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Abstract: Alzheimer’s disease (AD), the most common form of dementia, is characterized by progressive 
neurodegeneration and loss of cognitive and memory functions. Although the exact causes of AD are still unclear, 
evidence suggests that atherosclerosis, redox stress, inflammation, neurotransmitter dysregulation, and impaired 
brain energy metabolism may all be associated with AD pathogenesis. Herein, we explore a possible role for L-
arginine (L-arg) in AD, taking into consideration known functions for L-arg in atherosclerosis, redox stress and the 
inflammatory process, regulation of synaptic plasticity and neurogenesis, and modulation of glucose metabolism 
and insulin activity. L-arg, a precursor of nitric oxide and polyamine, exhibits multiple functions in human health 
and may play a prominent role in age-related degenerative diseases such as AD. 
Key Words: L-arginine; nitric oxide synthase; nitric oxide; arginase; polyamines; neurogenesis, stem cells, 
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Introduction 
 
Alzheimer’s disease (AD) is an age-related 
neurodegenerative disease with an insidious 
onset, characterized by memory impairment 
and cognitive disturbances that become 
increasingly more severe with disease 
progression. It is a debilitating and 
dehumanizing illness, inflicting immense 
suffering on its victims and their families, and 
on society. Approximately 4.5 million 
Americans are currently affected by AD [1]. 
However, if there are no effective strategies to 
treat or prevent AD [2], it is projected to affect 
up to 9 million people by 2040 as the elderly 
population grows. 
 
The neuropathology of AD is characterized by 
senile plaques, neurofibrillary tangles (NFT), 
and, neuronal loss [3-6]. Although the exact 
causes of AD are still unknown, studies 
suggest that the genesis of sporadic AD is 
associated with atherosclerosis, redox stress, 
inflammatory processes, and/or abnormal 
neurotransmission and brain glucose 
metabolism. Current treatment strategies are 

limited to altering cholinergic and NMDA 
neurotransmission and show only modest 
efficacy. No treatments are currently available 
to target the underlying mechanism of the 
disease. 
 
L-arginine (L-arg) is a semi-essential, 
proteinogenic amino acid [7] that was 
discovered in mammalian protein by Hedin in 
1895 [8], and since 1886 it has been 
recognized as a naturally occurring molecule 
[9]. It is involved in two major metabolic 
pathways as showed in Figure 1. One of them 
is the nitric oxide synthase (NOS) pathway 
where L-arg is converted to NO and L-citruline 
[10, 11]. The other pathway is the arginase 
pathway that will be discussed further below. 
 
There are three isoforms of NOS that have 
been discovered so far. They are named 
according to the cell types from which they 
were first isolated: neuronal NOS (nNOS), 
inducible NOS (iNOS) and endothelial NOS 
(eNOS) [10, 12]. These NOSs have different 
functions [10-13]. The expression of nNOS and 
eNOS are constitutive and regulated by
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Figure 1 The major two metabolic pathways of L-arginine.  ODC, ornithine decarboxylase; D-SAM, decarboxylase 
SAM; MAT, methylthioadenosine.  

 
 
calcium/calmodulin. Neuronal NO (nNO) and 
endothelial NO (eNO) are produced at low 
rates by nNOS and eNOS, respectively [14]. 
The relationship of L-arg to the isoforms of 
NOS is intricate. Noticeably, the intracellular L-
arg concentration (about 1-2 mM), taken up 
and maintained by endothelial cells through 
the transport system, is so much higher than 
the Km value of purified eNOS (≈ 2.9 μmol/L) 
that eNO should not be increased further by 
addition of extracellular L-arg. However, the “L-
arginine paradox” that synthesis of eNO can 
be enhanced as a response in a concentration-
dependent manner to the increase of 
extracellular L-arg concentration has been 
observed [13, 15]. This reaction plays a crucial 
role in the vascular homeostasis associated 
with L-arg [16]. In terms of iNOS, its expression 
is induced in inflammatory cell types by 
cytokine stimulation, and its activity is 
independent of calcium, and production rate 
of inducible NO (iNO) is high [17]. 
 
L-arg and NO affect the cardiovascular system 
as endogenous antiatherogenic molecules that 
protect the endothelium, modulate 
vasodilatation, and interact with the vascular 
wall and circulating blood cells [18-22]. 
Together, they can function in the brain as 
noradrenergic, noncholinergic neuro-
transmitters in learning and memory, synaptic 
plasticity, and neuroprotection [23, 24]. They 
can influence the immune system too by 

playing a key role in regulating inflammatory 
processes [25] and redox stress. They can also 
modulate the metabolism of glucose and 
insulin activity as natural constituents from 
diets [26] and regulate neurogenesis. Since L-
arg and its product, NO, exert such a range of 
critical roles in regulating physiological 
functions of brain and other organs, we 
hypothesize that L-arg can possibly affect the 
AD pathogenesis. The other metabolic pathway 
that involves L-arg is the arginase pathway 
where L-arg is broken down into urea and L-
ornithine and genesis of polyamines including 
putrescine, spermidine, and spermine [27, 28]. 
Two isoforms of arginase (AI and AII) [29] were 
discovered in 1973 [30, 31], identified 
positively in 1983 [32], and confirmed 
subsequently in 1989 [33]. They are encoded 
by different genes, distributed in different 
tissues, cell types and intracellular locations, 
and, have different biochemical properties [28, 
34, 35]. AI, called liver-type arginase, was first 
found as a component of the urea cycle. It is 
expressed at high level in livers as a cytosolic 
enzyme and at a low level in central nerve 
system (CNS). It is also induced to express at a 
high level when exposed to multiple cytokines 
and factors in various tissues and cells [28, 
34-36]. AII is called kidney-type arginase and 
is expressed at a low level in the 
mitochondrion, and it too can be induced by 
cytokines. Like AI, it is also expressed in the 
germinal zones, hippocampus, spinal, and 
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other motor neurons of mice [37, 38]. Loss of 
AI leads to potentially fatal hyperammonemia 
and hyperargininemia, states characterized by 
a series of stereotypic clinical disorders such 
as growth retardation, increased mental 
impairment, and spasticity [39-40]. However, 
these symptoms can be partially attenuated 
through enhancing the expression and activity 
of AII to compensate for the deficiency of AI 
[41-44]. Based on the distribution and 
expression of these isoforms, we postulate 
that AI and AII might participate in many 
physiological processes, including 
inflammation, neurogenesis and apoptosis. 
 
Polyamines are the major products of L-arg 
metabolized by arginase. Ornithine acts as a 
starting substrate to be converted into 
putrescine, spermidine and spermine. There 
are three main polyamines that can be 
identified with their different lengths of carbon 
chains [45, 46]. They act as variably functional 
molecules that are essential for cell 
regeneration, tissue growth, and development 
[47-51]. 
 
In this review, we explore a possible role for L-
arg in AD, taking into consideration the known 
functions of L-arg in atherosclerosis, oxidative 
stress and the inflammatory process, 
regulation of synaptic plasticity and 
neurogenesis, and modulation of glucose 
metabolism and insulin activity. 
 
The Possible Effects of L-Arg on AD via Anti-
atherosclerosis 
 
The Relationship between AD and 
Atherosclerosis 
 
Increasing evidence suggests a strong 
relationship between AD and atherosclerosis. 
Indeed, some investigators have proposed that 
AD is a primary neurovascular disease [52]. 
 
First, AD and atherosclerosis have many risk 
factors in common [53-55]. Numerous studies 
have shown that established risk factors for 
vascular disease, including diabetes mellitus, 
smoking, and atherosclerosis, also predispose 
individuals to AD [56-61]. 
 
Second, autopsy series have provided 
evidence of links between atherosclerosis and 
AD [62, 63]. Seward et al found that the 
atherosclerotic lesions and the degree of 
stenosis of Circle of Willis are significantly 

more severe in AD brains than in age-matched 
controls. Additionally, the index of stenosis 
apparently relates to the total plaque score, 
neuritic plaque score, NFT score, Braak stage 
score, and white matter rarefaction score, all 
of which are measures for AD 
neuropathological lesion [62]. Beach et al also 
reported that increase in the atherosclerotic 
grade increased the odds ratios for the 
diagnoses of AD and vascular dementia (VaD) 
[63]. Furthermore, studies suggest that the 
possible mechanism through which 
atherosclerosis influences the development of 
AD is hypoperfusion in the brain [62, 63]. 
Additionally, based on previous points, Torre et 
al and other researchers found it possible to 
clinically diagnose AD earlier through 
neuroimaging techniques such as single-
photon emission computed tomography 
(SPECT) because the presence of 
microvascular abnormalities precedes 
cognitive impairment and neurodegeneration 
[52, 64, 65, 66]. Hirao et al reported that 
subjects with reduced regional cerebral blood 
flow in the bilateral temporo-parietal areas and 
the precunei will finally become AD cases [67]. 
 
Third, some studies have shown that 
treatment of atherosclerosis may also benefit 
AD. Sparks et al suggested that administration 
of atorvastatin to patients with AD may 
attenuate cognitive decline and generally slow 
down the progression of mild-to-moderate AD 
[68]. That study agrees with others in which 
statins were used as the treatment for AD [69-
71]. Petanceska et al even found that 
administration of atorvastatin can significantly 
reduce Aβ amyloid deposition in an animal 
model [72]. 
 
In summary, increasing evidence suggests that 
atherosclerosis is associated with the AD 
progression. Interdicting atherosclerosis might 
therefore delay the onset or slow the 
progression of AD. 
 
L-Arg Affects AD via Anti-atherosclerosis 
 
L-arg exerts its function in the cardiovascular 
system mainly through the increase of NO 
production [73-75]. Lack of L-arg in vascular 
endothelium may result in the deficiency of NO 
[16], a key feature in the development of 
atherosclerosis (18). Thus, abnormalities in L-
arg availability and metabolism are proposed 
in the pathogenesis of atherosclerosis, 
especially in hypercholesterolemia [76]. 
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Creager et al discovered that forearm 
vasodilatation is markedly improved through 
administration of L-arg in an endothelium-
dependent manner [77]. Similar results were 
seen in other studies [78, 79]. In fact, the 
effect is more profound than that observed 
after lipid-lowering therapy [80-82]. Other 
studies obtained parallel results in patients 
with hypercholesterolemia [78, 83]. From 
previous studies, hypercholesterolemia as a 
risk factor of atherosclerosis is well known to 
cause early endothelial dysfunction, abnormal 
interactions between vascular cells, platelets 
and monocytes [84, 85], and disability of L-arg 
[76]. However, extra dietary supplements of L-
arg may decrease platelet aggregation [82, 86] 
and mononuclear cell adhesiveness in 
hypercholesterolemic patients [87, 88]. 
Furthermore, thiobarbituric acid reactive 
substances (a marker of lipid peroxidation) are 
decreased after L-arg infusion in 
hypercholesterolemic subjects [89]. Recent 
studies showed that chronic oral 
supplementation with L-arg may block the 
progression of atherosclerotic plaques via 
restoration of NOS substrate availability and 
decrease of vascular stress [90, 91]. 
 
Hypertension, an established risk factor for 
atherosclerosis is strongly associated with AD 
[92, 93]. Therefore, through its effect on 
hypertension, L-arg may affect AD. Siani et al 
reported that oral administration of L-arg as an 
enriched diet in healthy volunteers caused a 
reduction in arterial blood pressure [94]. 
Rector et al showed that arterial blood 
pressure dropped in patients with heart failure 
after treatment with L-arg [95]. The study also 
reported that acutely oral L-arg improves 
brachial artery flow-mediated dilation in 
patients with essential hypertension [78]. 
 
Cigarette smoking, another salient risk factor 
for atherosclerosis may also be affected by L-
arg and be linked to AD. An association 
between smoking and an increased risk of 
dementia has been reported [59, 96, 97], 
although not always [98, 99, 100]. Smoking 
raises oxidative stress to degenerate NO 
through increasing oxygen-derived free 
radicals and lipid peroxides [101]. It also 
accelerates monocyte adhesion and the 
vulnerability of low density lipoprotein (LDL) to 
be oxidized [102]. L-arg can affect 
atherosclerosis through attenuating the effects 
of smoking. Using treatment with extra L-arg, 
Adams et al reported that adhesion of 

monocyte and endothelial cells and the 
expression of intercellular adhesion molecule 
in endothelial cells are decreased [103]. Other 
studies also showed that the microcirculation 
is improved by L-arg supplementation in 
smokers [76, 104, 105]. 
 
The mechanisms through which L-arg affects 
atherosclerosis are not fully understood, and a 
number of possible mechanisms have been 
proposed, including the “L-arginine paradox”. 
Excess L-arg can enhance NOS activity through 
NO production, especially when battling with 
the deficiency of eNO in the presences of LDL 
cholesterol [106], by acting as (i) a relaxing 
factor in the regulation of vasodilatation [107]; 
(ii) an inhibitor to attenuate platelet 
aggregation [108], and monocyte and 
leukocyte adhesion [109]; (iii) an inhibitor to 
depress the proliferation of smooth muscle 
cells [110]; and (iv) reducer of vascular 
oxidative stress and the expression of redox-
regulated genes [111]. It is worth mentioning 
that only eNO is helpful to anti-atherosclerosis, 
whereas iNO accelerates atherogenesis 
through synthesis of the cytotoxic NOO- radical 
[112]. Further, exertion of its function by L-arg 
upon the cardiovascular system is 
concentration-dependent. At lower plasma 
concentrations, L-arg can selectively improve 
endothelial function so that patients with 
elevated asymmetric dimethylarginine (ADMA) 
levels have diminished NOS activity; at middle 
concentration levels, it can perform direct 
vasodilatation through the endocrine effects of 
secreting insulin and growth hormone; at 
higher concentration levels, it can produce 
vasculature unspecific vasodilatation [113]. 
Moreover, chronic supplement of L-arg may 
have anti-hypertensive effect through the 
reduction of renal vascular resistance and the 
depression of angiotensin-converting enzyme 
[114, 115]. 
 
In conclusion, L-arg has multiple direct and 
indirect effects on human vasculature, and 
might play an important role in the 
pathogenesis of both atherosclerosis and AD. 
 
L-Arg, as a Precursor of NO, Affects AD via 
Influencing Oxidative Stress 
 
The Relationship between AD Pathology and 
Brain Oxidative Stress 
 
Brain oxidative damage is prevalent in AD due 
to high cerebral energy demand and oxygen 
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consumption that are required for brain 
functions and possible failure of brain 
antioxidant defenses [116]. Numerous 
experimental data, as indicated by different 
markers for oxidative damage of DNA, protein, 
lipid and glucose, shows that oxidative stress 
plays an important role in AD pathogenesis, 
and is highly associated with brain Aβ 
amyloidosis [117-123]. Much experimental 
evidence also implies that increased oxidative 
damage may not just be the consequence but 
a primary cause of AD pathogenesis [124]. 
Indeed, Aβ amyloidogenesis promotes 
generation of free radicals, oxidative damages, 
and inflammation in AD brain [125]. 
 
In summary, oxidative stress contributes to the 
progress of AD and there may be a vicious 
cycle between brain oxidative stress and 
Alzheimer’s Aβ amyloidogenesis. 
 
L-Arg Affects AD via Influencing Oxidative 
Stress 
 
NO derived from L-arg is a potential source of 
redox stress. It can be quickly cleared through 
reacting with superoxide (O2-) to generate 
peroxynitrite (ONOO-) with a half-life of <1 sec 
while cells are in a pro-oxidative state. As a 
highly reactive species, ONOO- can react via 
homolytic or heterolytic cleavage and, 
generate secondary constituents of 
nitroxidative stress and highly reactive 
oxygen/nitrogen species (ROS/RNS) including 
NO2+, NO2, and OH radical. The high 
nitroxidative stress acts to initiate the redox 
reaction, thereby inducing apoptosis and 
overall damage to neurons and endothelial 
cells [126]. The toxic constituents that are 
generated from the reaction of NO under 
oxidative stress are the property of a family 
called “reactive nitrogen oxidative species 
(RNOS),” of which peroxynitrite and nitrogen 
oxide are the main constituents [127, 128]. 
Furthermore, the term “nitroxdative stress” 
has been used to indicate the cellular damage 
that is elicited by excess NO and RNOS [129, 
130]. Wang et al supported these assertions 
when they reported neuronal apoptosis 
induced in a concentration- and time-
dependent manner while ONOO- increased, 
H2O2 rapidly decayed, and ROS slowly 
decreased [131]. Other studies also suggest 
that NO and ROS are involved in the 
pathogenesis of AD by synergistically inducing 
neuronal damage and death [127, 132, 133]. 

In contrast, David et al drew a totally opposite 
conclusion reporting that NO provided 
protection against ROS by way of cell culture 
[134, 135]. They also found that neurons 
expressing NOS survived under ischemia 
reperfusion, whereas neurons surrounding the 
ischemia area and not expressing NOS died 
[136]. The possible mechanism that NO can 
attenuate the toxic effects of ROS might be 
that NO can directly react with O2- to form 
ONOO-, thereby rapidly rearranging nitrate at 
physiological pH 4.0 before it interacts with 
cells [135]. 
 
Whether NO is neuroprotective or neurotoxic 
also depends on the different functions of its 
isoforms, the stage of treatment with 
corrective drugs [137], the local concentration 
of NO, especially at different ischemia stages 
[138, 139], and the concentration of ROS 
[140]. Glebov et al used L-arg and its inhibitor 
by intravenous injection separately after 
inducing oxidative stress in rats. They found 
that iNOS inhibitor improves antioxidant 
protection, whereas L-arg and the nonselective 
inhibitor do not [141]. They further suggested 
that iNO produced by iNOS enhances oxidative 
stress. Another study showed that NOS 
activities and the expression of markers for 
oxidative stress are increased in cell culture 
and that the use of nNOS inhibitor cannot 
rescue the cells from dying [142]. The finding 
suggested that nNOS might not be toxic. It was 
also reported that iNOS is a mediator of 
neuroprotection induced by preconditioning 
with oxidative stress such as H2O2 at low 
concentration in a cell culture [140]. 
 
In addition, some studies showed that 
ischemia/reperfusion in the brain possibly 
causes AD [143, 144]. L-arg can protect it 
through exerting its anti-oxidant functions. If 
lacking L-arg and NO, the brain would have an 
increase of superoxide anion formation [147]. 
Administration of L-arg may be associated with 
the antiradical and antioxidant effects of NO, 
inhibiting the effects of inositol-1,2,5-
triphophates, and inhibiting the accumulation 
of leukocytes in the reperfused tissue [145, 
146]. Maksimovich et al suggested that the 
antioxidant property of L-arg in brain 
ischemia/reperfusion might be because of 
activation of NO synthesis, involving eNOS 
which acts as a radical trap, and facilitating 
the removal of radical and reductions in their 
toxicity [148]. However, inhibiting the activity 
of nNOS and iNOS resulted in improvements in 
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brain circulation and reduction of the ischemic 
zone [149]. eNO affects vessel walls by 
inhibition of lipoxygenase-dependent lipid and 
lipoprotein oxidation [147, 150]. Further, it 
affects vessels by its ability to enhance the 
perfusion of brain tissues via NO-dependent 
dilation of vessels [151], and neurons by 
suppression of the N-methyl-D-aspartate 
(NMDA) receptor activity [150, 152]. Also, eNO 
affects the prooxidant-antioxidant equilibrium 
by inducing a shift associated not only with its 
potentially high levels that can react with the 
multitude of target molecules responsible for 
the development of oxidative stress, but also 
with its decrease to contributions of other 
factors to the antioxidant potential of the body, 
especially changes in the oxygen affinity of 
hemoglobin [153]. 
 
Even in patients with hyperlipidemia-
hyperglycemia, administration of L-arg can 
decrease the oxidative stress [154]. 
Supplementation with L-arg improves oxidative 
stress by inducing postprandial 
hypertriglyceridemia [155-157], preventing the 
depletion of serum plasma glutathione 
peroxidase that is a serum antioxidant enzyme, 
and preventing endothelial dysfunction [157, 
158]. 
 
In conclusion, L-arg and NO can have a dual 
role in AD under oxidative stress. Their 
neuroprotective or neurotoxic roles are limited 
by isoforms and the concentration of ROS. 
 
The Effects of L-Arg on AD via Influencing 
Inflammation 
 
The Relationship between AD and 
Inflammation 
 
Increasing evidence shows that chronic 
inflammatory processes of the central nervous 
system (CNS) are neurotoxic and may 
contribute to AD pathogenesis [159]. For 
example, during inflammation, elevated 
pentraxins, increased pro-inflammatory 
cytokines, chemokine alterations and 
microglial activation trigger functional 
impairment and structural damage to the CNS 
[160]. 
 
On the other hand, Aβ as a central mediator in 
AD pathogenesis [161, 162] may also promote 
neurodegeneration by inducing the activation 
of microglial cells and astrocytes. The 
induction results in the acceleration of 

inflammation through releasing various 
inflammatory mediators [163, 164]. In 
addition, some epidemiological studies 
strongly support that non-steroidal anti-
inflammatory agents may have therapeutic 
value in AD [165-168]. We conclude that there 
is a great potential that improvement in the 
immune system may prevent CNS 
inflammation, and hence, AD pathology. 
 
L-Arg Regulates Inflammation 
 
Over the last two decades, increasing evidence 
suggests that L-arg plays important roles in 
immunological processes. 
 
L-arg is a potent modulator of immune cell 
functioning [25]. Kirk et al fed mice with 1% 
arginine HCL and found an increase in thymic 
weight due to increased number of total 
thymic T lymphocytes [169]. In the athymic 
mice, arginine supplementation increased the 
total number of T cells and, amplified delayed-
type hypersensitivity responses. In humans, 
dietary supplementation has been shown to 
enhance T-cell-mediated function and speed 
up wound healing by increasing reparative 
collagen synthesis [170]. 
 
The ability of L-arg to regulate immune cell-
mediated function depends on its 
concentration. Albina et al found that low 
concentrations of L-Arg (<0.1 mM) in culture 
media enhance activation-associated 
functions in rat resident peritoneal 
macrophages, including cytotoxicity against 
tumor cells, superoxide production, and 
phagocytosis. On the contrary, higher 
concentrations of L-arg (about 0.1 mM to 1.2 
mM) suppress superoxide production, 
cytotoxicity, phagocytosis and protein 
synthesis. They also revealed that low 
concentrations of L-arg enhance phagocytosis 
probably due to macrophage-derived arginase 
activity. Probably due to NO- production 
induced by L-arg/NO pathway [171, 172], 
higher, non-physiological concentrations of L-
arg produce more prominent decreases of 
phagocytic activity compared with controls - a 
result that agrees with Potenza et al [25]. In 
summary, L-arg can be a modulator regulating 
inflammation. 
 
The Effect of L-Arg and NO on AD via 
Influencing Inflammation  
 
Scott et al used L-arg to revise free radical 
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production and the development of 
experimental allergic encephalomyelitis (EAE) 
in a rat model. They found that L-arg can 
suppress the development of neurological 
symptoms and the formation of inflammatory 
lesions in the CNS of diseased animals, 
eventually efficiently delaying disease onset. 
They also found that superoxide and hydrogen 
peroxide are markedly decreased and the level 
of nitrite, a breakdown of NO formation, is 
significantly increased in the CNS [173]. In 
conclusion, they recommended L-arg is a 
protective molecule, modulating oxidant-
mediated neuroinflammation by the 
production of NO [173]. However, other 
studies reported that iNO’s effect on neurons 
contributed to neurodegenerative disease 
[174, 175]. Vodovotz et al found that NFT-
bearing neurons express iNOS in the brain 
regions influenced by AD [176]. Others found 
that nitrotyrosine staining is increased in AD 
brains tissue [177]. Still other studies 
suggested that high generation of iNO may 
contribute to pathogenesis in AD due to 
sustained exposure and oxidative damage by 
peroxynitrite - an intermediate iNO reaction 
product [143, 144]. These results agreed with 
a prior study [178]. In addition, iNO, as a free 
radical, activated cyclooxygenase II (COX-2) 
that in turn activated the arachidonic acid 
cascade that is known to be pro-inflammatory 
[179, 180]. All in all, these findings seem to 
suggest that overproduction of iNO is harmful 
by inducing the inflammatory process and 
possibly AD. The discrepancies about the role 
of NO under oxidative stress have already 
been elaborated above. 
 
In conclusion, L-arg and NO, as modulators, 
may play a role in AD by influencing 
inflammatory processes. Regulating the level 
and the metabolic pathway of L-arg, and 
selectively producing different isoforms of NO 
may produce therapeutic effects. Further 
investigations are necessary, however, to 
confirm or comprehend these effects and 
potentials. 
 
The Effect of L-Arg on AD through Production 
of the Neurotransmitter NO 
 
NO is a Neurotransmitter 
 
The first evidence that NO acts as a 
neurotransmitter is reported by Garthwaite et 
al. They showed that stimulation of cerebellar 
NMDA receptors by glutamate releases NO 

[181] that then acts as a neurotransmitter in 
CNS to regulate the synaptic plasticity involved 
in cognitive processes, memory, long-term 
potentiation (LTP) and long-term depression 
(LTD) [182]. Some evidence has shown that 
NO, produced presynaptically or in 
interneurons postsynaptically, acts during 
cerebellar and striatal LTD. On the other hand, 
the postsynaptic generation of NO 
presynaptically acts in hippocampal and 
cortical LTP [183]. Furthermore, Thomas et al 
found that NO, as a transmitter, modulated 
synaptic efficacy at the neuromuscular 
junction. They also demonstrated that NO 
regulates transmitter release and adenosine-
induced depression via a cGMP-dependent 
mechanism which occurs after Ca2+ entry 
[184-186]. The results agree with Nickels et al 
[187]. 
 
The Effects of NO on AD 
 
Since it was found immunohistochemically in 
rats [151] that NO and neurons are strongly 
linked via localized NOS protein, researchers 
supposed that NO as a transmitter is related 
with AD. Thus, they started further 
investigations to observe the concentration of 
NO in the brain with AD and later showed that 
the concentration of NO is decreased through 
examining the concentration of transmitters 
related with NO in cerebrospinal fluid (CSF). 
Barford et al reported that tetrahydrobiopterin 
(BH4), which is a co-enzyme of NOS [188], is 
decreased significantly in the AD brain [189]. 
The reduction of BH4 might induce a 
diminished NOS activity that then might 
deteriorate neuronal function and lead to a 
decrease of NO production in AD [190]. Toghi 
et al reported, which agreed with Lowe et al 
[191], that L-glutamate that is released 
through stimulation by NO is decreased in the 
CSF in the AD brain [134]. Kuiper et al further 
confirmed this result and even found that the 
reduction of the level of glutamate is linked 
with the increasing age in the patients with AD 
[192]. The decrease of L-glutamate might 
therefore contribute to memory impairment in 
patients with AD [193]. Kuiper et al also 
reported that the nitrate content that is rapidly 
oxidized from NO is decreased in CSF in AD 
[194]. The findings suggested that the 
development of AD might be due to a decrease 
of NO synthesis [192]. Pazzo et al used an NO 
donor and inhibitor in animal models with AD 
and suggested that Aβ-impaired NO generation 
resulted from reducing NMDA receptor signal 
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transduction via subtracting NADPH availability 
to NOS [195, 196]. They and others also found 
that NO had a protective effect on Aβ-induced 
damage of the nervous system [195, 197]. In 
addition, it was reported that administration of 
NOS inhibitors did not protect against Aβ-
induced neurotoxicity but that administration 
of NO donors did exert a neuroprotective effect 
[198]. 
 
On the other hand, Manh et al gave chronic 
intravenous injection of Aβ1-40 into the 
hippocampus in rat models. Then they found 
that the expression of iNOS and the production 
of iNO are increased, while the release of 
acetylcholine (Ach) and dopamine is 
decreased, a situation believed to be one of 
the primary causes of cognitive deficits in 
patients with AD. The rats were then treated 
with iNOS inhibitors. As a result, the inhibitor 
of iNOS restored the impairment of Ach and 
dopamine release and prevented memory 
impairment. The study indicated the toxic 
effect of Aβ on brain function due to NO 
synthesized by iNOS via dysfunction of 
cholinergic signaling and that, if treated with 
iNOS inhibitors, cholinergic dysfunction and 
memory performance could improve [199]. As 
an essential transmitter, iNO may contribute to 
the generation and development of AD. 
 
Why are there so many different results about 
whether NO is beneficial or harmful to AD? 
Some studies revealed that NO is a neurotoxic 
factor in Aβ-induced synaptic dysfunction and 
cell death through stimulating iNOS, but not 
eNOS and nNOS [196, 200-203]. Furthermore, 
an increase in hippocampal iNOS and a 
decrease in nNOS in aged rats were observed 
[204]. So these effects might explain the 
conflicts about synaptic dysfunction due to 
activation of iNOS and the lack of synaptic 
plasticity for downregulation of NO production 
[205]. 
 
In conclusion, eNO and nNO, but not iNO, as 
transmitters, may have a neuroprotective 
effect against Aβ-induced impairment of LTP 
and ameliorate cognition in patients with AD, 
though additional studies are warranted.  
 
The Effects of L-Arg on AD via Regulating 
Glucose Metabolism and Insulin Activity 
 
The Relationship between Glucose 
Metabolism, Insulin Activity and AD 

Converging evidence has confirmed that a 
potential association exists among metabolism 
of glucose, insulin activity and AD [206]. 
 
Metabolism of glucose appears to play a role 
in memory. Patients with AD have showed 
particular abnormalities of glucose 
homeostasis [207, 208], such as decreased 
glucose metabolism in the hippocampus, 
superior and middle temporal gyri and the 
cingulated gyrus [209, 210] via CMRglc or PET 
[211-217]. Craft et al examined the effects of 
acute glucose administration on memory in 
patients with AD and age-matched controls. 
Glucose administration temporarily improved 
memory function in both AD patients and 
controls. However, as compared with controls, 
it took the AD patients much longer for their 
glucose levels to return to baseline. The study 
suggested that patients with AD have less 
efficient glucoregulation as compared with 
controls and that efficient glucoregulation 
improves memory in patients with AD [218]. 
The same results were found in other studies 
[219-222]. Furthermore, it was investigated 
that acutely raising plasma or cerebral glucose 
levels facilitated non-contextual and 
contextual verbal memory, visual memory, and 
produced beneficial effects in a variety of 
learning paradigms. The same effects 
occurred in patients with AD who accepted 
acute administration of glucose [218, 223-
225]. 
 
Administration of glucose with optimal doses 
might modulate ACh release related with 
cognition and learning [226]. It was also found 
out that administration of glucose could 
reverse deficits induced by cholinergic 
blockade [227-230] and even directly interact 
with other neurotransmitter systems including 
the gamma-aminobutyric acid (GABA) system 
[231]. The effects of glucose were dose-
dependent with an inverted U-shaped function 
[226, 229]. Specifically, acute hyperglycemia 
can facilitate memory, whereas chronic 
hyperglycemia may impair memory, at least in 
older adults [232]. On the other hand, some 
investigators found that DM might be 
associated with an increased risk of 
developing AD and might affect cognitive 
systems differently [233-235]. 
 
Mild-to-moderate cognitive dysfunction in 
patients with type I and type II diabetes 
mellitus (DM1, DM2) may be caused by 
chronic hyperglycemia [236-238] or insulin 
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resistance syndrome [239]. Hoyer et al 
established an animal model that mimics the 
abnormal cerebral glucose/energy metabolism 
through inhibiting the neuronal insulin 
receptor to show that oxidative/energy 
metabolism, phospholipids composition of 
membranes, cholinergic and 
catecholaminergic functions, learning memory, 
and cognition are abnormal as seen in AD 
[240]. Those findings agree with other studies 
[241, 242]. Patients with moderate-to-severe 
AD have also had elevated true plasma insulin 
levels and decreased CSF insulin levels [243]. 
Studies showed that AD might be associated 
with reduced insulin sensitivity [244]. Other 
clinical studies showed that induced 
hyperinsulinemia while maintaining 
euglycemia could facilitate memory for 
patients with AD and normal adults [245-247]. 
All of the previous studies revealed that 
peripheral insulin abnormalities are 
associated with AD [248]. 
 
Raising peripheral insulin levels can improve 
memory when the level of plasma glucose is 
normal as insulin might modulate LTP through 
increasing the cell membrane expression of 
NMDA receptors [249]. After activity of NMDA 
receptor, neuronal Ca2+ influx is increased to 
activate α-calcium/calmodulin-dependent-
kinase II (aCaMK II) and other Ca2+ dependent 
enzymes, and, finally to boost synaptic 
associations between neurons [250]. 
 
In summary, it is possible that abnormal 
glucose metabolism and impaired insulin 
activity contribute to cognitive decline in 
patients with AD. Regulating glucose 
metabolism and insulin activity may have 
positive impacts on these patients. 
 
L-Arg might have Therapeutic Potential in AD 
through Regulating Glucose Metabolism and 
Insulin Activity 
 
In DM, impaired production of NO results in 
impaired NO activity because of the 
uncoupling of receptor-mediated signal 
transduction [251-253], a deficiency of the 
NOS substrate L-arg [254-256], or a reduced 
availability of one or more cofactors essential 
for optimal functioning of NOS [257-259]. 
Excitingly, it was found that L-arg can 
modulate the glucose metabolism via 
increasing NO synthesis [260, 261] to 
normalize plasma glucose levels [262] and 
attenuate hyperglycemia [263]. 

Some observations of possible mechanisms 
about L-arg and NO to regulate metabolism of 
glucose and insulin activity are as follows. 
 
First, NO normalizes metabolism of glucose via 
increasing glucose transport. NO donors have 
increased glucose transport in skeletal muscle, 
while inhibition of NOS activity blunted 
contraction-stimulated glucose transport and 
had no effect on insulin-stimulated glucose 
transport [264]. Similar results were found 
from a human vascular smooth muscle cell 
culture and adipose tissues [265, 266]. These 
studies showed that NO is capable of 
stimulating glucose transport through glucose 
transporter 4 translocation via insulin signaling 
pathway and the other mechanisms [264-266]. 
 
Second, NO increases glucose uptake in 
various cells. Acute infusion of NO donor 
resulted in greater glucose uptake, as studies 
have reported [267, 268]. However, NO has 
been implicated as an important signaling 
molecule in the contraction-mediated glucose 
uptake pathway at low concentrations, and, as 
an inhibitory molecule at higher 
concentrations [269, 270]. 
 
Third, L-arg regulates insulin release. L-arg 
stimulates glucose-induced insulin secretion 
via the NO pathway [271, 272]. It is assayed 
by the demonstration of expression and 
production of NOS in insulinoma and primary 
β-cells, and the insulinotropic action of NO 
[271]. In addition, L-arg stimulates glucose-
induced insulin secretion from pancreatic 
islets that could occur independently of NO. 
The secretion of insulin by L-arg is mediated by 
membrane depolarization via protein kinase A- 
and C- activation and L-arg-induced Ca2+ influx 
[273]. It was also reported that liver cells can 
be engineered to produce insulin, and insulin 
secretion can be induced through treatment 
with L-arg via the production of NO [274], 
actions that happen when hepatic NOS are 
involved in the secretion of a hepatic insulin 
sensitizing substance that mediates peripheral 
insulin sensitivity [275]. 
 
Fourth, L-arg and NO enhance insulin 
sensitivity. Guarino et al confirmed from that 
study that insulin sensitivity is enhanced in a 
dose-dependent manner by co-administration 
of NO and glutathione (GSH) to the liver [276]. 
NOS protein expression that is enhanced by 
chronic exercise implied that NO may play a 
role in the improved glucose tolerance and 
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increased insulin sensitivity characteristic of a 
trained state [264]. However, some studies 
showed that deficiency of NO increases insulin 
sensitivity via modified insulin binding capacity 
and downregulates the expression of gene 
encoding resistin [277]. Finally, a study 
showed systemic NOS inhibition could 
increase human insulin sensitivity [278]. 
 
In conclusion, L-arg and NO can regulate the 
metabolism of glucose and insulin activity that 
affects AD. Further studies are needed. 
 
The Effects of L-Arg on AD via Neurogenesis  
 
The Relationship between Neurogenesis and 
AD  
 
One of the characteristics of AD is the loss of 
neurons [1-4]. Recent studies provide new 
therapeutic strategies in the treatment of 
neurodegenerative diseases such as AD 
including the use of drugs and the transplant 
of tissues from the ventral mesencephalon 
[279-285]. An alternate approach is to target 
neurogenesis. 
 
Neurogenesis in the adult brain of most 
mammals takes place from neural precursor 
cells that are derived from adult stem cells in 
the subgranular cell layer of the dentate gyrus 
of the hippocampus and in the subventricular 
zone of the lateral ventricle [286-289]. 
Precursors divide in the dentate gyrus, mature 
in the granular cell layer, migrate within the 
rostral migratory stream, and differentiate 
rapidly to functionally recruit the lost ones 
[290-294]. Recent studies have also shown 
that stem cells isolated from bone marrow or 
the umbilical cord differentiate into neural 
precursor cells and neural cell types under 
specific conditions [295-300]. They even 
engraft and partially correct a lesion when 
transplanted into Parkinson disease (PD) 
models [301-303]. These functional recruits 
occur and can be enhanced after 
neurogenesis [304], and are integrated both 
structurally and functionally into pre-existing 
neuronal networks [305, 306]. Such findings 
indicate that neurogenesis in the brain might 
have potential therapeutic use. 
 
L-arg is attracting increasing attention as a 
regulator in neurogenesis and apoptosis. Many 
researchers show that L-arg is involved in 
different types of cell generation and 
apoptosis through the following major 

metabolic pathways [307-315]. 
 
The Effects of L-Arg on Neurogenesis through 
the Arginase Pathway  
 
Sara et al showed that proliferation of neural 
stem cells (NSCs) is increased under AI 
deficiency in a mouse model and that derived 
NSCs matured and differentiated into neurons 
more quickly than their counterparts [316]. In 
addition, it was found that overexpression of AI 
could accelerate the extension of neurite in 
older dorsal root ganglial neurons [317, 318]. 
Extracellular administration of arginase can be 
antiapoptotic under oxidative stress and the 
other conditions that induce neuronal 
apoptosis [319]. Esteve et al also found that 
arginase acts as a central regulator of trophic 
factor-deprived motor neuronal survival [320]. 
These primary in vivo and in vitro studies 
indicate that arginase plays a role in the 
neural cell cycle. Du et al even used arginase 
as a therapeutic factor to treat focal brain 
ischemia by combining antiexcitotoxic and 
antiapoptotic measures rather than using 
either agent alone [321, 322]. 
 
The mechanisms of arginase in neurogenesis 
are supposed to be as follows: 1) Arginase 
controls cell proliferation through modulating 
the number of neural cells in the S-phase of 
the cell cycle [35]; 2) The expression of genes 
in cell growth is elevated to increase 
proliferation but not differentiation during a 
deficiency of arginase [35]; 3) Arginase is 
increased as a response of cAMP which is a 
crucial downstream component of the 
neurotrophin-induced “regeneration” pathway 
[47, 323]; 4) Neuron cell survival is increased 
and apoptosis is decreased through the 
administration of arginase, a phenomenon 
possibly due to its clearing up of excitotoxic 
necrosis in cortical neuronal cultures by 
reducing the production of NOS [82] and 
thereby inhibiting NO production [35]; 5) Esch 
et al demonstrated that the function of 
arginase to antiapoptosis depended on the 
depletion of arginine and the inhibition of 
“death proteins” synthesis [319] which is 
similar to the findings by Sonoki et al [325]; 6) 
Arginase exerts its function also through its 
products: polyamines, which play bivalent 
functions in neural cell growth and death 
[326]. 
 
Emerging evidence has proved that 
polyamines are involved in the development of 
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the CNS [327, 328]. Depletion of polyamines 
during nervous system development will lead 
to a deficiency of neuronal morphogenesis 
[329]. Chu et al showed that polyamines are 
able to improve axonal regeneration of 
neurons after injury [330, 331]. Malaterre et al 
found that neural progenitor proliferation is 
significantly increased in dentate gyrus and in 
the subventricular zone in a rodent brain when 
it is given putrescine. Conversely, the 
reduction of polyamines decreases the 
proliferation of an adult neural progenitor 
[332]. Cayre et al reported that the short-chain 
putrescine can induce neuronal precursor cells 
to mitogenesis and, hence, increase 
proliferation, while the long-chain spermidine 
and spermine fail to do. In contrast, 
spermidine and spermine can simulate neuron 
differentiation and neurite elongation, whereas 
putrescine cannot alter any morphological 
character of these interneurons in vitro. It is 
believed that short-chain and long-chain 
polyamines play specific roles during 
neurogenesis [333]. Putrescine enhances 
neuronal proliferation through regulating 
proto-oncogene transcription and expression, 
and acting on cell cyclins [334, 335]. 
Spermidine and spermine enhance 
differentiation through affecting the major 
cytoskeletal elements [336], and regulating 
casein kinase II activity, which participates in 
neurogenesis [337, 338]. 
 
Polyamines are involved in neuronal survival 
and apoptosis in concentration-dependent 
manner [330]. Overproduction of polyamines 
and the increase of their activities can induce 
death of fibroblasts [339, 340]. Sparapani et 
al found that high concentrations of 
polyamines are toxic to granule cells in culture. 
This toxicity is mediated through the NMDA 
receptor by interaction of exogenously added 
polyamines with endogenous glutamate 
released by neurons in the medium, especially 
spermine and spermidine [341]. In serum-
containing medium, polyamines can be 
cytotoxic while they oxidize to aminoaldehyde 
and hydrogen peroxide by polyamine oxidases 
[342-344]. On the other hand, lower 
concentrations of polyamines prevent 
apoptotic neuronal death and toxin-and 
axotomy-induced cell death of sympathetic 
neurons in cell culture [330]. This protective 
function is exerted through both NMDA 
receptor-dependent process that enhance the 
activities of glutamate and NMDA at the NMDA 
receptor via the allosteric mechanism [345] 

and independent mechanisms [330]. These 
findings agree with those from other studies 
[346]. Furthermore, it was reported that only 
spermine promoted neuronal survival by its 
trophic effects through an ifenprodil-sensitive 
mechanism [331, 347, 348]. 
 
According to previous studies, suitable 
concentrations of polyamines are 
neuroprotective in neurodegenerative models 
[349, 350], such as ischemic stroke [351]. 
However, results are contradictory on whether 
using a polyamine synthesis inhibitor is also 
neuroprotective in stroke models [352, 353]. 
Rao et al showed that blood-brain barrier 
breakdown is more severe by putrescine, while 
breakdown is attenuated by spermine and 
spermidine after ischemia [353]. However, in 
stroke models, putrescine is increased, while 
there is no change of spermine and 
spermidine, and inhibitor of polyamines did 
not reduce spermine and spermidine [354]. 
Further studies are necessary to understand 
the exact roles of polyamines in such 
pathological conditions [353-355]. 
 
Collectively, in the metabolism of L-arg, 
arginase can decrease proliferation and 
differentiation in neurogenesis, whereas it can 
prevent neuron apoptosis and induce neuron 
survival. Polyamines, products of L-arg through 
the arginase pathway, have their specific 
functions in neurogenesis according to the 
length of carbon chain. Varying suitable 
concentrations of polyamines exist both in 
physiological and pathological conditions that 
can exert a positive impact on neuronal 
survival. 
 
The Effect of L-Arg on Neurogenesis through 
the NOS Pathway 
 
Growing evidence reveals that NO plays a 
critical role in regulating neurogenesis, neural 
survival, and apoptosis in CNS. It is reported 
that NO regulates both proliferation and 
differentiation of neural stem cells and neural 
precursor cells. Elisabetta et al showed that 
the effect of NO deprivation during the early 
cerebellar neurogenesis not only stimulates a 
brief increase in cell proliferation through 
reducing availability of cGMP, but also traces 
into adulthood in rats brain [356]. Torroglosa 
et al found that NO, as a negative regulator, 
decreased subventricular zone stem cell 
proliferation through inhibition of epidermal 
growth factor receptor and phosphoinositide-3-
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kinase/Akt pathway, producing an antimitotic 
effect on neurosphere cells in adult mice [357]. 
Lopez et al also reported that NO 
physiologically inhibited neurogenesis in the 
adult mouse subventricular zone and olfactory 
bulb by controlling the size of the 
undifferentiated precursor pool and promoting 
neuronal differentiation [358]. Cheng et al 
demonstrated that the regulation of 
neurogenesis by NO occurs by its action in a 
positive feedback loop with brain-derived 
neurotrophic factor (BDNF) [359]. On the other 
hand, chronic administration of inhibitor of 
NOS enhanced neurosphere formation and 
growth [357], increased proliferation, and 
decreased the differentiation of precursors 
[358-360]. 
 
However, Zhang et al suggested that 
administration of NO can remarkably increase 
neuronal progenitor cell proliferation, 
differentiation, and migration in subventricular 
zone and the dentate gyrus of the 
hippocampus of the adult rodent brain [361]. 
Cheng et al also reported that NO induced 
apoptosis of neural progenitor cells through 
the p38 MAP kinase pathway [362]. Other 
studies showed that the apoptosis of neurons 
is due to oxidative injury induced by NO, which 
acts as a general trigger [363-365]. On the 
other hand, stem cell survival in nNOS 
knockdown animals was increased [366]. The 
discrepant results might be due to different 
isoforms of NOS involved in neurogenesis. 
 
Sabrina et al found that nNOS has a primary 
regulatory role in the migration and survival of 
newly formed neuronal cells, whereas its effect 
upon stem cell proliferation is less pronounced 
[367]. In contrast, it is reported that nNOS 
slows down cell proliferation in vitro [368] and 
signals surviving cells to switch to terminal 
neuronal differentiation [359, 368]. Also, the 
administration of nNOS inhibitor enhances cell 
proliferation [369]. The mechanism behind 
this might be that nNOS cooperates with BDNF 
as a positive feedback loop to regulate neural 
progenitor cell proliferation and differentiation 
in the mammalian brain [359, 370]. However, 
a further study showed no difference in the 
changes of BDNF mRNA or protein in nNOS 
knockout mice. That suggested that the 
function of nNOS, when involved in 
neurogenesis, might be not only dependent on 
the manner of BDNF, but also another unclear 
pathway that indirectly switches the young 

neural cells from survival to differentiation 
[367]. 
 
Andreas et al showed a significant decrease of 
neuronal progenitor cell proliferation in the 
dentate gyrus in eNOS knockout mice, 
accompanied by a reduction in vascular 
endothelial growth factor (VEGF), without any 
changes in survival rate of newly formed cells 
[371]. Other studies also agreed that 
disruption of eNOS results in significantly 
decreased levels of VEGF [372, 373]. It 
suggests that the mechanism of selective 
effects of eNOS on progenitor cells 
proliferation might be mediated by regulating 
the transcription of VEGF in the hippocampus 
[373] to activated kinase Akt so as to 
downstream mechanisms and multiple 
pathways [371, 374, 375]. Conversely, 
elevating VEGF stimulates the increase of eNO 
through enhancing eNOS expression [146], 
which finally results in neurogenesis and 
angiogenesis that each benefits the other 
[141, 147]. This reveals that eNOS and VEGF 
act in a positive feedforward loop [371]. eNOS 
regulates neurogenesis through the VEGF-
mediated manner, while nNOS appears to 
regulate neurogenesis not only by a BDNF-
mediated manner. It demonstrated that nNOS 
and eNOS exert their effects, by indirect 
mechanisms, as antagonists in different 
phases of adult neurogenesis. 
 
Zhu et al found that the expression and 
enzymatic activities of iNOS are elevated in the 
dentate gyrus after cerebral ischemia [378]. 
Later their further studies indicated that iNOS 
is crucial to accelerate neurogenesis, which is 
associated with enhancing cell proliferation 
and increasing mature granule neurons in the 
same area after cerebral ischemia [149]. 
While using the inhibitor of iNOS or antagonist 
of NMDA receptor, no increase of 
neurogenesis was observed [379-381]. It was 
reported that iNOS is activated quickly through 
activation of NMDA receptors [382, 383]. It 
was also reported that the reduction of nNOS 
and eNOS activities induce iNOS expression 
which produces iNO to stimulate cell 
proliferating factors through activated nuclear 
factor-β in the hippocampus [384, 385]. It also 
suggested that nNOS and iNOS play an 
opposite role in regulating neurogenesis in the 
ischemic hippocampus [384, 385]. However, 
under physiological conditions, nNO that 
derived from nNOS depresses iNOS expression 
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by inhibiting nuclear factor-NFκB activation 
[386]. 
 
Collectively, the metabolism of L-arg through 
the NOS pathway produces both positive and 
negative effects on neurogenesis. The authors 
suggest that the phenomena may be explained 
by the different function of three isoforms of 
NOS on neurogenesis. However, more 
research is recommended on this issue. 
 
In summary, neurogenesis therapies involving 
stem cells and lineage-committed precursor 
cells are revolutionizing the concept of 
neurogenerative medicine. It is being 
increasingly accepted that generation and 
transplantation of lineage-committed 
precursor cells are very important steps in the 
process. However, the environmental and 
neurotrophic factors including inducible 
signals and transmitters around precursors 
and stem cells are critical to the success of 
therapy. In this context, we elucidate that L-arg 
is involved in neurogenesis through its 
metabolic pathways and its products. Better 
understanding of the metabolic procedures of 
L-arg would allow us to selectively choose to 
accelerate or attenuate some of those 
metabolic steps so as to contribute a valuable 
course to neurogenerative therapies for AD. 
 
Conclusion 
 
L-arg is an essential amino acid, involved in 
diverse physiological and pathological 
processes, including neurotransmission, 
neurogenesis and neuroplasticity, cellular 
redox metabolism and redox stress, 
inflammation, and regulation of cerebral blood 
flow. Increasing evidence implicates L-arg in 
the pathogenesis of diverse age-related 
diseases, including Alzheimer's disease. 
Understanding of the precise biochemical 
roles of L-arg will aid to rational development 
of therapeutic agents for various relevant 
human diseases intervention. 
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