
 

 

Introduction 
 
The NF-B family 
 
Nuclear factor-B (NF-B) plays a central role in 
the regulation of diverse biological processes, 
including immune responses, development, cell 
proliferation and survival. Deregulated NF-B 
has been linked to a variety of human diseases, 
particularly cancers [1-3]. The NF-B family con-
sists of five closely related DNA binding pro-
teins: RelA (p65), RelB, c-Rel, NF-B1/p50 and 
NF-B2/p52, which function as various 
homodimers and heterodimers. All five NF-B 
members share a highly conserved 300-amino-
acid-long N-terminal Rel homology domain 
(RHD), which is responsible for their dimeriza-
tion, nuclear translocation, DNA binding and 
also interaction with the inhibitors of NF-B (I
Bs) (Figure 1). But they show huge difference in 
their C-terminal sequences and also synthesis 
modes. While RelA, RelB and c-Rel have trans-
activating domain (TAD) at their C-termini and 
are synthesized directly as mature forms, p50 
and p52 lack a TAD and are generated from 
large precursor proteins, p105 and p100, re-
spectively. Interestingly, p105 and p100 contain 
a C-terminal ankyrin repeat domain (ARD), the 

characteristic domain of IB. Indeed, both p105 
and p100 function as IB-like inhibitors of NF-
B [4, 5].  
 
The IB family 
 
The IB family comprises eight members and 
shares one common structural feature: pres-
ence of an ARD, which can bind to the RHD of 
NF-B (Figure 1). While IBα and IB function 
as potent NF-B inhibitors by sequestering NF-
B dimers in the cytoplasm, other IB proteins 
including IBβ are not simple inhibitors of NF-B 
but rather cofactors displaying both positive and 
negative effects on NF-B-mediated gene tran-
scription [6, 7]. For example, Bcl-3, which was 
originally identified as an oncogene from B-cell 
chronic lymphocytic leukemias (B-CLLs), has a 
typical TAD in its C-terminal. Bcl-3 is constitu-
tively translocated into the nucleus where it 
interacts with p50 or p52 homodimers, which 
lack TAD, to facilitate transcription of NF-B tar-
get genes. The nuclear translocation of Bcl-3 
requires its K63-linked polyubiquitination (via 
the lysine 63 of ubiquitin) [8]. Bcl-3 may also 
repress transcription of NF-B target genes. In 
this case, Bcl-3 promotes p50 homodimer occu-
pancy of the B site-containing promoters by 
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inhibiting ubiquitination and degradation of 
p50, therefore preventing replacement by active 
NF-B dimers [9].  

 
NF-B signaling pathways 
 
In unstimulated cells, NF-B dimers usually exist 

as latent complexes with the IB proteins in the 
cytoplasm. There are two major mechanisms 
leading to NF-B activation: the canonical and 
non-canonical NF-B pathways, which are based 
on the inducible degradation of IBα and proc-
essing of p100 to generate p52 (selective deg-
radation of the C-terminal IB-like sequence of 

Figure 1. Schematic representation of members of NF-B and IB families. The NF-B family can be divided into two 
subfamilies. One subfamily consists of three members: RelA, RelB and c-Rel, which contain TADs at their C-termini 
and are synthesized directly as mature forms; the other one consists of two members: NF-B1/p50 and NF-B2/p52, 
which lack a TAD and are generated from large precursor proteins p105 and p100, respectively. Typical NF-B dimers 
are usually composed of one member from each subfamily, such as RelA/p50 and RelB/p52, although all NF-B 
members may form various homo- or hetero-dimers. Of note, the p50 or p52 homodimers repress NF-B target gene 
expression due to lack of a TAD. The IB family can be classified into three subfamilies: the typical IB proteins (IBα 
and IB), the precursor proteins (p100 and p105) and the atypical IB proteins (BCL-3, IBβ, IB and IBNS). The 
typical subfamily just simply functions as NF-B inhibitors. The precursor subfamily is also required for generation of 
the NF-B members p50 and p52, besides being NF-B inhibitors. While the processing of p105 to p50 is a constitu-
tive event, the processing of p100 to p52 is tightly controlled. The atypical subfamily may function as co-activator or 
co-repressor of NF-B depending on different situations [6, 7].  RHD: Rel homology domain; TAD: transactivating do-
main; ARD: ankyrin repeat domain; DD: death domain; LZ: leucine zipper; PEST: PEST containing sequence. 
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p100), respectively (Figure 2).  
 
Pathways leading to NF-B activation 
 
Canonical NF-B pathway: The canonical path-

way can be rapidly activated by a plethora of 
stimuli, such as inflammation cytokines and 
antigens. These NF-B inducers induce assem-
bly of a multimolecular complex that includes 
the RING-finger E3 ubiquitin ligase tumor necro-

Figure 2. NF-B signaling pathways. Although the canonical and non-canonical signaling pathways primarily activate 
the RelA/p50 and RelB/p52 dimers, respectively, all NF-B members can be activated by either pathway or both. In 
fact, the RelA/p50 dimers may be sequestered in the cytoplasm by p100 and can be activated through p100 proc-
essing. On the other hand, NF-B dimers containing p52 may be sequestered in the cytoplasm by IBα and can be 
activated through IBα degradation. Furthermore, activation of the canonical NF-B signaling pathway can be in-
duced through inducible degradation of IBβ, IB and p105, a process similar to the inducible IBα degradation, 
although their degradation dynamics can be different.  
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sis factor receptor associated factor 6 (TRAF6), 
leading to TRAF6 auto-polyubiquitination [10, 
11]. The K63 ubiquitinated TRAF6 then recruits 
and catalyses K63-linked ubiquitination of the 
transforming growth factor-β-activated kinase 1 
(TAK1) and the IB kinase (IKK) complex [which 
consists of two catalytic subunits, IKK1 (IKKα) 
and IKK2 (IKKβ), and a regulatory subunit, 
NEMO (NF-B essential modulator, IKK)], so 
that TAK1 can phosphorylate and activate IKK. 
Once activated, IKK phosphorylates specific 
serines (S32 and S36) within IBα, triggering its 
K48-linked ubiquitination by the E3 ubiquitin 
ligase β-transducin repeat-containing protein (β-
TrCP) and degradation by the 26S proteasome. 
The released NF-B translocates into the nu-
cleus to regulate expression of a wide range of 
genes, particularly those involved in cell prolif-
eration, survival, adhesion and migration. In 
addition to IB degradation, many other regula-
tory mechanisms are also important for canoni-
cal NF-B activation, such as phosphorylation, 
acetylation, prolyl isomerization and/or methyla-
tion of the prototypical NF-B member RelA. 
These post-translational modifications prevent 
RelA from binding to IBα, facilitate its DNA 
binding and transcriptional coactivator recruit-
ment, and/or increase its stability [6].  

 
Non-canonical NF-B pathway: In contrast to the 
canonical pathway, the noncanonical NF-B 
pathway is induced only by a handful of stimuli 
including B-cell activating factor (BAFF), lym-
photoxin β (LTβ), CD40 ligand, TNF-like weak 
inducer of apoptosis (TWEAK) and receptor acti-
vator of NF-B ligand (RANKL) [6]. In addition, 
activation of the noncanonical NF-B pathway is 
slow and depends on protein synthesis of NF-B
-inducing kinase (NIK) [12]. Although its mRNA 
expression is relatively abundant, the protein 
level of NIK is normally very low because of its 
constitutive degradation via a TRAF3-dependent 
mechanism [12, 13]. TRAF3 functions as a scaf-
fold between NIK and TRAF2, which in turn re-
cruits cellular inhibitors of apoptosis 1 and 2 (c-
IAP1/2) into the NIK complex. Within the com-
plex, c-IAP1 or c-IAP2 acts as the E3 ubiquitin 
ligase to mediate NIK polyubiquitination and 
proteolysis, thereby keeping its abundance be-
low the threshold required for its function. In 
response to noncanonical NF-B stimuli, either 
TRAF2 and TRAF3 or c-IAP1 and c-IAP2 are de-
graded by the proteasome, resulting in stabiliza-
tion and accumulation of the newly synthesized 
NIK, thereby allowing NIK proteins to form oli-

gomers and cross-phosphorylate each other for 
their activation [12-19]. Self-activated NIK in 
turn activates the IKK complex and specifically 
recruits IKK1 into the p100 complex to phos-
phorylate p100, leading to p100 ubiquitination 
by the β-TrCP E3 ubiquitin ligase and processing 
by the proteasome to generate p52 [20-23]. 
The processed product p52 together with its NF-
B binding partner translocates into the nucleus 
to induce or repress gene expression. Moreover, 
NIK-activated IKK may also induce IBα degra-
dation to activate the canonical NF-B pathway 
[24].  
 
Termination of NF-B activation 
 
Activation of the NF-B pathways is tightly regu-
lated and rapidly curtailed following the initial 
activating stimulus. Transient activation of NF-
B is physiologically important because persis-
tent activation can result in deleterious or even 
fatal conditions, such as acute inflammation, 
septic shock or at a cellular level, inappropriate 
cell growth and survival leading to cancer. It is 
therefore not surprising that feedback inhibition 
mechanisms to terminate NF-B activation oc-
cur at almost all the levels or regulations that 
led to the initial activation.  
 
Consistent with the central role of IKK in the 
activation of both canonical and non-canonical 
NF-B pathways, several mechanisms are em-
ployed to inactivate IKK. Once activated, IKK 
also phosphorylates themselves and upstream 
activators, such as RIP in the canonical NF-B 
pathway and NIK in the non-canonical NF-B 
pathway, in addition to the IB proteins. The 
autophosphorylation of the IKK catalytic sub-
units at multiple C-terminal serines is supposed 
to cause IKK conformational alteration and 
phosphatase recruitment, resulting in dephos-
phorylation of the IKK activation loops and IKK 
inactivation [25]. Phosphorylation of RIP and 
NIK, similar to IB phosphorylation, leads to 
K48-linked ubiquitination and degradation of 
these IKK activators [26, 27]. The ubiquitination 
of RIP is mediated by A20 (TNFAIP3, TNFα-
induced protein 3), a known target of NF-B 
activation [28], providing a distinct feedback 
inhibition mechanism. In addition to as an E3 
ubiquitin ligase for RIP K48-linked ubiquitina-
tion and degradation, A20 exerts at least two 
additional functions in the termination of NF-B 
activation: on one hand functions as a deubiq-
uitinase (DUB) to remove K63-linked ubiquitin 
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chains from multiple NF-B signaling molecules 
such as TRAF2/6, RIP, MALT1 and NEMO, and 
on the other hand blocks continuous K63-linked 
ubiquitination of these key NF-B regulators by 
disrupting the interaction between the K63 
ubiquitin ligases TRAF2/6 and their E2 ubiquitin 
conjugating enzymes Ubc13 and UbcH5c [26, 
29-32]. As stated above and shown in Figure 2, 
K63-linked ubiquitination of NF-B signaling 
molecules is critical for the assembly of signal-
ing complex and subsequent activation of IKK/
NF-B. The K48-ubiquitin ligase and the K63-
ubiquitin deubiquitinase activities of A20 are 
mediated by its C-terminal zinc finger containing 
domain and N-terminal ovarian tumor (OTU) 
domain, respectively [26, 33, 34]. Interestingly, 
A20 is also a target of IKK activation for pho-
shorylation. In this case, IKK-mediated phos-
phorylation increases the K63-specific DUB ac-
tivity of A20, suggesting another level of feed-
back inhibition mechanism of IKK/NF-B activa-
tion [35] (Figure 3). Besides A20, another 
deubiquitinase termed cylindromatosis (CYLD) 
also plays an important role in the termination 
of IKK/NF-B activation. Like A20, CYLD is a 
target gene of NF-B activation and can remove 
K63-linked ubiquitin chains from multiple acti-
vated IKK/NF-B signaling molecules, including 
TRAF2/6, RIP, TAK, NEMO and Bcl-3 [36-38].  
 
However, the best known and most critical feed-
back inhibition mechanism is to replenish the 
pool of IB proteins via NF-B activation itself. 
Same to many NF-B repressors such as A20 
and CYLD, all the IB family members except I
Bβ are direct targets of NF-B. Newly synthe-

sized IB, particularly IBα, enters the nucleus 
to bind to and transport NF-B dimers back to 
the cytoplasm to reconstitute the status quo 
ante [39].  
 
Recent studies, however, indicate that this feed-
back inhibition mechanism is neither sufficient 
nor necessary for the turnoff of NF-B activa-
tion, at least in certain situations [40]. Instead, 
ubiquitination-mediated proteasomal degrada-
tion of activated NF-B members directly in the 
nucleus provides a more rapid but also essen-
tial mechanism for NF-B termination. Two dif-
ferent E3 ubiquitin ligases have been reported 
to be involved in the nuclear degradation of 
RelA: suppressor of cytokine signaling 1 
(SOCS1) and PDZ-LIM domain-containing pro-
tein 2 (PDLIM2). The SOCS1 ligase complex, 
which consists of Elongins B and C, Cul2 and 
SOCS1, requires COMMD1 (MURR1) for its func-
tion in RelA ubiquitination and degradation [41-
44]. COMMD1 binds to both SOCS1 and RelA 
and therefore enhances the interaction be-
tween SOCS1 and RelA. Accordingly, knockdown 
of COMMD1 stabilizes nuclear RelA and en-
hances NF-B activity in response to TNF stimu-
lation or certain stress stimuli [44, 45]. PDLIM2, 
a ubiquitously expressed nuclear protein with a 
strong shuttling activity between the nucleus 
and the cytoplasm, terminates NF-B activation 
using two distinct but related mechanisms: it 
not only functions as an E3 ubiquitin ligase to 
promote nuclear RelA ubiquitination but also 
shuttles RelA to the nuclear matrix for the pro-
teasome-mediated degradation [46, 47]. Impor-
tantly, PDLIM2 knockout mice are more sensi-

Figure 3. Domain structure of A20. OUT: ovarian tumour domain; ZnF: zinc finger. 
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tive to septic shock due to enhanced p65 acti-
vation and subsequently augmented production 
of inflammatory cytokines [46]. 
 
Crosstalk between NF-B pathways 
 
Although the canonical and non-canonical NF-
B signaling pathways are fundamentally differ-
ent, they do interact with each other at multiple 
levels. As described above, all known non-
canonical NF-B stimuli are also able to activate 
the canonical pathway, although most of ca-
nonical NF-B stimuli are unable to activate the 
non-canonical pathway. However, activation of 
the canonical NF-B pathway does facilitate 
activation of the non-canonical NF-B pathway, 
e.g. transcriptional upregulation of p100 and 
non-canonical NF-B stimuli such as CD40L and 
TWEAK. Interestingly, recent studies indicate 
that activation of the non-canonical NF-B path-
way may facilitate or repress activation of the 
canonical pathway depending on cell-context. 
For example, non-canonical NF-B activation by 
the viral oncoprotein Tax leads to transcriptional 
repression of the tumor suppressor WWOX, 
which selectively inhibits Tax activation of the 
canonical NF-B by blocking IKK1-mediated 
RelA phosphorylation [48]. On the other hand, 
NIK-dependent induction of CYLD by RANKL has 
been reported to be critical in repressing osteo-
clastogenesis through downregulation of the 
TRAF6 signaling pathways including the canoni-
cal NF-B activation [49]. Furthermore, both 
signaling pathways activate some common NF-
B members and regulate some common target 
genes. In addition to the signaling interactions, 
the two pathways also cooperate functionally. 
Whereas one of the main functions of canonical 
NF-B activation is to regulate innate immunity, 
the major function of non-canonical NF-B acti-
vation is to control adaptive immunity. Another 
common property of the two NF-B pathways is 
that they both have been linked to various hu-
man pathogenesis, particularly cancer, although 
it still remains largely unknown whether and 
how the two signaling pathways cooperate dur-
ing tumorigenesis. 
 
Yin-Yang imbalance of NF-B activation in can-
cer 
 
The involvement of NF-B in oncogenesis has 
been long suggested since the discovery of c-
Rel and its viral derivative v-Rel [50, 51]. The v-
Rel oncoprotein induces acute lymphoid malig-

nancies in young chickens as well as T-cell lym-
phomas in transgenic mice [52]. Subsequent 
work has indicated that persistent activation of 
NF-B is associated with various human can-
cers. More recent studies involving genetically 
modified mice have clearly demonstrated the 
significance of the IKK/NF-B signaling in tu-
morigenesis. For example, conditional deletion 
of IKK2 or RelA in intestinal or lung epithelial 
cells results in significant, although not com-
plete, inhibition of tumor genesis and progres-
sion in mouse models of colitis-associated can-
cer and lung carcinomas, respectively [53, 54]. 
On the other hand, transgenic mice condition-
ally expressing c-Rel in mammary gland or a 
constitutive processing form of p100 in lympho-
cytes develop mammary tumors and lympho-
mas, respectively [55, 56]. However, the mo-
lecular mechanisms by which the NF-B signal-
ing pathways become constitutively activated 
during cancer pathogenesis still remain ob-
scure. Both NF-B pathways are tightly regu-
lated by both negative (yin) and positive (yang) 
regulators. Logically, disruption of the delicate 
balance between those yin-yang factors due to 
excess of yang and/or shortage of yin should 
result in persistent activation of NF-B. In some 
cancers, the constitutive activity of NF-B is 
clearly caused by genetic alterations in genes 
encoding NF-B members and their inhibitors I
Bs. In most cases, however, the deregulated NF-
B activity is attributed to overactivation of the 
positive regulators and/or inactivation of the 
negative regulators of the IKK/NF-B signaling. 
 
NF-B versus IB 
 
Activating mutations of NF-B members and 
their co-factors: As mentioned above, the link 
between NF-B and cancer was initially sug-
gested by the acute oncogenicity of the v-Rel 
oncoprotein, a close kinship to c-Rel. Soon 
thereafter, all five NF-B members have been 
found to be overactivated in human cancers 
(Table 1). One mechanism leading to aberrant 
activation of NF-B involves the genetic altera-
tions of the nf-b genes themselves, which in-
clude gene amplifications, mutations, deletions 
and chromosomal translocations, a major cause 
of oncogene activation.  
 
Consistent with their global functions, genetic 
alterations of either the rela gene or the nf-b1 
gene are only infrequently found in human tu-
mors, although overexpression and overactiva-
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tion of both RelA and p50 (due to activation of 
the NF-B signaling, see discussion below) are 
common not only in tumors but also in other 
human diseases. Currently, a definitive correla-
tion between the genetically altered rela and nf-
b1 genes and human tumorigenesis remains 
to be established.  
 
A much clearer link between nf-b genetic al-
terations and tumorigenesis has been observed 
in the studies of c-rel and nf-b2. Amplification 
of the c-rel gene has been often detected in 

various non-Hodgkin’s B-cell lymphomas such 
as diffuse lymphomas with a large cell compo-
nent (DLLC), follicular large cell lymphomas and 
mediastinal thymic B-cell lymphomas (Table 1). 
The c-rel gene also undergoes rearrangement in 
some DLLCs and in a few follicular lymphomas 
[51]. Interestingly, the resulting C-terminal dele-
tion of c-Rel because of the gene rearrange-
ment is reminiscent of that of the v-rel onco-
gene. Although the involved mechanism re-
mains to be investigated, overexpression of c-
Rel has often been reported in solid tumors as 

 

Table 1. Alteration of NF-κB and IκB in cancer 

Genes Locus Alteration Tumor type References 

rela 11q13 amplification 
  
  
  
  
rearrangement 
  
splicing variant 
amino acid substi-
tution 
overactivation 
  

various types of lymphomas, including diffuse large 
B-cell lymphoma, primary mediastinal B-cell lym-
phoma and follicular large cell lymphoma; solid 
tumors such as squamous head and neck, breast 
and stomach adenocarcinoma 
B-cell non-Hodgkin's lymphoma and multiple mye-
loma 
non-small cell lung carcinoma 
multiple myeloma 
various types of cancers 
  

[51,190-
192] 

relb 19q13.32 rearrangement 
  

adult T-cell leukemia cell lines 
  

[193] 

c-rel 2p13-p12 amplification 
  
rearrangement 
 
overexpression 
  
  

diffuse large B-cell lymphoma, primary mediastinal 
B-cell lymphoma, and follicular large cell lymphoma 
follicular lymphoma and diffuse large B-cell lym-
phoma 
follicular lymphoma, diffuse large cell lymphoma 
and non-small cell lung carcinoma 
  

[51,190,19
4,195] 

nf-kb1 4q24 rearrangement 
overexpression 
 
  

acute lymphoblastic leukemia 
various cancers including non-small cell lung carci-
noma, colon, prostate, breast and brain cancer 
  

[51,196] 

nf-kb2 10q24 rearrangement 
  
  
overexpression 
 
  

cutaneous T-cell lymphoma, B-cell non-Hodgkin's 
lymphoma, B-cell chronic lymphocytic leukemia and 
multiple myeloma 
cutaneous T-cell lymphoma, breast and colon carci-
noma 
  

[51,196-
199] 

bcl3 19q13.1-q13.2 rearrangement 
  
overexpression 
  
  

B-cell chronic lymphocytic leukemia and B-cell non-
Hodgkin's lymphoma 
B-cell chronic lymphocytic leukemia and B-cell non-
Hodgkin's lymphoma 
  

[51,200,20
1] 

ikbα 14q13 mutation 
  

Hodgkin's disease 
  

[51,85] 

ikbε 6p11 mutation Hodgkin's disease [88] 
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well, such as breast and lung cancers [57, 58]. 
Given the tumorigenesis in c-Rel transgenic 
mice and the oncogenic potentials of v-rel, there 
is no doubt that amplification and rearrange-
ment of the c-rel gene contribute to, if not 
cause, the lymphomagenesis. 
 
Unlike its closest relative nf-b1, the human nf-
b2 gene is frequently involved in chromosomal 
translocations or small deletions associated 
with development of various lymphomas and 
leukemias, such as cutaneous T-cell lymphoma 
(CTL), B-cell non-Hodgkin lymphoma (B-NHL), B-
cell chronic lymphocytic leukemia (B-CLL), multi-
ple myeloma (MM) and adult T-cell leukemia/
lymphoma (ATL) [51, 59]. In fact, the nf-b2 
gene is the first NF-B member that was found 
to undergo genetic alterations in human tumors. 
In all cases studied, such gene rearrangements 
always lead to deletions of the C-terminal proc-
essing-regulatory sequences together with part 
of ankyrin repeats [6]. Since these C-terminal 
sequences are essential for repressing p100 
nuclear translocation and constitutive process-
ing, these truncated p100 mutants undergo 
constitutive processing in association with the  
b site-containing promoters in the nucleus [20, 
60, 61]. The genetic mutation of the nf-b2 
gene results in the loss of IB-like function of 
p100 in two ways: genetic deletion and bio-
chemical degradation (protein processing) of C-
terminal ankyrin repeats. The genetic mutation 
also results in the gain of transcriptional func-
tion in two related mechanisms, because these 
p100 truncation proteins and their processed 
products p52 regulate transcription of common 
and distinct target genes [60]. Although these 
constitutive processing forms of p100 show 
strong oncogenicity both in vitro and in vivo [56, 
60, 62], the involved mechanisms remains un-
clear. Homozygous knockout of the nf-b2 gene 
leading to deficiency of both p100 and p52 pro-
teins in mice is not tumorigenic [63, 64], sug-
gesting that the simple loss of the IB-like func-
tion is not sufficient to account for the onco-
genicity of the truncated p100 proteins. Interest-
ingly, overexpression of p52 in the absence of 
p100 in p100 knockin mice causes marked 
gastric and lymphocyte hyperplasia and early 
postnatal death [65]. On the other hand, p52 
transgenic mice expressing wild type p100 only 
leads to development of thymoma at extremely 
low rate, although over 50% mice develop in-
flammatory autoimmune disease by 8-month 
age [66]. Furthermore, mice selectively express-

ing the human nf-b2 gene in mammary epithe-
lial cells by the β-lactoglobulin milk protein pro-
moter exhibit ductal thickening and hyperplasia 
only when the transgene expression and p100 
processing to p52 are repeatedly induced 
through multiple pregnancies [67]. Thus, it 
seems plausible that both loss of IB-like func-
tion of p100 and gain of transcriptional function 
of p52 contribute to the oncogenicity of C-
terminally truncated p100 proteins. This idea is 
also consistent with the fact that aberrant proc-
essing to p52 of p100 has been found in many 
types of tumors [6]. The transcriptional function 
of truncated p100 proteins themselves also 
plays a role in the oncogenesis, given the strong 
transforming abilities of the mutants.  
 
Another piece of evidence linking activating mu-
tations of the nf-b genes to tumorigenesis 
comes from chromosomal translocations of the 
Bcl-3 oncoprotein, a coactivator of p50 and p52 
(Figure 1). Bcl-3 was originally identified through 
cloning of the t(14;19) breakpoint junction, 
which occurs in a subset of B-cell chronic lym-
phocytic leukemias (B-CLLs) [68]. Of note, the 
rearranged bcl-3 gene remains intact but is 
transcriptionally activated, resulting in over-
production of the Bcl-3 protein and presumably 
elevated transactivation activity of the p50 or 
p52 complexes. Overproduction of Bcl-3 inde-
pendent of its gene translocation has also been 
observed in various tumors including breast 
cancer, colorectal cancer, hepatocellular carci-
noma, melanoma, nasopharyngeal carcinoma, 
and different lymphomas [69-74]. In fact, over-
expression of Bcl-3 is often associated with tu-
mor progression and poor prognosis. The contri-
bution of Bcl-3 overexpression to tumorigenesis 
is further suggested by the findings that expres-
sion of exogenous Bcl-3 leads to cell transfor-
mation in vitro and transgenic mice overexpress-
ing Bcl-3 in B cells develop lymphadenopathy 
and splenomegaly with excess number of B cells 
[75, 76]. 

 
Inactivating mutations of IB proteins: The first 
hint to a tumor suppressive function of the pro-
totypical NF-B inhibitor IBα came from the 
finding that inactivation of IBα by ibα an-
tisense transcript is sufficient to transform 
mouse fibroblasts [77]. Although later studies 
showed that ibα knockout fibroblasts are not 
transformed [78, 79], the tumor suppressive 
role of IBα cannot be overlooked, as defective 
activity of IBα is often associated with persis-
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tent NF-B activation in many human tumors. 
Importantly, overexpression of a super-
repressor form of IBα induces tumor cell apop-
tosis and inhibits tumorigenesis in numerous 
animal models [48, 80-82]. In most cases, the I
Bα deficiency in tumors is because of the en-
hanced protein degradation mediated by consti-
tutively activated IKK. However, a subset of 
Hodgkin’s lymphomas (HLs) are associated with 
genetic mutations or deletions of the ibα gene, 
which lead to generation of nonfunctional or 
unstable IBα mutants [93-87]. Similar to ibα, 
the ib gene also undergoes somatic muta-
tions in some Hodgkin’s lymphomas, generating 
nonfunctional IB mutants [88]. Interestingly, 
simultaneous inactivations of both the ibα 
gene and the ib gene are also detected in 
certain Hodgkin/Reed–Sternberg (HRS) cells. 
Given the non-redundant functions of IBα and  
IB in the control of a subset of NF-B target 
genes [78, 89], these findings suggest the im-
portance of coordination among NF-B mem-
bers and also their target genes in tumorigene-
sis.  
 
NF-B activators versus NF-B terminators 
 
Overactivation of NF-B activators: Although 
activating mutations of the NF-B proteins and 
inactivating mutations of the IB proteins have 
been defined in human tumors, they are mainly 
limited to lymphoid malignanices and only ac-
count for a small number of leukemias and lym-
phomas. On the other hand, constitutive degra-
dation of IBs due to the elevated activation of 
IKK, the primary NF-B-activating kinase, has 
been found not only in lymphoid malignancies 
but also in most solid tumors, suggesting one 
common mechanism for the NF-B oncogenic 
activation. As yet, however, no oncogenic muta-
tions of IKK have been detected. Instead, per-
sistent existence of NF-B stimuli, particularly 
proinflammatory cytokines and growth factors in 
the tumor microenvironment, has been sug-
gested to be involved in the oncogenic activa-
tion of IKK/NF-B (Table 2). Interestingly, many 
of these NF-B inducers are also target genes of 
NF-B activation, thereby providing an autocrine 
or paracrine mechanism for persistent NF-B 
activation.  
 
Another important mechanism contributing to 
oncogenic NF-B activation involves overexpres-
sion and activating mutations of IKK/NF-B up-
stream activators. One example is the genetic 

mutations of the CARMA1/MALT1/Bcl10 com-
plex, which is essential for antigen-induced IKK/
NF-B activation. Chromosome translation of 
the bcl10 gene [t(1:14)(p22:q32)] and the 
malt1 gene [t(11:18)(q21:q21)] are frequently 
found in B-cell lymphomas of mucosa-
associated lymphoid tissue (MALT), while mis-
sense mutations of the carma1 gene are de-
tected in about 10% activated B cell-like (ABC) 
diffuse large B cell lymphomas (ABC-DLBCLs) 
and in about 4% germinal center B cell-like 
(GCB)-DLBCLs [90-98]. Interestingly, the genetic 
mutations of these signaling proteins always 
result in their overexpression and/or enhanced 
abilities in IKK/NF-B activation, which is re-
quired for the survival of tumor cells [95-99].  
 
As stated above, stabilization and accumulation 
of the NIK kinase will lead to activation of both 
canonical and non-canonical NF-B pathways. It 
is thus not surprising that overexpression of the 
NIK protein has been linked to various tumors 
such as multiple myeloma, adult T-cell leuke-
mia, melanoma, pancreatic carcinoma, breast 
cancer and lung cancer. Several mechanisms 
may contribute to the oncogenic expression of 
NIK: inactivating mutations of NIK negative 
regulators TRAF2/3 and c-IAP1/2, activating 
mutations of NIK and its positive activators 
CD40 and LtβR, as well as epigenetic activa-
tions of NIK mRNA transcription [100-102]. In 
support of the role of NIK overexpression in tu-
morigenesis, a recent study show that expres-
sion of exogenous NIK is sufficient to transform 
rat fibroblasts and knockdown of NIK reverses 
the tumor phenotype of those malignant cells 
with high expression of NIK [103, 104]. It is im-
portant to reiterate that the oncogenic action of 
NIK depends on NF-B activation. Interestingly, 
NIK can also be stabilized and activated 
through K63-linked ubiquitination, which is me-
diated by an atypical E3 ubiquitin ligase termed 
zinc finger protein 91(ZFP91) [105]. Giving the 
findings that ZFP91 is overexpressed in 93% 
acute myelogenous leukemia (AML) and re-
quired for cancer survival [105, 106], ZFP91-
mediated stabilization may stand for another 
mechanism of NIK oncogenic activation.  
 
In addition to deregulation of those central NF-
B signaling molecules, activation of many well-
known oncoproteins also persistently activates 
IKK/NF-B (Table 2). For instance, oncogenic 
mutations of the ras gene, which occur in over 
30% of human tumors, induce IKK/NF-B indi-
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  Table 2. NF-B activating and adaptor molecules in cancer 

  NF-B pathway Cancer linkage References 
Growth Factors       
EGF canonical stimulates tumor cells proliferation; modulates tumor-associated angio-

genesis and bone metastasis; regulates resistance to chemotherapy 
[202-204] 

NGF canonical promotes survival and proliferation of breast cancer cells [205] 

TGFβ canonical causes adenoma and adenocarcinoma; induces epithelial to mesenchy-
mal transition in cancer 

[206-209] 

Kinases       

IRAK canonical its polymorphism correlates with prostate cancer risk; its expression corre-
lates with lung cancer development 

[210-212] 

RIP canonical mediates proliferation of human head and neck squamous cell carcinoma [213] 
MEKKs canonical essential for cancer cell survival [214, 215] 
Tpl2 canonical promotes cell migration and transformation [216-218] 
TBK1 canonical highly expressed in cancer; essential for KRAS-dependent cancer cells 

survival 
[219, 220] 

MLK3 canonical critical for cancer cell migration and invasion; highly expressed in breast 
cancer cells 

[221, 222] 

Raf canonical oncoprotein involved in various cancers; essential for the progression of 
metastatic melanoma and breast epithelial cancer 

[223, 224] 

TAK1 canonical required for progression and metastasis of breast cancer cells; required 
for R-RAS mediated transformation of mammary epithelial cells; sup-
presses procarcinogenic pathway in liver cancer 

[225-227] 

PKCs canonical promotes tumor progression and invasion [228-230] 
AKT canonical activated in multiple types of cancer; promotes cancer progression [231, 232] 
PKR canonical promotes cancer progression and metastasis [233, 234] 

PAK1 canonical overexpression and/or hyperactivation in cancer; promotes tumor pro-
gression and invasion 

[235, 236] 

CK2 canonical promotes tumorigenesis [237] 
NIK both canonical and 

noncanonical 
shows oncogenicity in vitro; elevated expression in various types of cancer [103, 104, 

238, 239] 
Adaptors       
Ras canonical promotes cancer proliferation, metastasis and invasion; commonly mu-

tated in various cancers 
[240, 241] 

FADD canonical elevated in and associated with aggressive lung cancer [242] 

MyD88 canonical crucial for tumour promotion in models of spontaneous and carcinogenin-
duced intestinal tumorigenesis; required for RAS-mediated carcinogenesis 

[243, 244] 

Bcl10 canonical aberrant expression found in primary cutaneous marginal zone B-cell 
lymphoma 

[245] 

MALT1 canonical contributes to tumorigenesis in diffuse large B-cell lymphoma of the acti-
vated B-cell subtype 

[246] 

CARMA1 canonical oncogenic mutation of CARMA1 is found in diffuse large B cell lymphoma; 
overexpressed in primary gastric B-cell lymphoma 

[247, 248] 

Viral oncoproteins       

HTLV-1 Tax both canonical and 
noncanonical 

promotes cell transformation and tumor progress [249] 

EBV LMP-1 both canonical and 
noncanonical 

promotes cell transformation, tumor progress and migration in EBV-
associated cancer 

[250, 251] 

Herpesvirus Tio both canonical and 
noncanonical 

essential for transformation of primary human T cells [252-254] 

KSHV K13 both canonical and 
noncanonical 

promotes cell transformation and tumor progress [118, 255] 

EGF: epidermal growth factor; NGF: nerve growth factor; TGFβ: transforming growth factor beta; ROS: reactive oxygen species; HTLV-1: 
human T-cell lymphotropic virus type 1; EBV: Epstein-Bar virus; LMP-1: latent membrane protein 1; Tio: two in one; KSHV: Kaposi's 
sarcoma-associated herpesvirus; K13: FADD-like interleukin-1 beta-converting enzyme (FLICE) inhibitory protein (vFLIP) 
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rectly through the AKT and Raf kinases, another 
two famous oncogenes that can induce tumors 
when expressed in transgenic mice [107, 108]. 
It seems that activation of NF-B is one crucial 
mechanism of Ras-mediated tumorigenesis, 
because inhibition of NF-B activation by trans-
genically expressing the super-repressor form of 
IBα or genetically silencing RelA significantly 
blocks Ras-mediated tumorigenesis and tumor 
progression [54, 80].  
 
Similar to cellular oncogenes, many viral onco-
proteins also target NF-B for their oncogenic-
ities [6, 59]. The first and best example is the 
Tax oncoprotein encoded by the human T-cell 
leukemia virus type I (HTLV-I), an etiological 
agent of an acute T-cell malignancy termed 
adult T-cell leukemia/lymphoma (ATL) [109]. By 
directly interacting with NEMO, Tax activates 
IKK to phosphorylate IBα, resulting in IBα 
degradation and canonical NF-B activation 
[110-114]. In parallel, Tax specifically recruits 
IKK1 into the p100 complex to activate the non-
canonical NF-B pathway independent of NIK 
[115, 116]. The significance of NF-B activation 
in Tax-mediated tumorigenesis has been well 
defined. Whereas HTLV-I or Tax mutants selec-
tively defective in NF-B activation lose the 
transforming ability, blockage of Tax activation 
by overexpression of p100 or the super-
repressor form of IBα prevents HTLV-I/Tax-
mediated transformation [109]. However, the 
most impressive in vivo data supporting a role 
of NF-B in Tax-mediated pathogenesis is from 
studies on Tax transgenic mice in the presence 
or absence of endogenous p100/p52 [48]. In 
this model, genetic knockout of the nf-b2 gene, 
leading to no expression of both p100 and p52 
proteins, significantly delays Tax-mediated tu-
morigenesis in mice. Later on, NF-B has been 
found to be targeted for human tumorigenesis 
by many tumor viruses including Kaposi sar-
coma-associated herpesvirus (KSHV), and Ep-
stein-Barr virus (EBV) [6, 59]. KSHV can induce 
several different clinical variants of Kaposi’s 
sarcoma, primary effusion lymphoma (PEL) and 
multicentric Castleman’s disease (MCD) 
through expression of a viral version of the 
cFLIP protein named vFLIP, which resembles 
Tax in the NF-B activation [117, 118]. On the 
other hand, EBV encodes a potent oncoprotein 
named latent membrane protein 1 (LMP1), 
which acts like a constitutively activated mem-
ber of the TNFR/CD40 superfamily for the acti-
vation of both canonical and non-canonical NF-

B pathways [119]. 
 
Inactivation of NF-B terminators: NF-B is con-
trolled by a delicate counterbalance between its 
activators and terminators, guaranteeing an 
inducible but transient activation of NF-B. 
Thus, disruption of this fine balance by inactiva-
tion of NF-B terminators represents another 
important mechanism of oncogenic activation of 
NF-B. In fact, rapidly increasing evidence indi-
cates that many NF-B terminators actually 
function as tumor suppressors (Table 3).  
 
Consistent with its role in NF-B termination, 
genetic knockout of the deubiquitinase A20 
leads to severe spontaneous multiorgan inflam-
mation and cachexia in mice and importantly 
inactivating mutations of A20 have been de-
tected in several human autoimmune disorders 
including Crohn’s disease, Coeliac disease, pso-
riasis, rheumatoid arthritis, systemic lupus ery-
thematosus and diabetes [120, 121]. Although 
the premature death of A20 knockout mice pre-
vented the detection of a potential tumorigenic 
effect, the tumor suppressor role of A20 has 
been well suggested recently. The first clue 
came from the identification of the a20 gene as 
a target gene of 6q23.3-q24.1 deletion in ocu-
lar adnexal marginal zone B cell lymphoma 
(MZBCL) [122]. Soon thereafter, A20 was found 
to be frequently inactivated by deletion, pro-
moter methylation or somatic mutations in a 
variety of lymphomas, including Hodgkin’s lym-
phoma (HL), mantle cell lymphoma (MCL), dif-
fuse large B-cell lymphoma (DLBCL), mucosa-
associated lymphoid tissue (MALT) lymphoma, 
follicular lymphoma (FL), Burkitt’s lymphoma, 
natural killer cell lymphoma and adult T cell 
leukaemia/lymphoma (ATL) [34, 123-126]. In-
terestingly, the inactivating mutations often in-
volve both alleles of the gene, suggesting that a 
complete inactivation of A20 favors cell survival 
and tumorigenesis. Except the genetic and epi-
genetic inactivations, A20 is also negatively 
regulated at the protein level by the paracas-
pase MALT1, which cleaves and inactivates A20 
to enhance NF-B activation [127]. As we al-
ready discussed, MALT1 is a proto-oncoprotein 
that is constitutively activated in certain lympho-
mas. Notably, the oncogenicity of MALT1 is 
through targeting NF-B. In direct support of the 
tumor suppressor role of A20, reconstitution of 
A20 decreases NF-B activation and induces 
growth arrest and apoptosis of A20-deficient 
lymphoma cell lines [124, 128, 129].  
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CYLD, another deubiquitinase (DUB) that plays a 
key role in NF-B termination, was originally 
identified as a tumor suppressor that is mu-
tated in familial cylindromatosis, an autosomal-
dominant predisposition to multiple tumors of 
skin appendages including multiple familial 

trichoepithelioma and Brooke-Spiegler syn-
dromes [130]. The genetic mutations of the cyld 
gene involve loss of heterozygosity (LOH) and 
mutations (Figure 4). Interestingly, in all cases 
the allele lost is the wild-type allele inherited 
from the parent not carrying mutations and all 

 

Table 3. NF-B signaling repressors in cancer 

Gene Name Effects on NF-B Module Cancer linkage References 

CYLD targets multiple NF-B signaling molecules tumor suppressor; mutated, deleted or down-
regulated in various cancers 

[100, 130, 
131, 134, 136-
138] 

A20 targets multiple NF-B signaling molecules tumor suppressor; mutated, deleted or down-
regulated in various lymphomas 

[124-128, 
256] 

PDLIM2 promotes nuclear RelA degradation potential tumor suppressor; epigenetically 
downregulated in various types of cancer [144-147] 

WWOX inhibits HTLV-1 Tax induced RelA phosphoryla-
tion and NF-B activation 

inhibits tumor growth; deleted or downregu-
lated in various types of cancer [257-263] 

CHFR negatively regulates RelA transcriptional activ-
ity 

potential tumor suppressor; silenced in vari-
ous cancer [264] 

LZAP impairs RelA phosphorylation and transcrip-
tion activity 

inhibits cellular proliferation and clonogenic 
growth; downregulated in human head and 
neck squamous cell carcinomas 

[265] 

NLBP inhibits RelA transcription activity inhibits cell invasion; downregulated in inva-
sive cancer cells [266] 

PIAS1 blocks the DNA binding activity of RelA tumor suppression function; downregulated in 
multiple myeloma and colon cancer [267-269] 

LDOC1 inhibits TNF-α and PMA induced NF-B activa-
tion 

sensitizes pancreatic cancer cells to apop-
tosis; downregulated in pancreatic cancer [270] 

OPTN inhibits NF-B activation; competes with 
NEMO for ubiquitinated RIP binding 

its mutation is linked with some forms of 
glaucoma [271, 272] 

MENIN interacts with RelA, p50 and p52; represses 
RelA transcriptional activity 

tumor suppressor; is mutated or deleted in 
parathyroid tumors [273] 

ARF represses RelA transcriptional activity by ATR- 
and Chk1-dependent phosphorylation 

central component of the cellular defense 
against oncogene activation [274] 

RKIP interacts with NIK, TAK1 and IKKs; inhibits 
TNF-α induced IKK activation inhibits prostate cancer metastasis [275-277] 

KEAP1 induces IKK2 degradation and inhibits IKK2 
phosphorylation 

functions as tumor suppressor, and mutated 
in multiple types of cancer [278-280] 

PP2A dephosphorylates MEKK3; inhibits LPS in-
duced IKK2 and NF-B activation 

involved in growth suppression, enhances 
apoptosis, restores differentiation, impairs 
clonogenic potential 

[281, 282] 

Abbreviation: CHFR: checkpoint with forkhead and ring finger domains; LZAP: LXXLL/leucine zipper-containing alternative reading 
frame (ARF)-binding protein; NLBP: novel LZAP-binding protein; PIAS1: protein inhibitor of activated STAT, 1; LDOC1: leucine zipper, 
down-regulated in cancer 1; OPTN: optineurin; MENIN: multiple endocrine neoplasia I; ARF: cyclin-dependent kinase inhibitor 2A 
(p16); ATR: ataxia telangiectasia mutated (ATM) and Rad3-related checkpoint kinases; Chk1: checkpoint kinase 1; RKIP: Raf-
kinase inhibitor protein; KEAP1: kelch-like ECH-associated protein 1; PP2A: serine/threonine protein phosphotase 2A. 
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mutations predict absence, truncation or muta-
tion of the encoded protein, leading to loss of 
the DUB activity of CYLD [131-134]. These find-
ings suggest the importance of the DUB activity 
in the tumor suppressor function of CYLD. How-
ever, the direct evidence came from a more 
recent study showing a strong tumorigenicity of 
a CYLD point mutant defective in the deubiquiti-
nating function that mimics the identified muta-
tions of cyld in human tumors [135]. In addition 
to skin cancers, inactivating mutation or down-
regulation of CYLD has been detected in several 
human cancers including colon cancer, hepato-
cellular carcinoma (HCC), T-cell acute lym-
phoblastic leukemia (T-ALL), multiple myeloma 
(MM) and melanoma, and is inversely correlated 
with NF-B activation, tumor progression and 
patient’s survival [100, 136-138]. Thus, inacti-
vation of CYLD DUB catalytic activity by any 
mechanism contributes to tumorigenesis by 
promoting unchecked NF-B activity and en-
hanced cell survival. Consistent with the tumor 
suppressor role of CYLD, cyld-deficient mice 
exhibit increased susceptibility to cilitis-
associated tumorigenesis and chemically in-
duced skin tumors [8, 139]. Mechanistic stud-
ies further indicate that CYLD deficiency leads 
to sustained NF-B activity by increasing K63-
linked ubiquitination and/or nuclear transloca-
tion of NF-B activators/co-activator such as 
TRAF2, NEMO and Bcl-3. Interestingly, recent 
studies show that CYLD is negatively regulated 
by miR-181b, a microRNA (miRNA) that is 
upregulated during cellular transformation and 
in acute lymphocytic leukemia (ALL) [140, 141]. 
More importantly, expression of miR-181b inhib-
its CYLD, leading to increased NF-B activity 
required to maintain cell transformation. These 
studies provide a different mechanism for the 

oncogenic deregulation of CYLD and NF-B. 
 
Like A20 and CYLD, PDLIM2 is also required for 
the termination of NF-B, although the involved 
mechanisms are totally different [46] (Figure 5). 
Thus, it should be no surprise if PDLIM2 is 
linked to tumor suppression. Indeed, recent 
studies indicate that expression of PDLIM2 is 
significantly downregulated in several NF-B-
associated tumors, including adult T-cell leuke-
mia/lymphoma (ATL), breast cancer and colo-
rectal cancer [142-147]. More importantly, ex-
pression of exogenous PDLIM2 or reinduction of 
endogenous PDLIM2 inhibits constitutive NF-B 
activation and suppresses the in vitro anchor-
age-independent growth and in vivo tumor for-
mation of these malignant cells [144, 146, 
147]. In contrast, PDLIM2 mutants defective in 
NF-B repression lose the tumor suppressive 
function. It is noteworthy that in the case of ATL, 

Figure 4. Domain structure of CYLD. CAP: cytoskeletal-associated protein-glycine-conserved repeats; PR: proline-rich 
region; USP: ubiquitin carboxy-terminal hydrolases domain. 

Figure 5. Domain structure of PDLIM2. PDZ: postsynaptic 
density 65-discs large-zonula occludens 1; H: putative α-
helix motif; LIM: abnormal cell lineage 11-islet 1-
mechanosensory abnormal 3. 
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which is mediated by the HTLV-I retrovirus, the 
tumor suppression role of PDLIM2 is much 
more complicated, since PDLIM2 also promotes 
ubiquitination and degradation of the viral onco-
protein Tax, a potent NF-B activator that is 
largely responsible for HTLV-I-mediated patho-
genesis [144]. In fact, Tax inhibition plays a pre-
dominant role in PDLIM2-mediated ATL sup-
pression [47, 109]. One mechanism contribut-
ing to the oncogenic PDLIM2 downregulation 
involves the methylation of the pdlim2 promoter 
[145-147]. Although not reported yet, the ge-
netic alterations of the pdlim2 gene could also 
be involved in the PDLIM2 downregulation in 
tumors, as the pdlim2 gene is located at chro-
mosome 8p21.1, a region that frequently under-
goes allelic loss in a number of tumor types in-
cluding breast, colon, live, lung, stomach, pros-
tate and ovarian cancer [143, 148-157]. Fur-
thermore, the activity of PDLIM2 is regulated by 
protein phosphorylation [158, 159], suggesting 
another potential mechanism for PDLIM2 inacti-
vation in tumor. 
 
In addition to those ‘traditional’ repressors, NF-
B is negatively regulated by many miRNAs, 
which induce mRNA degradation or inhibit 

mRNA translation of NF-B or its key signaling 
components (Table 4). Downregulation or dele-
tion of these miRNAs has been detected in a 
broad range of human tumors including leuke-
mias, lymphomas and solid tumors. For in-
stance, miR-125b, which targets the bcl-3 onco-
gene, is downregulated in multiple types of tu-
mor, including hepatocellular carcinoma (HCC), 
breast cancer, oral cancer, bladder cancer, 
anaplastic thyroid carcinomas, metastatic cuta-
neous malignant melanoma, head and neck 
squamous cell carcinomas (HNSCC) and ovarian 
cancer [160-166]. In fact, the downregulation of 
miR-125b is often associated with tumor pro-
gression and patient’s survival. In support of the 
tumor suppressor role of miR-125b, expression 
of exogenous miR-125b blocks the tumorigenic-
ity of these malignant cells. Interestingly, the 
tumor suppression effect, at least the anti-
growth activity of miR-125b can be antagonized 
by expression of Bcl-3 [166]. It should be 
pointed out that some NF-B repressor miRNAs 
including miR-125b are already known target 
genes of NF-B [167-171], further supporting 
the idea that disruption of feedback inhibition of 
NF-B is a common and important mechanism 
of NF-B pathogenic activation and human tu-

 

Table 4. NF-B regulating microRNAs in cancer 

miRNA Targets in NF-B 
Signaling Alteration in Cancer Cancer linkage Other Targets 

Linked to Cancer References 

  NF-B members         

miR-9 NF-B1 epigenetically down-
regulated 

gastric cancer and       clear 
cell renal cell carcinoma E-cadherin [283-286] 

miR-125b Bcl-3 downregulated 
human liver cancer, mela-
noma, glioma, ovarian cancer, 
bladder cancer and breast 
cancer 

LIN28B2; MUC1; 
E2F3; Endothelin-1; 
BAK1; BMF; CYP24; 
p53 

[165, 166, 
170, 287-
292] 

  NF-B activators         

miR-15a, 
miR-16 IKK1 downregulated; 

deleted 

chronic lymphocytic leukemia, 
multiple myeloma, lung 
squamous cell carcinoma and 
ovarian cancer 

BMI-1 [293-297] 

miR-223 IKK1 downregulated chronic lymphocytic leukemia 
and acute myeloid leukemia E2F1 [296, 298, 

299] 
miR-218 IKK2 downregulated glioma, gastric cancer and lung 

squamous cell carcinoma ROBO1; LASP1 [300-304] 

miR-199a IKK2 downregulated breast cancer, melanoma and 
bladder cancer MET; KRT7 [163, 305-

307] 
miR-146a IRAK1 

TRAF6 downregulated breast cancer and pancreatic 
cancer - [308-310] 

  NF-B inhibitors         

miR-181b-1 CYLD upregulated acute lymphocytic leukemia - [140, 141] 

miR-301a NRF upregulated pancreatic tumor - [311] 
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morigenesis. 
 

Oncogenic interplay between NF-B pathways  
 
Both the canonical and non-canonical NF-B 
pathways have been linked to tumorigenesis 
and in many cancers they are simultaneously 
deregulated. However, until recently there has 

been little progress on whether 
and how the two signaling path-
ways cooperate during tumorigene-
sis. Using the Tax viral oncoprotein 
as a model, a recent study pro-
vides the first example of how the 
deregulated canonical and non-
canonical NF-B pathways collabo-
rate in tumorigenesis [48]. While 
Tax activation of the canonical NF-
B pathway induces p100 expres-
sion, Tax-induced p100 processing 
to generate p52 (activation of the 
non-canonical NF-B pathway) 
leads to transcriptional downregu-
lation of the WW domain-
containing oxidoreductase (wwox), 
a tumor suppressor gene that has 
been linked to various tumors in-
cluding breast cancer, ovarian tu-
mor, lung cancer, gastric carci-
noma, pancreatic adenocarci-
noma, hematopoietic neoplasia 
and squamous cell carcinoma 
[172] (Figure 6). Notably, WWOX 
specifically inhibits Tax-induced 
activation of the canonical, but not 
the non-canonical NF-B pathway. 
Mechanistic studies indicate that 
WWOX blocks Tax-induced IKK1 
recruitment to RelA and subse-
quent RelA phosphorylation at ser-
ine 536, which is required for RelA 
transcriptional activity. In contrast, 
WWOX Y33R, a mutant unable to 
block the IKK1 recruitment and 
RelA phosphorylation, loses the 
ability to inhibit Tax-mediated tu-
morigenesis. It can be speculated 
that many targets genes other 
than nf-b2 and wwox may also 
contribute to the oncogenic coordi-
nation between the two pathways. 
Since both NF-B activation and 
WWOX inactivation are associated 
with many different cancers in ad-
dition to Tax-associated tumori-

genesis, it is of interest to investigate whether 
and how they cross-talk in general tumorigene-
sis. 

 
Role of NF-B in tumorigenesis 
 
As a transcription factor, NF-B is involved in all 
stages of tumorigenesis from initiation all the 

Figure 6. Domain structure of WWOX. WW: WW domain; SDR: short-chain 
dehydrogenase/reductase domain. 

Figure 7. Current model depicting the NF-B-dependent interaction be-
tween inflammatory cells and malignant cells in tumorigenesis.  

 



NF-B and cancer  

 
 
207                                                                                                            Am J Cancer Res 2011;1(2):192-221 

way to metastasis by regulation of expression of 
various tumor-related genes (Figure 7). Like 
tumor itself, however, the role of NF-B in tu-
morigenesis is complex and dynamic. During 
tumor initiation, NF-B within pre-malignant 
cells and possibly also their neighbors is acti-
vated to induce expression of chemokines and 
cytokines, leading to the recruitment and activa-
tion of immune cells, particularly myeloid cells. 
Activated immune cells in turn produce a large 
amount of pro-inflammatory cytokines/
chemokines and growth factors, such as IL-1, IL-
6, TNF, and EGF, which is also through NF-B 
activation within the cells [1]. These secreted 
cytokines, growth factors and other bioactive 
molecules act on both malignant and inflamma-
tory cells in an autocrine and/or paracrine man-
ner, generating a complex inflammatory and 
protumorigenic microenvironment. The NF-B-
mediated inflammation contributes to DNA 
damage and induction of oncogenic mutations 
(activating mutations of oncogenes and/or inac-
tivating mutations of tumor suppressor genes) 
in pre-malignant cells through both NF-B de-
pendent [induction of the ‘mutagenic’ enzyme 
activation-induced cytidine deaminase (AID) and 
suppression of DNA damage gatekeepers such 
as p53] and independent [production of reac-
tive oxygen and nitrogen species (ROS and 
RNS)] mechanisms [173-176], facilitating tumor 
initiation and progression. Furthermore, NF-B, 
which is activated by NF-B-induced cytokines 
and growth factors as well as inflammation-
induced ROS/RNS and DNA damage, regulate 
the transcription of genes involved in cell sur-
vival, proliferation, angiogenesis, invasion and 
metastasis, promoting tumor growth and pro-
gression. Thus, NF-B participates in tumori-
genesis in both extrinsic (inflammatory cells) 
and intrinsic (tumor cells) ways. 
 
Conclusions and perspectives 
 
There is no doubt that NF-B plays a critical role 
in tumorigenesis. However, many key issues 
have not been addressed yet. First, the signifi-
cance of the NF-B members themselves in tu-
morigenesis has been rarely studied. Most evi-
dences linking NF-B to tumorigenesis are from 
studies on the knockout of NF-B regulators. As 
we already know, almost all known NF-B regu-
lators, such as IKK, A20, CYLD, and PDLIM2, 
also regulate signaling pathways other than NF-
B, and many of them have already been linked 
to tumorigenesis [34, 177-180]. Thus, the func-

tions of these regulators in tumorigenesis may 
not be attributed to NF-B. Second, the mecha-
nisms by which NF-B interacts with other sig-
naling pathways in tumorigenesis remain largely 
unknown. In fact, how the two NF-B pathways 
cooperate in tumorigenesis still remains un-
clear. In this regard, overexpression of the super
-repressor forms of IBα or knockout of rela or 
nf-b2 or even IKK components fails to com-
pletely block, although significantly reduces, 
tumor genesis and progression in different tu-
mor models. On the other hand, NF-B is known 
to crosstalk with many other tumor-related sig-
naling pathways such as autophagy, STAT3 and 
p53 [1, 2, 177, 181-184]. Third, most studies 
are focused on the net effect of NF-B activation 
on tumor tumorigenesis. As an old Chinese say-
ing goes, everything has both yin and yang as-
pects, and so does NF-B. Although NF-B acti-
vation contributes to tumorigenesis in general, it 
may also play a negative role in certain stages 
of tumorigenesis and even exert a net negative 
effect on tumorigenesis in certain situations. 
One mechanism of NF-B-mediated tumor sup-
pression involves its original function in immu-
nity and immunosurveillance. Currently, it is still 
unknown how the anti-tumor activity is sup-
pressed and transformed to be protumorigenic. 
Paradoxically, the survival function of NF-B 
may also contribute to tumor suppression by 
preventing tissue damage and oxidant accumu-
lation as well as the activation of other signaling 
pathways such as c-Jun N-terminal kinase (JNK). 
Indeed, a tumor suppressive function of NF-B 
has been suggested in several skin and liver 
cancer models [185-189]. Furthermore, very 
few of downstream targets of NF-B that play a 
critical role in tumorigenesis have been clearly 
and comprehensively identified. Future genetic 
studies, particularly those involved in the induc-
ible and conditional transgenic mice, and com-
putational modeling analysis will help under-
stand the complex and dynamic role of NF-B in 
tumorigenesis and help design personalized 
treatments for cancer patients.  
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