.5.5), we decompose it into the sum of a “short

range” and “long range” operator, given explicitly by B = S + L, where S = Sn = Sn(s)

and L = Ln = Ln(s) are defined by

(Sfs)(ξ) =
∑

0<|j−k|≤`

cjk(s)2ξj(1 + 2ξk)
(
fs(ξ

jk)− fs(ξ)
)
, (3.5.11)

(Lfs)(ξ) =
∑
|j−k|>`

cjk(s)2ξj(1 + 2ξk)
(
fs(ξ

jk)− fs(ξ)
)
. (3.5.12)

We let UB(s1, s2) be the semigroup associated with B and likewise define US(s1, s2) and

UL(s1, s2).

We also let Ft0 denote the σ-algebra generated by {Xs}0≤s≤t0 , and define

hs(ξ) = hλ,s(ξ) = E
[
Qj1,...,jm
i1,...,im

(s) | λ,Ft0
]

= E
[
Qj1,...,jm
i1,...,im

(s) | λ,Xt0

]
. (3.5.13)

In the last equality, we used the Markov properties for Dyson Brownian motion and the

eigenvector moment flow. Informally, hs(ξ) corresponds to a solution of the eigenvector
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moment flow dynamics, run for time s− t0, with initial data Xt0 .

For consistency with [42] we introduce the following notation. Let K > 1 be such

that K−1 is less than the constant c from Lemma 3.3.1 and K is greater than those from

Lemma 3.3.3, Lemma 3.3.4, Lemma 3.3.5, and Lemma 3.3.6; and define

r =
1

2K
; Dr =

{
z = E + iη : |E| ≤ r,

ψ4

N
≤ η ≤ r

}
. (3.5.14)

We define the function d̃ = d̃n on n-particle configurations by

d̃(ξ, ζ) = max
1≤β≤n

∣∣∣∣{1 ≤ i ≤ N :
∣∣γi(t0)

∣∣ ≤ r, min
{
xβ(ξ), yβ(ζ)

}
≤ i ≤ max

{
xβ(ξ), yβ(ζ)

}}∣∣∣∣.
(3.5.15)

The next lemma provides several estimates necessary to analyze the eigenvector moment

flow. Its first and second parts follow from Lemma 3.3.3 and Lemma 3.3.4, respectively,

together with a standard stochastic continuity argument. Its third part constitutes a special

case of [42, Corollary 3.3], whose assumptions are verified by Lemma 3.3.2. Its fourth part

is a consequence of [42, (3.48)]. In what follows, we recall mfc(s, z) from (3.3.9), γi(s) from

(3.3.10), and R(s, z) from (3.2.16).

Lemma 3.5.2 ([42]). The initial data X0 and the Dyson Brownian motion {Xs}0<s≤t to-

gether induce a measureM on the space of eigenvalue and eigenvector trajectories
(
λ(s),u(s)

)
0≤s≤t

on which the following event of trajectories holds with overwhelming probability.

1. Eigenvalue rigidity holds: supt0≤s≤t
∣∣mN(s, z) − mfc,t(s, z)

∣∣ ≤ ψ(Nη)−1 uniformly for

z ∈ Dr and supt0≤s≤t
∣∣λi(s)−γi(s)∣∣ ≤ ψN−1 uniformly for indices i such that

∣∣γi(s)∣∣ ≤
r.

2. Delocalization holds: Conditional on λ, for any q ∈ RN with stable support we have

that

sup
z∈Dr

sup
t0≤s≤t

∣∣∣〈q,R(s, z)q
〉∣∣∣ ≤ C(q)ψ; sup

z∈Dr
sup
t0≤s≤t

N
〈
ui(s),q

〉2 ≤ C(q)ψ, (3.5.16)
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where C(q) > 0 is a constant depending on | supp q|.

3. Finite speed of propagation holds: Let n > 0 be an integer, and abbreviate ` = `(n)

and S = Sn. Conditional on λ, we have the following estimate that is uniform in any

function g :
{
ξ ∈ NN : N (ξ) = n

}
→ R. For a particle configuration ξ ∈ NN with

N (ξ) = n such that d̃n(ξ, ζ) ≥ ψ` for each ζ in the support of g, we have

sup
t0≤s≤t

∣∣US(t0, s)g(ξ)
∣∣ ≤ Nne−cψ‖g‖∞. (3.5.17)

4. For any interval I ⊂
[
− r, r

]
of length |I| ≥ ψN−1, we have

C−1|I|N ≤
∣∣∣{i : λi(s) ∈ I}∣∣∣ ≤ C|I|N, (3.5.18)

uniformly in s ∈ [t0, t].

The next estimate on the short range operator S is a consequence of [42, Lemma 3.5]

(whose conditions are verified by Lemma 3.3.2 and Lemma 3.3.7).

Lemma 3.5.3 ([42, Lemma 3.5]). There exists a constant C > 0 such that the following

holds with overwhelming probability with respect to Ft0. Fix an integer n > 0, and abbreviate

` = `(n) (recall (3.5.8)) and S = Sn. There exists an event E of trajectories
(
λ(s),u(s)

)
t0≤s≤t

of overwhelming probability on which we have

sup
s∈[t0,t]

∣∣∣(UB(t0, s)ht0 − US(t0, s)ht0
)

(ξ)
∣∣∣ ≤ C

ψnN(t− t0)

`
(3.5.19)

for any configuration ξ ∈ NN such that N (ξ) = n and supp ξ ⊂
[
(1/2 − c)N − 2ψ`, (1/2 +

c)N + 2ψ`
]
.

175



3.5.2 Continuity estimates

To prepare for the proof of Theorem 3.2.8, we require the following continuity estimates for

entries of R(t, z). We recall a from (3.2.2); t0 and τ from (3.5.9); and r from (3.5.14), and

define

D̂ =
{
z = E + iη : |E| ≤ r

4
, N−a ≤ η ≤ r

4

}
. (3.5.20)

Lemma 3.5.4. Fix an integer n > 0, a real number δ > 0, and a unit vector q with stable

support; set q = |supp q|, and abbreviate τ = τ(n). Then, there exist constants c > 0

(independent of n, δ, and q) and C = C(δ, q, n) > 0 such that, uniformly in t1, t2 ∈ [t0, t]

with t1 < t2, we have

sup
z∈D̂

∣∣∣〈q,R(t1, z)q
〉
−
〈
q,R(t2, z)q

〉∣∣∣ ≤ C
ψ4

√
Nη

+ CN δ

(
t2 − t1
t2 − τ

+N−c
)

; (3.5.21)

sup
z1,z2∈D̂

Im z1=Im z2

∣∣∣〈q,R(t1, z1)q
〉
−
〈
q,R(t1, z2)q

〉∣∣∣ ≤ C
ψ4

√
Nη

+ CN δ

(
N−c +

|z1 − z2|+ Im z1

t1 − τ

)
,

(3.5.22)

both with overwhelming probability.

Proof of Lemma 3.5.4. For s ≥ τ , define

ri(s, z) =
1

λi(τ)− z − (s− τ)mfc,t(s, z)
, (3.5.23)

which is similar to the terms appearing in the definition of the free convolution (3.3.9) (but,

in a sense, “started” at λ(τ) instead of at λ(0)).

Now let us apply [42, Theorem 2.1], with the t there equal to s− τ here and the H0 given

by Xτ here; the assumptions of that theorem are verified by (3.3.12), (3.3.13), and the facts

that τ � N−1/2 and s−τ ≥ t0−τ � N−1/2. For any s ∈ [t0, t], this gives with overwhelming
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probability that

∣∣∣∣∣〈q,R(s, z)q
〉
−

N∑
i=1

〈
ui(τ),q

〉2
ri(s, z)

∣∣∣∣∣ ≤ ψ2

√
Nη

Im

(
N∑
i=1

〈
ui(τ),q

〉2∣∣ri(s, z)
∣∣) . (3.5.24)

Thus, (3.3.1), (3.3.2), and a union bound over s in an N−10-net of [t0, t] together yield that

(3.5.24) holds with overwhelming probability, uniformly in s ∈ [t0, t].

To bound the right side of (3.5.24), observe that (3.3.17), [42, (2.3)], and the exchange-

ability of the eigenvector entries together yield the bound

N∑
i=1

〈
ui(τ),q

〉2∣∣ri(s, z)
∣∣ ≤ Cψ(logN)2, (3.5.25)

uniformly for any standard basis vector q ∈ {e1, e2, . . . , eN}. Therefore, (3.5.25) also holds

for unit vectors q ∈ RN of stable support (where the C there now depends on q = | supp q|),

by expanding q in the standard basis and using the inequality (a + b)2 ≤ 2(a2 + b2) on the

products 〈ui, ej〉〈ui, ek〉 that appear in the corresponding expansion of
〈
ui(τ),q

〉2
. Thus,

(3.5.24) and (3.5.25) together imply

∣∣∣∣∣〈q,R(s, z)q
〉
−

N∑
i=1

〈
ui(τ),q

〉2
ri(s, z)

∣∣∣∣∣ ≤ C(q)ψ4

√
Nη

. (3.5.26)

We now establish (3.5.21) by subtracting (3.5.26) evaluated at s = t2 from that equation

evaluated at s = t1. To that end, we have from (3.5.23) that

∣∣ri(t1, z)− ri(t2, z)
∣∣ =

∣∣(t2 − τ)mfc,t(t2, z)− (t1 − τ)mfc,t(t1, z)
∣∣∣∣∣(λi(τ)− z − (t1 − τ)mfc,t(t1, z)

)(
λi(τ)− z − (t2 − τ)mfc,t(t2, z)

)∣∣∣ .
(3.5.27)
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The numerator of the right side of (3.5.27) is with overwhelming probability bounded by

∣∣(t1 − τ)mfc,t(t1, z)− (t2 − τ)mfc,t(t2, z)
∣∣

≤ |t1 − t2|
∣∣mfc,t(t2, z)

∣∣+ |t1 − τ |
∣∣mfc,t(t1, z)−mfc,t(t2, z)

∣∣ ≤ C(logN)2(t2 − t1) + C(t1 − τ)N−c,

(3.5.28)

Here, in the last inequality we used the overwhelming probability bound
∣∣mfc,t(t2, z)

∣∣ ≤
C(logN)2 (which follows from [42, (2.3)], whose hypotheses are satisfied by (3.3.11) with

s = 0) and also the overwhelming probability estimate

∣∣mfc,t(t1, z)−mfc,t(t2, z)
∣∣ ≤ ∣∣mfc,t(t1, z)−mα(z)

∣∣+
∣∣mfc,t(t2, z)−mα(z)

∣∣ ≤ CN−c,

(3.5.29)

where the last inequality follows from (3.3.13) (with the δ there equal to 1
2

(
1
2
− a
)

here).

To bound the denominator of the right side of (3.5.27) observe, since Immfc,t(t1, z) ≥ c′

for some uniform constant c′ > 0 (which is a consequence of (3.3.13) and (3.3.6)), we have

with overwhelming probability that

1(
λi(τ)− z − (t1 − τ)mfc,t(t1, z)

)(
λi(τ)− z − (t2 − τ)mfc,t(t2, z)

) ≤ C

∣∣ri(t1, z)
∣∣

t2 − τ
. (3.5.30)

Altogether, we obtain with overwhelming probability that

∣∣ri(t1, z)− ri(t2, z)
∣∣ ≤ C

∣∣ri(t1, z)
∣∣

t2 − τ
(
(logN)2(t2 − t1) + (t1 − τ)N−c

)
≤ C

∣∣ri(t1, z)
∣∣((logN)2 t2 − t1

t2 − τ
+N−c

)
, (3.5.31)
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where we used t1 − τ ≤ t2 − τ in the last inequality. It follows that

∣∣∣∣∣
N∑
i=1

〈
ui(τ),q

〉2
ri(t, z)−

N∑
i=1

〈
ui(τ),q

〉2
ri(τ, z)

∣∣∣∣∣
≤ C(logN)2

(
t2 − t1
t2 − τ

+N−c
) N∑

i=1

〈
ui(τ),q

〉2∣∣ri(t1, z)
∣∣. (3.5.32)

To bound the right side of (3.5.32), observe that

N∑
i=1

〈
ui(τ),q

〉2∣∣ri(t1, z)
∣∣ =

∑
1≤i≤N
|λi(τ)|<r

〈
ui(τ),q

〉2∣∣ri(t1, z)
∣∣+

∑
1≤i≤N
|λi(τ)|≥r

〈
ui(τ),q

〉2∣∣ri(t1, z)
∣∣.

(3.5.33)

We bound the first term on the right side of (3.5.33) using Lemma 3.3.4, which yields

∑
1≤i≤N
|γi(τ)|<r

〈
ui(τ),q

〉2∣∣ri(t1, z)
∣∣ ≤ N δ/2−1

N∑
i=1

∣∣ri(t1, z)
∣∣ ≤ N δ, (3.5.34)

for any δ > 0, with overwhelming probability. Here, in the last bound we used the fact that∑N
i=1

∣∣ri(t1, z)
∣∣ ≤ N(logN)2 (which is a consequence of [78, Lemma 7.5], whose assumptions

are verified by (3.3.12) and the fact that t1 − τ � N−1/2).

To bound the second term in (3.5.33), observe for
∣∣γi(τ)

∣∣ > r we have
∣∣λi(τ)

∣∣ > 3r
4

(by

(3.3.14)), so ∣∣λi(τ)− z − (t1 − τ)mfc,t(t1, z)
∣∣ ≥ c, (3.5.35)

for some constant c > 0, where we used t1 − τ � 1 and |mfc,t(t1, z)| < C(logN)2 (again by

[42, (2.3)]). We then obtain by (3.5.23) that

∑
1≤i≤N
|γi(τ)|≥r

〈
ui(τ),q

〉2∣∣ri(t1, z)
∣∣ ≤ C

N∑
i=1

〈
ui(τ),q

〉2 ≤ C. (3.5.36)

Now the first bound (3.5.21) of the lemma follows from (3.5.26), (3.5.32), (3.5.33), (3.5.34),
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and (3.5.36), after absorbing the (logN)2 prefactor into N δ and adjusting δ appropriately.

We omit the proof of the second as it is analogous, but obtained by replacing (3.5.27) with

the bound

∣∣ri(t1, z1)−ri(t1, z2)
∣∣ ≤ (t1 − τ)

∣∣mfc,t(t1, z1)−mfc,t(t1, z2)
∣∣+ |z1 − z2|∣∣∣(λi(τ)− z1 − (t1 − τ)mfc,t(t1, z1)

)(
λi(τ)− z2 − (t1 − τ)mfc,t(t1, z2)

)∣∣∣ ,
(3.5.37)

and (3.5.28) with the bound

(t1 − τ)
∣∣mfc,t(t1, z1)−mfc,t(t1, z2)

∣∣ (3.5.38)

≤ (t1 − τ)
(∣∣mfc,t(t1, z1)−mα(z1)

∣∣+
∣∣mfc,t(t1, z2)−mα(z2)

∣∣+
∣∣mα(z1)−mα(z2)

∣∣)
(3.5.39)

≤ C(t1 − τ)
(
N−c + |z1 − z2|+ Im z1

)
, (3.5.40)

where (3.5.40) follows from (3.3.13) and (3.3.5).

3.5.3 Short-time relaxation

The proof of short-time relaxation here is similar to that of [42, Theorem 3.6]. However,

certain changes are necessary, since the diagonal resolvent entries Rii(t, z) for the removed

model Xt do not converge to a deterministic quantity, unlike those of the matrix model

considered in [42]. This causes the observable fλ,t(ξ) from (3.5.3) to now converge to the

random variable A(q, ξ), which is defined as follows.

Recall t and t0 from (3.2.10) and (3.5.9), respectively; recall that {λj} are the eigenvalues

of Xs and that {γj(s)
}

are given by (3.3.10); fix a unit vector q ∈ RN with stable support;

and set q = | supp q|. For any integer k ∈ [1, N ]; particle configuration ξ = (ξ1, ξ2, . . . , ξN);
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and eigenvalue trajectory λ, define A(q, k) = At,λ(q, k) and A(q, ξ) = At,λ(q, ξ) by

A(q, k) =
Im
〈
q,R(s, γ̂k + iη)q

〉
Immα(γk + iη)

, A(q, ξ) =
N∏
k=1

A(q, k)ξk , (3.5.41)

where we have recalled γk = γ
(α)
k from (3.1.7) and γ̂k from (3.2.18).

The initial data X0 and Dyson Brownian motion Xs for 0 ≤ s ≤ t together induce a

measure on the space of eigenvalues and eigenvectors
(
λ(s),u(s)

)
0≤s≤t, which we denote by

M. Let λ =
(
λ(s)

)
0≤s≤t be an eigenvalue trajectory with initial data given by a realization

of the spectrum of X0, and recall the observable hs(ξ) from (3.5.13) that is associated to an

eigenvalue trajectory λ and “starts” at time t0.

Before proceeding, we first fix a small constant c0 = c0(α) > 0 such that the conclusions

of Lemma 3.3.1, Lemma 3.3.3, Lemma 3.5.2, Lemma 3.5.3, and Lemma 3.5.4 apply to any

z = E + iη ∈ Dr with |E| ≤ 16c0 and any i ∈ [1, N ] with |γi(s)| < 16c0. By Lemma 3.3.7,

we may choose c1 > 0 such that, for any fixed real number s ∈ [t0, t] and index i ∈
[
(1/2−

c1)N, (1/2 + c1)N
]
, we have that

∣∣γi(s)∣∣ < c0 with overwhelming probability. Hence, we will

fix this choice of c1 > 0 in what follows and apply the five lemmas listed above without

further comment.

Then, to establish Theorem 3.2.8, it suffices prove the following proposition.

Proposition 3.5.5. For any integer m ≥ 0, there exist constants c2 = c2(m) > 0 and

C = C(m, q) > 0 such that for c < c2 we have

max
ξ∈NN : N (ξ)=m

supp ξ∈[(1/2−c1)N,(1/2+c1)N ]

∣∣ht(ξ)− A(q, ξ)
∣∣ ≤ CN−c2 , (3.5.42)

with overwhelming probability with respect to M.

Proof of Theorem 3.2.8. Recall from (3.2.14) and (3.5.13) that Ft(ξ) = E
[
ht(ξ)

]
, where the

expectation is over λ and Xt0 . Therefore, the theorem follows from applying (3.5.42) on an
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event of overwhelming probability, and applying the deterministic bounds
∣∣ht(ξ)

∣∣ ≤ Nm and∣∣A(q, ξ)
∣∣ ≤ Cmη−m (which holds by applying (3.3.2) to bound the numerator of A(q, ξ) by

η−m and (3.3.6) to bound its denominator by cm) off of this event.

We now introduce some notation. Fix a particle configuration ζ = (ζ1, ζ2, . . . , ζN) ∈ NN

with m = N (ζ) particles such that supp ζ ∈
[
(1/2 − c1)N, (1/2 + c1)N

]
. We must verify

(3.5.42) for ξ = ζ.

For notational simplicity, we assume that | supp ζ| = 2. The cases where ζ is supported on

one site and on more than two sites constitute straightforward modifications of the following

two-site argument and will be briefly outlined in Section 3.5.6. Denote supp ζ = {i1, i2}, with

i1 < i2, and let j1 and j2 denote the number of particles in ζ at sites i1 and i2, respectively.

Thus ζi1 = j1, ζi2 = j2, and j1 + j2 = m.

Recalling d = d(m) = 50(1 + m)c and ` = `(m) = ψ4m+1N1+dη from (3.5.8), we define a

“short-range averaging parameter”

d̃ = b`ψ5mN dc, (3.5.43)

which by (3.2.15) and (3.5.9) satisfies ψ2`� d̃� Nt0 (assuming c = c(m) > 0 is sufficiently

small). For a ∈ R and b ∈ N, we further define the interval I
(b)
a = I

(b)
a (ζ) by

I(b)
a = I

(b)
a,1 ∪ I

(b)
a,2, (3.5.44)

where the intervals I
(b)
a,1 = I

(b)
a,1(ζ) and I

(b)
a,2 = I

(b)
a,2(ζ) are given by

I
(b)
a,1 =

[
i1 − 10bd̃− a, i1 + 10bd̃+ a

]
, I

(b)
a,2 =

[
i2 − 10bd̃− a, i2 + 10bd̃+ a

]
. (3.5.45)

We assume the intervals I
(b)
a,1 and I

(b)
a,2 are disjoint for all a ∈ [0, 2d̃] and b ∈ [0,m].2 When

2The reason for this assumption will be seen below, in the material immediately following (3.5.79).
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this is not true, the argument below is carried out analogously, but instead using a single

connected interval. We describe the necessary modifications in Section 3.5.6.

Definition 3.5.6. For any particle configuration ξ ∈ NN with supp ξ ⊂ I
(b)

d̃+ψ`
, we further

set

χ
(b)
1 (ξ) =

∑
i∈I(b)

d̃+ψ`,1

ξi, χ
(b)
2 (ξ) =

∑
i∈I(b)

d̃+ψ`,2

ξi, (3.5.46)

which denote the number of particles in ξ in I
(b)

d̃+ψ`,1
and I

(b)

d̃+ψ`,2
, respectively. For any integers

k1, k2, b ≥ 0 and n ≥ 1, recall A(q, k) from (3.5.41) and set

Ω(b)(k1, k2) =
{
ξ ∈ NN : supp ξ ⊂ I

(b)

d̃+ψ`
, χ

(b)
1 (ξ) = k1, χ

(b)
2 (ξ) = k2

}
; (3.5.47)

Ω(b)(n) =
⋃

k1+k2=n

Ω(b)(k1, k2); A(k1, k2) = A(q, i1)k1A(q, i2)k2 . (3.5.48)

We also define the restricted intervals

Φ(b)(k1, k2) =

{
ξ ∈ NN : supp ξ ⊂ I

(b)
−ψ`,

∑
i∈I(b)−ψ`,1

ξi = k1,
∑

i∈I(b)−ψ`,2

ξi = k2

}
; (3.5.49)

Φ(b)(n) =
⋃

k1+k2=n

Φ(b)(k1, k2). (3.5.50)

The following two definitions provide certain operators on the space of functions on

particle configurations and an auxiliary flow. Similar definitions appeared in [44, Section

7.2].

Definition 3.5.7. Fix integers k1, k2 ≥ 0. For integers a, b ≥ 0, we define operators Flat(b)
a =

Flat
(b)
a;k1,k2

and Av(b) = Av
(b)
k1,k2

on the space of functions f : NN → C as follows. For each

183



particle configuration ξ ∈ NN and function f : NN → C, set

(
Flat(b)

a (f)
)
(ξ) =

 f(ξ), if supp ξ ⊂ I
(b)
a ,

A(k1, k2), otherwise;
(3.5.51)

Av(b)(f) = d̃−1

d̃∑
a=1

Flat(b)
a (f). (3.5.52)

Definition 3.5.8. Adopting the notation of Definition 3.5.7, we define the flow gs(ξ) =

g
(b)
s (ξ) = g

(b)
s (ξ; k1, k2) for s ≥ t0 by

∂sgs = S(s)gs, with initial data gt0(ξ) = (Av(b) ht0)(ξ). (3.5.53)

For each s ≥ t0, let ξ̃ = ξ̃(s) = ξ̃(s; k1, k2) = ξ̃(b)(s; k1, k2) ∈ NN denote a maximizing

particle configuration for g
(b)
s :

g(b)
s (ξ̃) = max

ξ∈Ω(b)(k1,k2)
g(b)
s (ξ; k1, k2). (3.5.54)

When there are multiple maximizers, we pick one arbitrarily (in a way such that ξ̃(s) remains

piecewise constant in s).

3.5.4 Proof of Proposition 3.5.5

To establish Proposition 3.5.5, we begin with the following lemma providing bounds on

A(q, ξ) (recall (3.5.41)).

Lemma 3.5.9. For any integer m ≥ 0, there exists a constant C = C(m) > 0 such that

the following holds with overwhelming probability with respect to M for sufficiently small

c = c(m) > 0. First, for any particle configuration ξ ∈ NN with m = N (ξ) particles such
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that supp ξ ⊂
[
(1/2− c1)N, (1/2 + c1)N

]
, we have that

∣∣A(q, ξ)
∣∣ ≤ Cψm. (3.5.55)

Second, for any integers k1, k2, b ≥ 0 with k1 + k2 ≤ m and b ≤ m+ 1, we have that

max
b∈[0,m+1]

max
ξ∈Ω(b)(k1,k2)

∣∣A(q, ξ)− A(k1, k2)
∣∣ < CN−3d. (3.5.56)

Proof. Recalling the definition (3.5.41) of A, the denominator Immα(γij +iη) of each A(q, ij)

is bounded below by a uniform constant by (3.3.6). Moreover, the numerator of each A(q, ij)

is bounded above by Cψ with overwhelming probability by the second part of Lemma 3.5.2.

Together these estimates yield (3.5.55).

To establish (3.5.56), observe by (3.5.22), (3.2.11) and (3.2.2) that there exists a constant

c > 0 such that, for any δ > 0; j ∈ {1, 2}; and k ∈ I
(b)

d̃+ψ`,j
, we have with overwhelming

probability that

∣∣∣〈q,R(t, γ̂k + iη)q
〉
−
〈
q,R(t, γ̂ij + iη)q

〉∣∣∣ .m,δ
ψ4

√
Nη

+N δ

(
N−c +

∣∣γ̂k − γ̂ij ∣∣+ η

t− τ

)
.

(3.5.57)

To bound the right side of (3.5.57), we first note that by (3.3.24), there exists a constant

c′ > 0 such that for indices i, j with |i−N/2| < c′N and |j −N/2| < c′N ,

|γ̂i − γ̂j| ≤ |γ̂i − γi(t)|+ |γ̂j − γj(t)|+ |γi(t)− γj(t)| ≤ 2η + CN−1|i− j|. (3.5.58)

In the last inequality we used (3.3.24), the fact that N δ−1/2 ≤ η for δ ≤ c, and the fact that

the density ρfc,t(t, x) satisfies c ≤ ρfc,t(t, x) ≤ C for |x| ≤ C−1. The latter fact is [78, Lemma

3.2], whose hypotheses are satisfied in this case by the first inequality in (3.3.11) and the
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first inequality in (3.3.6). We further observe using (3.5.58) that for k ∈ I(b)

d̃+ψ`,j
,

∣∣γ̂ij − γ̂k∣∣ . N−1|ij − k|+ η . 2(10bd̃+ 3d̃)N−1 + η ≤ 30bd̃N−1 + η ≤ 31bN3dη, (3.5.59)

where in the last inequality we used the fact that d̃ = b`ψ5mN dc (recall (3.5.43)), where

` = ψ4m+1N1+dη and d = 50(m+1)c (recall (3.5.8)). Further using the facts that η � N−1/2

and t − τ = N7dψη (recall (3.5.9)), it follows from (3.5.57), after taking c = c(m) > 0

sufficiently small, that with overwhelming probability

∣∣∣〈q,R(t, γ̂k + iη)q
〉
−
〈
q,R(t, γ̂ij + iη)q

〉∣∣∣ .m N−4d. (3.5.60)

We now note that by (3.3.4), %α(x) > c for a constant c > 0 and all x in a neighborhood

of zero that contains all γ
(α)
k such that k ∈ I(b)

d̃+ψ`,j
. The definition (3.1.7) then implies that

for j, k ∈ I(b)

d̃+ψ`,j
,
∣∣γ(α)
j − γ

(α)
k | ≤ CN−1|j − k|. Using this fact along with (3.3.5) implies that

for k ∈ I(b)

d̃+ψ`,j
,

∣∣ Immα(γij + iη)− Immα(γk + iη)
∣∣ ≤ C|ij − k|+ Cη ≤ 31bN3dη � 1, (3.5.61)

by the same calculation as in (3.5.59).

Thus, the bound (3.5.56) follows from (3.5.60), (3.5.55), and (3.5.61).

The following lemma, which we will establish in Section 3.5.5 below, essentially states

that the difference gs(ξ̃)−A(k1, k2) is either nearly negative or its derivative is bounded by

a negative multiple of itself. Here, we recall the intervals Φ(b)(k1, k2) from Definition 3.5.6.

Lemma 3.5.10. Fix integers b, n, k1, k2 ≥ 0 such that n ≤ m, b ≤ m + 1, and k1 + k2 =

n. If c = c(m) > 0 (recall (3.2.15)) is chosen small enough, then there exist constants

C = C(b, n) > 0 and c = c(b, n) > 0 such following holds with overwhelming probability

with respect to M. Fix a realization of X0 and an associated eigenvalue trajectory λ =(
λ(s)

)
t0≤s≤t

. There exists a countable subset C = C(X0,λ) ⊂ [t0, t] such that, for s ∈ [t0, t]\C,
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the continuous function g
(b)
s (ξ̃

(
s; k1, k2); k1, k2

)
is differentiable and satisfies either

g(b)
s (ξ̃)− A(k1, k2) ≤ N−1, (3.5.62)

or

∂s
(
g(b)
s (ξ̃)− A(k1, k2)

)
≤ C

η

(
ψmax

ξ

∣∣∣hs(ξ)− A
(
χ

(b+1)
1 (ξ), χ

(b+1)
2 (ξ)

)∣∣∣+N−d
)

− c

η

(
g(b)
s (ξ̃)− A(k1, k2)

)
,

(3.5.63)

where the maximum in (3.5.63) is taken over all ξ ∈ Φ(b+1)(k1 − 1, k2) ∪ Φ(b+1)(k1, k2 − 1).

Given Lemma 3.5.10, we can now establish Proposition 3.5.5.

Proof of Proposition 3.5.5. First observe that, for any n ≤ m and ξ ∈ Φ(m−n+1)(n), we have

∣∣ht(ξ)− g(m−n+1)
t (ξ)

∣∣ ≤ ∣∣∣(UB(t0, t)ht0 − US(t0, t)ht0
)
(ξ)
∣∣∣+
∣∣US(t0, t)(ht0 − Av(m−n+1) ht0)(ξ)

∣∣
(3.5.64)

.m ψ4mN`−1(t− t0) + e−cψ. (3.5.65)

Here, the first term from (3.5.65) follows from Lemma 3.5.3, where the containment supp ξ ⊂[
(1/2− c)N, (1/2 + c)N

]
holds since i1, i2 ∈

[
(1/2− c1)N, (1/2 + c1)N

]
. The second term in

(3.5.65) follows from (3.5.17), which applies due to the facts that
(
ht0−Av(m−n+1) ht0

)
(ξ′) = 0

whenever supp ξ′ ⊆ I
(m−n+1)
0 and that d̃n(ξ, ξ′) > ψ` for any ξ ∈ Φ(m−n+1)(n) and supp ξ′ 6⊂

I
(m−n+1)
0 .

We now define a discretization of the interval [t0, t] by

tk = t0 + km−1ψη, for 0 ≤ k ≤ m, (3.5.66)
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and we will show for each integer n ∈ [0,m] that, with overwhelming probability,

sup
s∈[tn,t]

max
ξ∈Φ(m−n+1)(n)

∣∣∣hs(ξ)− A
(
χ

(m−n+1)
1 (ξ), χ

(m−n+1)
2 (ξ)

)∣∣∣ .n
ψn

N d
. (3.5.67)

Given the n = m case of (3.5.67) and using the facts that ζ ∈ Φ(1)(m) and tm = t, we obtain

with overwhelming probability that

∣∣∣ht(ζ)− A
(
χ

(1)
1 (ζ), χ

(1)
2 (ζ)

)∣∣∣ .m
ψm

N d
. (3.5.68)

Our conclusion, (3.5.42), then follows from the facts that χ
(1)
1 (ζ) = j1 = ζi1 and χ

(1)
2 (ζ) =

j2 = ζi2 ; and our choices ψ = N c and d = 50(m+ 1)c.

So, it suffices to prove (3.5.67) and therefore the two estimates

sup
s∈[tn,t]

max
ξ∈Φ(m−n+1)(n)

(
hs(ξ)− A

(
χ

(m−n+1)
1 (ξ), χ

(m−n+1)
2 (ξ)

))
.n

ψn

N d
; (3.5.69)

sup
s∈[tn,t]

max
ξ∈Φ(m−n+1)(n)

(
A
(
χ

(m−n+1)
1 (ξ), χ

(m−n+1)
2 (ξ)

)
− hs(ξ)

)
.n

ψn

N d
. (3.5.70)

To do this, we induct on n ∈ [0,m]. The base case n = 0 is trivial, since ξ ∈ Φ(m+1)(0)

implies that hs(ξ) = 1 = A
(
χ

(m+1)
1 (ξ), χ

(m+1)
2 (ξ)

)
. For the induction step, we assume the

induction hypothesis (3.5.67) holds for n− 1 and prove (3.5.69) and (3.5.70) for n.

We will in fact only establish (3.5.69), as the proof of (3.5.70) is entirely analogous (by

in what follows replacing the maximizer ξ̃ of g(b) with the minimizer). To that end, for any

two fixed integers k1, k2 ≥ 0 with k1 + k2 = n, it suffices to show that

sup
s∈[tn,t]

(
g(m−n+1)
s (ξ̃; k1, k2)− A(k1, k2)

)
.n

ψn

N d
(3.5.71)

holds with overwhelming probability, where we have abbreviated ξ̃ = ξ̃(m−n+1)(s; k1, k2).

Indeed, given (3.5.71), (3.5.69) follows upon letting (k1, k2) range over all pairs of inte-

gers summing to n; the fact that ξ̃ maximizes g(m−n+1) over Ω(m−n+1)(k1, k2); the fact that
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Φ(m−n+1)(k1, k2) ⊆ Ω(m−n+1)(k1, k2); and (3.5.65).

To establish (3.5.71), we first apply the b = m−n+1 case of Lemma 3.5.10. Since (3.5.62)

implies (3.5.71), we may assume that (3.5.63) holds. Then the induction hypothesis (3.5.67)

(whose n is equal to n− 1 here); the fact that ξ ∈ Φ(m−n+2)(k1− 1, k2)∪Φ(m−n+2)(k1, k2− 1)

implies ξ ∈ Ω(m−n+1)(n− 1) (since 10d̃ > 2ψ`); and (3.5.63) together yield that the bound

∂s
(
g(m−n+1)
s (ξ̃; k1, k2)−A(k1, k2)

)
≤ C(m,n)

ψn

N dη
− c(m,n)

η

(
g(m−n+1)
s (ξ̃; k1, k2)−A(k1, k2)

)
,

(3.5.72)

holds for all s ∈ [tn−1, t] \ C (for some countable subset C) with overwhelming probability.

In particular, if we define F : [t0, t]→ R by

F (s) = Fm,n;k1,k2(s) = g(m−n+1)
s (ξ̃; k1, k2)− A(k1, k2), (3.5.73)

then there exist constants c = c(m,n) > 0 and C = C(m,n) > 0 such that

∂s

(
F (s)− C ψ

n

N d

)
≤ − c

η

(
F (s)− C ψ

n

N d

)
, for each s ∈ [tn−1, t] \ C. (3.5.74)

Thus, integration and the fact that tn − tn−1 = ψη
m

together yield for s ∈ [tn, t] that

F (s) ≤ exp

(
− c

η
(s− tn−1)

)(
F (tn−1)− C ψ

n

N d

)
+ C

ψn

N d
≤ exp

(
− cψ

m

)
F (tn−1) + C

ψn

N d
.

(3.5.75)

To bound
∣∣F (tn−1)

∣∣, observe that

∣∣F (tn−1)
∣∣ ≤ ∥∥g(m−n+1)

tn−1

∥∥
∞ +

∣∣A(k1, k2)
∣∣ ≤ ∥∥g(m−n+1)

t0

∥∥
∞ + C(m)ψm ≤ CmNm/2 + C(m)ψm.

(3.5.76)

Here, to deduce the first inequality, we used the definition (3.5.73) of F . To deduce the

second, we used the fact that
∥∥g(b)

s

∥∥
∞ ≤

∥∥g(b)
s′

∥∥
∞ whenever s′ ≤ s (since S is the generator of
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a Markov process) and (3.5.55). To deduce the third inequality, we used (3.5.53) and (3.5.3).

Then (3.5.73), (3.5.75), and (3.5.76) together imply (3.5.71), from which we deduce the

proposition.

3.5.5 Proof of Lemma 3.5.10

We first establish Lemma 3.5.10 assuming (3.5.92) below; the latter will be proven as

Lemma 3.5.11. Throughout this section, for s ∈ [t0, t] we occasionally abbreviate {λj}1≤j≤N ={
λj(s)

}
1≤j≤N .

Proof of Lemma 3.5.10. The differentiability of gs(ξ̃) = g
(b)
s (ξ̃; k1, k2) follows from the gen-

eral fact that the maximum of finitely many differentiable functions on an interval I is itself

differentiable, away from a countable set C. Thus, for any fixed s ∈ [t0, t] \ C, it remains to

upper bound gs(ξ̃)− A(k1, k2) and its derivative. To that end, we may assume that

gs(ξ̃)− A(k1, k2) > N−1, (3.5.77)

for otherwise (3.5.62) would hold. In this case, we set ξ̃ = (ξ̃1, ξ̃2, . . . , ξ̃N) and use (3.5.11)

to write

∂s
(
gs(ξ̃)− A(k1, k2)

)
= S(s)gs(ξ̃) =

∑
0<|j−k|≤`

cjk(t)2ξ̃j(1 + 2ξ̃k)
(
gs(ξ̃

jk)− gs(ξ̃)
)
. (3.5.78)

Now let supp ξ̃ = {j1, j2, . . . , jh}. We claim that

gs(ξ̃
jpk) ≤ gs(ξ̃), for any integers p ∈ [1, h] and k ∈ [jp − `, jp + `]. (3.5.79)

To see this first observe that, since ξ̃ maximizes gs over Ω(k1, k2) = Ω(b)(k1, k2), (3.5.79)

holds if ξ̃jpk ∈ Ω(k1, k2). So, let us assume instead that ξ̃jpk /∈ Ω(k1, k2), meaning that there

exists some v ∈ {1, 2} such a particle originally at site jp ∈ I(b)

d̃+ψ`,v
in ξ̃ jumped out of the
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interval I
(b)

d̃+ψ`,v
. This implies that k /∈ I

(b)

d̃+ψ`
, since the particle can jump at most ` sites

by (3.5.79), but the disjoint intervals I
(b)

d̃+ψ`,1
and I

(b)

d̃+ψ`,2
are at least d̃ � ` sites apart by

hypothesis.

Then, (3.5.51) and (3.5.52) together yield (Av ht0)(ξ)−A(k1, k2) = 0 unless supp ξ ⊆ I
(b)

d̃
.

Thus, any particle configuration ξ ∈ NN in the support of Av ht0 − A(k1, k2) must satisfy

d̃n
(
ξ, ξ̃jpk

)
≥ ψ`. Hence, the finite speed of propagation estimate (3.5.17) yields

∣∣gs(ξ̃jpk)−A(k1, k2)
∣∣ =

∣∣∣US(t0, s)
(
(Av ht0)−A(k1, k2)

)
(ξ̃jpk)

∣∣∣ .n exp
(
− cψ

2

)
<

1

N
, (3.5.80)

which contradicts (3.5.77).

We now set zjp = λjp + iη and use (3.5.79), the definition (3.5.4) of the cij, and the fact

that ξ̃j(2ξ̃k + 1) ≥ 1 when ξ̃jpk 6= ξ̃ to bound the sum in (3.5.78) over j by

(3.5.78) ≤
h∑
p=1

∑
0<|k−jp|≤`

gs(ξ̃
jpk)− gs(ξ̃)

N(λjp − λk)2
≤ 1

N

h∑
p=1

∑
0<|k−jp|≤`

gs(ξ̃
jpk)− gs(ξ̃)

(λjp − λk)2 + η2
(3.5.81)

=
1

Nη

h∑
p=1

∑
0<|k−jp|≤`

(
Im

gs(ξ̃
jpk)

zjp − λk
− Im

A(k1, k2)

zjp − λk

)
(3.5.82)

− 1

Nη

(
gs(ξ̃)− A(k1, k2)

) h∑
p=1

∑
0<|k−jp|≤`

Im
1

zjp − λk
.

(3.5.83)

Since the first bound in (3.5.18) and the fact that N−1`� η yields

h∑
p=1

∑
0<|k−jp|≤`

Im
1

zjp − λk
=

h∑
p=1

∑
0<|k−jp|≤`

η

(λjp − λk)2 + η2
≥

h∑
p=1

∑
k:|λk−λjp |≤η

η

2η2
≥ cN,

(3.5.84)

we have that

(3.5.83) ≤ − c
η

(
gs(ξ̃)− A(k1, k2)

)
. (3.5.85)
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To bound (3.5.82), we fix p ∈ [1, h], recall B from (3.5.5), and employ the decomposition

1

N

∑
0<|k−jp|≤`

(
Im

gs(ξ̃
jpk)

zjp − λk
− Im

A(k1, k2)

zjp − λk

)
(3.5.86)

=
1

N
Im

∑
0<|k−jp|≤`

(
US(t0, s) Av(b) ht0

)
(ξ̃jpk)−

(
Av(b) US(t0, s)ht0

)
(ξ̃jpk)

zjp − λk
(3.5.87)

+
1

N
Im

∑
0<|k−jp|≤`

(
Av(b) US(t0, s)ht0

)
(ξ̃jpk)−

(
Av(b) UB(t0, s)ht0

)
(ξ̃jpk

)
zjp − λk

(3.5.88)

+
1

N
Im

∑
0<|k−jp|≤`

((
Av(b) UB(t0, s)ht0

)
(ξ̃jpk)

zjp − λk
− Im

A(k1, k2)

zjp − λk

)
. (3.5.89)

The terms (3.5.87) and (3.5.88) may be bounded as in the content following [42, (3.64)]:3

(3.5.87) .n
ψn+1`

d̃
, (3.5.88) .n

ψnN(t− t0)

`
. (3.5.90)

For brevity we only prove here the second inequality in (3.5.90) and refer the reader to [42] for

details on the first. Using Lemma 3.5.3 (which applies as supp ξ̃jpk ⊆
[
(1/2−c)N, (1/2+c)N

]
,

since supp ξ̃ ⊆
[
(1/2− c1)N, (1/2 + c1)N

]
and |k − jp| ≤ `), we find

∣∣∣(Av(b) US(t0, s)ht0
)
(ξ̃jpk)−

(
Av(b) UB(t0, s)ht0

)
(ξ̃jpk

)∣∣∣
≤
∣∣∣(US(t0, s)ht0 − UB(t0, s)ht0

)(
ξ̃jpk

)∣∣∣ .n
ψnN(t− t0)

`
, (3.5.91)

which implies the second bound in (3.5.90).

Next, as Lemma 3.5.11 below, we show that, for any fixed p ∈ [1, h] and s ∈ [t0, t] \ C,

(3.5.89) .n ψ
∣∣∣hs(ξ̃ \ jp)− A(χ(b+1)

1 (ξ̃ \ jp), χ(b+1)
2 (ξ̃ \ jp)

)∣∣∣+N−d. (3.5.92)

Combining these bounds and using the choices of t0 from (3.5.9); ` from (3.5.8); and d̃ from

3When bounding (3.5.87), I
(b)
a plays the role of the interval [b1 − a, b2 + a] in [42].
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(3.5.43), we obtain for fixed p ∈ [1, h] and s ∈ [t0, t] \ C that (3.5.86) satisfies

1

N

∑
0<|k−jp|≤`

(
Im

gs(ξ̃
jpk)

zjp − λk
− Im

A(k1, k2)

zjp − λk

)
(3.5.93)

.n max
ξ∈Ω(b+1)(k1−1,k2)∪Ω(b+1)(k1,k2−1)

ψ
∣∣∣hs(ξ)− A

(
χ

(b+1)
1 (ξ), χ

(b+1)
2 (ξ)

)∣∣∣+N−d. (3.5.94)

Summing over p ∈ [1, h], inserting this into (3.5.82), and using (3.5.85) then completes the

proof.

We conclude this section by establishing (3.5.92).

Lemma 3.5.11. Retain the hypotheses and notation of the proof of Theorem 3.2.8. Then

equation (3.5.92) holds.

Proof. From complete delocalization (3.5.16), we have with overwhelming probability that

max
p∈[1,h]

hs(ξ̃
jpk) .n ψ

n. (3.5.95)

Now, for any particle configuration ξ ∈ NN , define aξ = aξ;s ∈ [0, 1] through the equation

Av(f)(ξ) = aξhs(ξ) + (1− aξ)A(k1, k2) if hs(ξ) 6= A(k1, k2), (3.5.96)

and set aξ = 0 if hs(ξ) = A(k1, k2). Since UB(t0, s)ht0 = hs, the first term of (3.5.89) equals

1

N
Im

∑
0<|k−jp|≤`

aξ̃jpkhs(ξ̃
jpk) + (1− aξ̃jpk)A(k1, k2)

zjp − λk

=
1

N
Im

∑
0<|k−jp|≤`

aξ̃hs(ξ̃
jpk) + (1− aξ̃)A(k1, k2)

zjp − λk

+
1

N
Im

∑
0<|k−jp|≤`

(aξ̃jpk − aξ̃)
(
hs(ξ̃

jpk)− A(k1, k2)
)

zjp − λk

=
1

N
Im

∑
0<|k−jp|≤`

aξ̃hs(ξ̃
jpk) + (1− aξ̃)A(k1, k2)

zjp − λk
+On

(
`ψn

d̃

)
.

(3.5.97)
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In the last line we used (3.5.55); (3.5.95); the fact that Im
∑

0<|k−jp|≤`(zjp − λk)
−1 ≤

ImmN(s, zjp) ≤ C, which follows from the first part of Lemma 3.5.2, (3.3.13), and (3.3.6);

and the bound ∣∣aξ̃ − aξ̃jpk∣∣ ≤ d(ξ̃, ξ̃jpk)

d̃
≤ `

d̃
, (3.5.98)

which follows from the definition of aξ̃ and the definition of the Av operator, since the sums

defining Av(f)(ξ̃) and Av(f)(ξ̃jpk) can differ in at most ` terms. The equation (3.5.97)

implies

(3.5.89) =
aξ̃
N

∑
0<|k−jp|<`

(
ηhs(ξ̃

jpk)

(λjp − λk)2 + η2
− ηA(k1, k2)

(λjp − λk)2 + η2

)
+On

(
`ψn

d̃

)
. (3.5.99)

Through (3.5.18) and a dyadic decomposition analogous to the one used in the proof of

Lemma 3.4.7 (see also the proof of [42, Lemma 3.5] for more details), one has with over-

whelming probability that

1

N

∑
|k−jp|>`

η

(λjp − λk)2 + η2
≤ CNη

`
, (3.5.100)

which by (3.5.95) implies with overwhelming probability

∣∣∣∣∣∣ 1

N

∑
|k−jp|>`

ηhs(ξ̃
jpk)

(λjp − λk)2 + η2

∣∣∣∣∣∣ ≤ CNηψn

`
. (3.5.101)

Also,

1

N

N∑
k=1

η

(λjp − λk)2 + η2
= Im

N∑
k=1

1

zjp − λk
= ImmN(s, zjp). (3.5.102)

We conclude from (3.5.99), (3.5.100), (3.5.95), (3.5.101), and (3.5.102) that with overwhelm-

ing probability

(3.5.99) ≤
aξ̃
N

N∑
k=1

ηhs(ξ̃
jpk)

(λjp − λk)2 + η2
− aξ̃A(k1, k2) ImmN(s, zjp) +On

(
ψn

Nη
+
ψnNη

`
+
`ψn

d̃

)
,

(3.5.103)
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where we also used (3.5.55) and (3.5.95) to restore the term with index k = jp in the sum,

which accrues an error of size O (ψn/Nη).

By (3.3.12) and (3.3.13), there exists a constant c > 0 such that, with overwhelming

probability,

∣∣ ImmN(s, zjp)− Immα(γjp + iη)
∣∣ (3.5.104)

≤
∣∣ ImmN

(
s, zjp

)
− Immα(zjp)

∣∣+ | Immα(zjp)− Immα(γjp + iη)
∣∣

(3.5.105)

=
∣∣ Immα(zjp)− Immα(γjp + iη)

∣∣+O
(
N−c

)
. (3.5.106)

Moreover, by rigidity estimate from from the first part of Lemma 3.5.2, the combination of

(3.3.23) and (3.3.24), and (3.3.5), we have that

∣∣∣ Immα

(
zjp
)
− Immα

(
γjp + iη

)∣∣∣ ≤ C
∣∣λjp(s)− γjp∣∣+ Cη ≤ C

(
ψ

N
+N−c + η

)
≤ CN−c,

(3.5.107)

Thus, (3.5.106) and (3.5.107) yield

∣∣∣ ImmN

(
s, zjp

)
− Immα(γjp + iη)

∣∣∣ ≤ CN−c, (3.5.108)

which, together with (3.5.55), yields

∣∣∣A(k1, k2) ImmN

(
s, zjp

)
− A(k1, k2) Immα(γjp + iη)

∣∣∣ .n ψ
nN−c (3.5.109)
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with overwhelming probability. Therefore (3.5.103) implies

(3.5.89) ≤
aξ̃
N

N∑
k=1

ηhs(ξ̃
jpk)(

λjp(s)− λk
)2

+ η2
− aξ̃A(k1, k2) Immα(γjp + iη) (3.5.110)

+On

(
ψn

Nη
+
ψnNη

`
+
`ψn

d̃
+N−d

)
(3.5.111)

holds with overwhelming probability, where we used that ψnN−c = O(N−d) if c is chosen

sufficiently small (depending only on the value m from Lemma 3.5.10). Using the definition

of hs from (3.5.13) (and recalling from (3.2.13) that a(2j) = (2j− i)!!), we find that the first

term on the right side of (3.5.110) is equal to

aξ̃

N∑
k=1

E


( ∏

1≤q≤h

(
N
〈
q,ujq(s)

〉2
)ξ̃q−1p=q

a
(
2(ξ̃q − 1p=q)

) )(
η
〈
q,uk(s)

〉2

(λjp − λk)2 + η2

)
a
(
2(ξ̃k)

)
a
(
2(ξ̃k + 1)

) ∣∣∣∣∣ λ,Ft0


(3.5.112)

≤ aξ̃E


( ∏

1≤q≤h

(
N
〈
q,ujq(s)

〉2
)ξ̃q−1p=q

a
(
2(ξ̃q − 1p=q)

) )( N∑
k=1

η
〈
q,uk(s)

〉2

(λjp − λk)2 + η2

) ∣∣∣∣∣ λ,Ft0
 . (3.5.113)

We now have with overwhelming probability that

N∑
k=1

η
〈
q,uk(s)

〉2

(λjp − λk)2 + η2
= Im

〈
q,R

(
s, λjp(s) + iη

)
q
〉

(3.5.114)

= Im
〈
q,R(t0, γ̂jp(s) + iη)q

〉
+On,c

(
ψ4

√
Nη

+N c

(
t− t0
t0 − τ

+N−c
)

(3.5.115)

+N c

(
N−c +

ψN−1 + 2η

t0 − τ

))
.

(3.5.116)

In the last equality, we used (3.5.21), (3.5.22), Nη � N1/2, s ∈ [t0, t], and the overwhelming
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probability estimate

∣∣λjp(s)− γ̂jp(s)∣∣ ≤ ∣∣λjp(s)− γjp(s)∣∣+
∣∣γjp(s)− γ̂jp(s)∣∣ ≤ ψ

N
+ η, (3.5.117)

which follows from the rigidity estimate in the first item in Lemma 3.5.2 and (3.3.24) (with

η � N−1/2). By (3.5.16) and the fact that ψ = N c, this yields

(3.5.113) ≤ aξ̃E


( ∏

1≤q≤h

(
N
〈
q,ujq(s)

〉2
)ξ̃q−1p=q

a
(
2(ξ̃q − 1p=q)

) )
Im
〈
q,R

(
t0, γ̂jp(s) + iη

)
q
〉 ∣∣∣∣∣ λ,Ft0


(3.5.118)

+On,c

(
ψn+4

√
Nη

+ ψn+1

(
t− t0
t0 − τ

+N−c +
ψN−1 + 2η

t0 − τ

))
. (3.5.119)

We now recognize that the second factor inside the expectation on the right side of

(3.5.118) is measurable with respect to Ft0 . We may therefore factor it out of the expectation

and rewrite the previous bound as

(3.5.113) ≤ aξ̃hs(ξ̃ \ jp) Im
〈
q,R

(
t0, γ̂jp(s) + iη

)
q
〉

(3.5.120)

+On,c

(
ψn+4

√
Nη

+ ψn+1

(
t− t0
t0 − τ

+N−c
)

+
ψN−1 + 2η

t0 − τ

))
. (3.5.121)

Using again the computation (3.5.115) with s = t, and (3.5.95) yields

(3.5.113) ≤ aξ̃hs(ξ̃ \ jp) Im
〈
q,R

(
t, γ̂jp(s) + iη

)
q
〉

(3.5.122)

+On,c

(
ψn+4

√
Nη

+ ψn+1

(
t− t0
t0 − τ

+N−c +
ψN−1 + 2η

t0 − τ

))
. (3.5.123)
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This, together with the definition (3.5.41) of A(q, jp) and (3.5.110), gives

(3.5.89) ≤ aξ̃ Immα(γjp + iη)
(
A(q, jp)hs(ξ̃ \ jp)− A(k1, k2)

)
(3.5.124)

+On,c

(
ψn+4

√
Nη

+ ψn+1

(
t− t0
t0 − τ

+N−c +
ψN−1 + 2η

t0 − τ

))
(3.5.125)

+On,c

(
ψ4

Nη
+
ψnNη

`
+
`ψn

d̃
+N−d

)
. (3.5.126)

Recalling that in (3.2.15), (3.5.8), (3.5.9), and (3.5.43), we fixed small d(m) > 0 such

that d = 50(1 +m)c (recall ψ = N c) and chose parameters so that N−1/2 � η � τ ≤ t0 ≤ t:

η = N−aψ, ` = ψ5m+1N1+dη, t0 = t− ψη, τ = t−N7dψη, d̃ = `ψ5mN d. (3.5.127)

Then choosing c sufficiently small, we deduce from (3.5.124) that

(3.5.89) ≤ aξ̃ Immα(γjp + iη)
(
A(q, jp)hs(ξ̃ \ jp)− A(k1, k2)

)
+On

(
N−d

)
. (3.5.128)

To complete the argument, it suffices to show that

aξ̃ Immα(γjp + iη)
(
At(q, jp)hs(ξ̃ \ jp)− At(k1, k2)

)
≤ Cψ

∣∣∣hs(ξ̃ \ jp)− At(χ(b+1)
1 (ξ̃ \ jp), χ(b+1)

2 (ξ̃ \ jp)
)∣∣∣+On(N−d). (3.5.129)

We recall that, for jp ∈
[
(1/2− c)N, (1/2 + c)N

]
, there exists C > 0 such that

∣∣ Immα(γjp +

iη)
∣∣ < C, which holds by (3.3.6). This, together with (3.5.56), and the definition (3.5.41) of
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A(q, ξ), we obtain

Immα(γjp + iη)
(
A(q, jp)hs(ξ̃ \ jp)− A(k1, k2)

)
(3.5.130)

= Immα(γjp + iη)
(
A(q, jp)hs(ξ̃ \ jp)− A

(
q, ξ̃
))

+On

(
N−d

)
(3.5.131)

= Immα(γjp + iη)A(q, jp)
(
hs(ξ̃ \ jp)− A(q, ξ̃ \ jp)

)
+On

(
N−d

)
(3.5.132)

= Immα(γjp + iη)A(q, jp)
(
hs(ξ̃ \ jp)− A

(
χ

(b+1)
1 (ξ̃ \ jp), χ(b+1)

2 (ξ̃ \ jp)
)

+On

(
N−2d

))
(3.5.133)

+On

(
N−d

)
. (3.5.134)

Combining the last line with (3.5.55) and using the bound
∣∣ Immα(γjp + iη)

∣∣ < C again, we

see

Immα(γjp + iη)
(
A(q, jp)hs(ξ̃ \ jp)− A(k1, k2)

)
≤ Cψ

∣∣∣hs(ξ̃ \ jp)− A(χ(b+1)
1 (ξ̃ \ jp), χ(b+1)

2 (ξ̃ \ jp)
)∣∣∣+On(N−d). (3.5.135)

Then (3.5.129) follows because |aξ̃| ≤ 1.

3.5.6 Outline of the proof of Theorem 3.2.8 in the general case

Previously, we assumed when defining the interval Ia in (3.5.44) that | supp ζ| = 2. Consider

now the general case where | supp ζ| = n′ for n′ ≥ 1. Set supp ζ = {i1, i2, . . . , in′}, with

i1 < i2 < · · · < in′ , recall m = N (ζ), and define

I(b)
a (ζ) =

n′⋃
j=1

I
(b)
a,j , where for all 1 ≤ j ≤ n′, I

(b)
a,j = [ij − 10bd̃− a, ij + 10bd̃+ a] (3.5.136)

under the assumption that all the intervals I
(m)

2d̃,j
are disjoint; we will describe the appropriate

definition when this is not the case below. We further set, for each j ∈ [1, n′] and particle
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configuration ξ ∈ NN ,

χ
(b)
j (ξ) =

∑
i∈I(b)

d̃+ψ`,j

ξi. (3.5.137)

For any integer n′ ≥ 1 and n′-tuple k = (k1, k2, . . . , kn′) of nonnegative integers, we define

Ω(b)(k) =
{
ξ ∈ NN : supp ξ ⊂ I

(b)

d̃+ψ`
, χ

(b)
j (ξ) = kj for j ∈ [1, n′]

}
; (3.5.138)

Ω(b)(n) =
⋃
|k|=n

Ω(k); A(k) =
n′∏
j=1

A(q, ij)
kj , (3.5.139)

where |k| =
∑n′

j=1 kj. We also define the restricted intervals

Φ(b)(k) =
{
ξ ∈ NN : supp ξ ⊂ I

(b)
−ψ`,

∑
i∈I(b)−ψ`,j

ξi = kj for j ∈ [1, n′]
}

; (3.5.140)

Φ(b)(n) =
⋃
|k|=n

Φ(b)(k). (3.5.141)

The operator Flata;k is then defined as in (3.5.51), except with A(k1, k2) there replaced

by A(k) here. Given this change, Av is defined as in (3.5.52). Additionally define the flow

gs(ξ) = g
(b)
s (ξ) = g

(b)
s (ξ; k) as in (3.5.53), and also the maximizer ξ̃ = ξ̃(s) = ξ̃(s,k) =

ξ̃(b)(s,k) ∈ NN by

gs(ξ̃) = max
ξ∈Ω(k)

g(b)
s (ξ; k). (3.5.142)

Now the argument then proceeds as before. Specifically, the dichotomy in Lemma 3.5.10

becomes that g
(b)
s (ξ̃) satisfies either

g(b)
s (ξ̃)− A(k) ≤ 1

N
, (3.5.143)
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or

∂s
(
g(b)
s (ξ̃)− A(k)

)
≤ C

η

(
ψmax

ξ

∣∣∣hs(ξ)− A
(
χ

(b+1)
1 (ξ), . . . , χ

(b+1)
n′ (ξ)

)∣∣∣+N−d
)

(3.5.144)

− c

η

(
g(b)
s (ξ̃)− A(k)

)
, (3.5.145)

where the maximum in (3.5.144) is taken over ξ ∈
⋃

1≤j≤n′ Φ
(b+1)(k1, . . . , kj − 1, . . . , kn′).

The proof of this claim is the same as the one in Section 3.5.5, and the proof of the main

result given this claim is the same as in Section 3.5.4.

When the I
(m)

2d̃,j
are not disjoint, we instead partition

⋃n′

j=1 I
(m)

2d̃,j
into a union of disjoint

intervals Î
(m)
l as follows. There exist an integer v ∈ [1, n′] and indices 1 ≤ j1 < j2 < . . . <

jv ≤ n′ such that the intervals

Î(m)
u =

ju+1−1⋃
j=ju

I
(m)

2d̃,j
(3.5.146)

are mutually disjoint over all u ∈ [1, v] (where we set jv+1 = n′+1), but such that I
(m)

2d̃,j
∩I(m)

2d̃,j+1

is nonempty for each j ∈ [ju, ju+1−2]. We then can make the above definitions using instead

the intervals

J
(b)
a,l = [ijl − 10bd̃− a, ijl+1−1 + 10bd̃+ a], (3.5.147)

which are disjoint for all a ∈ [0, 2d̃] (since the Î
(m)
u are). For instance, we set χ

(b)
j (ξ) =∑

i∈J(b)

d̃+ψ`,j

ξi, and

Ω(b)(k) =
{
ξ ∈ NN : supp ξ ⊂ J

(b)

d̃+ψ`
, χ

(b)
j (ξ) = kj for j ∈ [1, v]

}
, (3.5.148)

and similarly for the other intervals and quantities.

Let us motivate this procedure by very briefly considering the case | supp ζ| = 2, with

supp ζ = {i1, i2}, as in the material after (3.5.44). However, we now suppose that |i2− i1| ≤

20md̃+ 2d̃, so that the intervals defined in (3.5.45) are not disjoint. Then, according to the

above, we instead work on the single connected interval J
(b)
a,1 = [i1 − 10bd̃− a, i2 + 10bd̃+ a].
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Then Av is defined as in (3.5.52), and we observe that Lemma 3.5.9 holds with (3.5.56)

replaced by the inequality

max
b∈[0,m+1]

max
ξ∈Ω(b)(k)

∣∣A(q, ξ)− A(k)
∣∣ < CN−3d, (3.5.149)

so that A(q, ξ), up to a small error, does not depend on ξ for ξ ∈ Ω(m+1)(k). Additionally, it is

permissible to apply the finite speed of propagation estimate as in the material immediately

following (3.5.79), which would not be the case if we retained two disjoint but nearby or

overlapping intervals and attempted the original argument (since then a particle could jump

from one interval to the other). The same reasoning underlies the argument in the general

case.

3.6 Scaling limit

In Section 3.5 we identified the moments of Xt through entries of the resolvent R(t, z).

Here, we determine the scaling limit of these entries, as N tends to infinity. In Section 3.6.1,

we recall some preliminary material from previous works. In Section 3.6.2 we compute the

scaling limits of the moments E
[

ImR?(E + iη)p
]

for p ∈ N, as η tends to 0, and establish

Proposition 3.1.4 as a consequence. In Section 3.6.3 we compute the scaling limits of the

moments E
[

ImRii(E + iη)p
]
, as N tends to ∞, and prove Theorem 3.2.9. Throughout this

section, we recall t from (3.2.10).

3.6.1 Order parameter for Xt

In this section we recall several results on the diagonal resolvent entries of Xt. From Defi-

nition 3.1.3 and the content following it, the scaling limits of these entries as N tends to ∞

and z ∈ H is fixed are given by the random variable R?(z).

A key property of R?(z), shown in [32], is that it satisfies a “recursive distributional

equation,” which may be considered as a limiting analogue of the usual Schur complement
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formula.

Lemma 3.6.1 ([32, Theorem 4.1]). Denote by {ξk}k≥1 a Poisson process on R+ with intensity

measure
(
α
2

)
x−α/2−1 dx. For any z ∈ H, the random variable R?(z) : H → H satisfies the

equality in law

R?(z)
d
= −

(
z +

∞∑
k=1

ξkRk(z)

)−1

, (3.6.1)

where
(
Rk(z)

)
k≥1

is an i.i.d. sequence with distribution R?(z) independent from the process

{ξk}k≥1.

Next we discuss a certain order parameter, which is essentially given by the α
2
-th moment

of (linear combinations of the imaginary and real parts of) R?. In what follows, for any

u, h ∈ C, we recall from [33, Section 5.1] the inner product

h.u = (Re u)h+ (Im u)h̄. (3.6.2)

Definition 3.6.2. For any z ∈ H and u ∈ C, we define γ?z (u) : C→ C by

γ?z (u) = Γ
(

1− α

2

)
E
[(
− iR?(z).u

)α/2]
. (3.6.3)

The following lemma establishes a lower bound on Re γ?z and the existence of a limit for

γ?z as Im z tends to 0. It will be proved in Section 3.7 below.

Lemma 3.6.3. There exists a constant c > 0 such that the following two statements hold.

First, we have the uniform lower bound

inf
z∈H
|z|≤c

inf
u∈S1+

Re γ?z (u) > c. (3.6.4)

Second, for every real number E ∈ [−c, c], there exists a function γ?E : S1
+ → C such that

the following holds. Let {Ej}j≥1 and {ηj}j≥1 denote sequences of real numbers such that
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limN→∞EN = E and limN→∞ ηN = 0. Then, denoting zN = EN + iηN , we have

lim
N→∞

sup
u∈S1+

∣∣γ?zN (u)− γ?E(u)
∣∣ = 0. (3.6.5)

We next recall from [6, (7.37)] notation for a particular analog of γ?z for finite N that will

be useful for us. For any real number s ≥ 0 and index set I ⊂ N ∩ [1, N ], let R(I)(s, z) =(
Xs− z

)−1
=
{
Rij(s, z)

}
denote the resolvent of X

(I)
s , which we define as the matrix Xs but

whose rows and columns with indices in I set to zero.

Definition 3.6.4. Fix a real number s ≥ 0. For any index set I ⊂ N ∩ [1, N ] and complex

number z ∈ H, the function γ
(I)
z (u) : K+ → C is defined by

γ(I)
z (u) = γ(I)

z;s (u) = Γ
(

1− α

2

) 1

N − |I|
∑

1≤k≤N
k/∈I

(
− iR

(I)
kk (s, z).u

)α/2 |gk|α
E
[
|gk|α

] , (3.6.6)

where g = (g1, g2, . . . , gN) is a vector of i.i.d. standard Gaussian random variables4 indepen-

dent from Xs. If I = ∅, we abbreviate γz = γ
(I)
z .

We next have the following local law stating that E
[
γz(u)

]
≈ γ?z (u). It is a consequence

of [6, Theorem 7.6], where the Ωz there is equal to γ?z here by [34, Lemma 4.4].

Lemma 3.6.5 ([6, Theorem 7.6],[34, Lemma 4.4]). There exist constants K > 0 and C =

C(δ) > 0 such that the following holds. Fix a real number δ > 0 with δ < max
{

(b−1/α)(2−α)
20

, 1
2

}
,

and abbreviate D̃ = D̃K,δ (recall (3.3.8)). Then, for any s ∈ [0, t], we have

sup
z∈D̃

sup
u∈S1+

∣∣∣E[γz(u)
]
− γ?z (u)

∣∣∣ ≤ CN−αδ/8, (3.6.7)

where expectation is taken with respect to both Xs and the Gaussian variables gk.

Like Lemma 3.3.2, [6, Theorem 7.6] was only stated in the case s = 0 in [6], but it is

4These Gaussian variables will be useful in (3.6.41) below, when applying a Hubbard–Stratonovich type
transform.
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quickly verified that the same proof applies for arbitrary s ∈ [0, t], especially since H+s1/2W

satisfies the conditions in Definition 3.1.1 for s ∈ [0, t] if H does.

We next have the following lemma, which can be viewed as an analog of Lemma 3.6.1 for

finite N . In what follows, we recall from Definition 3.1.1 that there exist random variables

{Zij}1≤i,j≤ that are mutually independent (up to the symmetry condition Zij = Zji) and

have the following properties. First, each Zij has law N−1/αZ, where Z is α-stable; second,

each N1/α(Hij − Zij) is symmetric and has finite variance.

The first and second bounds in (3.6.9) below are consequences of [6, Proposition 7.11]

and [6, Proposition 7.9], respectively.

Lemma 3.6.6 ([6]). Define the {Zij} and, for each integer j ∈ [1, N ], set

Sjj = −

(
z −

∑
k 6=j

Z2
jkR

(j)
kk

)−1

. (3.6.8)

Then, with overwhelming probability we have the bounds

max
1≤j≤N

E
[
|Sjj −Rjj|

]
≤ C(logN)C

(Nη2)α/8
, max

1≤j≤N

{
|Rjj|, |Sjj|

}
≤ C(logN)C . (3.6.9)

We conclude this section with the following concentration estimate, which is essentially

[6, Proposition 7.17]. Although it was only stated in [6] for the case when I is a single index,

the fact that it can be extended to all I of uniformly bounded size is a quick consequence

[6, Lemma 5.6].

Lemma 3.6.7 ([6, Proposition 7.17]). There exists a constant K > 0 such that the following

holds. Fix a real number δ > 0, and abbreviate D̃ = D̃K,δ from (3.3.8). For every index

set I ⊂ [1, N ], there exists a constant C = C
(
s, |I|

)
> 0 such that, with overwhelming

probability, we have

sup
z∈D̃

sup
u∈S1+

∣∣∣γ(I)
z (u)− E

[
γz(u)

]∣∣∣ ≤ C(logN)C

N s/2ηα/2
. (3.6.10)
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Here, the expectation is taken with respect to both Xs and the Gaussian variables gk.

3.6.2 Tightness

The following lemma computes the scaling limits of moments of ImR?(E + iη), as η tends

to 0. We recall γ?E from Lemma 3.6.3.

Lemma 3.6.8. There exists a constant c > 0 such that the following holds. Fix a real

number E ∈ [−c, c], and let {EN}N≥1 and {ηN}N≥1 be sequences of real numbers such that

limN→∞EN = E and limN→∞ ηN = 0. Then, for each p ∈ N, we have that

lim
N→∞

E
[(

ImR?(EN + iηN)
)p]

= 2−p

(
X + X +

p−1∑
a=1

(
p

a

)
Y(a)

)
, (3.6.11)

where X = Xp and Y(a) = Yp(a) are defined by

X =
1

Γ(p)

∫
R+

tp−1 exp
(
iEt− tα/2γ?E(1)

)
dt, (3.6.12)

and

Y(a) =
1

Γ(a)Γ(p− a)

∫
R2
+

ta−1sp−a−1 exp
(
iE(t− s)

)
× exp

(
− (t2 + s2)α/4γ?E

(
t+ is√
t2 + s2

))
dt ds.

(3.6.13)

Thus, the left side of (3.6.11) exists, depends only on E and p, and is uniformly continuous

in E.

Proof. For brevity, we set R? = R?(EN +iηN). We first express moments of ImR? in terms of

γ?z (recall Definition 3.6.2). To that end, we fix p ∈ N and use the identity 2i ImR? = R?−R?

to write

(ImR?)
p = (2i)−p(R? −R?)

p = (2i)−p
p∑
a=0

(
p

a

)
Ra
?(−R?)

p−a. (3.6.14)

206



So, to establish (3.6.11), it suffices to show for each integer a ∈ [1, p] that

lim
N→∞

E
[
(−iR?)

p
]

= X; lim
N→∞

E
[
(−iR?)

a(iR?)
p−a] = Y(a). (3.6.15)

We only establish the second equality in (3.6.15), as the proof of the former is entirely

analogous.

To that end, let R1, R2, . . . denote i.i.d. complex random variables whose laws are given

by R?, and let {ξk}k≥1 denote a Poisson point process with intensity measure
(
α
2

)
x−α/2−1 dx

(independent from the {Rk}), as in Lemma 3.6.1. Then, Lemma 3.6.1 implies

E
[
(−iR?)

a(iR?)
b
]

= E

[(
− i

∞∑
k=1

ξkRk − iz

)−a(
i
∞∑
k=1

ξkRk + iz

)−b]
, (3.6.16)

for any a, b ≥ 0. Next, recall the integral formula

w−β =
1

Γ(β)

∫
R+

tβ−1 exp(−wt) dt, for Rew > 0 and β > 0. (3.6.17)

For brevity, set A =
∑∞

k=1 ξkRk(z). Abbreviating z = zN = EN + iηN , (3.6.17) implies for

a, b > 0 that

(−iA− iz)−a(iA+ iz)−b
d
=

1

Γ(a)Γ(b)

∫
R2
+

ta−1sb−1 exp
(
it(z + A)− is(z̄ + A)

)
dt ds (3.6.18)

=
1

Γ(a)Γ(b)

∫
R2
+

ta−1sb−1 exp(itA− isA) exp (itz − isz̄) dt ds.

(3.6.19)

We recall the Lévy–Khintchine formula (see [32, (4.5)]): for any i.i.d. complex random vari-

ables {wk}k≥1 such that Rewk ≥ 0 holds almost surely, we have

E

[
exp

(
−
∞∑
k=1

ξkwk

)]
= exp

(
− Γ

(
1− α

2

)
E
[
w
α/2
1

])
. (3.6.20)
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Since ImR? ≥ 0, (3.6.16), (3.6.19), and (3.6.20) together imply

E
[
(−iR?)

a(iR?)
b
]

=
1

Γ(a)Γ(b)

∫
R2
+

ta−1sb−1 exp

(
− Γ

(
1− α

2

)
E
[
(isR? − itR?)

α/2
])
(3.6.21)

× exp(itz − isz̄) dt ds. (3.6.22)

Recalling γ?z from (3.6.2), it follows that

E
[
(−iR?)

a(iR?)
b
]

=
1

Γ(a)Γ(b)

∫
R2
+

ta−1sb−1 exp

(
− (t2 + s2)α/4γ?z

( t+ is√
t2 + s2

))
× exp(itz − isz̄) dt ds.

(3.6.23)

Next, observe by (3.6.4)and (3.6.5), there exists a constant c > 0 such that

sup
z∈H
|z|<c

inf
u∈S1+

Re γ?z (u) > c; lim
N→∞

sup
u∈S1+

∣∣γ?zN (u)− γ?E(u)
∣∣ = 0. (3.6.24)

Therefore, (3.6.23); the dominated convergence theorem; and the fact that

∫
R2
+

sa−1tb−1 exp
(
− c(s2 + t2)α/4

)
ds dt <∞, (3.6.25)

together imply for a ∈ [1, p − 1] that limN→∞ E
[
(−iR?)

a(iR?)
p−a] = Y(a); this establishes

the second statement in (3.6.15). The proof of the first is entirely analogous and is therefore

omitted. Now (3.6.11) follows from (3.6.14) and (3.6.15).

That the left side of (3.6.11) depends only on E and p holds since the same is true for

X and Y. Similarly, to verify the uniform continuity of the left side of (3.6.11) in E, it

suffices to do the same for X and Y. The latter follows from the continuity in E for the

integrands on the right sides of (3.6.12) and (3.6.13), the first bound in (3.6.24), (3.6.25),

and the dominated convergence theorem.
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Remark 3.6.9. The proof of Lemma 3.6.8 implies that limN→∞ E
[
(−iR?)

a(iR?)
p−a] is equal

to X if a = 0, to Y(a) if a ∈ [1, p− 1], and to X if a = p.

Now we can quickly establish Proposition 3.1.4.

Proof of Proposition 3.1.4. Since Lemma 3.6.8 implies that E
[(

ImR?(E + iη)
)2]

is uni-

formly bounded in η > 0, the sequence
{

ImR?(E + iη)
}
η>0

of random variables is tight.

This establishes the first claim of the proposition. The second is a direct consequence of

Lemma 3.6.8.

3.6.3 Scaling limit of A(q, ξ)

We begin with the limit of the numerator of A(q, ξ). To compute the scaling limits of the

moments of A(q, ξ), we first show that the off-diagonal resolvent entries in the numerator of

A(q, ξ) are negligible. Here, we recall the γ̂i = γ̂i(t) from (3.2.18).

Lemma 3.6.10. For all real numbers δ > 0; integers m,n > 0; and unit vectors q =

(q1, q2, . . . , qN) ∈ RN with | supp q| = m, there exist constants c > 0 (independent of δ, m,

and n) and C = C(δ,m, n) > 0 such that the following holds. Let {k1, k2, . . . , kn} ⊂ [1, N ]

denote an index sequence such that max1≤j≤n |kj −N/2| < cN ; let supp q = {j1, j2, . . . , jm};

and let t be as in (3.2.10). Then, for η ≥ N δ−1/2,

∣∣∣∣∣E
[ n∏
i=1

Im
〈
q,R

(
t, γ̂ki + iη

)
q
〉]
− E

[ n∏
i=1

Im
m∑
h=1

q2
jh
Rjhjh

(
t, γ̂ki + iη

)]∣∣∣∣∣ ≤ CN δ

√
Nη

. (3.6.26)

Proof. First observe that

E
[ n∏
i=1

Im
〈
q,R

(
t, γ̂ki + iη

)
q
〉]

= E
[ n∏
i=1

m∑
a=1

m∑
b=1

qjaqjb ImRjajb

(
t, γ̂ki + iη

)]
(3.6.27)

=
∑
a,b

E
[ n∏
i=1

qja(i)qjb(i) ImRja(i)jb(i)

(
t, γ̂ki + iη

)]
, (3.6.28)
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where in the right side of (3.6.28), a =
(
a(1), a(2), . . . , a(n)

)
and b =

(
b(1), b(2), . . . , b(n)

)
are summed over all sequences of {1, 2, . . . ,m}n.

It suffices to bound by CN δ(Nη)−1/2 any summand on the right side of (3.6.28) for which

there exists some i′ ∈ [1, n] such that a(i′) 6= b(i′). To that end, observe that the second

bound in (3.3.11) (to bound
∣∣Rja(i)jb(i)

∣∣ ≤ N δ/2n with overwhelming probability for i 6= i′);

(3.3.2); the fact that qj ≤ 1 for each j ∈ [1, N ]; and the exchangeability of the matrix entries

of Xt together imply that any such term is bounded by

N δ/2E
[∣∣∣R12

(
t, γ̂ki′ + iη

)∣∣∣]. (3.6.29)

To estimate this quantity, abbreviate Rij = Rij(t, γ̂ki′ + iη), and observe that the Ward

identity (3.3.3) and the exchangeability of Xt together imply that

E
[
|R12|

]
≤
(
E
[
|R12|2

])1/2

≤

(
E
[

1

N − 1

N∑
j=1

|R1j|2
])1/2

≤ 2E[ImR11]1/2√
Nη

. (3.6.30)

Using the second bound in (3.3.11), and the deterministic bound (3.3.2) on the exceptional

set where the former estimate does not apply, yields E[ImR11] ≤ C(logN)C , and so

E
[
|R12|

]
≤ CN δ/2

√
Nη

. (3.6.31)

Together with (3.6.28) and (3.6.29), this implies (3.6.26).

In [32, Theorem 2.8] it was shown for fixed z ∈ H that the diagonal resolvent elements

Gii(z) of the matrix H are asymptotically independent. The next lemma is a version of

this result (for the perturbed model Xt) when η = Im z is simultaneously tending to 0.

Theorem 3.2.9 is then deduced quickly as a consequence. Below, we recall R?(E) from

Definition 3.1.5.

Proposition 3.6.11. There exists a constant c > 0 such that the following holds. Fix
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integers m,n > 0 and a unit vector q = (q1, q2, . . . , qN) ∈ RN with | supp q| = m. Let

supp q = {j1, j2, . . . , jm}, and let t ∈ R>0 be as in (3.2.10). Fix a real number E ∈ [−c, c],

and let {ηN}N≥1 and
{
E

(i)
N

}
N≥1

for each integer i ∈ [1, n] be sequences of real numbers such

that

lim
N→∞

ηN = 0; ηN � N−1/2; lim
N→∞

E
(1)
N = E; max

1≤i≤n

∣∣E(i)
N − E

(1)
N

∣∣� ηN . (3.6.32)

Then, letting
{
Rji(E)

}
i∈[1,m]

be i.i.d. random variables each with law R?(E), we have that

lim
N→∞

E

[
n∏
i=1

Im
m∑
k=1

q2
jk
Rjkjk

(
t, E

(i)
N + iηN

)]
= E

[( m∑
k=1

q2
jk
Rjk(E)

)n]
. (3.6.33)

Proof. It suffices to show that, for any sequences of nonnegative integers n(i) =
(
n

(i)
1 , n

(i)
2 , . . . , n

(i)
m

)
for 1 ≤ i ≤ n with Nk =

∑n
i=1 n

(i)
k , we have

lim
N→∞

E

[
n∏
i=1

m∏
k=1

(
ImRjkjk

(
t, E

(i)
N + iηN

))n(i)
k

]
=

m∏
k=1

E
[
R?(E)Nk

]
. (3.6.34)

To ease notation, we detail the proof of (3.6.34) when (m,n) = (1, 1) and outline it when

(m,n) = (1, 2) and (m,n) = (2, 2), which are largely analogous. We omit the proofs in the

remaining cases, since they are very similar to those of the (m,n) ∈
{

(1, 2), (2, 2)
}

cases.

To that end, first assume (m,n) = (1, 1); abbreviate j1 = j, z = E
(1)
N + iηN , and

Rik = Rik(t, z); and set p = n
(1)
1 . We compute limN→∞ E

[
(ImRjj)

p
]
. As in the proof of

Lemma 3.6.8, we use the identity 2i ImRjj = Rjj −Rjj to write

E
[
(ImRjj)

p
]

= (2i)−pE
[
(Rjj −Rjj)

p
]

= (2i)−p
p∑
a=0

(−1)p−a
(
p

a

)
E
[
Ra
jjR

p−a
jj

]
. (3.6.35)

Now, recall from Definition 3.1.1 that each entry of H has law N−1/α(Z + J), where Z

is α-stable and J has finite variance. For each 1 ≤ i ≤ j ≤ N , let {Zij} denote mutually

independent random variables with law N−1/αZ such that N1/α|Hij − Zij| has uniformly
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bounded variance. Following (3.6.8), for any subset I ⊂ [1, N ] and index j ∈ [1, N ] \ I, set

J = I ∪ {j} and define

S
(I)
jj = S

(I)
jj (z) = −

(
z +

∑
k/∈J

Z2
kjR

(J )
kk

)−1

. (3.6.36)

If I is empty, then we abbreviate Sjj = S
(I)
jj .

Then (3.6.9) and the deterministic bounds given by (3.3.2) and |Sjj| ≤ η−1 together

imply that there exists a constant C = C(p) > 0 such that

E
[
|Ra

jj − Sajj|
]

+ E
[
|Ra

jj − S
a

jj|
]
≤ C(logN)C

(Nη2)α/8
, (3.6.37)

for any a ∈ [0, p]. Then, (3.6.37) and (3.6.9) together imply for any a, b ∈ [0, p] that

E
[
|Ra

jjR
b

jj − SajjS
b

jj|
]
≤ E

[
|Rjj|a|R

b

jj − S
b

jj|
]

+ E
[
|Sjj|b|Ra

jj − Sajj|
]
≤ C(logN)C

(Nη2)α/8
. (3.6.38)

So, by (3.6.35), the definition (3.1.3) of R?, and Proposition 3.1.4, it suffices to show for each

integer a ∈ [0, p] that

lim
N→∞

E
[
SajjS

p−a
jj

]
= lim

η→0
E
[
R?(E + iη)aR?(E + iη)p−a

]
. (3.6.39)

Recalling (3.6.12), (3.6.13), and Remark 3.6.9, the right side of is equal to i−pX if a = 0, to

i−p(−1)aY(a) if p ∈ [1, a − 1], and to ipX if a = p. Let us only show (3.6.39) in the case

a ∈ [1, p− 1], as the cases a ∈ {0, p} are entirely analogous.

To that end, we proceed similarly to as in the proof of Lemma 3.6.8. More specifically,

by (3.6.36) and (3.6.17), we deduce that

(−iSjj)
a(iSjj)

b =
1

Γ(a)Γ(b)

∫
R2
+

ta−1sb−1 exp

(
itz − isz̄ + i

∑
k 6=i

Z2
ik

(
tR

(j)
kk − sR

(j)

kk

))
dt ds.

(3.6.40)

212



To analyze the right side of (3.6.40), observe by [33, Corollary B.2] (whose proof proceeds

by first applying a type of Hubbard–Stratonovich transform to linearize the exponential in

the {Zjk}, and then using (3.6.20) to evaluate the expectation)

E

[
exp

(
i
∑
k 6=j

Z2
jk

(
tR

(j)
kk − sR

(j)

kk

))]
= E

[
exp

(
− (−2i)α/2σα

N

∑
k 6=j

(
tR

(j)
kk − sR

(j)

kk

)α/2|gk|α)],
(3.6.41)

where σ > 0 is as in (3.1.2), the gk are i.i.d. standard Gaussian random variables, and the

expectation is taken with respect to the Zjk on the left side and the gk on the right.

Therefore, by the definition (3.6.6) of γ
(j)
z , we find

E

[
exp

(
− (−2i)α/2σα

N

∑
k 6=j

(
tR

(j)
kk − sR

(j)

kk

)α/2|gk|α)] = E
[
exp

(
−N − 1

N
γ(j)
z (t+ is)

)]
,

(3.6.42)

where we have used the fact (see [6, (7.39)]) that E
[
|gk|α

]
= 2−α/2σ−αΓ

(
1− α

2

)
. Thus,

(3.6.42) = E

[
exp

(
− N − 1

N
(t2 + s2)α/4γ(j)

z

( t+ is√
t2 + s2

))]
. (3.6.43)

Using (3.6.10) and (3.6.7), the fact that Im z � N−1/2, and the deterministic estimate

Re γ
(j)
z (u) ≥ 0 on the exceptional event where (3.6.10) and (3.6.7) do not hold, we obtain

(3.6.43) = exp

(
− N − 1

N
(t2 + s2)α/4γ?z

( t+ is√
t2 + s2

)
+O(N−c)

)
+O(N−10). (3.6.44)
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Combining (3.6.40), (3.6.41), (3.6.42), (3.6.43), and (3.6.44) yields

E
[
(−iSjj)

a(iSjj)
b
]

(3.6.45)

=
1

Γ(a)Γ(b)

∫
R2
+

ta−1sb−1 exp(itz − isz̄) (3.6.46)

×

(
exp

(
− N − 1

N
(t2 + s2)α/4γ?z

( t+ is√
t2 + s2

)
+O(N−c)

)
+O(N−10)

)
dt ds.

(3.6.47)

By (3.6.24) (with the zN there equal to z here), (3.6.25), and the fact that Im z � N−1/2,

we deduce from (3.6.47) and the dominated convergence theorem that

lim
N→∞

E
[
(−iSjj)

a(iSjj)
b
]

(3.6.48)

=
1

Γ(a)Γ(b)

∫
R2
+

ta−1sb−1 exp

(
iE(t− s)− (t2 + s2)α/4γ?E

( t+ is√
t2 + s2

))
dt ds.

(3.6.49)

By Remark 3.6.9 and (3.6.13), this yields (3.6.39) when a ∈ [1, p − 1]. The cases when

a ∈ {0, p} are handled analogously and therefore omitted. This therefore establishes (3.6.34)

in the case m = 1 = n.

Next let us outline how to establish (3.6.34) in the case (m,n) = (1, 2). We abbreviate

z1 = E
(1)
N + iηN , z2 = E

(2)
N + iηN , and j = j1. Then following (3.6.35), it suffices to show for

any integers a, b, c, d ≥ 0 that

lim
N→∞

E
[
Rjj(z1)aRjj(z1)bRjj(z2)cRjj(z2)d

]
= lim

η→0
E
[
R?(E + iη)a+cR?(E + iη)b+d

]
. (3.6.50)
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We write

E
[
Rjj(z1)aRjj(z1)bRjj(z2)cRjj(z2)d

]
=
[
Rjj(z1)a+cRjj(z1)b+d

]
(3.6.51)

+ E
[
Rjj(z1)aRjj(z1)b+d

(
Rjj(z2)c −Rjj(z1)c

)]
(3.6.52)

+ E
[
Rjj(z1)aRjj(z1)bRjj(z2)c

(
Rjj(z2)d −Rjj(z1)d

)]
.

(3.6.53)

The first term is the main one, and it was shown in the preceding case, as (3.6.38) and

(3.6.39), that

lim
N→∞

E
[
Rjj(z1)a+cRjj(z1)b+d

]
= lim

η→0
E
[
R?(E + iη)a+cR?(E + iη)b+d

]
. (3.6.54)

The latter two terms are error terms, and they tend to zero asymptotically. Let us show this

for (3.6.53), as the other term is similar.

Since Rjj(z)−Rjj(w) = (w − z)
∑N

a=1 Rja(z)Raj(w) by (3.3.1), we have that

∣∣∂zRjj(z)
∣∣ ≤ ∣∣∣∣∣

N∑
a=1

Rja(z)Raj(z)

∣∣∣∣∣ ≤
N∑
a=1

∣∣Rja(z)
∣∣2 =

ImRjj(z)

η
≤ (logN)Cη−1 (3.6.55)

with overwhelming probability, where in the equality we used (3.3.3), and in the last bound

we used (3.3.11). Integrating ∂zRjj(z)d = dRd−1
jj ∂zRjj from z1 to z2 yields

∣∣Rjj(z1)d −Rjj(z2)d
∣∣ ≤ d|z1 − z2|(logN)dCη−1 (3.6.56)
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with overwhelming probability. Therefore, with overwhelming probability, we have

∣∣Rjj(z1)aRjj(z1)bRjj(z2)c
(
Rjj(z2)d −Rjj(z1)d

)∣∣ (3.6.57)

� C|z1 − z2|(logN)dCη−1
∣∣Rjj(z1)aRjj(z1)bRjj(z2)c

∣∣ (3.6.58)

� |z1 − z2|η−1(logN)(a+b+c+d)C � 1, (3.6.59)

where we used (3.3.11) in the last estimate, as well as the hypothesis (3.6.32) that |E(1)
N −

E
(2)
N | � η to bound |z1− z2|. On the complementary event, we use the trivial bound (3.3.2).

Together, these show that

lim
N→∞

E
[
Rjj(z1)aRjj(z1)bRjj(z2)c

(
Rjj(z2)d −Rjj(z1)d

)]
= 0, (3.6.60)

as desired. We have therefore established that (3.6.53) is small; since the same holds for

(3.6.52), (3.6.54) implies (3.6.50).

Now let us outline how to establish (3.6.34) in the case (m,n) = (2, 2). We abbreviate

z1 = E
(1)
N + iηN and z2 = E

(2)
N + iηN , and we assume for notational convenience that j1 = 1

and j2 = 2. As in (3.6.35), it suffices to show for any integers a, b, c, d ≥ 0 that

lim
N→∞

E
[
R11(z1)aR11(z1)bR22(z2)cR22(z2)d

]
(3.6.61)

= lim
η→0

E
[
R?(E + iη)aR?(E + iη)b

]
E
[
R?(E + iη)cR?(E + iη)d

]
. (3.6.62)

In what follows, we assume that a, b, c, d > 0 for notational simplicity. Note that [34, Lemma

5.5] implies for each i 6= j that

E
[∣∣Rjj −R(i)

jj

∣∣] ≤ C

Nη
. (3.6.63)
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It quickly follows from (3.6.63), (3.6.9), the deterministic bound (3.3.2) that

lim
N→∞

E
[
R11(z1)aR11(z1)bR22(z2)cR22(z2)d

]
= lim

N→∞
E
[
R

(2)
11 (z1)aR

(2)

11 (z1)bR
(1)
22 (z2)cR

(1)

22 (z2)d
]
,

(3.6.64)

as in (3.6.38). As before, (3.6.9) and (3.3.2) together imply that

lim
N→∞

E
[
R

(2)
11 (z1)aR

(2)

11 (z1)bR
(1)
22 (z2)cR

(1)

22 (z2)d
]

= lim
N→∞

E
[
S

(2)
11 (z1)aS

(2)

11 (z1)bS
(1)
22 (z2)cS

(1)

22 (z2)d
]
,

(3.6.65)

and so it suffices to show that

lim
N→∞

E
[
S

(2)
11 (z1)aS

(2)

11 (z1)bS
(1)
22 (z2)cS

(1)

22 (z2)d
]

(3.6.66)

= lim
η→0

E
[
R?(E + iη)aR?(E + iη)b

]
E
[
R?(E + iη)cR?(E + iη)d

]
. (3.6.67)

Once again using (3.6.36) and (3.6.17), we find

E
[(
− iS

(2)
11 (z1)

)a(
iS

(2)

11 (z1)
)b(− iS

(1)
22 (z2)

)c(
iS

(1)

22 (z2)
)d]

(3.6.68)

=
1

Γ(a)Γ(b)Γ(c)Γ(d)

∫
R4
+

ta−1sb−1xc−1yd−1 exp (itz1 + ixz2 − isz1 − iyz2) (3.6.69)

× E

[
exp

(
i
∑

k/∈{1,2}

Z2
1k

(
tR

(12)
kk − sR

(12)

kk

))
exp

(
i
∑

k/∈{1,2}

Z2
2k

(
xR

(12)
kk − yR

(12)

kk

))]
dt ds dx dy.

(3.6.70)

We now condition on {hij}i,j /∈{1,2}, which makes the two exponential terms in the previous

line conditionally independent. Then by following (3.6.41), (3.6.42), (3.6.43), (3.6.44), and
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(3.6.47), we obtain

E
[(
− iS

(2)
11 (z1)

)a(
iS

(2)

11 (z1)
)b(− iS

(1)
22 (z2)

)c(
iS

(1)

22 (z2)
)d]

(3.6.71)

=
1

Γ(a)Γ(b)Γ(c)Γ(d)

∫
R4
+

ta−1sb−1xc−1yd−1 exp (itz1 + ixz2 − isz1 − iyz2) (3.6.72)

×

(
exp

(
− N − 2

N

(
(t2 + s2)α/4γ?z1

( t+ is√
t2 + s2

)
+ (x2 + y2)α/4γ?z2

(
x+ iy√
x2 + y2

)
+O(N−c)

))
(3.6.73)

+O(N−10)

)
dt ds dx dy. (3.6.74)

Thus (3.6.24) (with the zN there equal to z1 and z2 here), (3.6.25), the dominated convergence

theorem, (3.6.13), and Remark 3.6.9 together give

lim
N→∞

E
[(
− iS

(2)
11 (z1)

)a(
iS

(2)

11 (z1)
)b(− iS

(1)
22 (z2)

)c(
iS

(1)

22 (z2)
)d]

(3.6.75)

=
1

Γ(a)Γ(b)Γ(c)Γ(d)

∫
R4
+

ta−1sb−1xc−1yd−1 exp
(
iE(t− s+ x− y)

)
(3.6.76)

× exp

(
− (t2 + s2)α/4γ?E

( t+ is√
t2 + s2

)
− (x2 + y2)α/4γ?E

( x+ iy√
x2 + y2

))
dt ds dx dy

(3.6.77)

= Ya+b(a)Yc+d(c) = lim
η→0

E
[
R?(E + iη)aR?(E + iη)b

]
E
[
R?(E + iη)cR?(E + iη)d

]
,

(3.6.78)

from which we deduce (3.6.66).

Proof of Theorem 3.2.9. We will apply Proposition 3.6.11, with the ηN there equal to the

η = N c−a here (recall (3.2.2)) and the E
(j)
N there equal to the γ̂kj here. To that end, we must

verify the assumptions (3.6.32) of that proposition. The first and second statements there

follow from the fact that η = N c−a, that c is sufficiently small, and the fact that a < 1
2

(by

(3.2.2)). The third follows from the fact that limN→∞ γk1 = E and (3.3.23).

To verify the fourth, we must show that |γ̂k1 − γ̂kj | � η. To that end, observe since
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|k1 − kj| ≤ N1/2, we have for any fixed δ > 0 and j ∈ [1, n] that

|γ̂k1 − γ̂kj | ≤
∣∣γ̂k1 − γkj(t)∣∣+

∣∣γ̂kj − γkj(t)∣∣+
∣∣γk1(t)− γkj(t)∣∣ (3.6.79)

. N δ−1/2 +N1+4c|k1 − kj| . N δ+4c−1/2 (3.6.80)

for sufficiently large N , where we used (3.3.24) and (3.5.18). Then, since η � N−1/2, we

may choose δ and c small enough that the last bound in (3.6.32) of Proposition 3.6.11 is also

satisfied.

Now the theorem follows from Lemma 3.6.10; Proposition 3.6.11; the facts that

lim
N→∞

Immα(γk + iη) = πρα(E)

(as limN→∞ γk = E) and U?(E) =
(
π%α(E)

)−1R?(E) (see Definition 3.1.5); and (3.3.6).

3.7 Proofs of results from Section 3.3 and Section 3.6

In this section, we prove results from Section 3.3 and Section 3.6 which are used in the rest

of the paper. We begin with the proof of Lemma 3.6.3, since facts derived in the course of

that proof will be useful for proving the statements from Section 3.3.

For any w ∈ C, we let Hw denote the space of C1 functions g : K+ → C such that

g(λu) = λwg(u) for each λ ∈ R+. Following [34, (10)], we define for any r ∈ [0, 1) a norm on

Hw by

‖g‖r = ‖g‖∞ + sup
u∈S1+

√∣∣(i.u)r∂1g(u)
∣∣2 +

∣∣(i.u)r∂2g(u)
∣∣2, (3.7.1)

where ∂1g(x + iy) = ∂xg(x + iy) and ∂2g(x + iy) = ∂yg(x + iy), and we recall ‖g‖∞ =

supu∈S1+

∣∣g(u)
∣∣. We let Hw,r denote the closure of Hw in ‖ · ‖r, which is a Banach space.

Following [34, (11), (12), (13)], we define for any complex numbers u ∈ S1
+ and h ∈ K,
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and any function g ∈ Hα/2, the function

Fh(g)(u) =

∫ π/2

0

(∫
R2
+

((
e−r

α/2g(eiθ)−(rh.eiθ) − e−rα/2g(eiθ+uy)−(yrh.u)−(rh.eiθ)
)

(3.7.2)

× rα/2−1y−α/2−1drdy

))
(sin 2θ)α/2−1dθ. (3.7.3)

Further, for any z ∈ H, the map Gz(f) : S1
+ → C is given by

Gz(f)(u) =
α

2α/2Γ(α/2)2
F−iz(f)(iū). (3.7.4)

The following lemma from [34] indicates that the function γ?z from Definition 3.6.2 is a

fixed point of Gz.

Lemma 3.7.1 ([34, Lemma 4.4]). For any z ∈ H and u ∈ S1
+, we have γ?z (u) = Gz(γ

?
z )(u).

Proof of Lemma 3.6.3. For the first statement, we use [34, Proposition 3.3], which shows

that there exists c > 0 such that, uniformly in |z| < c,

γ?z (e
iπ/4)

Γ
(
1− α

2

) = 2α/4E
[(

ImR?(z)
)α/2]

> c. (3.7.5)

We now compute, for any u ∈ S1
+,

Re γ?z (u)

Γ
(
1− α

2

) = E
[
Re
(
− iR?(z).u

)α/2] ≥ E
[(

Re
(
− iR?(z).u

))α/2]
≥ E

[(
ImR?(z)

)α/2] ≥ c.

(3.7.6)

In the first inequality, we used the fact that Re ar ≥ (Re a)r for any a ∈ K and r ∈ (0, 1)

(see [34, Lemma 5.10]). The second inequality follows from Re(a.u) ≥ Re a for any u ∈ S+
1

and a ∈ K+. The final inequality follows from (3.7.5). This completes the proof of the first

claim.

Set z = E + iη. We now establish convergence of the order parameter γ?z as η → 0. We
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note that for any τ > 0, there exists c = c(τ) > 0 such that

‖γ?z − γ?w‖r ≤ ‖γ?z − γ?0‖r + ‖γ?w − γ?0‖r ≤ τ (3.7.7)

if z, w ∈ H satisfy |z| < c and |w| < c. The final inequality follows from the first displayed

equation in the proof of [34, Proposition 3.3].

Then (3.7.7) and [34, Proposition 3.4] together imply there exist constants C, c > 0 such

that

‖γ?w − γ?z‖r ≤ C‖γ?w −Gz(γ
?
w)‖r = C

∥∥Gw(γ?w)−Gz(γ
?
w)
∥∥
r

(3.7.8)

for z, w ∈ H such that |z| < c and |w| < c. In the equality, we used that γ?w is a fixed point

for Gw, as stated in Lemma 3.7.1.

We now claim ∥∥Gw(γ?w)−Gz(γ
?
w)
∥∥
r
≤ C|w − z|. (3.7.9)

In the proof of [34, Lemma 4.2] (in the final lines), it was shown that the partial (Fréchet)

derivative of Fh(g) in either the real or imaginary part of h has finite ‖ · ‖r norm, and the

exact derivative was calculated. Further, the derivative may be bounded in the ‖ · ‖r norm

by a constant C using [34, (20)] when g = γ?w, which is uniform in z, w with z, w ∈ H and

|z|, |w| ≤ c.5 Also, it is continuous by the computation following [34, (21)]. By definition

(3.7.4), the same is true for Gh(g), and we obtain (3.7.9) by integration using the fundamental

theorem of calculus. Combining this with (3.7.8) we obtain the Lipschitz estimate

‖γ?w − γ?z‖r ≤ c|w − z| (3.7.10)

for any r ∈ [0, 1). This estimate implies that limη→0 γ
?
E+iη exists as a function in Hα/2,r,

which we denote by γ?E.

5We remark that although the constant C in the bound [34, (20)] depends on Re g and degenerates as
Re g goes to zero, here g = γ?w and infu∈S+ Re g(u) > c for some c > 0, from (3.6.4). So we obtain the
claimed bound.
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Proof of Lemma 3.3.1. We begin with the first estimate of (3.3.4). By [32, (3.4)] and [32,

Theorem 4.1], we have Immα(z) = E
[

ImR?(z)
]

for z ∈ H. Recalling limη→0 Immα(E+iη) =

π%α(E), it then suffices to show that limη→0 E
[

ImR?(E + iη)
]

is Lipschitz in E. For c small

enough, by (3.6.11), this limit is given by (X + X)/2, where

X(E) =

∫
R+

exp
(
iEt− tα/2γ?E(1)

)
dt. (3.7.11)

Further, if c is small enough, by Lemma 3.6.3 we have the uniform lower bound

inf
|E|≤c

inf
u∈S1+

Re γ?E(u) > c′. (3.7.12)

Define

F (x, y, w) =

∫
R+

exp
(
ixt− tα/2(y + iw)

)
dt. (3.7.13)

By (3.7.10),
∣∣γ?E1

(1) − γ?E2
(1)
∣∣ ≤ C|E1 − E2| for some constant C and E1, E2 ∈ [−c, c], if

c is small enough. Using this inequality, to show X(E) is Lipschitz in E, it suffices by the

fundamental theorem of calculus to show the partial derivatives ∂xF (x, y, w), ∂yF (x, y, w),

and ∂wF (x, y, w) are uniformly bounded by a constant when |x| ≤ c and y > c′. This follows

straightforwardly after differentiating under the integral sign (which is permissible as the

integrand is dominated in absolute value by exp(−tα/2y) ≤ exp(−tα/2c′)).

We have shown that the density %α(x) is continuous in a neighborhood of zero. By

[32, Theorem 1.6(ii)], %α(0) is positive and bounded. Therefore the second claim in (3.3.4)

follows from the first after possibly decreasing c.

For (3.3.5), we first suppose |E1 − E2| ≤ c/10 and |E1| ≤ c/2, where c is the constant

from the previous part of this proof. We use the definition of the Stieltjes transform to write
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Immα

(
E1 + iη

)
= Im

∫
R

%α(x) dx

x− E1 − iη
, Immα

(
E2 + iη

)
= Im

∫
R

%α
(
x+ E2 − E1

)
dx

x− E1 − iη
,

(3.7.14)

where in the second equality we used the change of variables x 7→ x+ E2 − E1. Computing

the imaginary part of the integrand directly, we have

∣∣Immα

(
E1 + iη

)
− Immα

(
E2 + iη

)∣∣ ≤ η

∫
R

∣∣%α(x)− %α(x+ E2 − E1)
∣∣

(x− E1)2 + η2
dx (3.7.15)

= η

∫
[−c/2,c/2]

∣∣%α(x)− %α(x+ E2 − E1)
∣∣

(x− E1)2 + η2
dx (3.7.16)

+ η

∫
[−c/2,c/2]c

∣∣%α(x)− %α
(
x+ E2 − E1)

∣∣
(x− E1)2 + η2

dx. (3.7.17)

Using (3.3.4), |x| ≤ c/2, and |E1 − E2| ≤ c/10, we find that

(3.7.16) ≤ C|E1 − E2|
∫
R

η

(x− E1)2 + η2
dx ≤ C|E1 − E2|. (3.7.18)

By [32, Theorem 1.6], the density %α(x) is uniformly bounded. Therefore

(3.7.17) ≤ C

∫
[−c/2,c/2]c

η

(x− E1)2 + η2
dx = Cη

∫
[−c/2,c/2]c

1

(x− E1)2
dx (3.7.19)

≤ Cc−1η. (3.7.20)

In the last line, we used the hypothesis that |E| ≤ c/2 to show the integral is uniformly

bounded and adjusted the value of C. This completes the proof of (3.3.5) after decreasing c

if necessary.

We now address the first claim of (3.3.6). Again using the uniform boundedness of %α(x)
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over all x ∈ R, we deduce

Immα(E + iη) =

∫
R

η%α(x) dx

η2 + (E − x)2
≤ C. (3.7.21)

We also note, again using (3.3.4), that

Immα(E + iη) ≥
∫

[−c,c]

η%α(x) dx

η2 + (E − x)2
≥ c

∫
[−c,c]

η dx

η2 + (E − x)2
, (3.7.22)

and the latter quantity is uniformly bounded below η tends to zero because E ∈ (−c, c).

Thus, after decreasing c if necessary, we have Immα(E + iη) > c when η, |E| < c.

The second claim of (3.3.6) follows after noting (using the bounds on the density %α

given in (3.3.4)) that for any c, there exists c′ > 0 such that
∣∣γ(α)
i

∣∣ < c for all i ∈ [(1/2 −

c′)N, (1/2 + c′)N ].

Proof of Lemma 3.3.7. We prove only the first claim in detail. The proof of the second is

analogous, and the third follows from the second by (3.3.14).

By a standard stochastic continuity argument, it suffices to prove the desired bound

holds with overwhelming probability at fixed γ; all bounds below will be independent of γ.

Let C > 0 be a parameter. A straightforward calculation shows that for any 1 ≤ i ≤ N ,

the law of the sum of the absolute value of the entries of the i-th row and column of the

matrix Hγ has a power law tail with parameter α. This implies, by Hoeffding’s inequality,

that with overwhelming probability there are at most 2C−αN such i whose corresponding

sum is greater than C. When this holds, after removing at most 2C−αN rows and columns,

the largest eigenvalue is at most C in absolute value, since the largest absolute value of a

row of a matrix bounds the magnitude of its largest eigenvalue. Then eigenvalue interlacing

[52, Lemma 7.4] implies that there are at most 4C−αN eigenvalues of Hγ outside of the

interval [−C,C].
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By [18, Theorem 1.1] (or [32, Theorem 1.2]), for any fixed compact interval I ⊂ R,

E [µN(I)]→ µα(I) (3.7.23)

as N tends to ∞. Here µN = µ
(γ)
N denotes the empirical spectral distribution of Hγ.

For any C > 0, let IC = [c1/2, C]. Then (3.7.23) and the concentration estimate [33,

Lemma C.1] imply that for any choice of C there exists N(C) such that

µN(IC) ≤ C−1 + µα(IC) (3.7.24)

holds for any N > N(C) with overwhelming probability. By the symmetry of µα and

the second estimate in (3.3.4), we have µα(IC) ≤ (1/2 − δ) for some δ = δ(c1) > 0 such

that limc1→0 δ(c1) = 0. Combining (3.7.24) with the estimate for eigenvalues lying outside

[−C,C], we find

µN
(
[c1,∞)

)
≤ C−1 + (1/2− δ) + 4C−1/α < 1/2− δ/2 (3.7.25)

for large enough C, with overwhelming probability. Then the (1/2− δ/2)N -th eigenvalue is

less than c1 with overwhelming probability. A similar argument shows that the (1/2+δ/2)N -

th eigenvalue is greater than c1 with overwhelming probability. This completes the proof.

Before proceeding to the proof of Lemma 3.3.8, we require the following preliminary

lemma. We recall mN(s, z) and its expectation m̂N(s, z) = E
[
m̂N(s, z)

]
from (3.2.16), and

µs from (3.2.17). Let µ̂s = E[µs], which is symmetric about the origin. We further define

the counting functions

ns(E) =
1

N

∣∣∣{i : λi(s) ≤ E
}∣∣∣ = µs

(
(−∞, E]

)
, n̂s(E) = µ̂s

(
(−∞, E]

)
. (3.7.26)

Lemma 3.7.2. Retain the notation of Lemma 3.3.8. There exists a constant c0 > 0 such
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that, for any E ∈ [−c0, c0], we have with overwhelming probability that

sup
s∈[N−1/2+δ ,N−δ ]

∣∣ns(E)− n̂s(E)
∣∣ ≤ N δ−1/2. (3.7.27)

Proof. This proof will largely follow the calculations of [78, Section 7.3], with some modifi-

cations to account for the fact that the spectral distributions we consider are not compactly

supported.

To that end, we begin with a tail bound on the smallest eigenvalue, λ1 = λ1(s), of Xs.

A straightforward calculation shows that, for any 1 ≤ i ≤ N , the law of the sum of the

absolute value of the entries of the i-th row and column of the matrix Xs has a power law

tail with parameter α. Thus, since the largest such sum bounds |λ1| above, we deduce for

any t > 1 that

P
(
λ1 < −t

)
≤ CNt−α. (3.7.28)

Now, we must show that (3.7.27) holds on an event of probability at least 1 − N−D

for any fixed D > 0 and sufficiently large N . Throughout the remainder of this proof, set

B = α−1(D + 3) so, by (3.7.28), P(λ1 > −NB) ≥ 1 − N−D−2. Thus, we may work on the

event on which λ1 > −NB.

By the Helffer–Sjöstrand formula (see, for example, [52, Chapter 11]), for any smooth

and compactly supported function f : R→ R,

f(u) =
1

π

∫
R2

iyf ′′(x)g(y) + i
(
f(x) + iyf ′(x)

)
g′(y)

u− x− iy
dx dy, (3.7.29)

where g is any smooth, compactly supported function that is 1 in a neighborhood of 0.

Set E1 = −N4B and fix some E2 ∈ [−(2K)−1, (2K)−1], where K is the constant from

Lemma 3.3.3. Let η = N−1/2+δ, and let f be a smooth function satisfying f(E) = 0 for

E /∈ [E1 − 1, E2 + η] and f(E) = 1 for E ∈ [E1, E2]. We can select f such that
∣∣f(x)

∣∣ ≤ 1

for all x ∈ R;
∣∣f ′(x)

∣∣ ≤ C and
∣∣f ′′(x)

∣∣ ≤ C for x ∈ [E1 − 1, E1]; and
∣∣f ′(x)

∣∣ ≤ Cη−1 and
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∣∣f ′′(x)
∣∣ ≤ Cη−2 for x ∈ [E2, E2+η]. We also let g(y) be a smooth function satisfying g(y) = 1

for |y| ≤ N10B; g(y) = 0 for |y| > N10B + 1; we may select g such that 0 ≤ g(y) < 1 and∣∣g′(y)
∣∣ < C for all y ∈ R.

Write µ∆ = µs − µ̂s and let m∆(z) = mN(s, z) − m̂N(s, z) be the Stieltjes transform of

µ∆. Our first goal is to prove that

∣∣∣∣∫
R
f(E) dµ∆(E)

∣∣∣∣ ≤ CN δ/2−1/2 (3.7.30)

with probability at at least 1−N−D−1, for large enough N . Using(3.7.29), we find

∣∣∣∣∫
R
f(E) dµ∆(E)

∣∣∣∣ ≤ C

∣∣∣∣∫
R2

yf ′′(x)g(y) Imm∆(x+ iy) dx dy

∣∣∣∣ (3.7.31)

+ C

∫
R2

∣∣f(x)g′(y)
∣∣∣∣ Imm∆(x+ iy)

∣∣ dx dy (3.7.32)

+ C

∫
R2

∣∣yf ′(x)g′(y)
∣∣∣∣Rem∆(x+ iy)

∣∣ dx dy. (3.7.33)

Now, since [6, (5.13)] states

P
[∣∣mN(s, z)− m̂N(s, z)

∣∣ > 4 logN

N1/2 Im z

]
≤ 2 exp

(
− (logN)2

)
, (3.7.34)

we have (by a standard stochastic continuity argument) with overwhelming probability that

sup
|y|≤N20B

∣∣ym∆(x+ iy)
∣∣ ≤ 5N−1/2 logN. (3.7.35)

Now let us bound the quantities (3.7.31), (3.7.32), and (3.7.33). We begin with the latter.

To that end, observe that since supp f ′ ⊆ [E1−1, E1]∪ [E2, E2 +η]; since supp g′ ⊆ [−N10B−

1,−N10B]∪ [N10B, N10B + 1]; since
∣∣f ′(x)

∣∣ ≤ C for x ∈ [E1− 1, E1]; since
∣∣f ′(x)

∣∣ ≤ Cη−1 for

x ∈ [E2, E2 + η]; and since
∣∣g′(y)

∣∣ ≤ C, we have by (3.7.35) that (3.7.33) ≤ C(logN)N−1/2

with overwhelming probability.

Similarly, to bound (3.7.32), observe that
∣∣f(x)

∣∣ ≤ 1; that
∣∣g′(x)

∣∣ ≤ C; that supp f is
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contained in the interval [−N4B, N4B] of length at most 2N4B; and that supp g′ ⊂ [−N10B−

1,−N10B]∪ [N10B, N10B + 1], on which we have
∣∣m∆(z)

∣∣ ≤ N−10B (due to the deterministic

bound
∣∣m∆(z)

∣∣ < | Im z|−1). Together, these yield the deterministic estimate (3.7.32) ≤ N−1.

It therefore suffices to bound (3.7.31), to which end we write

(3.7.31) ≤
∣∣∣∣∫
|x−E1|≤2,|y|≤10

yf ′′(x)g(y) Imm∆(x+ iy) dx dy

∣∣∣∣ (3.7.36)

+

∣∣∣∣∫
|x−E1|≤2,|y|>10

yf ′′(x)g(y) Imm∆(x+ iy) dx dy

∣∣∣∣ (3.7.37)

+

∣∣∣∣∫
|x−E2|≤2η,|y|≤η

yf ′′(x)g(y) Imm∆(x+ iy) dx dy

∣∣∣∣ (3.7.38)

+

∣∣∣∣∫
|x−E2|≤2η,|y|>η

yf ′′(x)g(y) Imm∆(x+ iy) dx dy

∣∣∣∣ . (3.7.39)

We must bound the terms (3.7.36), (3.7.37), (3.7.38), and (3.7.39); we begin with the former.

Since we restricted to the event of probability 1−N−D−2 on which λ1 > −NB, and since E1 =

N4B, the definition of mN(s, z) shows that
∣∣mN(s, x+ iy)

∣∣ ≤ CN−4B for x ∈ [E1−2, E1 + 2].

Using the trivial bound (3.3.2) on the complementary event and then taking expectation

shows that |m̂N(s, x+ iy)| ≤ CN−4B +N−D−2y−1 for x ∈ [E1− 1, E1 + 1], if D is sufficiently

large. Hence, with probability 1 − N−D−2, we have
∣∣m∆(x + iy)

∣∣ ≤ N−4B + N−Dy−1 for

x ∈ [E1 − 2, E1 + 2]. Combining this with the fact that
∣∣f ′′(x)

∣∣ for x ∈ [E1 − 1, E1 + 1], we

obtain (3.7.36) ≤ N−1.

To estimate (3.7.37), we first integrate by parts in x, using the identity ∂x Imm∆ =

−∂y Rem∆ and the fact that supp f ′ ⊆ [E1 − 1, E1 + 1] to deduce

(3.7.37) =

∣∣∣∣∫
|x−E1|≤2,|y|>10

yf ′(x)g(y)∂y
(

Rem∆(x+ iy)
)
dx dy

∣∣∣∣ . (3.7.40)
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Integrating by parts in y and using the fact that ∂y
(
yg(y)

)
= g(y) + yg′(y) then gives

(3.7.37) ≤
∣∣∣∣∫
|x−E1|≤2,|y|>10

f ′(x)
(
g(y) + yg′(y)

)
Rem∆(x+ iy) dx dy

∣∣∣∣ (3.7.41)

+

∣∣∣∣∫
|x−E1|≤2

f ′(x)10g(10) Rem∆(x+ 10i) dx

∣∣∣∣ . (3.7.42)

To bound (3.7.42), we use (3.7.35) and the fact that
∣∣f ′(x)

∣∣ ≤ C for x ∈ [E1 − 2, E1 + 2] to

deduce that (3.7.42) ≤ C(logN)N−1/2 with overwhelming probability. To estimate (3.7.41),

we again use the the facts that
∣∣f ′(x)

∣∣ ≤ C for x ∈ [E1− 2, E1 + 2]; that supp g ⊆ [−N10B −

1, N10B + 1]; that 0 ≤ g(y) ≤ 1; that supp g′ ⊆ [N10B, N10B + 1]; g′(y) ≤ C; and (3.7.35) to

deduce

(3.7.41) ≤ CN−1/2 logN

∣∣∣∣∫
|y|>10

|y|−1
(
g(y) + yg′(y)

)
dy

∣∣∣∣ (3.7.43)

≤ CN−1/2 logN

(∣∣∣∣ ∫ N11B

10

|y|−1dy

∣∣∣∣+

∣∣∣∣ ∫
|y|>10

g′(y) dy

∣∣∣∣
)
≤ CN−1/2(logN)3,

(3.7.44)

with overwhelming probability and for sufficiently large N . Hence, (3.7.37) ≤ CN−1/2(logN)3.

To bound (3.7.38), first recall that the function y Imm(x+ iy) is increasing in y, for any

Stieltjes transform m of a positive measure. Therefore, (3.7.35) implies with overwhelming

probability that

sup
y≤η

y Imm∆(x+ iy) ≤ η Imm∆(x+ iη) ≤ CN−1/2 logN (3.7.45)

Putting this estimate into (3.7.38) and using that
∣∣f ′′(x)

∣∣ vanishes except on [E2, E2 + η],

where it is at most Cη−2, and that
∣∣g(y)

∣∣ is 1 for |y| ≤ η, we deduce that (3.7.38) ≤

C(logN)N−1/2.
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For the term (3.7.39), we integrate by parts as we did for (3.7.37) to obtain

(3.7.39) ≤
∣∣∣∣∫
|x−E2|≤2η,|y|>η

f ′(x)∂y
(
g(y) + yg′(y)

)
Rem∆(x+ iy) dx dy

∣∣∣∣ (3.7.46)

+

∣∣∣∣∫
|x−E2|≤2η

f ′(x)ηg(η) Rem∆(x+ iη) dx

∣∣∣∣ . (3.7.47)

We use (3.7.35) to estimate (3.7.46) ≤ C(logN)3N−1/2 and (3.7.47) ≤ C(logN)N−1/2, in the

same way we bounded (3.7.41) (in (3.7.44)) and (3.7.42), except now we note that f ′(x) van-

ishes off of x ∈ [E2, E2 +η], where it is at most Cη−1. This shows (3.7.39) ≤ C(logN)3N−1/2,

and so (3.7.31) ≤ C(logN)3N−1/2, with overwhelming probability. Combining our esti-

mates on (3.7.31), (3.7.32), and (3.7.33), we deduce (3.7.30) holds with probability at least

1−N−D−1.

We now use (3.7.30) to estimate the difference between the eigenvalue counting functions

for the measures µs and µ̂s. We recall that we are working on the set of probability at

least 1 − N−D−2 where λ1 > −NB. Therefore, recalling the definition of f(x), we see

ns(E2) ≤
∫∞
−∞ f(x) dµs(x) ≤ ns(E2 + η) for any E2 ∈ [−(2K)−1, (2K)−1] on this event.

The case of of n̂s(E) is slightly more delicate, since we must estimate the contribution

to the mass of µ̂s from eigenvalues in the interval (−∞,−NB]. With probability at least

1−N−D−2, there are no eigenvalues in this interval. On the complementary event, trivially

have
∫ −NB

−∞ dµs(x) ≤ 1, since µs is a probability measure. Therefore,
∫ −NB

−∞ dµ̂s(x) ≤ N−2 by

taking expectation and using the previous two observations.

Using (3.7.30) and the overwhelming probability estimate
∣∣ns(E2 + η) − ns(E2)

∣∣ ≤ Cη

(which follows from the second inequality of (3.3.21)), we deduce that, with probability at
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least 1− CN−D−1,

n̂s(E2)− ns(E2) ≤ n̂s(E2)− ns(E2 + η) + Cη (3.7.48)

≤
∫
R
f(x)dµ̂s(x) + CN−2 −

∫
R
f(x)dµs(x) + Cη (3.7.49)

≤ CN δ/2−1/2 + Cη ≤ CN δ/2−1/2. (3.7.50)

Similarly, now using the bound
∣∣n̂s(E2 + η) − n̂s(E2)

∣∣ ≤ Cη (which follows from the over-

whelming probability estimate
∣∣ns(E2 + η) − ns(E2)

∣∣ ≤ Cη after taking expectation and

using the trivial bound
∣∣ns(E2 + η) − ns(E2)

∣∣ ≤ 1 on the set where this estimate does not

hold), we obtain

ns(E2)− n̂s(E2) ≤ ns(E2 + η)− n̂s(E2 + η) + Cη (3.7.51)

≤
∫
R
f(x)dµs(x) + CN−2 −

∫
R
f(x)dµ̂s(x) + Cη (3.7.52)

≤ CN δ/2−1/2 + Cη ≤ CN δ/2−1/2, (3.7.53)

with probability at least 1−CN−D−1. Hence, with probability at least 1−N−D, we conclude∣∣ns(E)− n̂s(E)
∣∣ ≤ N δ−1/2, for |E| ≤ (2K)−1.

We are now ready for the proof of Lemma 3.3.8.

Proof of Lemma 3.3.8. We start with the first claim. By (3.3.12) and (3.3.13), we have with

overwhelming probability that

sup
s∈[N−1/2+δ ,N−δ ]

sup
z∈D̃

∣∣mα(z)−mN(s, z)
∣∣ < N−αδ/16. (3.7.54)

By using (3.3.2) on the set where this does not hold and taking expectation, we deduce the
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deterministic estimate

sup
s∈[N−1/2+δ ,N−δ ]

sup
z∈D̃

∣∣mα(z)− m̂N(s, z)
∣∣ < CN−αδ/16. (3.7.55)

Next, we define

nα(E) =

∫ E

−∞
%α(x) dx. (3.7.56)

The distribution functions nα(E)− nα(0) =
∫ E

0
%α(x) dx and n̂s(E)− n̂s(0) =

∫ E
0
dµ̂s(x)

may be compared using [52, (11.3)] (see also the proof of [52, Lemma 11.3]), which by (3.7.55)

gives ∣∣nα(E)− n̂s(E)− nα(0) + n̂s(0)
∣∣ ≤ CN−c (3.7.57)

for some c = c(δ) > 0 and E ∈ [−c0, c0], where c0 > 0 is sufficiently small.

There are two cases: N is even and N is odd. When N is even, by the symmetry of the

measures µ̂s and µα, we see that γ̂N/2(s) = γ
(α)
N/2 = 0. We consider this case first.

We will show that for any c1 > 0 sufficiently small, there exists c2 > 0 such that,

if |i − N/2| ≤ c2N , then
∣∣γ̂i(s)∣∣ < c1. To that end, observe that (3.5.18) implies, with

overwhelming probability, ∫ v

0

dµs ≥ cv, (3.7.58)

for any v ∈ [N δ−1, c0] (after decreasing c0, if necessary). Taking expectation and using that

µs is a nonnegative measure, we find

∫ v

0

dµ̂s ≥
cv

2
, for any v ∈ [N δ−1, c0]. (3.7.59)

We may suppose by symmetry that i ≥ N/2, so that γ̂i(s) ≥ 0 by the symmetry of µ̂s(x).

By definition, ∫ γ̂i(s)

0

dµ̂s =
i−N/2
N

≤ c2. (3.7.60)

If we choose c2 < c1c/4, then γ̂i(s) > c1 produces a contradiction with (3.7.59). By (3.3.4),
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we also have that for any c1 > 0 sufficiently small, there exists c2 > 0 such that, if |i −

N/2| ≤ c2N , then
∣∣γi∣∣ < c1. We take c2 small enough so that |i − N/2| ≤ c2N implies

γi, γ̂i(s) ∈ [−c0, c0], and consider just this set of indices in what follows.

We observe that, for s > 0, µ̂s is absolutely continuous with respect to Lebesgue measure,

since each entry of Xs is. Then, by the definition of γi and γ̂i(s),

∫ γ̂i(s)

0

%α(x) dx+

∫ γi

γ̂i(s)

%α(x) dx =

∫ γi

0

%α(x)dx =
i−N/2
N

=

∫ γ̂i(s)

0

dµ̂s. (3.7.61)

Using (3.7.57) and the fact that %α(x) is bounded below on [−K,K] by some constant c′

by (3.3.4), we see

N−c ≥
∣∣∣∣∫ γi

γi(s)

%α(x) dx

∣∣∣∣ ≥ c′
∣∣γi − γ̂i(s)∣∣ (3.7.62)

deterministically, which completes the proof when N is even.

When N is odd, we have γ̂bN/2c(s) = −γ̂dN/2e(s) by symmetry. If γ̂dN/2e(s) > N−1+δ, then

setting v =
∣∣γ̂dN/2e(s)∣∣ in (3.7.59) yields and also using the fact that

N−1 =

∫ γ̂dN/2e(s)

γ̂bN/2c(s)

dµ̂s = 2

∫ γ̂dN/2e(s)

0

dµ̂s ≥
cN δ−1

2
, (3.7.63)

which is a contradiction. Thus,
∣∣γ̂bN/2c(s)∣∣ =

∣∣γ̂dN/2e(s)∣∣ ≤ CN−1+δ. We write

∫ γ̂i(s)

γ̂dN/2e(s)

dµ̂s =

∫ γ̂i(s)

γdN/2e(s)

%α(x) dx+

∫ γi

γ̂i(s)

%α(x) dx. (3.7.64)

Since
∣∣γ̂dN/2e(s)∣∣ ≤ CN−1+δ, and by (3.3.4),

∣∣γdN/2e(s)∣∣ ≤ CN−1+δ, we have

∣∣γ̂dN/2e(s)− γdN/2e(s)∣∣ ≤ CN−1+δ. (3.7.65)

In conjunction with (3.3.4), this shows

∫ γ̂i(s)

γ̂dN/2e(s)

dµ̂s =

∫ γ̂i(s)

γ̂dN/2e(s)

%α(x) dx+

∫ γi

γ̂i(s)

%α(x) dx+O(N−1+δ). (3.7.66)
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We may then proceed using (3.7.57) as before in (3.7.62) to complete the proof.

The proof of the second claim, (3.3.24), uses (3.7.27) and proceeds similarly, except there

is no need to treat the cases of even and odd N separately. By (3.3.7) and the discussion

following (3.7.60), there exists c2 > 0 such that |i−N/2| ≤ c2N implies γi, λi(s) ∈ [−c0, c0]

with overwhelming probability. We then write

∫ γ̂i(s)

−∞
dµ̂s =

∫ γ̂i(s)

−∞
dµs +

∫ λi(s)

γ̂i(s)

dµs. (3.7.67)

Then using (3.7.27), with overwhelming probability we have

N δ/2−1/2 ≥

∣∣∣∣∣
∫ λi(s)

γ̂i(s)

dµs

∣∣∣∣∣ . (3.7.68)

Assuming to the contrary that
∣∣λi(s) − γ̂i(s)∣∣ ≥ N δ−1, we use (3.5.18) again to show that,

with overwhelming probability,

CN δ/2−1/2 ≥

∣∣∣∣∣
∫ λi(s)

γ̂i(s)

dµs

∣∣∣∣∣ ≥ c′
∣∣λi(s)− γ̂i(s)∣∣. (3.7.69)

Thus,
∣∣λi(s) − γ̂i(s)∣∣ ≤ CN δ/2−1/2, which is a contradiction and so

∣∣λi(s) − γ̂i(s)∣∣ ≥ N δ−1.

Finally, we estimate

∣∣γi(s)− γ̂i(s)∣∣ ≤ ∣∣γi(s)− λi(s)∣∣+
∣∣λi(s)− γ̂i(s)∣∣ ≤ N−1+δ + CN−1/2+δ . N−1/2+δ (3.7.70)

using (3.3.14) to bound
∣∣γi(s)− λi(s)∣∣, which proves (3.3.24)

3.8 Convergence in distribution

Proposition 3.8.1. For α ∈ (2/3, 2) \ A, there is a unique limit point R?(E) of the se-

quence of random variables
{

ImR?(E + iη)
}
η>0

in the weak topology. For α ∈ (1, 2) \ A,
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the conclusions of Theorem 3.1.8, Theorem 3.1.7, and Corollary 3.1.9 hold in the sense of

convergence in distribution.

Proof. We begin by showing that there exist constants C > 1 > c > 0 such that, for z ∈ H

with |z| < c, the random variable R?(z) satisfies the tail bound

P
(

ImR?(z) > s
)
≤ exp

(
−s

α/(2−α)

C

)
. (3.8.1)

To that end, let R1(z), R2(z), . . . denote mutually independent random variables each with

law R?(z). By the Lévy–Khintchine formula (3.6.20),

E

[
exp

(
−t Im

∞∑
k=1

ξkRk(z)

)]
= exp

(
−tα/2Γ

(
1− α

2

)
E
[(

ImR?(z)
)α/2]) ≤ exp

(
−2tα/2

C

)
,

(3.8.2)

for some C > 0, where we used that E
[(

ImR?(z)
)α/2]

> c′ for z in a neighborhood of 0 (see

(3.7.5)).

We now compute, using (3.6.1),

P
(

ImR?(z) > Ct1−α/2
)
≤ P

(
Im

∞∑
k=1

ξkRk(z) <
tα/2−1

C

)
(3.8.3)

= P

(
exp

(
− t Im

∞∑
k=1

ξkRk(z)

)
> exp

(
−t

α/2

C

))
. (3.8.4)

In the first equality, we used ImRk(z) > 0. Now applying Markov’s inequality to (3.8.2) and

(3.8.3), we obtain

P
(

ImR?(z) > Ct1−α/2
)
≤ exp

(
−t

α/2

C

)
. (3.8.5)

Setting s = Ct1−α/2, we obtain (3.8.1) for a new value of C.

Let R?(E) be the limit point in the weak topology of {ImR?(E + iη)}η>0 from Defini-

tion 3.1.5. Note that since the tail bound (3.8.1) holds for ImR?(z) uniformly in z, it also
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holds for R?(E).

Using the bound (3.8.1) for R?(E), we see that for all k, the k-th moment of R?(E)

is bounded by (Ck)k(2−α)/α for some C > 0. Therefore, the series
∑

k≥1 E
[
R?(E)k

]−1/2k

diverges when α ∈ (2/3, 2). By Carleman’s condition for positive random variables (the

Stieltjes moment problem) [89, p. 21], this implies that R?(E) is determined by its moments

when α ∈ (2/3, 2). By Proposition 3.1.4, these moments are the same for any subsequential

limit of {ImR?(z)}η>0, so R?(E) is only possible subsequential limit. Therefore the sequence

converges in distribution to R?(E).

Similar reasoning may be applied to the quantitiesN 2·R?(E) appearing in Theorem 3.1.8,

Theorem 3.1.7, and Corollary 3.1.9. By Stirling’s formula, the k-th moment ofN 2 is bounded

by (Ck)k for some C > 0, so the moments of N 2 · R?(E) are bounded by (Ck)k(1+(2−α)/α).

For α ∈ (1, 2), 1 + (2 − α)/α < 2 and Carleman’s condition applies. This completes the

proof.

3.9 Quantum unique ergodicity of eigenvectors

For any aN : [1, N ]∩N→ [−1, 1] we denote by |aN | =
∣∣1 ≤ i ≤ N : aN(i) 6= 0

∣∣ the cardinality

of the integer support of aN . We define 〈uk, aNuk〉 =
∑N

i=1 |uk(i)|2aN(i).

Corollary 3.9.1. For all α ∈ (0, 2) \ A, there exists c = c(α) > 0 such that the following

holds. Fix any index sequence k = k(N) such that limN→∞ γk = E for some E ∈ R satisfying

|E| < c. Then for every δ > 0, for any aN : [1, N ] ∩ N → [−1, 1] such that
∑∞

i=1 aN(i) = 0

and |aN | → ∞,

P

(∣∣∣∣ N|aN | 〈uk, aNuk〉 > δ

∣∣∣∣
)
→ 0. (3.9.1)
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Proof. Letting m2 = E
[
U?(E)

]
, we compute

E
[( N

|aN |
〈uk, aNuk〉

)2
]

=
1

|aN |2
E

( N∑
i=1

aN(i)
(
N |uk(i)|2 −m2

))2


≤ max
i1,i2∈[1,N ]
i1 6=i2

E
[(
N |uk(i1)|2 −m2

)(
N |uk(i2)|2 −m2

)]
+

1

|aN |
max
i∈[1,N ]

E
[(
N |uk(i)|2 −m2

)2
]
.

(3.9.2)

The conclusion applies after applying Markov’s inequality to the second moment computed

in (3.9.2) and applying Theorem 3.1.7. The hypothesis that |aN | → ∞ ensures the second

term in the second moment computation tends to zero.
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