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Abstract

Distributed systems are now ubiquitous in the infrastructures underpinning

our everyday lives, yet diagnosing performance problems in these systems remains

extremely challenging. The current state of the art for problem diagnosis in these

systems relies on data from instrumentation in the system, but the placement of

this instrumentation is an unsolved challenge in systems research and in production

environments.

This work presents an implementation and evaluation of a performance vari-

ation-based tool that helps developers understand where instrumentation should be

placed in a distributed system to better diagnose current and future performance

problems. This tool identifies under-instrumented regions in these systems by localiz-

ing performance variation seen in system requests. Contributions of this work include

the tool itself; implementations of several methods for localizing performance varia-

tion, including a method that prioritizes performance variation deeper in request call

graphs; a conversion module that can also function as a stand-alone toolkit to allow

the performance variation-based tool to be used across a variety of systems, includ-

ing those instrumented using the Open Tracing model as well as those using a more

general directed acyclic graph (DAG) models; and several experiments evaluating the

tool and these methods on an open source distributed application.

They key insight informing this work is that similar workflows in the same

system should perform similarly. Building on existing workflow-centric tracing tools



to profile system behavior, the tools and methods presented have the potential to

significantly cut down on time spent diagnosing performance problems in distributed

systems. The experiments evaluate their utility both for understanding where to place

additional instrumentation for current problems in these systems as they arise, and

for guiding informative placement of default system instrumentation to better handle

future problems. Potentially, the tools and methods could also be adapted for use

in a broader framework that seeks to dynamically tune instrumentation in running

systems to the current system state.
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Chapter 1: Introduction

The desire to make systems more reliable is a powerful one; unfortu-

nately, this addiction, if left unchecked, will inescapably lead to madness...

–James Mickens (Mickens, 2013)

Distributed computing systems form a core part of the infrastructures we rely

on. They hold medical patient data (Raza, 2017; Rowe, 2017) and are present at the

forefront of scientific discovery in areas like particle physics – the Worldwide LHC

Computing Grid spanned 174 facilities in 2015 to support the Large Hadron Collider

(Whyntie & Coles, 2015). They are increasingly mixed in with banking in the form of

APIs to access bank accounts (Darrow, 2016; Whomes, 2018). Distributed systems

also support the accessible data storage many people know and love as Google Drive

(Google Drive, nd). Any time that people access the Internet, they are interacting

with a distributed system when they route requests through DNS or load websites

that are hosted on distributed content delivery networks like Akamai (Rollins, nd;

Akamai, nd).

The definition of a distributed system as “multiple software components that

are on multiple computers, but run as a single system” in which the multiple com-

puters are potentially “geographically distant” (IBM, nd) and could number in the

tens of thousands (Kozyrakis, 2013) applies to the systems supporting the majority

of computing activities that individuals and businesses participate in today – from
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communicating on social media to collaborating with teams in other companies via

file sharing or VoIP services. For many people, the complex systems on which people

and organizations store their data or interact with software as a service are known

simply as “the cloud.” Due to its prevalence in business, research, and other services,

the “worldwide public cloud services market is projected to grow 17.3 percent in 2019

to total $206.2 billion” according to Gartner, with the fastest growing portion being

infrastructure as a service (Costello & Hippold, 2018).

Yet despite the now heavy societal reliance on these systems and their sub-

tle protrusion into most facets of daily life in industrialized nations, these systems’

maintenance, in terms of diagnosis of performance problems and failures, remains a

largely unsolved problem in systems research as well as production. By definition,

distributed systems are comprised of multiple software or hardware components or

both; in reality, these are often vast numbers of intricately interrelated components.

Warehouse-scale computing, common today and used by Amazon and Google, is a

class of distributed computing that can involve tens to hundreds of thousands of

servers acting as one system (Barroso & Holzle, 2009; Kozyrakis, 2013). Especially

as it becomes more common to interact with systems of this scale, it is difficult to

know which of potentially thousands of servers, the applications they are running,

their network connections, their lower stack levels, hardware, or myriad other moving

parts could be responsible for a malfunction or performance degradation. It can be

especially confounding when the malfunction lies not with any single component or

application, but instead manifests only in the interactions between several components

that may function well in isolation. In one example documented by the engineers at

LightStep, a system failure was eventually tracked not to a single root cause, but to

the interactions of two separate changes in the system, one relating to the code itself

and the other to a new traffic pattern of requests to the service (Asemanfar, 2018).
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In the face of such challenges, it is not surprising that debugging distributed

systems is known to be notoriously time-consuming and expensive. A joint technical

report from Lloyd’s of London and AIR Worldwide estimated in 2018 that an outage

in one of the “top cloud firms,” such as Amazon Web Services, Microsoft’s Azure,

Google, IBM, and Alibaba (Ranger, 2018), could cost up to $19 billion in just six

days (Nunns, 2018; Lloyd’s, 2018). As distributed systems continue to increase in

size and complexity (Ranganathan & Campbell, 2007), debugging these systems will

continue to grow more challenging as well as more critical.

Today’s solutions to aid engineers with problem diagnosis for performance

degradation or other malfunctions rely on some of the many components that comprise

a distributed system having the capability of recording metrics about the system’s

performance or behavior. This can take the form of code embedded in a distributed

application that is external to and not necessary for the application’s functionality.

For a basic example, this code could record each time a system component is accessed

and this record could be sent or stored in a specific place for later perusal. These

externally inserted record-keeping mechanisms are commonly referred to as instru-

mentation points, logging points, or just metrics, instrumentation, logs, or logging in

aggregate in a monitored system. These logs are typically used either to alert sys-

tem operators to some unusual behavior that bears examination in case it reflects an

urgent system problem, or to aid efforts in finding a root cause during some already

known system problem or failure event. Instrumentation is critical in the quest to

avoid system problems, repair current performance degradations or failures, and un-

derstand performance degradation or problems that have occurred in the past (Beyer

et al., 2016, p. 56-57,138).

It is clear that well-placed instrumentation has a significant potential to cut

down on financial and reputational costs of performance degradation and other mal-
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functions in distributed systems and to directly or indirectly aid the many sectors of

society relying on these systems today. However, the nature of these instrumenta-

tion points means that data about system behavior is only captured at the specific

points in the system where the instrumentation is placed, and this presents difficulty.

Unfortunately, it is not realistic to expect that developers placing instrumentation

points in systems will be able to foresee all the areas that need to be instrumented,

regardless of their domain expertise. This is especially true given that the “right”

instrumentation for a system depends on that system’s current state. This means

that instrumentation must often be added to a system to diagnose a specific prob-

lem, as generalized instrumentation points have limited utility since they will not

show enough detail in the parts of the system where a particular problem happens

to be. As noted by Kaldor, J. et al: “diagnosing performance issues ... requires a

global view, yet granular attribution, of performance” (Kaldor, 2017). Consequently,

adding instrumentation in the right areas is a recurring challenege both during system

development and also in the face of the many new problems the system could experi-

ence that need more fine-grained instrumentation in a certain area, above and beyond

the instrumentation present in that area by default, to diagnose the root cause.

This work presents a tool that aims to identify under-instrumented regions

of distributed systems, assuming some instrumentation is already in place, to help

with these instrumentation efforts in these two sparate scenarios. First, the tool aims

to help with default instrumentation placement, in which the goal is to have instru-

mentation in place to differentiate between differing requests in a normally-running

system. This is important because well-placed instrumentation before problems are

detected can ease the difficulty of figuring out where to add more instrumentation

when problems do arise. Second, the tool aims to give engineers a better set of

starting points in diagnosing the root cause of some immediate performance problem
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that has arisen in the system. The same technique is applied in both cases, and this

work shows the utility of examining placement of default instrumentation with the

performance variation-based tool as well as the correspondence between performance

variation and problems introduced into the test system.

The tool and its underlying technique and methods are based on the insight

from previous work that performance variation in system requests is a marker of

some unknown system behavior (Sambasivan et al., 2011; Sambasivan & Ganger,

2012), and indicative of an under-instrumented region. While this insight will be

explained in more detail in the Approach section, it is crucial to understand that

unknown system behavior and an under-instrumented region are two ways of saying

the same thing about system activity, our knowledge of which is only as specific as

the instrumentation present. More detailed instrumentation necessarily cuts down on

unknowns about system behavior. It is the judicious placement of this instrumenta-

tion that allows for more detailed data to be collected in those system areas where it

is more useful and less detailed data in areas where it is not. The ability to make this

determination both cuts down on overhead and intrinsically passes a smaller amount

of more relevant diagnosis-related data to the engineer.
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Chapter 2: Problem Statement

The central question this work seeks to answer is: “Can under-instrumented

regions in distributed systems that contribute to differing performance among similar

requests be identified using performance variation?” This thesis will build on previous

work (Sambasivan et al., 2011; Sambasivan & Ganger, 2012) to evaluate the potential

of using performance variation as an indicator of under-instrumented regions in the

system and of problematic system behavior. To do so, the thesis presents a tool

for developers and engineers to guide instrumentation choices in distributed systems

by distinguishing between requests with different performance characteristics. Given

some instrumentation already present in the system, the tool helps identify any regions

where a higher density of instrumentation could provide more useful information.

This work also aims to validate the hypothesis that performance variation observed

in distributed systems is tied to the root cause of performance degradation problems

in these systems. As the approach relies on detecting differences in request latency

or completion time, it will be applicable to system problems involving noticeable

performance degradation, for example involving resource contention, improper load

balancing, execution of an unexpected code path, or misconfiguration problems such

as portions of a request being forwarded to the an incorrect component.
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Chapter 3: Prior Work

The body of work on instrumentation in distributed systems has traditionally

focused on failure cases and on improving or analyzing the information output of

existing instrumentation points (Mariani & Pastore, 2008; Mariani et al., 2009; Xu

et al., 2009; Yuan et al., 2010, 2012c,b). A popular approach in this research area is

to focus on post-mortems, i.e. using logs to understand the root cause of a system

failure. For example, research has been done on optimizing the location of logging

points to differentiate different paths that an application takes (Zhao et al., 2017) to

aid in failure diagnosis, as well as research on what to include in the logs (Yuan et al.,

2012c,a).

This thesis differs in its alignment to the problem of informative distributed

system instrumentation by focusing on performance degradation problems in a run-

ning system, such as those caused by resource contention or misconfiguration, and

doing groundwork for adding new instrumentation points into the system by ana-

lyzing where such instrumentation may be useful. This question of where to place

instrumentation in the system is more challenging, and impacts all tools and research

focused on gaining visibility into the system, as these are necessarily limited by the

instrumentation present.

Previous work that has a similar focus on locating where to place new instru-

mentation points includes Yuan et al. (2012a) and Zhao et al. (2017). The former,

which presented the tool called ErrLog, focused on static analysis with a run-time
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component and exclusively on exceptions. They analyzed the source code to identify

unlogged exceptions and insert logs in these areas.

Zhao et al. (2017) and Ball & Larus (1996) have both taken the approach of dif-

ferentiating code paths – Ball & Larus (1996) differentiates every possible code path,

while Zhao et al. (2017) differentiates only those execution paths in the currently an-

alyzed workload. While differentiating code paths is useful for post-mortem analysis,

it is not necessarily the best approach for diagnosing performance problems. With

performance problems, it is possible for requests experiencing performance degrada-

tion to have identical code-paths with requests that are not. Their work is similar in

its aims but differs in its methodology from the work in this thesis.

Yuan et al. (2012c), presenting LogEnhancer, also focuses on adding new ways

of collecting diagnostic information to the system, but does this by adding variables to

existing instrumentation points to collect relevant data. Their work is not concerned

with finding under-instrumented areas.

The work in this thesis is based on the approach of localizing problems in

distributed systems by focusing on the variation of performance in similar requests

proposed by Sambasivan et al. (Sambasivan & Ganger, 2012; Sambasivan et al., 2011).

Later, Huang et al. (Huang et al., 2017) proposed a mathematical model for such

analysis on single-node systems.
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Chapter 4: Tool Goals and Requirements

The main goal of the tool is to provide guidance about where to add instru-

mentation in the system to aid in diagnosing both current and future problems. To

meet this goal, one set of requirements is that the output of the tool should be

human-meaningful data regarding which traces were processed, which of these could

be expected to perform similarly, whether any had high performance variation, and to

which part of the request the variation, if any, can be localized. To make the output

easier to understand, high performance variation should be ranked by some mean-

ingful characteristic, such as highest to lowest performance variation, in the output

in cases where multiple regions of high performance variation exist. This output is

meant to serve as a guide for where more instrumentation may be necessary.

A secondary goal is that the technique the tool is based on should be applicable

to a variety of distributed systems and tracing infrastructures, and that the tool itself

should be adaptable to different systems without changing its main mechanisms.

This is why it was necessary for the tool to consume directed acyclic graphs as input,

as these are the most expressive and general form that traces can take and will be

applicable to the widest variety of systems and tracing infrastructures (see Section 6.2:

Design Choices: The Performance Variation-Based Tool). This requirement also

informed the decision for the tool to be able to consume both .JSON files, which

are associated with span model traces, and .DOT files, which are associated with

DAG model traces.
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Chapter 5: Approach

The approach for this work is based on the key insight that performance vari-

ation can serve as a marker of unknown system behavior (Sambasivan et al., 2011;

Sambasivan & Ganger, 2012). To observe, analyze, and localize performance varia-

tion, the approach relies on existing workflow-centric tracing tools. The insight and

the workflow-centric tracing tools it relies on are explained in more detail in the below

subsections.

5.1. Performance Variation Marks Unknown System Behavior

Any command or request sent to a system will trigger a series of actions the

system takes to process that command within and among the system’s components.

This series of actions from beginning to end is known as the request’s associated

workflow. Two workflows are depicted in figure 5.1 (Ates et al., 2019). Each

request’s workflow has a total response time, also known as its overall latency, that

is a measure of how long the request took to complete. This response time or latency

is also referred to as the request’s performance, in terms of time, ex. microseconds or

milliseconds.

It is expected that requests that exhibit similar workflows—i.e., that are pro-

cessed similarly within and among the nodes of a distributed application and by lower

stack layers—should perform similarly in the same system because they are doing sim-
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Figure 5.1: Two request workflows.

ilar work (Sambasivan et al., 2011; Sambasivan & Ganger, 2012). For example, one

may expect that read requests in the same system are relatively similar to each other

but somewhat different from write requests in the same system. This expectation

would manifest in the response times or overall latencies of these requests.

When this expectation is not met and the performance of two seemingly similar

workflows significantly differs, it means the expectation was incorrect and that the

workflows were actually different in some way: there is some differentiating factor

between the workflows that was not considered. This could be due to acceptable and

expected heterogeneous behavior in the system, or could indicate a system problem,

such as a misconfiguration. For example, consider two read requests that are issued

to the same system. Because they are both read requests, one might expect that

they are processed similarly in the system and are doing the same work, which would

indicate that they should have similar performance. If one of the read requests is

far slower than the other, it indicates that there must be some difference between

11



their workflows. Perhaps one of the read requests was able to retrieve the requested

information from a cache and so was much faster than the other request, which

missed in the cache and had to retrieve the information from storage on another

node. Perhaps the information the requests needed to retrieve was held on different

storage nodes and one could be accessed more quickly than the other.

This difference in performance, in terms of total response time, can be quanti-

fied by looking at performance variation among a group of request workflows. Perfor-

mance variation can be assessed by calculating the variance or coefficient of variation

values for a group of requests. These values quantify the range of difference from the

mean response time for the group, or, intuitively, how closely the response times for

the group cluster around a central value.

A significant benefit of the tool is that it goes beyond assessing whether a

group of requests has high performance variation and localizes the source of the

variation to a more specific system area within the path of the request, i.e., a specific

system region that is involved in processing that type of request. These regions

can be the components of a distributed system, such as compute or storage, or can

refer to specific virtual or physical machines or even to functions or variables. When

performance variation can be localized to a more specific area, the analysis is more

informative, since localizing the source of the observed variation gives insight into

where additional instrumentation may be needed to identify the unknown behavior.

However, due to the way workflow data is obtained (described in Section 5.2 below),

it is not always possible to localize variation to the most specific areas.

For meaningful performance variation values, only those requests which are

expected to perform similarly should be assessed together; a group of requests per-

forming many different actions in the system will inherently have high performance

variation, and this is expected. Understanding how expectations are formed about

12



which requests should perform similarly, as well as understanding how performance

variation in a group of requests can be localized, are both dependent on understanding

representations of system workflows and what data is available about them from the

instrumentation. This is described in the section below on workflow-centric tracing.

5.2. Workflow-Centric Tracing Records Request Behavior

In order to assess performance variation of requests in the system, one must

have some way of capturing and reconstructing the work done in the system on behalf

of each request. At minimum, a subset of work done on behalf of the request, order

in which it was completed, and the latency between each recorded action must be

available for analysis. For this data, this work relied on pre-existing workflow-centric

tracing tools to monitor the system under observation.

The mechanisms of are explained through this excerpt from a paper recently

submitted for review to a conference by our team (Ates et al., 2019):

Workflow-centric tracing of distributed applications, also called end-to-

end tracing, (Chen et al., 2004; Thereska et al., 2006; Reynolds et al.,

2006; Fonseca et al., 2007, 2010; Sigelman et al., 2010; Sambasivan et al.,

2016; Kaldor et al., 2017; Mace & Fonseca, 2018; OpenTracing website,

nd; Jaeger, nd) makes it possible to capture requests’ workflows to varying

degrees of fidelity. The degree of fidelity depends on the amount of trac-

ing instrumentation present in the application. Workflow-centric tracing

works by propagating context (e.g., an ID unique to a request) with indi-

vidual requests as the requests are executed by the nodes of a distributed

application. This allows records of log points executed by requests to be

tagged with requests’ context, effectively turning the system’s log points

13



into trace points. Sampling techniques can be used to keep tracing’s over-

head low enough (e.g., < 1%) to be used in production, as is done at many

companies today (Sigelman et al., 2010; Kaldor et al., 2017; OpenTracing

website, nd; Jaeger, nd).

It is important to note that while tracing systems have surpassed logging

in providing relevant, causal information about systems to make debugging more

efficient, these tracing systems face the same severe placement-related limitations as

logging due to their reliance on instrumentation placed a priori within the distributed

system.

After the data about a request’s workflowis captured by the tracing system,

this data is stored in a back end from which a trace reconstructor can gather trace

point records from different machines and stitch together those with related context

to create traces of requests’ workflows. This reconstructor can be triggered by a

querying system in which a request ID is provided to the back end and the back end

returns an ordered set of records associated with the request from the trace points

that were on the path of the relevant request.
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Chapter 6: Design

6.1. System Overview

The performance variation-based tool is comprised of several logical units of

work, or phases, that process sets of workflow-centric traces and emit output indi-

cating to which regions of these traces any performance variation can be localized.

These phases are:

• Phase 1: Input parsing

• Phase 2: DAG conversion

• Phase 3: Critical path extraction

• Phase 4: Grouping based on expectation of performance

• Phase 5: Analysis and localization of performance variation

• Phase 6: Output

It will be apparent that the first four phases in this pipeline can be considered

pre-processing. Any time the tool is invoked, the set of traces forming its input go

through each of these logical units of work, with the exception of the DAG conversion,

which is optional to cover the case in which the traces are already DAGs, and the

extraction of the critical path, which is necessary in systems with large amounts of

15



parallel processing, like Ceph, but not otherwise. Additionally, several parts of this

pipeline can be used as stand-alone tools as well; for example, the DAG conversion

can be applied to a single trace when called from the command line, without invoking

the larger framework of the tool itself.

Section 6.2 below highlights the design choices that arose in relation to several

of the phases listed above, while section 6.3 describes the design considerations of

the test environment in which the tool was run.

6.2. Design Choices: The Performance Variation-Based Tool

This section highlights some of the design considerations regarding building the

tool itself. These highlights are related to Phases 2 (DAG conversion), 4 (grouping),

and 5 (analysis and localization) above, as they were the most involved and most

interesting design considerations.

6.2.1 The DAG As a More Expressive Tracing Model

The design choice of which tracing model to use relates to Phase 2: converting

traces to DAGs in the System Overview.

A request’s reconstructed workflow is known as a trace of the request and can

take several graph-like forms. The Open Tracing model (OpenTracing website, nd),

also known as the span or swim lane model, prioritizes showing call graph relation-

ships at the expense of happened-before-relationships (Lamport, 1978) that track

causality between events. By contrast, the more expressive DAG model is able to

record both call graph relationships as well as happened-before-relationships. This

becomes important especially when requests’ workflows in the traces exhibit any of

these behaviors:
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• Concurrent behavior, in which multiple tasks executed on behalf of the request

overlap in time on what is referred to as different branches of the trace;

• Synchronization points, in which some part of a request must wait for two or

more concurrent branches to complete before joining them into one;

• Asynchronous behavior, in which concurrency exists with no following synchro-

nization point.

Figure 6.1: Concurrent behavior in traces: asynchronous vs. synchronous.

In figure 6.2, the same request is shown in the contrasting diagrams, with

the span model on the left and the DAG model on the right. This request consists

of a main function that calls three other functions: a read() function, followed by
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a write() function, and lastly an execute function(). Each span or bracket in the

span model represents a semantic unit of work, a human-meaningful and arbitrarily

designated set of system tasks, that takes a span of time to execute. The nested

structure corresponds to parent-child relationships between these units of work in

which a span nested inside another is called by the other. These are highlighted by

the dotted arrows from the outer main() function to its children. Of note is the fact

that while the span model explicitly shows these call graph relationships – that is,

the main() function’s relationship as a parent function to the read(), write(), and

execute() functions – it does not have any explicit way of notating the relationships

of the read(), write(), and execute() functions to each other. They may have occurred

in any order; they may have all been sequential, or two or all three of them could

have happened concurrently.

Figure 6.2: Example of trace in both span and DAG models.

The DAG model on the right in figure 6.2 shows this same trace of the same

request in a different form. This model is explicit about the causal relationships,
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or happened-before-relationships, between each of the events and function activities.

The “spans” from the span model are broken down into more the more specific events

of start and end times for each of the functions. In this model, these start and

end events are captured as the nodes of the graph, while the edges of the graph,

represented with continuous lines, represent causal or happened-before-relationships

between them and generally are labeled with latency values. In the example, the

following relationships are evident: 1) the read() function finishes before, i.e. has a

happened-before-relationship with, the write() and execute() functions; 2) the write()

and execute() functions are concurrent with respect to each other; 3) read(), write(),

and execute() are all called by main() as shown by the nested brackets super-imposed

over the DAG. It is also evident that each event that is “downstream” of another has a

causal relationship with it, even if they are not adjacent; the start of the read() event

has a happened-before-relationship with the end of the write() event, for example.

Because causal as well as call graph relationships can be explicitly noted as part of

the graph, it is also easier to use this model for programmatic analysis as is done with

the performance variation tool in this thesis.

The explicit causal relationships of the DAG model also allow for the critical

path of the request to be extracted. The critical path of a request is the sequential

set of work that must be done in order for the request to complete, and each part of

the critical path is directly responsible for some part of the latency of the request.

Therefore, the critical path is exactly the portion of the request’s workflowthat will

impact performance variation. In practice, the critical path is the entire request in

cases with no concurrency, and is the temporally longest branch of the request in

cases with concurrency that is followed by synchronization. In cases where there is

asynchronous behavior in the workflow, that is some concurrency without a synchro-

nization point, the asynchronous branches are not considered part of the critical path
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because no part of the workflow waits for them to complete.

In this work, only the DAG model was used to represent traces because only

this model is able to express causal relationships in systems, like Ceph or Hadoop, that

exhibit concurrency and synchronization points in processing workloads. Therefore

in order to make this work broadly applicable to a variety of systems, a conversion

process had to be implemented for span model traces to get them into a DAG format.

(For more details on the conversion process, see Section 7.2.1 in Implementation.)

However, since our workflows in the OpenStack test environment did not always

exhibit concurrency, the process of extracting the critical path was omitted in these

cases.

6.2.2 Effects of Instrumentation Granularity in Traces

The design necessity of grouping certain traces together, and considerations

about what characteristics to use to do so, relate to Phase 4: grouping traces, shown

in the System Overview at the beginning of this chapter. This step is crucial to

understanding how performance variation and instrumentation are related.

As the basis of the analysis is a set of expectations about which requests should

perform similarly, this expectation must be formalized in some way before the tool can

conduct any analysis. The tool uses trace structure to formalize these expectations

and differentiate between workflows that have different performance expectations.

The utility of this design choice is highlighted by the way workflow-centric tracing

reconstructs the work done in the system by requests.

As described in Section 5.2, the trace as a record of a request’s workflow

depends on context propagation through existing instrumentation points in the dis-

tributed system. The density or sparseness of detail in this record corresponds to

the density or sparseness of instrumentation along the request’s path of processing
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through the system. In this sense, there is no such thing as a “fully instrumented”

trace – there are only more and less expressive records of the workflow. It is in this

context that one must understand how performance variation can serve as a marker

for under-instrumented regions and guide instrumentation placement in the system.

Since the same request can leave traces of differing levels of detail depending

on the instrumentation present in the system, adding instrumentation on the path of

a request can reveal differentiating factors in the workflows of requests that previously

manifested as identical or similar. Some of these differentiating factors, at the right

level of granularity, can reveal or point toward the root causes of performance degra-

dation. For example, a group of requests that each create a virtual server, but half of

which perform much more slowly than the other half, may all seem similar until an

additional trace point is added that reveals that the slow requests are being processed

on a misconfigured node. At this time, the differentiating trace point makes clear that

these requests are not all performing the same work in the system. Therefore there

is no expectation that they will all perform similarly, and the performance variation

from earlier is explained.

The example above illustrates a key feature of how this work defines those

requests that are expected to perform similarly: the trace structure. The trace struc-

ture in this case specifically refers to the presence and ordering of trace points and

trace data within a request’s trace. Trace data can refer to a particular parameter

captured by a trace point, for example a variable value at the time that the request

execution passed through that trace point. Since the idea that workflows should per-

form similarly is based on their execution of similar work in the system, and since

this work is captured as a series of trace points in a request’s trace, the structure of

the trace is a reasonable basis for forming expectations about which requests should

have similar performance.
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By extension, altering the structure of the trace for a request by adding or

removing trace points also refines the expectations of which workflows should per-

form similarly, since this structure represents the known work done in the system on

behalf of the request. Adding a trace point that differentiates request behavior pre-

viously thought to be alike or similar thus inherently refines expectations for which

workflows should have similar performance. When performance variation is assessed

only for those workflows expected to perform similarly, the addition of a trace point

that differentiates these workflows has the effect of decreasing performance variation.

Conversely, the expectation is that the presence of high performance variation will be

indicative of an under-instrumented area.

The process of forming expectation groups from traces and assessing their

performance variation will be discussed in more detail in the Implementation section.

6.2.3 Localization, Causality, and the Call Graph

Design decisions about how to localize performance variation to more specific

portions of request workflows relate to Phase 5: analyzing performance variation in

the System Overview.

When a group of requests that are expected to perform similarly actually show

high variation in their performance, it is not enough to indicate this as output with

the tool. Since the traces are DAGs, each edge of the graph can be investigated

for high performance variation using the same method that is applied to the entire

trace. In fact, the tool checks these edges for each group of traces regardless of

whether the entire trace has high performance variation. The edges are ranked from

highest to lowest performance variation in the output of the tool. In the best case in

which verbose information is provided from the trace points in the system, any high

variation edges can be mapped back to regions in the system or lines of code based
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on the information contained in the nodes comprising the starting and ending points

of the edge.

In the design of the tool, both raw variance and coefficient of variation were

used to measure the performance variation of requests and their edges. These values

quantify the range of difference from the mean response time for the group, or, intu-

itively, how closely the response times for the group cluster around a central value.

The equation for variance σ2 is

σ2 =

n∑
i=1

(xi − µ)2

n

where for a group of response times of size n, the distance from the mean of each

value 1 to n is first squared (to avoid negative values) and then summed, with this

sum finally divided by the number of values in the group. A higher variance value

means the response times in the group are less predictable, in which case they are

said to have higher performance variation. The standard deviation, which is perhaps

more familiar to some readers, is the square root of the variance value. A group with

a standard deviation of 2ms will have a variance of 4ms2.

The coefficient of variation is a unitless ratio that takes the standard deviation

and divides it by the mean:

CV = σ
µ

In this case, the standard deviation of each group’s response time is divided by the

mean response time for each group of traces from requests that are expected to

perform similarly. Because the coefficient of variation relates a group’s variation to

its mean, it makes it possible to compare variation across groups with different means.

This value is also useful because it addresses the assumption that requests with high
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variation compared to their mean are more significant. It should be noted that in

this work, the coefficient of variation was calculated based on the population standard

deviation, rather than the sample standard deviation, as no sampling was used in the

experiments.

One of the challenges with localization of performance variation is in consid-

ering which edges of a DAG to analyze and how to prioritize among them. The most

significant advantage of including call graph-related edges, rather than those related

strictly to causal relationships, is that this gives the tool the ability to prioritize high

variation found in edges that are deeper inside a call graph, which conforms to both

the intuition and the finding in previous work (Huang et al., 2017) that information

obtained from deeper in the call graph is often more useful in diagnosing a root cause

since it refers to more specific events than the parents encompassing them. Knowing

the depth of an edge in the call graph hierarchy may be especially useful in cases of

concurrency, in which edges in two separate branches may exhibit similar performance

variation values, but knowing their relative depths can help prioritize one over the

other in the ranking.

6.3. Design Choices: The Testing Environment

In addition to designing the tool itself, design choices arose regarding which

system to use for testing; which tracing infrastructure to pair with this system to

capture request workflows; and how to drive workloads, or sets of requests, through

the system in order to obtain data.

OpenStack (OpenStack, nd) was a natural choice for the system on which

to test the tool. OpenStack is a popular open source distributed application that

serves as a cloud management platform and has a microservices architecture. This

architecture makes it suitable for the use case of analyzing performance variation in
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a distributed system with multiple interrelated components executing each request.

The fact that it is open source makes it a great candidate for research, as its code

can be examined or altered to suit the needs of the experiments. It is also popular

enough and has enough developer momentum behind it to be a relatively stable and

well-documented environment. OpenStack is already successfully being used to run an

Open Cloud Exchange model (Desnoyers et al., 2015) production public cloud and to

provide Infrastructure as as Service at the Mass Open Cloud (Mass Open Cloud, nd).

1 Specifically, a single-node devstack implementation of OpenStack was used as the

experimental environment for ease of deployability and for reproducibility. Devstack

is “a series of extensible scripts used to quickly bring up a complete OpenStack

environment” (Devstack, nd).

The choice of workflow-centric tracing infrastructure to capture and collect

request workflows from the OpenStack system was more complex. For the same rea-

sons applicable to the testing system described above, the tracing tool chosen needed

to be open source. More problematic was the fact that while the DAG model is the

most expressive and versatile model for traces, especially in cases of programmatic

processing as is the case in this work, the tracing tools currently available today tend

to use the span model for historical reasons. There was no tracing tool available

that would natively emit DAG model traces. With this limitation, the choice was

between the tracing tool most readily available for the OpenStack system, OSProfiler

(OSProfiler, nd) or another, more fully-featured open source tracing tool originally

developed at Uber, named Jaeger (Jaeger, nd). OSProfiler was chosen because it

is designed to work with OpenStack and cuts down on the engineering effort neces-

sary for altering OpenStack to be able to work with Jaeger, which may have been a

1The Mass Open Cloud is the joint effort of several Boston-area universities, including Harvard
University and Boston University, and the research in this thesis took place as part of its tracing
team.
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generally useful effort but was orthogonal to the goals of this thesis. As OSProfiler

and the other available choices for tracing infrastructure were unable to meet the

requirements described in Section 7.1.1: Requirements on Tracing Tools, the emitted

traces needed to be converted to a DAG format by the tool before analysis. This will

be described more fully in the Implementation.

Another consideration was how to drive the workloads, or sets of requests,

through the test OpenStack system to obtain traces for analysis. As testing on

a production system was not viable, the test system did not have native workloads

running on it and these workloads had to be created and automated to run in addition

to creating and running the tool itself. Several choices were available for how to

create and run these workloads, including benchmarking tools such as Rally (Rally,

nd). After some exploration with Rally, it became clear that while a benchmarking

tool will drive workloads through the system as a side effect, its primary purpose

is assessing how quickly large volumes of basic operations can run in the system

and it had severe drawbacks in terms of customizability of the workloads. For the

purposes of this work, its constraints on workload types and request batching and its

lack of compatibility with OSProfiler led to its rejection in favor of the more direct

approach of writing bash scripts (Rendek, 2017) to drive the workloads. These bash

scripts could be fully customized for any experiments and posed no constraints on

which system operations could be batched together or how the tracing infrastructure’s

functionality was invoked at the time of running the workloads.
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Chapter 7: Implementation

This section first covers some interface constraints between the instrumenta-

tion and the tool, which inform several of the realities of implementation described

afterward. Next, detail is provided on some highlighted algorithmic challenges in

creating the tool and running the experiments. Each of these challenges also has its

place in the general workflow. The workflow is described in Section 7.3 to give an

overview of how each component from the System Overview works together, and will

detail any functionality that is not highlighted in the Algorithmic Challenges.

Python was chosen as the language in which to implement the performance

variation-based tool. This would make it easily compatible with OpenStack and OS-

Profiler, which are written in Python. Python is also a common language for engineers

and students collaborating on the Mass Open Cloud, so this choice of language made

for more maintainable and understandable code for others who may become interested

in the project. The current implementation is roughly 2,000 lines of Python code,

about one quarter of which relates to converting traces to DAGs, half to grouping and

analysis, and one quarter for other miscellaneous functionality, e.g. parsing input.

7.1. Adapters to Work With Tracing Infrastructure

The most significant requirement imposed upon the system under study by

the performance variation-based tool is that it is outfitted with some tracing infras-
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tructure. As described in Section 5.2, the tool must be able to consume traces of

request workflows for its analysis. This means that there must be some minimal in-

strumentation already present in the system under study, that it must be capable of

propagating metadata, and that the system must be outfitted with a tracing infras-

tructure that allows data to be reconstructed about each workflow. Many of today’s

systems meet this requirement (Sigelman et al., 2010; Kaldor et al., 2017).

Additionally, there are several other requirements concerning how the sys-

tem’s instrumentation must behave in order to produce traces that can be used for

a rigorous analysis. These characteristics are generally useful in tracing systems and

tracing instrumentation, and would help engineers more easily understand the sys-

tem behavior that the traces represent. They are described below in Subsection 7.1.1

both to give a fuller picture of the dependencies of the performance variation-based

tool as well as to serve as an indirect contribution to the study of the limitations and

opportunities of current workflow-centric tracing tools and instrumentation practices.

7.1.1 Requirements on Tracing Tools

The following are required from the tracing infrastructure and monitored sys-

tem in order to do the analysis proposed by this work.

• Well-defined beginning and end markers for traces. It is difficult to gain infor-

mation from a trace if it is unclear where the request it represents begins or

ends. Specifically, one problem that can arise from the lack of an end marker is

that it is not possible know when the data associated with a request has finished

propagating to the tracing back end, which results in the danger of querying

for a trace too early and getting a malformed trace.

• Clear instrumentation of concurrency and synchronization in systems that ex-
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hibit these behaviors. As described in Section 6.2.1: The DAG As a More

Expressive Tracing Model, a clear record of concurrency and synchronization

points in requests allows for a straightforward understanding of happened-

before-relationships in the request as well as of the request’s critical path. Every-

thing one could want to know about the cause of a request’s poor performance

lies on its critical path.

• Systematized, human-meaningful trace point names that map to specific com-

ponents, nodes, and/or lines of code. Ideally, boundaries of components, VMs,

etc. are clearly marked. Analysis of request and system behavior can only be

as clear and meaningful as the data that is recorded about it.

• Trace output that conforms to the DAG model. For the reasons outlined above

in Section 6.2.1, the DAG format is especially useful for understanding causality

and the critical path of requests. Having support for an option in the tracing

system to emit the trace in DAG format would greatly aid any effort relying on

this type of data.

Where these requirements were not met by the tracing tools available, the imple-

mentation of the performance variation-based tool had to bridge the gaps, as will be

described in more detail in Section 7.2: Algorithmic Challenges below.

7.2. Highlighted Algorithmic and Parsing Challenges

Several of the most complex challenges in this work arose not from analyz-

ing the performance variation of requests, but rather in the pre-processing phases

preparing the traces of the requests for such analysis. Moreover, bridging the gaps

between what the performance variation tool required of the tracing infrastructure
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and instrumentation versus what the available tracing tools and instrumentation pro-

vided accounts for several of these challenges. Specifically, the need to convert span

model traces into a DAG format and the need to build a check in the workloads to

attempt to ensure that trace data had finished propagating to the tracing back end

are both challenges that arose from the limitations of the tracing infrastructure and

instrumentation, the burden of which necessarily fell onto the performance variation

tool in this context.

7.2.1 Conversion of Traces to DAG Model

For reasons described in Subsection 6.2.1: The DAG As a More Expressive

Tracing Model, the DAG model is a more expressive and versatile model for traces,

and is able to represent concurrency and synchronization in the system. This model,

unlike the span model that is emitted by most tracing tools, is suitable as input to

the performance variation-based tool as it holds all the information this tool will need

for its analysis. Being able to convert the native span-based traces from tracing tools

like OSProfiler into DAGs was therefore indispensable, and a module to handle this

conversion as a pre-processing step was created. This module is a tool in its own right

that can be used to convert a span-model trace in a .JSON file into a DAG-model

trace. Depending on the command line arguments with which the module is invoked,

the output is emitted to stdout or as a .DOT file that resides in the same directory as

the input file. Two of the main challenges with this conversion are highlighted below.

Inferring causality. The utility of the DAG model comes largely from its

ability to indicate happened-before causal relationships among events. Because con-

currency and synchronization points were not explicitly recorded by the tracing in-

frastructure, the algorithm to do this conversion had to make a best guess about

concurrent events and synchronization points based on parsing the timestamps in-
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cluded in the native span model traces. It is an inherent limitation that these guesses

cannot be guaranteed to be accurate, since the presence or absence of concurrent ac-

tivities and synchronization points was not preserved and cannot be verified. Causal

relationships are partially preserved in the span model traces; the events for which

causality is not explicitly preserved are the sibling spans within the same nested

parent span (see figure 6.2 for reference). For the purposes of representing where con-

currency and synchronization are likely to have occurred along a request path among

sibling spans, the algorithm used the following definitions:

• A span whose starting timestamp is later than a sibling’s ending timestamp has

a sequential or happened-before causal relationship with its sibling and

will remain on the same branch of the DAG as its sibling.

• When the happened-before-relationship occurs in the context of multiple ex-

isting branches in the DAG, where a span s has a starting timestamp that is

later than the ending timestamps of multiple siblings on multiple branches, a

synchronization point is establised at s.

• A span whose starting timestamp is earlier than a sibling’s ending timestamp

has a concurrent relationship with its sibling and will form a separate branch

in the DAG.

The sibling span with the earliest starting time stamp had its start event attached to

the parent span’s start event in the DAG; the others followed the above formula to

determine how they would be attached. After all siblings’ start and end events, and

those of any of their children, were attached in the DAG, the original parent’s end

event was appended.

Preserving call graph relationships. Another consideration was whether

and how to preserve non-causal information present in the span model, such as call
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graph relationships specifying which units of work, e.g. functions, called others to

do work on their behalf. As DAGs and their related .DOT files have only two ele-

ments, nodes and directed edges, the preservation of any additional information not

related to specifying events, their ordering, and their latencies had the potential to

be challenging and necessitated the careful exercise of judgment. Preserving call

graph relationships was determined to be worthwhile in order to have a full picture

of which edges’ latencies have the potential to impact others, which is determined

not only by causal relationships but caller-callee relationships as well. For example,

a parent span’s high latency and high latency variation are directly related to any

non-asynchronous child span’s high latency since the parent’s duration encompasses

the child’s.

The most straightforward way to preserve the caller-callee relationship in the

DAG was pushing this information into the node or event names. The DAG model

requires that any event with a duration, such as the spans that are first class values in

the span model, is broken down into its component events. For example, a single span

from a span model trace becomes a start event and an end event (each represented by

its own node) in the DAG model. This inherently breaks up the “span” as an object

or first class value in the DAG. However, a naming scheme that gives corresponding

names to start and end events derived from the same span preserves these associations.

In combination with the conversion logic (omitted for brevity) that dictates that the

events in a DAG located along the path between a corresponding < start, end > pair

are events derived from the children of the span from which the < start, end > pair

was derived, it becomes possible to precisely track not only which events in a DAG

formed a span in the span model, but also which events are related to that span’s

parent or child spans. This is the caller-callee relationship.
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7.2.2 Checks for Trace Completeness

Another challenge resulted from the lack of end markers for traces in Open-

Stack with OSProfiler (see Subsection 7.1.1). This end marker, had there been one,

would serve as a definitive marker that the request has completed, that all synchronous

parts of its workflow have finished, and that there is no more work being completed

on behalf of the request. Without this information, there is no way to have any signal

that the tracing back end or storage is ready to be queried for the trace of a par-

ticular request. This is a general problem that affects users of the system regardless

of whether or not any external tool, such as the performance variation-based tool, is

used in conjunction. Earlier in the course of this research, an ongoing concern was

the inability to understand why some traces were malformed or incomplete, until this

lack of end marker was discovered. It would be reasonable if tracing infrastructures

and the trace points in monitored systems adopted an instrumentation discipline to

ensure that end markers exist for traces so that this type of malformed trace is not

returned when a query is made to the back end.

In lieu of such guarantees, the workloads created in this work to generate trace

data in OpenStack have a built in check that essentially attempts to wait for trace

data related to a request to finish propagating to a back end. It should be noted that

this check also does not guarantee completeness; however, it did seemingly help avoid

the malformed traces encountered earlier. In the bash script that retrieves traces

related to the automated workloads created, a line count is obtained for the retrieved

trace at least twice. If the newer line count is larger than the older line count, this

is taken as evidence that the trace data is still propagating and that the trace is still

growing and not yet complete. In this case, the script sleeps for 5 seconds and tries

again. Once the new line count matches the old one, it is assumed that no more data
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is propagating and the trace is dumped to a directory for use by the performance

variation tool.

7.2.3 Extracting the Critical Path

When a request’s workflow shows concurrent activity, extracting the critical

path of the request becomes important for analysis of its latency for reasons described

in Subsection 6.2.1. When there is no concurrency, the request’s critical path is the

entire sequential workflow of the request and extracting it is not necessary.

To handle cases where concurrency may exist in the workflow, and by so doing

make the tool more widely applicable to a variety of systems, first a check must be

done for whether concurrency is present in the workflow. If it is not, the rest of

the critical path extraction can be skipped. If it is, then one of two methods can

be employed: in the ideal case, where an end marker is present in the trace (see

Subsection 7.2.2 above), finding this end marker and processing backward until the

starting point of the trace is reached is a reliable way to discard asynchronous paths,

since those paths never join back up with the end marker (see figure 6.1 for reference).

Where multiple paths exist between the ending and starting markers, the longest is

considered the critical path (Cormen et al., 2009, p.594). Since a synchronization

point has a happened-before-relationship with all the branches it synchronizes, the

longest of these will be responsible for the request’s overall latency.

Since the traces used in this work did not have end markers, and this was

not something the performance variation-based tool could supply, the second and less

ideal method of choosing the longest path without knowing which branch would have

contained an end marker for request completion had to be employed. Like causality

inference, this is not guaranteed to be correct but is instead a “best guess” method

considered adequate for the use cases here.
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7.2.4 Grouping by Expectation Based on Trace Structure

Analysis would not be possible if traces of requests could not be batched or

grouped according to which ones are expected to perform similarly. This grouping

process is based on the trace’s structure as outlined in Subsection 6.2.2: Effects

of Instrumentation Granularity in Traces, since this structure represents the work

done on behalf of the request with a certain level of granularity. Accordingly, one

algorithmic challenge was the pre-processing step of analyzing each trace’s structure

to see if it could be grouped with any others from the set of input traces. (If not,

then no analysis was performed on the trace. Groups were required to have 3 or more

member traces for analysis to be mathematically meaningful.)

To characterize the structure of each trace, a depth-first traversal was used

to ascertain the nodes of the trace in a predictable order. This ordering was stored

in memory as a string of concatenated node names and other markers indicating

relationships, e.g. parent-to-child. This essentially acted as a hash on each complex

structure, mapping it to a string that could be compared with others. When the

strings matched, the structure of the traces was deemed to be similar and their

performance was expected to be similar. In reality, the string representations of the

graph structures became cumbersome, so they in turn were mapped to shorter hash

values uniquely representing each string representation.

7.2.5 Parsing Input

One challenge that was not algorithmic but nevertheless significant was the

parsing of input files. Both .JSON files (the typical file type of the span model trace)

and .DOT files (the file type of DAG traces) needed to be parsed, as the traces serving

as input to the tool could come in either format. Furthermore, the tool needed to

35



detect which format was passed to it in order to handle the trace appropriately by

doing a conversion to a DAG in the former case.

A pre-existing Python module that loads and handles JSON objects as iterable

Python data structures was indispensable here, as were many helper functions that

needed to be created based on Python regular expressions to break each text file into

a traversable graph of nodes and edges. Roughly 100 of the tool’s lines of code are

dedicated to parsing the input text from these trace files.

7.3. Workflow Overview

Below is a brief overview of how the pieces of the tool’s workflow, some aspects

of which are highlighted above in Algorithmic Challenges, fit together.

7.3.1 Input Parsing

The tool is given a a directory as input, from which it ingests a set of files,

each of which contains the workflow information for one trace:

python main.py <directory storing a set of traces>

The files may be in .JSON or .DOT format, which indicate that the traces are in

span or DAG formats, respectively. The tool detects the file extension and converts

the trace to a DAG (see Subsection 7.3.2 below) in the former case. Otherwise, the

DAG from the .DOT file is read in and kept in memory.

7.3.2 DAG Conversion

This step is optional and is only invoked if the current input file is a .JSON

file holding a span model trace. While the conversion module can be used alone

if called from the command line with a file as an argument, it can also be called
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from within the tool’s main program. As described in Algorithmic Challenges above,

the conversion tool makes necessary guesses about concurrency and synchronization

points based on parsing the timestamps of the input trace and emits a DAG. When

called from the main program, this DAG is also kept in memory.

7.3.3 Critical Path Extraction

In case the DAG format trace is not strictly sequential (that is, it exhibits

concurrency), the critical path is extracted by taking the longest branch as described

in Algorithmic Challenges.

7.3.4 Expectation Grouping

For each trace read into memory, a depth first traversal of its graph structure

produces a string that is unique to the structure. These strings are mapped to

shorter hash values (pseudo-random six-character strings) for easier handling and

are compared to hash values associated with the other traces from the input set.

A globally accessible hash table using these hash values as keys holds the grouping

information. Each key is associated with a list of specific traces that belong to

the group, those traces’ metadata, and metadata about the group as a whole. The

latter category includes analysis information, such as the group’s variance and average

response time. When a hash value does not match any key in this hash table, it is

added to the hash table as a new key and thus forms its own group.

7.3.5 Performance Variation: Detection and Localization

For each trace group that has three or more members, the latency of each

member of the group is stored for future computation as part of the associated trace

metadata in the hash table described in Subsection 7.3.4 above. Each time a new
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member is added to a group, computation is done to find the new average response

time and response time variance for the group. These are also computed for each

edge in the traces belonging to the group. If any of these values exceed a threshold

that can be set at the invocation of the tool, a flag is set and the groups and edges

exhibiting high performance variation are marked for separate handling in the output.

While the edges between events in the DAG are straightforward enough to

include in the analysis, making use of the call-graph information stored in the DAG

proved more complex. While this information is completely retrievable from the DAG,

it relies on superimposing extra edges onto the DAG and deciding whether to give

these edges the same priority as the causal edges. (See figure 6.2 for reference, where

the DAG model on the right side shows causal edges that are represented with solid

arrows and call-graph edges that are represented with dashed arrows.)

Two different algorithms were implemented to analyze only the causal edges or

also the superimposed edges related to the call graph, referred to as “flat” and “hier-

archical” localization respectively. While the edges considered in flat localization are

a strict subset of those considered in hierarchical localization, the aim was to observe

whether the ranking and prioritization among the edges were more straightforward in

one model versus the other. For example, it is worth seeing whether the hierarchical

edges contain relevant data that is not shown in the flat edges, or whether they merely

introduce noise to the output. The hierarchical edges were useful for finding the root

cause of an experimental problem described in Section 8.2.

7.3.6 Output

The output prints to stdout in the terminal from which the tool is invoked.

No GUI was deemed necessary, as this tool is meant for engineers who are comfortable

with the command line. The output prints the traces processed and performance
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variation thesholds used, as well as information about the expectations for which

traces should perform similarly. It then prints a ranked list of any edges to which

performance variation was localized as well as the group and trace associated with that

edge and whether the group itself was marked as having high performance variation.

Finally, it emits a ranked list of all edges from all groups from highest to lowest

variation. See figure 7.1 for a screen shot of the beginning portion of this output.

Figure 7.1: Example output from performance variation tool.
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Chapter 8: Experimental Set-Up and Results

The experiments outlined below served multiple purposes. First, they collec-

tively serve to test how well the tool works in terms of its ability to do preprocessing

steps such as grouping traces accurately according to expectations of performance

variation. Second, they serve to answer specific questions and validate hypotheses

particular to each experiment. The first experiment analyzes performance variation

in OpenStack to discover whether there is an opportunity to guide instrumentation

choices with the tool, or whether instrumentation in such a system is already op-

timal. The second experiment aims to see whether there is an opportunity for the

tool to assist with debugging a problem in the system and localizing its source to the

root cause. The third experiment uses a more complex problem to further test the

hypotheses of the second experiment.

As a preliminary assessment, the time the tool takes to run on a data set of 60

traces was tested using the wall-clock time of the Unix time command. On average

across 25 runs of 60 traces each, the tool took 4.12 seconds with a high of 4.248 seconds

and a low of 4.029 seconds. All of the experiments below were performed on a single-

node deployment of an OpenStack system. Below, a more detailed description of the

purpose, specific parameters, and the results are included for each experiment.
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8.1. Experiment 1: Baseline Performance Variation

All systems innately have some performance variation. Instrumenting non-

problematic regions that exhibit high performance variation that is caused by accept-

able, heterogeneous system behavior is important in a way that is perhaps more subtle

than instrumenting such regions to find the cause of an active problem; instrument-

ing a non-problematic region can be beneficial for understanding the general system

state and consequently for having a foundation of understanding when a problem

does arise in the future. When a system is instrumented in such a way that there is

relatively low performance variation observed during times when the system is run-

ning normally, the contrasting performance variation observed when a problem does

arise can make diagnosis more targeted and meaningful. The performance variation

associated with system problems will be more obvious and less likely to be lost in the

“noise” of the general performance variation of a less carefully instrumented system.

Therefore, observing unevenly distributed performance variation across a normally

running system would indicate that default instrumentation in the system is itself

not distributed well. Adding instrumentation in these high-variation areas would cut

down on the noise in the system and make future diagnosis less cumbersome.

This experiment seeks to understand whether the instrumentation placement

in our example system, OpenStack, is already sufficient, or whether more instrumen-

tation would be useful. High performance variation in this case would be indicative

not of any system problem but instead of instrumentation that is not detailed enough

to distinguish between dissimilar requests while the system is running normally. The

hypothesis for this experiment is that the instrumentation in OpenStack will show

unevenly distributed performance variation by default. If this is the case, it indicates

that adding instrumentation in the regions with high baseline performance variation

41



could be useful for diagnosing future problems. Adding in this instrumentation is left

to future work.

8.1.1 Baseline Variation: Set-up

Two VMs were created in the Mass Open Cloud environment, running devstack

modified to include OSProfiler as the tracing tool. The two VMs were used in the

same ways to run the same workloads, mirroring each other to make it less likey

that there was an unexpected condition on one VM that would skew the results. On

each VM, the following custom bash workload (see Section 6.3 on design choices for

workloads) executed 30 of this set of operations:

• With OSProfiler tracing enabled, Create a server of flavor m1.tiny from

image cirros-0.3.5-x86 64-disk and wait for its state to become ACTIVE

(indicating the build has finished).

• With OSProfiler tracing enabled, delete the server that was just created.

It then executed these operations:

• Sleep for 30 seconds to allow for tracing data to propagate to the back end.

• Query the back end for the request IDs for each of the requests executed above

and dump the traces in a specified directory.

The steps outlined above were considered to be one “run” of the workload and pro-

duced one data set. The data set emitted by each run of the workload included 30

traces of server create requests and 30 traces of corresponding server delete

requests. This workload was run three times on each of the two VMs, for a total of

six data sets.
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For the analysis in this experiment, the data sets were collectively run through

the performance variation-based tool, which converted each traceto a DAG, grouped

traces expected to perform similarly together based on their structure, and analyzed

each group’s traces and their edges for performance variation (see: System Overview

and Implementation). This is a streamlined version of the implementation of the

entire tool, avoiding the critical path extraction that is more useful in systems with

high rates of concurrent activity like Hadoop and Ceph.

8.1.2 Baseline Variation: Results

The first result of note is that the grouping based on structure corresponded

with the originating command types across all data sets: there were no groups in

which server create traces were mixed with server delete traces, and traces

from each command type generally clustered in one large group with several outliers.

All but a handful of traces associated with a specific command type were grouped

together. Outliers could be explained by deviations in the workflow of the request.

This indicates that grouping based on structure is a valid way to form expec-

tations of performance, since the groups reflected the work done in the system on

behalf each request. It also indicates that there is enough instrumentation in the

OpenStack system by default to differentiate server create from server delete

traces, even without any explicit data captured by trace points to preserve the issuing

command of the request (the issuing command was preserved outside of the trace for

this experiment for verification purposes).

For this experiment, the ranking of trace edges from highest to lowest variance

across all groups of traces was examined. There were 2,214 edges in all. Table 8.1

shows the percentage of total edge variance accounted for by the top 1, 5, and 10

edges in the ranking, and figure 8.1 shows this data for all edges.

43



Percent of edge variance accounted for highest variance edges
The top 1 edge (0.02% of edges) accounted for 52% of the variance.
The top 5 edges (0.2% of edges) accounted for 84% of the variance.
The top 10 edges (0.4% of edges) accounted for 91% of the variance.

Table 8.1: Variance distribution in trace edges.

Figure 8.1: Cumulative distribution function showing variance for trace edges in
OpenStack.
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A small number of edges account for a disproportionate amount of the edge

variance, making the amount of performance variation inconsistent throughout the

system as a whole. The inconsistency of performance variation across these request

edges indicates that there are under-instrumented regions in OpenStack, that they

can be detected by the tool, and that the tool can contribute to a more deliberate

default instrumentation placement in the system that is more informative since it

is more likely to differentiate dissimilar system activity. These results suggest that

the hypothesis was correct and that instrumenting these edges could help distribute

performance variation more evenly in the system and make diagnosis easier in a future

performance degradation scenario.

8.2. Experiment 2: Adding sleep() Function

In this experiment, a resource contention issue was simulated through a sleep()

function that was placed along the request path for server create requests and

set to execute arbitrarily 33% of the time (based on a pseudo-random value between

0 and 100 generated for this purpose). The sleep() function simulated the request

needing to wait on a shared resource at arbitrary times. The Eventlet Networking Li-

brary’s (Eventlet Networking Library, nd) eventlet.sleep() function was chosen

to respect the threading models in OpenStack. Server create requests were cho-

sen over server delete requests because they had less innate performance variation

comparatively.

Broadly, this experiment tests the underlying insight the tools is based on,

namely that a performance degradation problem in the system will exhibit some

associated performance variation. More specifically, it tests the utility of the tool.

The performance variation-based tool is useful insofar as it can 1) identify performance

variation in the system and 2) localize it to a narrower system region than the entire
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path of the set of requests experiencing the problem. This experiment tested the tool’s

achievement of these two goals by using it to analyze traces that have a simple, specific

performance problem injected some portion of the time. Because it is known which

request path has this problem and what the problem is, it is possible to tell whether

performance variation showed up in this region in the analysis. The hypotheses for

this experiment were the following:

• Higher performance variation will be found along the path of requests that are

experiencing the problem compared to other requests that are not;

• The performance variation can be localized to a relevant region along the request

path by using the tool;

• Performance variation decreases for affected requests when relevant instrumen-

tation is added to the system;

• Variables are useful for capturing relevant trace information and differentiating

among dissimilar requests.

8.2.1 Adding sleep() Function: Set-up

For this experiment, the same workload from Experiment 1 was used, in which

30 servers were created and immediately deleted (see Subsection 8.1.1 for specifics).

The differentiating factor was a 20-second eventlet.sleep() function added to the

OpenStack system along the critical path of the openstack server create request.

This endeavor involved inspecting the OpenStack code for classes and functions likely

to be involved in the creation of a server and testing to make sure that a line of code

added to the path executed when running this command.

The eventlet.sleep() function suspends the current green thread, or user-

level thread, for a specified number of seconds before resuming operation. While
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the thread is suspended, other user-level threads have a chance to process. This was

inserted in the Nova compute manager’s code in the build succeeded function,

which must execute for each successful server create request. Additional code

around this function ensured that it would execute 33% of the time by generating a

pseudo-random value between 0 and 100 and triggering the function execution if the

number was less than 33. Python’s random.randint(), which returns an integer

greater than or equal to the first specified value and less than or equal to the second,

was used for this purpose.

3 phases were run of this experiment, adding new trace points to OpenStack

for the latter two variations to determine whether adding instrumentation around

the manufactured problem would affect performance variation in the expected ways

outlined above. These 3 variations aim for escalating specifitity of the data gathered

from the trace points:

(a) Phase 1: Add the sleep() function, but do not add any trace points in Open-

Stack.

(b) Phase 2: Add custom trace points around the sleep() function along the path

of the request.

(c) Phase 3: Modify the custom trace points around the sleep() function to

include a variable recording whether sleep() executes.

In Phase 2, the trace points inserted around the eventlet.sleep() function did not

track anything about the sleep function itself:

def _build_succeeded(self, node):

rt = self._get_resource_tracker()

rt.build_succeeded(node)
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profiler.start("sleep_tracepoint", {})

if random.randint(0,100) < 33:

eventlet.sleep(20)

slept = "True"

profiler.stop({})

In Phase 3, the same trace points included a variable to record one value if event-

let.sleep() executed and another value if it did not:

def _build_succeeded(self, node):

rt = self._get_resource_tracker()

rt.build_succeeded(node)

slept = "False"

profiler.start("sleep_tracepoint", {"slept": slept})

if random.randint(0,100) < 33:

eventlet.sleep(20)

slept = "True"

profiler.stop({"slept": slept})

These variable values were preserved as strings, not booleans, for compatibility with

the textual nature of the .DOT file that would contain this information.
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8.2.2 Adding sleep() Function: Results

The data indicates that the hypotheses were correct, in that performance

variation did increase after adding the sleep() function to create requests, and

performance variation did decrease again after adding a differentiating trace point

that captured the occurrence of this problem.

In Phase 1, adding the sleep() function to the create request path resulted

in both higher response times for requests, compared to their baseline response times

without the sleep() function, and also higher variance for create requests compared

to their baseline. Specifically, the response times were 63.32% higher, and the variance

was 271.44% higher for these requests compared with baseline. The change in variance

for these requests suggests that performance variation is correlated with a performance

degradation problem and can be used as a marker to detect this type of problem.

It should be noted that response time and variance also rose for delete requests

compared with the baseline, but these values were not as high compared to their

baseline as those for the create requests, as can be seen in the bar and line graphs

in figures 8.2, 8.3 and 8.4 below.

See Tables 8.2 and 8.3 for the exact values of the average variance and average

response times for these requests across the different experimental phases.

Average Variance and RT for Create Requests
No problem Problem Problem and

TP
Problem and
TP w/ Var

Avg. var in ms2 31,431,341.49 116,748,095.03 159,023,759.42 52,840,433.48
Avg. RT in ms 10,700.69 17,476.91 22,266.27 24,127.43074

Table 8.2: Create requests: Average variance and response time.

In Phase 2, when adding trace points near the sleep() function that did

not track whether sleep() occurred, the values for create requests’ variance re-

mained similar to Phase 1, as expected. The performance variation seen in Phase
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Figure 8.2: Average response times for create and delete requests, line graph.

Average Variance and RT for Delete Requests
No problem Problem Problem and

TP
Problem and
TP w/ Var

Avg. Var in ms2 16,371,940.89 36,234,882.92 33,768,383.00 33,059,106.44
Avg. RT in ms 43,60.08 8,299.37 7,103.35 8,371.61

Table 8.3: Delete requests: Average variance and response time.
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Figure 8.3: Average variance for create and delete requests, bar graph.

Figure 8.4: Average variance for create and delete requests, line graph.

51



2 for the group of create requests was also localized to the trace points inserted

to track the sleep() function. Figure 8.5 shows that the highest variance edge,

from the localization method using the call graph, is related to the (helpfully named)

sleep tracepoint around the sleep() event. This results speaks to the utility of

using information from the call graph to rank edges, specifically by giving a higher

weight to edges deeper in the call graph. Only the localization method using this

weight resulted the edge associated with the sleep tracepoints receiving the high-

est ranking.

Figure 8.5: Highest variance edge from Phase 3 shows the region with sleep() added.

In Phase 3, while the average response time remained high for create re-

quests, as expected since the problem remained in place along the request’s path

roughly one-third of the time, the variance for these requests dropped again and re-

sembles the variance of the baseline group (see figures 8.2, 8.3, and 8.4). This speaks

to the importance of adding instrumentation in high performance variation regions

for differentiating dissimilar workflows and also the importance of using descriptive

variables that capture relevant information in trace points. Furthermore, the drop in

performance variation indicates that requests that are not performing similar work in

the system were identified, and that the recent change in request grouping is based

on a factor involved in the root cause of the performance degradation. Indeed, the

grouping of the create requests changed dramatically in this phase compared with

the others. The average number of groups for create requests rose from 1 in the

previous phase to to 2 in this phase, accounting for differentiation between requests

in which sleep() executed versus those in which it did not, and the average group
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size dropped accordingly from 28.35 traces to 14.1 traces, resulting from the smaller

and more specific groupings based on the differentiating trace point’s variable.

Thus all of the hypotheses were met for this experiment: higher performance

variation was found along the path of create requests compared to delete re-

quests; this variation was able to be localized to a system region associated with the

“problem”, as shown by the high variance edge formed by the sleep tracepoints

above; the variation decreased when relevant instrumentation was added to the sys-

tem; and this instrumentation included the use of a variable to capture information

about a specific system event, which is more informative than trace points capturing

only the request path. This problem and its solutions are analogous to, for example,

a resource contention problem in which a variable captures the length of a particular

shared queue in the request path, which is the source of the contention.

8.3. Experiment 3: Increasing Resource Contention

Similar to Experiment 2, this experiment aimed to mimic a resource contention

problem. In this case, the problem centered around a misconfiguration that would

introduce long queue lengths in the Nova compute service, creating a bottleneck

for server create requests. 1 Accordingly, the root cause of the system problem

was that the number of concurrent servers that can be created within OpenStack’s

Nova service was limited to ten in the configuration options, while additional server

create requests were forced to wait on a semaphore.

The purpose of this experiment was to see if the tool could detect a correla-

tion between the bottleneck and the server create requests’ performance, among

multiple request types. High performance variation is expected for these requests,

since the server create requests received during periods of low concurrency would

1This experiment was also included in a recent paper submission (Ates et al., 2019).
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execute immediately, whereas others would have to wait varying amounts of time for

the semaphore. The first hypothesis was that the tool would detect higher perfor-

mance variation for server create requests than for other types of requests, and

the second hypothesis was that this variation could be localized to a particular edge

that would give insight into the cause of this problem, corresponding to a system

region having to do with the bottleneck.

8.3.1 Increasing Resource Contention: Set-up

The resource contention problem was created by issuing multiple concurrent

requests to the system. It used three workloads consisting of combinations of server

create server delete, server list, floating IP list, and volume list re-

quests, which are various commands in OpenStack. A variable was introduced in

OpenStack’s trace points to record queue lengths around a semaphore in the Nova

compute service, as this would serve as the point of resource contention, and Nova’s

configuration of MAX CONCURRENT BUILDS was set to 10 to provide the bot-

tleneck around the semaphore.

20 instances of each workload were started simultaneously and multiplexed

among 8 vCPUs on the same devstack system. Performance variation was assessed

for the traces resulting from these workloads to see if a correspondence between the

concurrency and variation could be found. In this case, the traces were grouped based

on request type as well as their structure.

8.3.2 Increasing Resource Contention: Results

The grouping obtained is shown in Figure 8.6. As the group with the high-

est variance is the server create group, the first hypothesis was validated: the

tool was able to discover the group with more resource contention by looking at the
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performance variation.
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Figure 8.6: High variance in server create traces.

Figure 8.7 shows the variance of edge latencies for the server create group.

It should be noted that edges related to the call graph were not used for the localiza-

tion in this case. In the figure, 6 trace point pairs measure 95% of the variance. The x

axis shows the trace points on the critical path, with each assigned a reference number.

The variance is highly localized, and inspecting the edge with the highest variance

aids in finding the root cause of the contention problem. This edge corresponds

to 7 lines of code, 4 of which are comments. In the remaining 3 lines, a semaphore

(NOVA.COMPUTE.MANAGER.COMPUTEMANAGER. BUILD SEMAPHORE) is

acquired. Inspecting the initialization of this semaphore shows that the configuration

option MAX CONCURRENT BUILDS determines the maximum number of si-

multaneous VM creations within a single host, explaining the root cause of the high

variance in simultaneous VM creations as opposed to other requests.

The information yielded by the trace points around the semaphore, including

the fact that semaphore queue lengths are correlated with response times, would give

engineers a strong starting point in a real life scenario to identify the problem’s root

cause. In this specific case, engineers would be able to identify the root cause by

examining the semaphore’s initialization routine in which the default concurrency
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Figure 8.7: Variance of edge latencies for server create group.

value is specified, validating the second hypothesis.
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Chapter 9: Summary and Conclusion

This work explored the use of a performance variation-based tool to locate

areas in a distributed system where more instrumentation may be beneficial, both for

differentiating between requests in a well-functioning system to make future problem

diagnosis easier, or to narrow down the root cause of a current performance problem

by identifying and localizing the performance varitiation resulting from that problem.

The tool used workflow-centric tracing to capture workflows of requests in an

OpenStack test environment to test various aspects of using performance variation

as a marker for regions of the system in which instrumentation does not sufficiently

differentiate between requests doing different work. It found that a few trace edges

between trace points are currently responsible for a disproportionate amount of the

variance seen in the test system, suggesting that adding instrumentation in these

areas could be useful for differentiating requests and understanding system behavior.

The tool was subsequently able to identify high performance variation in a group

of requests with an injected problem meant to simulate resource contention, and

was able to localize this performance variation to the two trace points surrounding

the problem. In the last experiment, the tool was also able to localize performance

variation to highlight a system area affected by a misconfiguration causing actual

resource contention.

While there is much opportunity for further work on this topic, these findings

are promising for using performance variation to optimize instrumentation placement
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in distributed systems. This holds true both for problem scenarios and general in-

strumentation placement, e.g. in system development. As instrumentation must

frequently be added to systems to diagnose a large range of specific problems as they

arise, performance variation-based techniques for identifying where this instrumenta-

tion is needed, based on the current system state, have the potential to significantly

cut down on the amount of guesswork that often comes with adding instrumentation

to these massively complex systems.

9.1. Limitations

Using latency variance to diagnose performance problems in a distributed sys-

tem makes the assumption that a performance problem will cause a slowdown in the

system at least part of the time. This slowdown shows up as latency variance across

time for a group of requests that should have similar performance. This assumption

carries with it the limitation that this technique cannot be used to help diagnose

performance problems for requests that are consistently slow. Problems of this type

would have to be addressed with some other method for diagnosis.

Another limitation is the dependence on some minimal instrumentation al-

ready present in the system under study. This technique only works for distributed

systems which can and do have tracing systems enabled. This excludes many systems

that rely heavily on databases.

More concretely, this work is limited in the generalizability of its results be-

cause the testing done for the experiments was not done at a large enough scale or

on a wide enough variety of systems to merit statistical significance. This should be

one of the next steps addressed in any future work expanding on this technique.
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9.2. Future Work

There are many opportunities to expand on the scope of this work, in myriad

directions. In the immediate future, this same work could be applied to other systems,

such as Hadoop and Ceph, to see if the findings hold true beyond OpenStack. It

would be especially interesting to apply it to cross-layer problems rather than just

application-level. Moreover, the tests carried out in this thesis should be done on a

much larger scale in order to have results that are reliable and statistically significant.

The data gathered from the performance variation-based tool should be put through

rigorous statistical and data science-based analyses. One unexplored but extremely

relevant statistical concept to apply to this work is covariance: when performance

variation rises or falls in one region of the system, does it rise or fall anywhere else,

and what practical knowledge can be derived from this? Another missing piece to

fill in would be to add default instrumentation to areas suggested by the tool in a

system like OpenStack and see if it’s useful to engineers running a production system.

Ideally, if this is the case, these new instrumentation points in the system could be

merged upstream to benefit everyone who uses the system, assuming the system is

open source.

Longer-term, the question of how to set thresholds for marking “high” perfor-

mance variation must be addressed. Is this based on the particular system, or can

more widely applicable guidelines be used? Additionally, this work may be useful in a

larger framework for automating dynamic instrumentation of a running system, such

as the work being done currently on Pythia, a just-in-time instrumentation framework

for distributed systems (Ates et al., 2019). It would also be interesting and perhaps

powerful to address the role of regular expressions in controlling the granularity of ex-

pectation grouping for the traces. If each trace’s structure is represented as a string,
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regular expressions could group traces more flexibly based on some relevant subset of

structural features, rather than based on the entire structure.
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Appendix A: Glossary

asynchronous As part of a request’s workflow, an asynchronous activity is one that

other parts of the request do not wait for. Consequently, it does not affect

the overall response time of the request. An asynchronous task often executes

concurrently with other parts of the request, and often has its own branch in

the visualization of the workflow available in the request’s trace. 19, 21, 34, 36

coefficient of variation The standard deviation of a set of values divided by the

mean of that set of values. Like variance, coeffient of variation is a useful

way of understanding how closely clustered a set of values is around its mean.

Unlike variance, coefficient of variation is normalized for the mean of the set,

which makes it possible to meaningfully compare different sets’ coefficients of

variation. 14, 25, 26

concurrent As part of a request’s workflow, a concurrent activity overlaps in time

with another part(s) of the request’s workflow. Concurrency introduces com-

plexity for understanding the workflow’s critical path. 19, 20, 32, 33, 36, 45,

54, 55

critical path The temporally longest path or branch in a request’s workflow when

multiple concurrent operations are involved. The critical path determines the

request’s overall response time. 17, 21, 22, 31, 36, 39, 45, 48
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DAG A directed acyclic graph (DAG) is a a graph with nodes and directional edges

(to indicate, for example, the flow of data) in which no cycles are present. This

work uses DAGs to represent traces of request workflows. iii

DAG directed acyclic graph. iii, vi, vii, 11, 17–22, 24, 26–28, 31–34, 37–40, 45, 68,

Glossary: DAG

default instrumentation Instrumentation that is present in a system during peri-

ods of time when the system is assumed to be operating normally, as opposed

to instrumentation added usually temporarily in order to diagnose a specific

problem. Default instrumentation often collects data at a lower granularity

across the system, compared with problem-related instrumentation that is con-

centrated on the region assumed to hold the problem’s root cause. 43

distributed system A network of many computers as component parts, ex. public

and private clouds. iii, iv, 1–3, 6, 10, 14, 16, 26

happened-before-relationship Causal relationships originally defined by Leslie

Lamport, which can be established in distributed systems under two condi-

tions: 1. if one event occurred earlier than another in the same process, or

if one event is a sending of a message and the other is the receipt of a mes-

sage in different processes. DAGs represent happened-before relationships with

directed edges. 18, 21, 31, 33, 36

instrumentation Code inserted into a system for the purpose of revealing something

about the system’s performance. iii, iv, 3–6, 10, 14–16, 22, 23, 29, 30, 32, 42–44,

46–49
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latency The length of time it takes the system to process something. Some latency

always exists, but high latency is undesirable. 6, 12, 13, 15, 21, 34, 36, 39, 56

localize To determine which part of a system is responsible for some observed be-

havior. 12, 14, 15, 17, 24, 41, 47, 48, 54, 56

OpenStack A popular open source distributed application used for managing cloud

environments and infrastructure. 22, 26–29, 35, 42, 43, 46–49, 54, 55

OpenTracing An API specification for open source tracing tools, which relies on

the span model. Glossary: span model

OSProfiler A tracing tool built for OpenStack. 27–29, 32, 35, 44

performance variation Variation in response times or overall latencies of requests

or their component parts. iii, 4–6, 10, 12, 14, 15, 17, 21–26, 29–32, 35, 36,

40–43, 45–49, 54–56, Glossary: variance

response time The total time it takes for a request to complete execution. 12–14,

25, 40, 57

similar Of a request or its workflow structure: Requests are similar when they are

processed simliarly within and among the components of a system, that take

comparable paths through the system, that have similar workflow structure in

their trace representations, and that can be expected to have similar perfor-

mance in terms of their overall response times. iv, 6, 12, 13, 23, 24, 37, 43

span A component of the span model of tracing, a span represents a semantic unit

of work that is supposed to be human-meaningful and corresponds to the time

between a starting instrumentation point and a stopping instrumentation point.

69



There is no standard definition of what type of work or what system boundaries

(function, component, etc.) a span should represent. 20, 21, 34, 38

span model Also known as the swim lane model or Open Tracing model, the span

model is a way of representing trace data in a nested structure of ”parent spans”

and corresponding ”child spans” whose work is initiated by the parent. This

model does not show any dependency or causal relationships among spans with

the same parent. 11, 19–22, 27, 32–34, 37, 38, Glossary: span

synchronization point A part of a request’s workflow in which several concurrent

branches ”join” back together into one branch; a part of a workflow that waits

for several other activities in the workflow to complete before proceeding. 19,

22, 31–33, 36, 39

trace A record showing the workflow associated with a request. 10, 11, 16–20, 22–24,

27, 28, 30–41, 44, 45, 47, 55, Glossary: workflow-centric tracing

trace point An instrumentation point in the system that propagates contextual

metadata, ex. a request ID, in order for its data to be associated with that

of other trace points to later reconstruct the workflow of a request. 16, 23, 24,

31, 35, 45, 47, 49, 50, 55, 57, Glossary: workflow-centric tracing

variable Some data that is collected within a trace point and can be examined later

as part of a request’s trace. 14, 23, 49, 55

variance Standard deviation squared, showing the average ”distance” of the data

from a certain meaningful value, ex. the mean. 14, 25, 56, 57

workflow The work done within and among system components on behalf of a spe-

cific user command or request. Every system request has an associated workflow
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that can be revealed with tracing tools. iv, 12–16, 18, 21–24, 26, 27, 29, 30, 35,

36, 38

workflow-centric tracing A means of instrumenting a distributed system that uses

metadata propagation to capture request workflows and produces traces show-

ing the path a request took through the system and any addiitonal information

available at each trace point. iv, 12, 15, 22, 27, 30

workload A set of requests and their associated workflows. 22, 26, 28, 32, 35, 44,

48, 55
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