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Surface roughness, an indicator of surface quality, is one of the most specified customer requirements in machining of parts. In this
study, the experimental results corresponding to the effects of different insert nose radii of cutting tools (0.4, 0.8, 1.2 mm), various
depth of cuts (0.75, 1.25, 1.75, 2.25, 2.75 mm), and different feedrates (100, 130, 160, 190, 220 mm/min) on the surface quality
of the AISI 1030 steel workpieces have been investigated using multiple regression analysis and artificial neural networks (ANN).
Regression analysis and neural network-based models used for the prediction of surface roughness were compared for various
cutting conditions in turning. The data set obtained from the measurements of surface roughness was employed to and tests the
neural network model. The trained neural network models were used in predicting surface roughness for cutting conditions. A
comparison of neural network models with regression model was carried out. Coefficient of determination was 0.98 in multiple
regression model. The scaled conjugate gradient (SCG) model with 9 neurons in hidden layer has produced absolute fraction
of variance (R2) values of 0.999 for the training data, and 0.998 for the test data. Predictive neural network model showed better
predictions than various regression models for surface roughness. However, both methods can be used for the prediction of surface
roughness in turning.

Copyright © 2007 Muammer Nalbant et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Metal cutting is one of the most significant manufacturing
processes in material removal. Metal cutting can be defined
as the removal of metal from a workpiece in the form of chips
in order to obtain a finished product with desired size, shape,
and surface roughness. There are different methods of metal
cuttings and turning is one of the commonest among these
methods. Turning is the process of machining external cylin-
drical and conical surfaces. It is usually performed on a lathe
[1].

The quality of machined components is evaluated by how
closely they adhere to set product specifications for length,
width, diameter, surface finish, and reflective properties. Di-
mensional accuracy, tool wear, and quality of surface finish
are three factors that manufacturers must be able to control
at the machining operations [2].

In machining of parts, surface quality is one of the most
specified customer requirements where major indication of
surface quality on machined parts is surface roughness. Sur-
face roughness is mainly a result of process parameters such

as tool geometry (i.e., nose radius, edge geometry, rake angle,
etc.) and cutting conditions (feed rate, cutting speed, depth
of cut, etc.) [3].

Surface roughness is harder to attain and track than phys-
ical dimensions is, because relatively many factors affect sur-
face roughness. Some of these factors can be controlled and
some cannot. Controllable process parameters include feed,
cutting speed, tool geometry, and tool setup. Other factors,
such as tool, workpiece and machine vibration, tool wear
and degradation, and workpiece and tool material variabil-
ity cannot be controlled as easily [4].

A considerable number of studies has studied the effects
of the speed, feed, depth of cut, nose radius, and other fac-
tors on the surface roughness. In recent studies, Lin et al. [5],
Feng [6], Wang and Feng [7], Risbood et al. [8], Lou et al. [9],
Choudhury and El-Baradie [10], Özel and Karpat [3] eval-
uated the effects of some factors on surface roughness and
developed models.

The aim of this study was to set up a multiple regression
models and a neural network model to predict the surface
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roughness of a machined workpiece, using turning opera-
tion. Other objectives of this study were the following:

(1) to develop prediction models using machining param-
eters, such as feed rate, insert radius, and depth of cut,
as predictors,

(2) a prediction accuracy of above 90%,
(3) to compare the different prediction methods for sur-

face roughness to find the best model.

2. SURFACE ROUGHNESS

The surface parameter used to evaluate surface roughness
in this study is the roughness average (Ra). This parame-
ter is also known as the arithmetic mean roughness value,
arithmetic average (AA), or centerline average (CLA). Within
the presented research framework, the discussion of surface
roughness is focused on the universally recognized. Ra is rec-
ognized universally as the commonest international parame-
ter of roughness. The average roughness is the area between
the roughness profile and its center line, or the integral of the
absolute value of the roughness profile height over the evalu-
ation length (Figure 1) [11–13]. Therefore, Ra is specified by
the following equation:

Ra = 1
L

∫ L

0

∣∣Y(x)
∣∣dx, (1)

when evaluated from digital data, the integral is normally ap-
proximated by a trapezoidal rule:

Ra = 1
n

n∑
i=1

∣∣Yi

∣∣, (2)

where Ra is the arithmetic average deviation from the mean
line (μm), L is the sampling length, and Y is the ordinate of
the profile curve.

Graphically, the average roughness is the area (shown in
Figure 1) between the roughness profile and its center line di-
vided by the evaluation length (normally five sample lengths
with each sample length equal to one cutoff).

3. EXPERIMENTAL DESIGN AND SETUP

3.1. Test specimens

Due to the experimental investigations AISI 1030, steel test
samples of dimensions ø150×450 mm are prepared and used
in tests. Chemical composition of test samples obtained by
spectral analysis has been given in Table 1 and the mechanical
properties of them are given in Table 2, respectively.

3.2. Cutting tools and lathe

In attempts to evaluate the effects of insert radius and cutting
parameters on surface roughness values, as equivalent to ISO
P20 grade for common carbon containing steel, it has been
used cemented carbide cutters manufactured by Mitsubishi,
coated with three layers of (TiN, Al2O3, TiC), the outermost
CVD TiN. In tests, TNMG 160404-MA, TNMG 160408-MA,

Z
Y

H Cutoff length

X

L

Roughness center
line

Y : profile curve
X : profile direction
Z: average roughness height
L: sampling length
H : profile height

Figure 1: Surface roughness profile [13].

Table 1: The chemical composition of test specimens (weight %).

C Mn Si P S

0.365 0.799 0.247 0.0166 0.0422

Table 2: Selected mechanical properties of test specimens.

Hardness Tensile strength Yield strength Breakoff extention

HB MPa MPa % (5do)

126 463.7 341.3 31.2

TNMG 160412-MA inserts, and MTJNR 2525 M16N tool
holder were used. The type of the machine used for the turn-
ing test was a Johnford T35 Industrial type CNC lathe ma-
chine. The lathe equipped with continuously CNC lathe vari-
able spindle speed from 50 to 3500 rpm, and a 10 KW motor
drive was used for machining test. Orthogonal machining of
AISI 1030 was used in turning.

3.3. Surface roughness measuring instrument

Surface roughness values of finish-turned workpieces were
measured by MAHR-Perthometer M1 while measuring in-
strument and the measurements are repeated three times. To
measure roughness of the surface formed while processing
the workpiece, the cutoff length is taken as 0.8 mm and the
sampling length as 5.6 mm. The temperature of environment
was 20± 1◦C.

3.4. Design of experiment

As recommended in ISO 3685, the cutting speed of
300 m/min has been chosen according to the advice for
cutting tools quality given by the manufacturing companies.
The experiment includes three controllable process factors,
whose levels are presented in Table 3.
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Table 3: Design factors and their levels for AISI 1030.

Turning factor Symbol Levels

Depth of cut (mm) d 0.75 1.25 1.75 2.25 2.75

Feed rate
(mm/rev)
(mm/min)

f
0.15
(100)

0.20
(130)

0.25
(160)

0.30
(190)

0.35
(220)

Insert nose radius (mm) r 0.4 0.8 1.2 — —

In this research, 75 sets of experiment are sorted using the
standard ordering and carried out according to full factorial
design. To obtain the surface roughness values were used the
TiN-coated tools by CVD method in the machining of AISI
1030 steel. All of the turning tests were run under dry condi-
tions.

Data processing and analysis were performed using Mi-
crosoft Windows versions of Microsoft Excell, Statistical
Analysis System (SAS) software and SAS Institute JMP sta-
tistical software for the regression analysis.

The transforming equations for each of independent
variables (main factors) are the following:

x1 = ln(d)− ln(1.5)
ln(2)− ln(1.5)

,

x2 = ln( f )− ln(0.25)
ln(0.30)− ln(0.25)

,

x3 = ln(r)− ln(0.8)
ln(1.2)− ln(0.8)

.

(3)

4. REGRESSION-BASED MODELING

Regression analysis is a technique for modeling the rela-
tionship between two or more variables. Regression mod-
els quantitatively describe the variability among the observa-
tions by partitioning an observation into two parts [14, 15].
The first part of this decomposition is the predicted portion
having the characteristic that can be ascribed to all the ob-
servations considered as a group in a parametric framework.
The remaining portion, called the residual, is the difference
between the observed and the predicted values and must be
ascribed to unknown sources.

The goal of the multiple regression analysis was to deter-
mine the dependency of surface roughness to selected ma-
chining parameters such as feed rate, depth of cut, and insert
nose radius. In addition to the main effects of these variables,
effects of the interactions of them were included in the anal-
ysis.

It can be written being linear and exponential empirical
models for surface roughness as functions of feed rate ( f ),
depth of cut (d), and insert nose radius (r),

Ra = c0 f
c1dc2rc3 . (4)

A logarithmic transformation converts the nonlinear form of
(1) into the following linear mathematical form:

lnRa = ln c0 + c1 ln f + c2 lnd + c3 ln r. (5)

The equation is rewritten as

y = β0 + β1x1 + β2x2 + β3x3 + ε, (6)

where y is the logarithmic value of the measured surface
roughness, β0, β1, β2, β3 are regression coefficients to be es-
timated, x0 is the unit vector, x1, x2, x3 are the logarithmic
values of the feed rate, depth of cut, and insert nose radius,
and ε is the random error.

The above equation can be written in scalar notation as
you see,

y = β0 +
k∑
i=1

βixi + ε (7)

is the first-order model. The first-order model, with interac-
tion term,

y = β0 +
k∑
i=1

βixi +
∑ k∑

i< j=2

βi jxixj + ε, (8)

and the second-order model,

y = β0 +
k∑
i=1

βixi +
k∑
i=1

βiix
2
i +
∑ k∑

i< j=2

βi jxixj+ε, (9)

are utilized in this research.
The above equation can be written in matrix notation as

y = Xβ + ε. (10)

Thus, the least-squares estimator of β is

β̂ = (X ′X)−1X ′y. (11)

The fitted regression model is

ŷ = Xβ̂. (12)

The difference between the experimentally measured and the
fitted values of response is a residual

e = y − ŷ. (13)

In the regression analysis, the general null hypotheses, were
described as the effects of depth of cut, feed rate, and insert
nose radius on the surface roughness, do not significantly
differ from zero; that is,

H0 : βi = 0 where i = 1, 2, 3, . . .,n.

The alternative hypothesis could also be expressed as follows:

H1: at least, one of the βi is not equal to zero.
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Figure 2: The artificial representation of the biological neuron.

5. NEURAL NETWORK MODEL

A neuron is the basic element of neural networks, and its
shape and size may vary depending on its duties. Analyz-
ing a neuron in terms of its activities is important, since un-
derstanding the way it works also helps us to construct the
ANNs. An ANN may be seen as a black box which contains
hierarchical sets of neurons (e.g., processing elements) pro-
ducing outputs for certain inputs.

Each processing element consists of data collection, pro-
cessing the data and sending the results to the relevant con-
sequent element. The whole process may be viewed in terms
of the inputs, weights, the summation function, and the ac-
tivation function (Figure 2) [16, 17].

According to the figure, we have the following.

(1) The inputs are the activity of collecting data from the
relevant sources.

(2) The weights control the effects of the inputs on the
neuron. In other words, an ANN saves its information
over its links and each link has a weight. These weights
are constantly varied while trying to optimize the rela-
tion in between the inputs and outputs.

(3) Summation function is to calculate of the net input
readings from the processing elements.

(4) Transfer (activation) function determines the output
of the neuron by accepting the net input provided
by the summation function. There are several transfer
functions like summation function. Depending on the
nature of the problem, the determination of transfer
and summation function are made. A transfer func-
tion generally consists of algebraic equations of linear
or nonlinear form [18]. The use of a nonlinear transfer
function makes a network capable of storing nonlin-
ear relationships between the input and the output. A
commonly used function is sigmoid function because
it is self-limiting and has a simple derivative. An ad-
vantage of this function is that the output cannot grow
infinitely large or small [19].

(5) Outputs accept the results of the transfer function and
present them either to the relevant processing element
or to the outside of the network.

The functioning of ANNs depends on their physical struc-
ture. An ANN may be regarded as a directed graph contain-

ing a summation function, a transfer function, its structure,
and the learning rule used in it. The processing elements have
links in between them forming a layer of networks. A neural
network usually consists of an input layer, a number of hid-
den layers, and an output layer [17].

5.1. Determination of data and the network model

The training and test data have been prepared using experi-
mental patterns. In this study, we have 75 patterns obtained
from the experiments. Among them, five patterns have been
randomly selected and used as the test data. Depth of cut,
feed rate, insert radius have been used as input-layer, while
the surface roughness was used as output-layer of the ANNs.

In the ANN model, logistic transfer function has been
used and expressed as follows:

NETi =
n∑
j=1

wij · xj + wbi,

f
(
NETi

) = 1
1 + e−NETi

,

(14)

where NET is the weighted sum of the input. Input and out-
put values are normalized between 0 and 1.

5.2. The training of the network

Generally, there are 3 different learning strategies. Firstly, the
trainer may tell the network what it should learn (super-
vised learning), secondly, the trainer may indicate whether
or not the output is correct without telling what the network
should learn (reinforcement learning), and finally, the net-
work learns without any intervention of the trainer (unsu-
pervised learning). The learning set consists of the inputs and
the outputs used in training the network. The required out-
puts take place in this set in the case of supervised learning,
while in other cases, they are not found in it [20]. In our case,
we have used supervised learning approach.

Since the number of neurons found in the input and out-
put layers are known, the best performance of the network
with the number of hidden layers is determined using trial
error method. Using limited number of neurons with limited
number of hidden layers causes lesser learning, while increas-
ing these numbers too much, decreases the speed of learn-
ing, and in some cases prevents the learning entirely. Usually,
an algorithm is used for the learning process, this algorithm
determines the weights. There are various learning methods
using these strategies [20]. The back propagation learning
algorithm has been used with SCG and LM versions at the
training and testing stages of the networks [21]. The com-
puter program has been developed under MATLAB [22]. In
the first step of the training, a determination of the learn-
ing algorithms is made. The number of hidden layers and
the number of neurons for each hidden layer are determined.
Then, the number of iterations is entered by the user, and the
training starts. The training continues either to the end of the
iterations or reaching the target level of errors. Figure 3 illus-
trates the ANN predictions against the experimental results.
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Figure 3: The ANN predictions against the experiment-based re-
sults.

6. TESTING THE ACCURACY OF BOTH REGRESSION
ANALYSIS AND ANN-BASED APPROACH

In order to understand whether a multiple regression anal-
ysis or an ANN is making good predictions, the test data
which has never been presented to the network is used and
the results are checked at this stage. The statistical methods
of RMSE, R2, and MEP values have been used for making
comparisons [23–26]. The same data obtained from the re-
gression analysis is used to determine the mentioned values.
These values are determined by the following equations:

RMSE =
((

1
p

)∑
j

∣∣t j − oj
∣∣2
)1/2

,

R2 = 1−
(∑

j

(
t j − oj

)
∑

j (oj)2

2)
,

MEP =
∑

j

(((
t j − oj

)
/t j
)× 100

)
p

,

(15)

where t is the target value, o the output, and p the number of
samples.

7. RESULTS AND DISCUSSION

The 33 full factorial design was used to study the effect of the
three process parameters: depth of cut, feed rate, and insert
nose radius on surface roughness. Therefore, the experiment
includes three controllable process parameters, whose levels
are presented in Table 3. After 75 specimens were cut for ex-
perimental purpose, they were measured with a profilometer
to obtain the surface roughness average value Ra and were
recorded. All original 75 samples are shown in Table 4.

The experimental data were applied with a statistical
analysis system (SAS) software for multiple regression analy-
sis and neural network analysis.

The results of analysis of variance (ANOVA) of the first-
order model also supported linear relationships in the model

Table 4: The average surface roughness values depending on depth
of cut, feed rate, and insert nose radius.

Depth of cut Feed rate Average surface roughness

mm mm/min Ra (μm)

d f
Insert radius Insert radius Insert radius

r = 1.2 mm r = 0.8 mm r = 0.4 mm

0.75

100 0.8 1.16 2.17

130 1.02 1.60 3.57

160 1.48 2.43 5.66

190 2 3.43 8.87

210 2.53 4.62 11.69

1.25

100 0.90 1.27 2.23

130 1.26 1.77 3.88

160 1.82 2.68 5.98

190 2.55 3.71 9.09

210 3.02 4.76 12.08

1.75

100 0.87 1.34 2.38

130 1.13 1.85 4.02

160 1.67 2.68 6.38

190 2.24 3.61 9.77

210 2.86 5.21 12.37

2.25

100 1.14 1.77 2.71

130 1.54 2.77 4.37

160 2.02 3.57 7.22

190 2.63 4.89 9.24

210 3.12 5.83 12.68

2.75

100 0.98 1.8 2.73

130 0.94 2.59 5.00

160 1.51 3.18 7.76

190 1.92 4.09 10.42

210 2.8 5.27 13.63

(Table 5). F value of regression was 100.88. This F value indi-
cated a great significance (α < 0.0001) for model in rejecting
the null hypothesis (H0) that every coefficient of the predic-
tor variables in the model was zero. Instead, the alternative
hypothesis, at least one of these coefficients are not equal to
zero, was accepted. Therefore, the linear relationship between
the predicted variable (Ra) and predictor variables is signifi-
cantly exist.

Correlation coefficient represents the relationship be-
tween the variables. Pearson correlation coefficients between
depth of cut, feed rate, insert radius, and surface roughness
are presented in Table 6. As seen in Table 6, feed rate and in-
sert nose radius were found to have significant correlation
coefficients but insert radius has negative effect.

According to calculated coefficients of main factors, the
multiple regression first-order model of surface roughness
was built as shown in (16),

Y = 0.998 + 0.376d + 0.033 f − 4.86r,

R2 = 0.810.
(16)



6 Modelling and Simulation in Engineering

Table 5: ANOVA for surface roughness first-order model in turning of AISI 1030 using cemented carbide tools.

Source DF Sum of squares Mean squares F values P values

Model 3 343.02 114.34 100.88 < .0001

Depth of cut, d 1 5.31 5.31 4.68 .0337

Feed rate, f 1 148.74 148.74 131.24 < .0001

Insert nose radius, r 1 188.95 188.95 166.71 < .0001

Error 71 80.47 1.13 — —

Total 74 423.49 — — —

Table 6: Pearson correlation coefficients to the surface roughness.

d f r

Ra 0.112 0.592 −0.667

Prob .338 < .0001 < .0001
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Figure 4: The main effect plots of depth of cut, feed rate, and insert
nose radius on the surface roughness.

The determination coefficient (R2) of this model was 0.810
which showed that 81% of observed variability in Ra could
be ascribed from linear relation.

Equation (16) can be transformed into the following
form:

Ra = 52.022d1.308 f 0.182r−11.986. (17)

The above equation shows that the surface roughness de-
creases with the increasing of insert radius, whilst it increases
with the increasing of feed rate or depth of cut. The expected
effects of regressors on the response were observed.

Figure 4 shows the main effect on the surface roughness
produced by variables d, f , and r. Note that it is preferable
to maintain insert nose radius (r) on its highest level and
feed rate ( f ) on its lowest level. When the depth of cut is
increased, the surface roughness slowly increases, therefore,
depth of cut does not have a significant impact on surface
roughness as other two variables.

The scatter plot between the actual surface roughness and
the predicted surface roughness of all 75 samples as shown in
Figure 5 indicated that the relationship between actual sur-
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face roughness and predicted surface roughness was accepted
as a linear. It is seen that most of the points lie close to the line
for prediction.

The scatter plot of surface roughness residual versus pre-
dicted surface roughness was illustrated in Figure 6. In the
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Table 7: Analysis of variance for surface roughness first order and interactions terms model in turning of AISI 1030 using cemented carbide
tools.

Source DF Sum of squares Mean squares F values P values

Model 6 398.30 66.38 179.19 < .0001

Depth of cut, d 1 5.31 5.31 14.34 .0003

Feed rate, f 1 148.75 148.75 401.51 < .0001

Insert nose radius, r 1 188.95 188.95 510.04 < .0001

df 1 0.001 0.001 0.004 .9456

dr 1 1.79 1.79 4.85 .0311

fr 1 53.48 53.48 144.36 < .0001

Error 69 25.19 0.37 — —

Total 74 423.49 — — —

Table 8: Pearson correlation coefficients.

d f r df dr fr

Ra 0.112 0.592 −0.667 0.409 −0.398 −0.308

Prob .338 < .0001 < .0001 .0003 .0004 .007

model adequacy checking, the regression model was found
correct and assumptions were satisfied form in Figure 6. The
residual deviations from the mean line were among from
−1.5 to 2.5.

The results of analysis of variance (ANOVA) of the model
also supported linear relationships in model (Table 7). F
value of regression was 179.19. This F value indicated a great
significance (α < .0001) for model in rejecting the null hy-
pothesis (H0) that every coefficient of the predictor variables
in the model was zero. Instead, the alternative hypothesis, at
least one of these coefficients did not equal to zero, was ac-
cepted. Therefore, the linear relationship between the pre-
dicted variable (Ra) and predictor variables is significantly
exist.

In the regression analysis based on the first-order model
with interaction terms, pearson correlation coefficients be-
tween surface roughness and depth of cut, feed rate, insert
nose radius, interaction terms are presented in Table 8. Feed
rate ( f ), insert nose radius (r), depth of cut and feed rate
interaction (df ), depth of cut and insert nose radius inter-
action (dr), feed rate and insert nose radius interaction (fr)
were found to have significant correlation but insert radius,
dr, and df have negative effect.

The developed full model includes df interaction terms
that is not significant. Advanced modeling would, therefore,
include model reduction and elimination of term that is not
significant in the way that statistical hierarchy is not violated.
The model reduction is either stepwise or it follows back-
ward elimination. The analysis of variance proved that the
feed rate, insert nose radius, depth of cut, and fr interaction
most significantly affect the surface roughness. The surface
roughness is additionally affected by the dr interaction. The
surface roughness model has been developed in a form of
reduced equation in term of factors. When only significant
factors were considered in the multiple regression analysis, a

statistical model was created by regression function in SAS
from the tested data,

Y = −7.793 + 0.912d + 0.081 f

+ 6.063r − 0.669dr − 0.061 f r,

R2 = 0.940.

(18)

R2 was 0.940, which showed that 94% of the observed vari-
ability in Ra could be explained by the main effect and their
interactions of independent variables.

Figure 7 shows the actual surface roughness versus pre-
dicted surface roughness. A line inclined at 45◦ and passing
through the origin is also drawn in the figure. For perfect
prediction, all points should lie on this line. Here, it is seen
that most of points are close to this line. Hence, this model
provides reliable prediction.

Residual surface roughness versus predicted surface
roughness is illustrated in Figure 8. In the model adequacy
checking, the regression model was found correct and as-
sumptions were satisfied from Figure 8.

Figure 9 shows the effects of interactions on the surface
roughness parameter produced by variables d, f , and r. Note
that there is a nondisregarded interaction between factors
dr and fr. As It can be seen in Table 9, the smallest P-value
correspond to the fr interaction, and consequently it is the
most important. This fact can be observed by analyzing the
graphic shown in Figure 9, where the straight lines shown in
the dr interaction are more parallel. Figure 9 indicates that
a larger insert nose radius working with a higher feed rate
would result in a smoother surface.

The results of analysis of variance (ANOVA) of the
second-order model supported linear relationships in model
(Table 9). F value of regression was 317.29. This F value indi-
cated a great significance (α < 0.0001) for model in rejecting
the null hypothesis (H0) that every coefficient of the predic-
tor variables in the model was zero. Instead, the alternative
hypothesis, at least one of these coefficients did not equal to
zero, was accepted. Therefore, there is a significantly linear
relationship between the predicted variable (Ra) and predic-
tor variables.

In the regression analysis based on second-order model,
pearson correlation coefficients are presented in Table 10.
Feed rate, insert nose radius, df interaction, dr interaction,
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Figure 7: The actual surface roughness versus predicted surface
roughness of main effects and interaction terms model.

f r interaction, f 2 and r2 correlation coefficients were found
to have significance on the surface roughness but r, dr, f r,
and r2 have negative effect.

Developed full model includes some quadratic and in-
teraction terms that are not significant. Advanced modeling
would, therefore, include model reduction and elimination
of terms that are not significant in the way that statistical hi-
erarchy is not violated. The analysis of variance proved that
the feed rate, insert node radius, depth of cut, and f r in-
teraction most significantly affect the surface roughness. The
surface roughness is additionally affected by the dr interac-
tion. The surface roughness model has been developed in a
form of reduced equation in term of factors.

Quadratic model was created by regression function in
SAS from the data. The R2 was 0.977 which showed that
97.7% of the observed variability in Ra could be explained
by the independent variables.

A second-order model was postulated to extend the vari-
ables range in obtaining the relationship between the re-
sponse and the independent variables. The model is given by

Y = −2.538 + 0.912d + 0.053 f − 3.242r − 0.669dr

− 0.061 f r + 0.00008 f 2 + 5.816r2,

R2 = 0.977.

(19)

This model has a coefficient determination (R2) of 0.977
which indicates a strong relationship between the factors and
response.

Actual surface roughness versus predicted surface rough-
ness and residual surface roughness versus predicted sur-
face roughness are illustrated in Figures 10 and 11. Figure 10
shows the plot of actual versus predicted surface roughness.
It is seen that most of the points lie very close to the line for
strong prediction. For perfect prediction, all points should lie
on this line. Hence, this model provides reliable prediction.

Residual surface roughness versus predicted surface
roughness is illustrated in Figure 11. In the model adequacy
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Figure 8: The residual surface roughness versus predicted surface
roughness of main effects and interaction terms model.
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Figure 9: The interaction effect plots of depth of radius, feed rate,
and insert nose radius on the surface roughness.

checking, the regression model was found correct and as-
sumptions were satisfied form Figure 11.

Figure 12 shows the interactions on the surface rough-
ness parameter produced by variables d, f , and r. Note that
there is a nondisregarded interaction between factors dr and
f r. As It can be seen in Table 11, the smallest P-value cor-
responds to the f r interaction, and consequently it is the
most important. This fact can be observed by analyzing the
graphic shown in Figure 12, where the straight lines shown
in the dr interaction are more parallel.

The ANOVA results also show that all regression mod-
els are valid at a high significance (α < 0.01). The second-
order multiple regression model was the better for prediction
of surface roughness. They were calculated R2 = 0.977 and
RMSE = 0.375 of multiple second-order regression model.
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Table 9: Analysis of variance for surface roughness quadratic model in turning of AISI 1030 using cemented carbide tools.

Source DF Sum of squares Mean square F value P values

Model 9 414.06 46.01 317.29 < .0001

Depth of cut, d 1 5.31 5.31 36.65 < .0001

Feed rate, f 1 148.74 148.74 1025.86 < .0001

Insert nose radius, r 1 188.95 188.95 1303.16 < .0001

df 1 0.001 0.001 0.01 .9131

dr 1 1.79 1.79 12.37 .0008

f r 1 53.48 53.48 368.84 < .0001

d2 1 0.01 0.01 0.07 .7878

f 2 1 1.32 1.32 9.13 .036

r2 1 14.43 14.43 99.53 < .0001

Error 65 9.42 0.14 — —

Total 74 423.49 — — —

Table 10: Pearson correlation coefficients of second-order regression model.

d f r df dr f r d2 f 2 r2

Ra 0.112 0.592 −0.667 0.409 −0.398 −0.308 0.109 0.595 −0.634

Prob .3386 < .0001 < .0001 .0003 .0004 .007 .3491 < .0001 < .0001
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Figure 10: The actual surface roughness versus predicted surface
roughness of second-order model.

In this study, multiple regression analysis along with
the neural network analysis have been applied to measured
surface roughness data for making predictions. For accurate
results, we have used a single hidden layer by altering the
number of neurons used at the hidden layer (e.g., from 3
to 10) to get the best network in terms of the statistical er-
rors that it provides. Table 11 illustrates the behaviors of net-
works with varying number of neurons. This table has been
prepared by selected results obtained from the SCG and LM
algorithms. As the table illustrates, the network based on the
SCG algorithm with single hidden layer of 9 neurons has pro-
vided the best results (Figure 13).
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Figure 11: The residual surface roughness versus predicted surface
roughness of second-order model.

Then, the ANN model—as illustrated in Figure 13—is set
up using 3 neurons in the input layer with a single hidden
layer and finally one neuron is used at the output layer. The
representation of knowledge is accomplished by the weights
in between the layers. The values of these weights are given at
Tables 12-13.

Finally, the surface roughness value can be calculated by

Ra = 1
1 + e−(w j×Ni+θ j) × 12. (20)

Figure 3 corresponds to the Ra values for the training data.
It is seen that most of the points lie very close to the original
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Table 11: Statistical errors for the surface roughness using various algorithms.

Training data Test data

Algorithm Neurons RMSE R2 MEP RMSE R2 MEP

SCG 3 0.001932 0.997624 6.960600 0.006126 0.993970 7.768266

SCG 4 0.001302 0.998923 5.067769 0.005651 0.995117 5.223656

SCG 5 0.001157 0.999149 4.264085 0.005576 0.995212 6.324360

SCG 6 0.001028 0.999328 4.375162 0.006423 0.994088 6.227178

SCG 7 0.000865 0.999525 3.748721 0.002649 0.998991 2.805613

SCG 8 0.000859 0.999532 3.637935 0.003821 0.997939 3.433453

SCG 9 0.000583 0.999784 2.428001 0.003301 0.998375 2.709534

SCG 10 0.000623 0.999754 2.320464 0.003947 0.997784 3.626314

LM 3 0.001912 0.997673 6.882338 0.006148 0.993956 7.664310

LM 4 0.001702 0.998158 6.614245 0.004747 0.996652 5.053268

LM 5 0.001220 0.999054 4.938551 0.00641 0.993809 6.031022

LM 6 0.000823 0.999570 3.177517 0.006711 0.993137 7.238309

LM 7 0.000728 0.999663 3.004185 0.005206 0.995907 6.641926

LM 8 0.000785 0.999609 2.959348 0.008686 0.988234 7.938438

LM 9 0.000607 0.999766 2.394345 0.00402 0.997489 2.581416

LM 10 0.000386 0.999905 1.312424 0.010382 0.986222 7.301187
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Figure 12: The interaction effect plots of depth of radius, feed rate,
and insert nose radius on the surface roughness in second-order
model.

experimental results. It is seen that for most of the cases, pre-
diction is quite accurate. The maximum deviation for surface
roughness values is represented by Table 14. While Figure 14
presents the residual surface roughness versus predicted sur-
face roughness of ANN model. The residual values of surface
roughness by calculated ANN were less than by calculated re-
gression analysis.

For the analysis and simulation of the effects of different
insert radii of cutting tools, different depths of cut and dif-
ferent feed rates, on the surface quality of the workpieces—
depending on various processing parameters—an ANN-

Input layer

Depth of cut
Feed rate

Insert radius

θ1
Bias

Hidden layer

θ2
Bias

Output layer

Surface
roughness

Figure 13: ANN architecture with 9 hidden neurons in a single hid-
den layer.

based approach has also been implemented. As Figures 15,
16, and 17 illustrate, for each insert radius value, the pre-
dictions of the ANN are very close to the experiment based
results. These graphs show that the ANNs may be used as a
good alternative in analyzing about the effects of cutting tool
geometry and processing parameters on the surface rough-
ness. As a result, the ANN model has been very successful at
the training stage and the results for the test data have pro-
vided error levels well below critical acceptance level.

The comparison of accuracy values of multiple regression
models and neural network model are presented in Table 15.
As seen from the table—based on critical values—second-
order multiple regression model has been the best model in
the regression analysis, but the neural network model has
provided better results than the second-order multiple re-
gression model.
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Figure 14: The residual surface roughness versus predicted surface
roughness of ANN model.
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Figure 15: Comparison of actual, regression, and ANN approach
values for insert radius of 0.4 mm.

8. CONCLUSIONS

In this study, the application of regression analysis and neu-
ral network analysis on the experimental surface roughness
values are compared and discussed. The developed models
which are limited with their boundary conditions are com-
pared in terms of the prediction accuracy to the surface
roughness. For a long time, modeling techniques have been
developed for prediction of the surface roughness. From the
results of this study, the following conclusions are drawn.

First-order with interaction terms and second-order
model predicting equations for surface roughness have been
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Figure 16: Comparison of actual, regression and ANN approach
values for insert radius of 0.8 mm.
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Figure 17: Comparison of actual, regression, and ANN approach
values for insert radius of 1.2 mm.

developed using multiple regression analysis for machining
the AISI 1030 steel with cemented carbide tools. The es-
tablished equations clearly show that the feed rate and in-
sert nose radius were main influencing factors on the surface
roughness. Surface roughness increased with increasing feed
rate but decreased with increasing insert nose radius. Depth
of cut was not more informative than the other two. Triple in-
teraction of depth of cut, feed rate, and insert radius did not
have significant impact on the surface roughness. Decreases
in feed rate and increases of nose radius provided better sur-
face roughness. The variance analysis for the second-order
model shows that the depth of cut and insert nose radius
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Table 12: The weights corresponding to the input layer and hidden layer.

Ni = 1
1 + e−(w1×(d/3)+w2×( f /250)+w3×(r/1.5)+θi)

i w1 w2 w3 θi

1 −8.4505 −5.4966 −8.8684 17.2416

2 22.1477 1.6185 3.7320 −18.486

3 −1.6283 −8.6277 −14.6887 13.0097

4 −0.8652 4.2739 0.0823 −1.9883

5 3.9875 6.3448 −7.7834 −3.8787

6 2.2370 10.5956 14.0866 −13.9547

7 −19.0115 1.8102 −4.4897 8.0741

8 6.6573 −4.3906 10.5434 −4.3441

9 7.0961 −7.6120 9.9133 0.9243

Table 13: The weights corresponding to the hidden layer and output layer.

Wj

w1 w2 w3 w4 w5 w6 w7 w8 w9 θj

0.8756 0.6634 3.6789 3.1933 0.8049 3.0259 −0.598 −0.6827 −0.7780 −6.3104

Table 14: Maximum deviation for surface roughness values.

Surface roughness deviation Deviation (%) depth of cut feed rate insert radius

dRaMax

(
dRa = RaActual − RaANN

RaActual

)
−0.18405 2.75 130 1.2

Table 15: Comparison of accuracy values of models.

Model RMSE MEP R2

Regression analysis
First-order model 1.064 43.14 0.810

First-order model with interaction 0.604 18.56 0.940

Second-order model 0.375 15.12 0.977

Neural network
Training 0.0005 2.42 0.999

Test 0.0003 2.71 0.998

interaction and feed rate and insert nose radius interaction
terms and the square terms of feed rate and insert nose ra-
dius are statistically significant. Moreover, it is seen that the
depth of cut and feed rate interaction and square of depth of
cut are insignificant.

The predicted values and measured values are fairly close,
which indicates that the developed surface roughness pre-
diction model can be used effectively to predict the sur-
face roughness from the cutting process for the second-
order model. However, based on the statistical error anal-
ysis methods, using SCG technique for surface roughness,
the R2 value for the training data set was 0.9997, while

for the testing data it became 0.9983; the RMSE values are
0.00058 and 0.0033, respectively; and the mean error val-
ues are %2.42 and %2.71, respectively. Therefore, the sur-
face roughness values are accurately determined by the ANN,
by using 3 input parameters (i.e., cut depth, feed rate, in-
sert radius), the surface roughness of the steel parts may be
predicted with less errors when compared to error of re-
gression models. However, the degree of error can be ig-
nored. Regression requires an explicit function to be defined
before the least squares parameter estimates, while a neu-
ral network depends more on training data and the learn-
ing algorithm. Although predictive neural network model



Muammer Nalbant et al. 13

seemed to give better predictions than various regression
models for surface roughness, both methods can be used
for the same purpose, because the difference in R2 is very
small.

NOMENCLATURE

ANOVA: Analysis of variance

CNC: Computerized numerical control

DF: Degree of freedom

d: Depth of cut

f : Feed rate

r: Insert radius

Ra: Average surface roughness

ANN: Artificial neural network

SCG: Scaled conjugate gradient learning algorithm

LM: Levenberg marquardt learning algorithm

o: Output value

p: Number of pattern

R2: Absolute fraction of variance

RMSE: Root mean square error

MEP: Mean error percentage

t: Target value

f : Transfer function

n: Number of processing elements in
the previous layer

i, j: Processing elements

NETi: The weighted sum of the input to the ith
processing element

X j: The output of the jth processing element

Wij : The weights of the connections between
ith and jth processing elements

Wbi: The weights of the biases between layers
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