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Abstract: The c-Jun N-terminal Kinases (JNK), along with Erk and p38, constitute the principle members of the 
mitogen-activated protein kinase (MAPK) family. JNK functions primarily through AP1 family transcription factors to 
regulate a plethora of cellular processes, including cell proliferation, differentiation, survival and migration. It also 
cross-talks and integrates with other signaling pathways in a cell context-specific and cell type-specific manner. The 
current views of JNK function in various skin cancers and the need of developing JNK subunit-specific inhibitors for 
cancer type-specific applications have been summarized in this review.
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Introduction

The c-Jun N-terminal Kinases (JNK), along with 
Erk and p38, constitute the principle members 
of the mitogen-activated protein kinase (MAPK) 
family [1, 2]. JNK functions primarily through 
AP1 family transcription factors to regulate a 
plethora of cellular processes, including cell 
proliferation, differentiation, survival and 
migration. It also cross-talks and integrates 
with other signaling pathways in a cell context-
specific and cell type-specific manner [2]. This 
review is focused on addressing the current 
views of JNK function in various skin cancers 
and the need of developing JNK subunit-specif-
ic inhibitors for cancer type-specific applica- 
tions.

The cost of skin cancer

Skin represents the largest and outermost 
organ of the human body. It is constantly chal-
lenged by a myriad of environmental insults. As 
a result, skin cancers are estimated to exceed 
1 million new cases per year in the US, roughly 
10-20 times more prevalent than any other 
cancers combined [3]. Among the most com-
mon types of skin cancers are basal cell carci-

noma (BCC), squamous cell carcinoma (SCC) 
and melanoma accounting for about 80%, 15% 
and 5%, respectively. BCC is mostly a local neo-
plastic process that rarely invades to other 
parts of the body. In contrast, SCC and mela-
noma can be invasive and are responsible for 
an annual death of 2,000 and 8,700, respec-
tively (http://www.cancer.org, 2010; http://
www.cancer.gov/cancertopics, 2010) [3, 4]. 
There are other less common epithelial tumors 
arising from cutaneous adnexal structures that 
are part of syndromes such as the case of famil-
iar cylindromatosis, Brooke-Speigler syndrome 
and multiple familial triochoepithelioma. 
Although benign in most cases, these tumors 
are often disfiguring and can become metastat-
ic over time [5, 12]. The average treatment cost 
of skin cancer for each patient is significantly 
(11-19 times) lower than other cancers. 
However, due to the high incidence, skin cancer 
represents the 5th most costly cancer immedi-
ately following lung/bronchus, prostate, colon/
rectum, and breast cancers [13]. To date, sur-
gery is the most effective treatment option for 
BCC, early stage SCC and melanoma. 
Chemotherapeutics targeting the SHH-pathway 
and COX inhibitors have produced promising 
results for BCC [14, 15]. In contrast, treatment 
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options for late stage SCC and melanoma are 
limited and the outcome is far from satisfacto-
ry. Thus, novel target treatment strategies are 
clearly needed in order to reduce the financial 
burden of the health system and improve clini-
cal outcome. 

The c-Jun N-terminal Kinase (JNK) signaling 
pathway in human disease

JNK proteins, also known as SAPKs (stress acti-
vated protein kinases), are first discovered in 
early 1990s [16, 17]. They are encoded by 
three different genes, jnk1 (MAPK8), jnk2 
(MAPK9) and jnk3 (MAPK10), the encoded 
mRNAs undergo differential splicing giving rise 
to 10 different isoforms [18]. To date, nearly 
22,500 papers have been published to directly 
or indirectly address the role of JNK in tissue 
homeostasis, cellular metabolism, inflamma-
tion and carcinogenesis. Studies using animal 
models have established the essential roles for 
JNK proteins in a number of pathological condi-
tions, including but not limited to neurodegen-
erative disorders, diabetes, arthritis, athero-
sclerosis and skin cancer [19-23]. In parallel, 
studies with human tissues have demonstrated 
the relevance of JNK activation to not only the 
above mentioned diseases but also to human 
cancers, including glioma, prostate carcinoma, 
osteosarcoma and squamous cell carcinoma 
(SCC) [24-28]. Accordingly, a number of great 
review papers have been published to describe 
the role of JNK in cell death and survival and 
tissue pathogenesis, eluding that the JNK sig-
naling pathway is a goldmine for pharmacologi-
cal targeting [19, 29, 30]. This paper intends to 
provide a focused review of JNK in skin cancer 
and discusses the possibilities of therapeutic 
targeting of this pathway.

The upstream and downstream targets of JNK

JNK is highly responsive to a variety of extracel-
lular stimuli, including inflammatory cytokines 
and UV irradiation [31]. Signals transmitted 
from membrane receptors travel through 
TRAF2/6 protein complexes to activate mito-
gen-activated protein kinase (MAPK) kinases 
[32, 33], including MKK4 and MKK7. MKK4/7 
then acts synergistically to activate JNK via 
dual phosphorylation of the ThrProTyr (TPY) 
motif [34, 35]. MKK7 is an essential compo-
nent of the JNK signal transduction pathway 
activated by proinflammatory cytokines and 

demonstrates great specificity to JNK, whereas 
MKK4 activates both JNK and p38 [36]. MKK4 
and MKK7 are both involved in embryonic 
development, as disrupting either leads to early 
embryonic lethality [37, 38]. Genetic deletion of 
either Jnk1 or Jnk2 alone or together with Jnk3 
produces viable mice, while compound deletion 
of Jnk1 and Jnk2 leads to early embryonic 
lethality, a stage too early for epidermal pheno-
typic assessment [39, 40]. 

The major downstream targets of the JNK cas-
cade are members of the activator protein 1 
family (AP-1) transcription factors, including Jun 
and Fos family members that function as het-
ero- or homo-dimers to regulate gene transcrip-
tion [41-43]. c-Jun and c-Fos are the mammali-
an counterparts of v-Jun and v-fos retroviral 
oncogenes, respectively, and are recognized as 
proto-oncogenes in various mammalian can-
cers. In particular, c-Jun as a predominant JNK-
target is responsible for induction of a plethora 
of target genes that are involved in regulating 
cell cycle progression, migration and survival. 
In addition, JNK mediates phosphorylation and 
subsequent downregulation of p53 tumor sup-
pressor [44, 45], and therefore suppresses 
p53-mediated cell senescence [46]. 

JNK function in animal and human models of 
SCC

JNK function has been explored in both animal 
and human tissue models of SCC. In animal 
studies, skin tumors are often induced by either 
ultraviolet radiation (UV) or a two-stage chemi-
cal tumorigenesis protocol with one dose of 
topical 7,12-dimethylbenzanthracene (DMBA) 
followed by biweekly 12-O-tetradecanoylphor- 
bol-13-acetate (TPA). Jnk1-/- mice were highly 
susceptible to DMBA/TPA-induced skin carci-
nogenesis as indicated by the increased rates 
of tumor growth kinetic and progression into 
carcinomas as compared to the WT counter-
parts [47]. The enhanced tumor growth pheno-
type in Jnk1-/- mice was attributed to the 
increased level of TPA-induced AP-1 DNA bind-
ing activity and phosphorylation of extracellular 
signal-regulated kinases and Akt. In agreement 
with these data, suppression of JNK1 by Serpin 
SCC antigen (SCCA1) prevents UV-induced epi-
dermal cell death and consequently promotes 
tumorigenesis [48]. In contrast, JNK2-deficient 
(Jnk2-/-) mice were resistant to tumor induction 
as indicated by the reduced number of papillo-
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ma developed following DMBA/TPA chemical 
challenge as compared to the WT mice [23]. 
Furthermore, the Jnk2-/- papillomas were not 
prone to progression into carcinoma and 
expressed significantly reduced levels of AP-1 
and Erk activity. This constellation of findings 
indicate that JNK1 and JNK2 have opposite 
effects on skin carcinogenesis with JNK2 being 
a tumor promoter. 

The oncogenic effects of JNK2 were also 
observed in the regenerated human SCC 
model, in which primary human keratinocytes 
were subject to multiplex gene transduction for 
expression of genes under investigation and 
then used for skin regeneration on immunode-
ficient mice [49, 50]. By using this model, we 
have demonstrated that JNK2 and c-Jun are 
essential for the invasive human epidermal 
neoplasia triggered by NF-κB blockade and 
oncogenic Ras [27, 51]. Moreover, expression 
of constitutively active mutants of either MKK7, 
JNK2 (MKK7-JNK2 fusion) or c-Jun is sufficient 
to couple with oncogenic Ras to drive normal 
human epidermal cells into malignancy [27, 28, 
52]. In contrast, expression of active MKK7-
JNK1 fusion protein is not sufficient in promot-
ing Ras-driven human epidermal malignancy. 
Consistent with the findings obtained with ani-
mal models, JNK2 and c-Jun but not JNK1 are 
highly activated in human SCC, confirming that 
these molecules are clinically relevant [28, 52]. 
Of further interest, JNK2 but not JNK1 potenti-
ates Ras-induction of glycolysis [28], an energy 
producing process commonly utilized by cancer 
cells and also known as the Warburg effect 
[53]. On the other hand, JNK2 blocks Ras-
induced NF-κB activation [28], an activity previ-
ously reported to induce human epidermal cell 
senescence and growth arrest [49]. Thus, 
coactivation of JNK2 and Ras produces an opti-
mal molecular and metabolic environment 
required for tumorigenesis.

JNK downstream target AP1 proteins in SCC

Direct AP1 inhibition by expression of the domi-
nant-negative mutant of c-Jun (DNc-Jun, also 
known as TAM67) inhibits tumorigenesis of 
murine SCC cell lines both in vitro and in vivo 
[54]. Consistently, epidermal deletion of c-Jun 
or K14-driven expression of TAM67 suppress-
es murine skin carcinogenesis induced by 
chemicals, UV radiation or papilloma viral onco-
gene [42, 43, 55-58 ]. In addition, mice defi-

cient in c-fos are resistant to malignant pro-
gression of skin tumors induced by Ras [59, 
60]. These findings underscore an important 
role for AP1 in skin tumorigenesis. However, 
AP1 function is rather complex such that differ-
ent AP1 subunits are differentially involved in 
various cellular processes. For example, over-
expression of JunB enhances the malignant 
phenotype of transformed rat keratinocytes in 
vitro [61], suggesting that JunB might be pro-
tumor growth. On the other hand, JunB is 
responsible for the resistance of the JB6(P-) 
SCC cells to tumor promotion, as well as the 
suppression of cell proliferation and epithelial-
to-mesenchymal transition (EMT) of multiple 
SCC cell lines [62, 63], indicating that JunB sup-
presses tumorigenesis. In agreement with 
these latter findings, our recent studies have 
shown that the nuclear level of JunB is reduced 
in spontaneous human SCC, and that exoge-
nous expression of JunB inhibits epidermal 
neoplasia induced by coexpression of MKK7 
and Ras oncogene [52]. These results highlight 
opposite functions of JunB and c-Jun in epider-
mal growth and neoplasia.

JNK function in BCC

JNK function has also been recently implicated 
in BCC. The JNK target c-Jun is highly activated 
in human BCC samples [64]. In addition, Gli-
mediated cell cycle promotion and target gene 
induction is abolished by the presence of the 
pharmacological JNK inhibitor SP600125 or by 
siRNA-mediated gene silencing of c-Jun [64]. 
These findings indicate that JNK and c-Jun are 
important for the oncogenic activity of 
Hedgehog/Gli proteins in BCC. Moreover, the 
Hedgehog/Gli signaling pathway is found to act 
in synergy with the epidermal growth factor 
receptor signaling pathway to drive oncogene-
sis of a mouse BCC cell line [65]. In this case, 
Gli-driven tumorigenesis requires c-Jun activa-
tion by MEK/ERK but not JNK. Taken together, 
JNK is involved in BCC in a cell-context depen-
dent manner. It is not clear whether JNK sub-
units are differentially involved in the tumori-
genesis of BCC.

JNK function in cylindromas and other hair 
follicle derived tumors

Genetic mutation of the cylindromatosis gene 
(Cyld) predispose patients to not only cyclindro-
ma but also other skin tumors derived from hair 
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follicles, including Brooke-Speigler syndrome 
and multiple familial triochoepithelioma [5-12, 
66]. CYLD is a deubiquitinase that specifically 
removes K63-ubiquitin from target proteins to 
inhibit signal transduction to multiple signaling 
pathways including NF-κB and JNK [67, 68]. To 
examine the relevance of JNK to cyclindroma, 
we performed immune peroxidase staining of a 
panel of human cylindroma tissues for pJNK. 
We found that nuclei presence of pJNK was 
detected in the tumor cells of 100% of samples 
examined (n=11) (Figure 1), indicating that JNK 
is activated in cylindroma. Increased JNK acti-
vation was also observed in skin cancers chem-
ically induced in transgenic animals with K14-
driven expression of a patient-relevant CYLD 
mutant [69]. Topical JNK inhibition markedly 
reduced tumor formation and malignant pro-
gression in these animals, suggesting that JNK 
plays an important role in epidermal tumorigen-
esis associated with CYLD loss-of-function.

JNK function in melanoma

The JNK signaling pathway is known to display 
functional dichotomy in cell growth and surviv-
al. Such dichotomy is reflected on the contro-
versial roles of JNK/AP1 proteins in melanoma. 
JNK activation mediates aspirin-induced sup-
pression of B16 melanoma cellular prolifera-
tion [70]. Expression of dominant negative 
mutants of c-Jun or c-Fos increases growth and 
soft agar colony formation of human and mouse 
melanoma cell lines, respectively [71, 72], indi-
cating that AP1 is inhibitory to melanoma 
growth. In contrast to these findings, recent 
studies have pinpointed an important role of 
the JNK signaling axis in melanoma. Activation 
of JNK and c-Jun by the constitutively active 

MEK-ERK signaling axis is a central process in 
melanoma tumorigenesis [73]. ERK increases 
c-Jun transcription and stability, which subse-
quently increases transcription of target genes 
such as cyclinD1 and RACK1. RACK1 in turn 
enables PKC to phosphorylate and enhance 
JNK activity, enforcing a feed-forward mecha-
nism of the JNK-AP1 pathway [73]. In agree-
ment with these findings, our recent studies 
have shown that JNK activation together with 
CYLD loss-of-function occurs in human mela-
noma. Exogenous expression of MKK7 or c-Jun 
prevents CYLD-induced inhibition of melanoma 
growth and metastasis as assessed by intrave-
nous tumor growth analysis in mice [74]. 
Conversely, JNK inhibition with the small mole-
cule inhibitor SP600125 induces melanoma 
cell growth arrest or apoptosis through 
p53-dependent induction of p21 cell cycle 
inhibitor and induction of p53, Bad and Bax 
apoptotic molecules, as shown in 1205Lu and 
WM983B melanoma cells, respectively [75]. In 
addition, targeted gene silencing of JNK1 but 
not JNK2 impairs melanoma cell growth and 
survival [75]. Taken together, these findings 
underscore that the JNK1-AP1 signaling path-
way has an important role in melanoma 
tumorigenesis. 

Future perspectives

The JNK signaling pathway has long been rec-
ognized as a gold mine for therapeutic targeting 
[76, 77]. However, strategies targeting the JNK 
pathway have not been translated into clinical 
use thus far. Presumably, isoform specific inhi-
bition is pivotal for clinical applications, which 
has not been achieved with the current JNK 
inhibitors, including SP600125, BI-78D3, 

Figure 1. JNK is activated in cylindroma. A panel of paraffin sections of cylindromas tissues derived from different 
patients were obtained from Duke Pathology lab in accordance with an IRB protocol approved by Duke University Hu-
man Subject Use committee. Tissue sections were antigen unmasked and undergone immunoperoxidase staining 
with a rabbit antibody against pJNK (Promega) followed by peroxidase-conjugated secondary antibody. 100% of the 
11 patient samples examined displayed positive staining for pJNK [brown], however different degree of protein ex-
pression was detected in these 6 representative patients. Sections were counter-stained with hematoxylin [Nuclei, 
blue]; Scale bar=50 um. Negative control was shown by 2ndary antibody only.



JNK plays an important role in skin cancer

695	 Am J Cancer Res 2012;2(6):691-698

JNKI1, CEB-1347 and CC-930 [78-82]. Isoform 
specific inhibitors are under active develop-
ment, are expected to emerge in the next few 
years. A JNK1-spepcifc inhibitor AV-7 has been 
recently characterized via in vitro studies [83]. 
It will be interesting to see the in vivo effects of 
AV-7. Overall, further efforts are required to 
develop JNK isoform specific inhibitors, and 
topical application of such agents represents a 
promising strategy for skin cancer prevention 
and treatment.
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