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Abstract: The rising worldwide prevalence of asthma has intensified interest in the natural history of asthma. An 
improved understanding of the genetic, environmental, and developmental factors contributing to the inception 
and exacerbation of asthma will be crucial to efforts to devise effective preventive and therapeutic interventions. 
There is increasing evidence that the complex interplay of early life respiratory viral infections and allergic 
sensitization is important in the development of asthma. Major causes of asthma exacerbations are respiratory 
viral infections and aeroallergen exposure, which may have interactive co-morbid effects. This review describes 
the potential role of thymic stromal lymphopoietin (TSLP) as a connection between the innate immune response 
to respiratory viral infections and the type-2 adaptive immune response in the development and exacerbation of 
asthma. 
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Introduction 
 
There is compelling evidence that Th-2 
lymphocytes regulate the immune response 
responsible for allergy and asthma. Their 
products, so called type-2 cytokines, such as 
interleukin 4 (IL-4), IL-5, IL-9, and IL-13 are 
upregulated in the blood, bronchoalveolar 
lavage (BAL) and airway biopsies from allergic 
and asthmatic patients with active disease [1-
4]. Th-2 cytokines released by mast cells 
during the early-phase reaction [5] or memory 
CD4+ Th-2 lymphocytes [6] are likely triggers 
for the subsequent recruitment of eosinophils, 
which characterize the chronic phase of 
asthma. However, the cause of Th-2 immune 
responses and asthma development remain 
thinly recognized. 
 
Respiratory virus infections have been 
associated with the inception and 
exacerbation of asthma [7-11]. The pathology 
of a viral infection is complex and includes 
epithelial barrier damage, with increased 
environmental toxin penetration, and the 

accumulation and activation of inflammatory 
cells in the airways [12]. 
 
Thymic stromal lymphopoietin (TSLP) was 
originally identified in conditioned medium 
from a thymic stromal cell line (Z210R.1) and 
showed activity as a B cell growth factor [13]. 
TSLP interacts with the IL-7R α-chain and 
displays overlapping effects with IL-7 on 
B220+/IgM+ immature B cells [13]. Unlike IL-
7, TSLP does not activate Janus family kinases 
(JAKs) probably due to signaling through a 
specific TSLP co-receptor named TSLPR or 
CRLF2 [14]. TSLP increases the proliferation of 
murine CD4-, CD8- double negative 
thymocytes in synergy with IL-1 [15]. Recently, 
TSLP has been proposed as a liaison between 
the viral-triggered innate response and the 
type-2 adaptive immune response and 
eosinophilic inflammation. 
 
Asthma and Viral Infection 
 
Respiratory virus infections in early life have 
been associated with the development of 
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persistent wheezing and childhood asthma 
and are the major cause of asthma 
exacerbations in children and adults. 
Respiratory syncytial virus (RSV)-induced 
bronchiolitis has been shown to lead to 
persistent wheezing [16] as well the 
development of asthma in young children [17]. 
More recently, rhinovirus infections have been 
strongly associated with the development of 
persistent wheezing in childhood [18, 19]. 
Multiple studies have shown that close to 80% 
of asthma exacerbations in children and 
adults were preceded by respiratory virus 
infection, with the majority due to rhinoviruses 
[20-23]. Viral infection may correlate with 
asthma exacerbations because of the 
development of the type-2 immune response 
in asthmatic individuals, leading to reduced 
IFN-γ and IL-12, and inefficient antiviral 
immunity in these individuals. Viruses can 
exert profound effects on epithelial cells, 
which may redirect the immune system toward 
a type-2 response with the production of IgE. 
For example, human rhinovirus (HRV) triggers 
nasal and sputum IL-6 production [24]. IL-6 
can facilitate differentiation of B-cells towards 
IgE-positive mature B cells [25]. However, IL-6 
is present at similar levels after HRV infection 
in both non-atopic and asthmatic individuals. 
However, airway epithelial cells from asthmatic 
patients are deficient in the generation of 
interferon-β (IFN-β) and IFN-γ after infection 
with HRV [26, 27]. HRV also upregulates the 
expression of multiples chemokines, including 
RANTES (CCL5) [28], which is a powerful 
attractant for eosinophils [29]. Under these 
conditions, the expression of inducible nitric 
oxide synthase (iNOS) and nitric oxide (NO) are 
increased [30]. NO is associated with 
eosinophilia, airway inflammation [31] and 
with type-2 differentiation [32]. 
 
Virus and TSLP 
 
Epithelial cells, lung fibroblasts, mast cells, 
keratinocytes and smooth muscle cells 
produce TSLP [33]. TSLP is minimally 
expressed by endothelial or hematopoietic 
cells, with the exception of mast cells 
activated by IgE receptor cross-linking. While 
epithelial cells and lung fibroblasts 
constitutively express substantial TLSP, 
bronchial smooth muscle and skin 
keratinocytes express TSLP only after 
activation with multiple cytokines (IL-4, IL13 
and TNF-α or TNF-α and IL-1β) [33]. 

Keratinocyte growth factor (KGF), expressed by 
thymocytes, induces cortical and medullary 
thymic epithelial cells [34] to produce TSLP 
but not IL-7 [34]. The nuclear receptor agonist, 
vitamin D3, also induces TSLP expression in 
epidermal keratinocytes. In contrast, 
keratinocytes from nuclear receptor (retinoid X 
receptor α and β) knockout mice express high 
levels of TSLP [35]. Small airway epithelial 
cells (SAECs) stimulated with inflammatory 
cytokines (IL-1 plus TNF-α), bacterial 
peptidoglycan (PGN) and toll-like receptor 
(TLR1, 2 and 3) ligands, such as lipoteichoic 
acid (LTA) from Bacillus subtillis or poly I:C 
(double-stranded RNA), produce TSLP [36]. On 
note, infection with the bacteria S. 
thyphimurium also increases TSLP expression 
in Caco-2 cells [37], suggesting that bacterial 
as well as viral infections can induce TSLP. IL-
4 or IL-13 induce up-regulation of TSLP mRNA 
by human bronchial epithelial cells [38]. 
However, poly I:C double stranded RNA 
(dsRNA), a ligand for TLR3, is the most potent 
inducer of TSLP mRNA. DsRNA acts 
synergistically with IL-4 in TSLP induction. 
None of the other TLR ligands (TLR2, 4, 5, 6, 7 
or 9) affected TSLP mRNA or protein 
production [38]. Rhinoviruses synthesize 
dsRNA during replication, and they are a 
natural source of TLR3 ligand. RV16 in 
association with IL-4, strongly induces TSLP 
production by epithelial cells in a manner that 
is dependent on TLR3, NF-kappaB and IRF-3 
[38]. TSLP mRNA can also accumulate in 
epithelial cells after exposure to the pro-
inflammatory cytokines IL-1β or TNF-α or to 
TLR2, 8 and 9 ligands [39]. Both sets of 
activators trigger nuclear translocation, which 
likely participates in TSLP transcriptional 
regulation. Therefore, viral infection in synergy 
with cytokine production is likely to be a 
primary driver for TSLP production. 
 
TSLP and Asthma 
 
TSLP upregulates activation markers (HLA-DR, 
CD40, CD80, CD86 and CD83) and prolongs 
survival of CD11c+ dendritic cells (DCs) [33]. 
TSLP-activated DCs induce stronger allogeneic 
CD4+ cell proliferation than DC activated with 
CD40 ligand or IL-7. TSLP-activated DCs do not 
produce proinflammatory cytokines but large 
amounts of chemokines TARC and MDC, which 
attract CCR4-expressing Th-2 cells [33]. 
Strikingly, TSLP-activated DCs induce naïve 
CD4+ T lymphocytes to produce substantial IL- 
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Figure 1 Viral infection leads to atopy through TSLP. Virus or bacteria activate epithelial cells to produce TSLP, 
which induces a type-2 lymphocyte (TH2) response with production of IL-4, IL-5, IL-13 and TNF-α. TSLP may as 
well direct the allergen-activated dendritic cells (DC) to trigger a TH2 response after DC-T lymphocyte interactions. 
Among the type 2 cytokines, IL-4 participates in the formation of IgE-producing B lymphocytes (B) and the 
recruitment of eosinophils (EOS) and, with TSLP, the activation of mast cells. In addition, IL-4, in association with 
viruses, activates epithelial cells to produce more TSLP. IL-5 induces differentiation of EOS, which accumulate at 
the site of inflammation, culminating in tissue remodeling. 
 
  
4, IL-13, IL-5 and TNF-α but minimal IFN-γ and 
IL-10. TSLP is highly expressed in several type 
2 inflammatory models and by keratinocytes, 
and TSLP expression correlates with DC 
activation in the dermis in atopic dermatitis 
[33]. The response of resident dermal 
Langerhans cells to TSLP is very similar to that 
of blood DCs [40]. 
 
The lungs of mice sensitized and challenged 
with ovalbumin (OVA) express high levels of 
TSLP [41]. Because these mice develop a type-
2 immune response with increased serum IgE, 
infiltration of type 2 CD4+ cells, lung 
eosinophilia, and airway remodeling, these 
results suggest that TSLP participates in 
allergic inflammation. Several studies have 
confirmed this hypothesis. Forced pulmonary 

expression of TSLP expression enhances BAL 
cell numbers, which consist primarily of 
eosinophils [41]. In these mice, infiltrating 
CD4+ T cells have a type-2 phenotype, and the 
lungs show characteristic remodeling, 
including epithelial cell hyperplasia, 
subepithelial fibrosis and mucus metaplasia 
[41]. The converse is seen in TSLP receptor 
knockout mice, which show reduced total BAL 
cells, eosinophils, and neutrophils as well as 
goblet cell numbers after OVA challenge [42]. 
TSLPR knockout mice have also significantly 
lower levels of serum IgE than do wild-type 
mice. Finally, decreased pulmonary 
inflammation occurs after neutralizing anti-
TSLPR administration [42]. 
 
TSLP may broadly regulate systemic atopy. 
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TSLP transgenic mice develop atopic 
dermatitis as well as exaggerated levels of IgE, 
upregulation of E- and P-selectin ligands, and 
CCR4 [43]. In addition, the retinoid X receptor 
knockout mice, which express high level of 
TSLP, exhibit an atopic dermatitis-like 
phenotype [35]. 
 
TSLP not only plays a liaison role between the 
innate and adaptive immune response, but 
there is evidence that it may directly activate 
mast cells (MC) [36], which have a pivotal role 
during allergy [31]. Low level TSLP induces IL-
13 and IL-5 production by MC [36]. A recent 
study demonstrated that not only human 
CD11c+ DC [44] but human CD4+ 
lymphocytes express TSLP receptor [45]. 
Although freshly isolated human B and T 
lymphocytes do not express TSLPR, activation 
in vitro leads to TSLPR expression, which 
persists for 14 days [45]. TSLP then induces 
Stat5 activation [46], and increases the 
proliferation of anti-CD3 or IL-2-activated 
human CD4+ T cells [45]. 
 
Conclusion 
 
TSLP is an excellent candidate to mediate a 
link between the innate immune response 
triggered by viruses or bacteria and the 
subsequent adaptive response leading to 
atopic diseases, including atopic asthma 
(Figure 1). The mechanisms, which link 
allergen challenge and production of TSLP 
remain unknown. Further studies to better 
understand TSLP regulation, induction and 
function will likely shed additional light on this 
important cytokine. 
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