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Abstract: Objectives: Renal transplantation is the preferred method for most patients with end-stage renal disease, 
however, acute renal allograft rejection is still a major risk factor for recipients leading to renal injury. To improve 
the early diagnosis and treatment of acute rejection, study on the molecular mechanism of it is urgent. Methods: 
MicroRNA (miRNA) expression profile and mRNA expression profile of acute renal allograft rejection and well-func-
tioning allograft downloaded from ArrayExpress database were applied to identify differentially expressed (DE) miR-
NAs and DE mRNAs. DE miRNAs targets were predicted by combining five algorithm. By overlapping the DE mRNAs 
and DE miRNAs targets, common genes were obtained. Differentially co-expressed genes (DCGs) were identified 
by differential co-expression profile (DCp) and differential co-expression enrichment (DCe) methods in Differentially 
Co-expressed Genes and Links (DCGL) package. Then, co-expression network of DCGs and the cluster analysis were 
performed. Functional enrichment analysis for DCGs was undergone. Results: A total of 1270 miRNA targets were 
predicted and 698 DE mRNAs were obtained. While overlapping miRNA targets and DE mRNAs, 59 common genes 
were gained. We obtained 103 DCGs and 5 transcription factors (TFs) based on regulatory impact factors (RIF), then 
built the regulation network of miRNA targets and DE mRNAs. By clustering the co-expression network, 5 modules 
were obtained. Thereinto, module 1 had the highest degree and module 2 showed the most number of DCGs and 
common genes. TF CEBPB and several common genes, such as RXRA, BASP1 and AKAP10, were mapped on the 
co-expression network. C1R showed the highest degree in the network. These genes might be associated with hu-
man acute renal allograft rejection. Conclusions: We conducted biological analysis on integration of DE mRNA and 
DE miRNA in acute renal allograft rejection, displayed gene expression patterns and screened out genes and TFs 
that may be related to acute renal allograft rejection.
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Introduction

Renal transplantation is the best choice for 
most patients with end-stage renal disease [1], 
such as renal cancer and kidney injury, which 
has extended and improved the living quality 
for the majority of patients [2]. Although the 
therapeutic methods achieving long-term graft 
survival have improved, the immune response 
is still a common trouble in renal graft recipi-
ents. Acute rejection is a major immunologic 
risk factor for graft failure [3, 4], which might 
lead to severe renal injury. It was reported that 
renal allograft failure was the fourth most com-

mon cause of end-stage renal disease in United 
States [5]. In order to impede the immune 
response, most graft recipients need lifelong 
treatment with potent immunosuppressive 
drugs which have many side effects. Currently, 
the diagnosis of acute rejection mainly uses 
histological features of the allograft biopsy [4]. 
Limited knowledge of the molecular pathogen-
esis is a major obstacle in the identification of 
drug targets and development of therapeutic 
strategies for acute renal allograft rejection. 

MicroRNAs (miRNAs) are a class of small (only 
18-25 nucleotides), endogenous, non-coding 
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RNAs that regulate posttranscriptional gene 
expression by translational repression or mRNA 
degradation [6]. In fact, approximately one-
third of human mRNAs may be regulated by 
miRNAs [7, 8]. miRNAs are involved in gene 
regulation in different processes such as physi-
ological [9] and pathophysiological processes 
[10]. It was reported that an important role for 
miRNAs was regulating the development of 
immune cell and modulating the immune re- 
sponses [11-14]. Recently, differential expres-
sion of miRNAs in several diseases suggested 
that they might have key regulatory roles in a 
wide range of biological processes [15, 16]. 
Thus, miRNAs have been considered as poten-
tial therapeutic biomarkers [17] as well as 
mRNAs.

With recent advances in immunology and trans-
plantation biology, the development of reliable 
assays is urgently needed to allow us to identify 
and predict the development of immunologic 
graft rejection. High throughput microarray 
technology, promised as a clinical tool, provides 
methods to study disease-specific transcrip-
tional changes simultaneously. Human miRNA 
and mRNA expression profiling associated with 
transplant rejection and injury have been 
already reported [2, 18, 19]. Previous research-
es have illuminated variations in gene expres-
sion in allograft biopsy samples from patients 
with acute rejection [19-21], and demonstrated 
a few immunologic relevant gene associated 
with acute rejection and clinical outcomes. 
Those existing data which deposited in public-
available repositories, such as ArrayExpress 
Archive, recently can provide the secondary 
use to predict outcome and biomarkers of 
acute rejection in renal allografts for us.

It is on the cards that a single miRNA influences 
expression of multiple different target genes or 
different miRNAs control a single mRNA target 
[22-24]. In presently, the authentication of mi- 
RNA target genes have gained extensive atten-
tions. Many bioinformatic prediction strategies 
developed rapidly based on the confirmed rules 
of interaction between miRNAs and their tar-
gets. However, to date, miRNA targets are un- 
stable using different programs, and so rare 
confirmed [25]. 

Although acute rejection in renal allograft have 
been profiled extensively by genomics-based 
studies [2, 3, 19], little is known about the influ-

ence of miRNA-target interactions and how the 
global expression alterations form a network. 
Moreover, almost all previous studies rese- 
arched the differential expression between 
acute rejected renal allograft and normal biop-
sies, however, few studies compared the differ-
ential expression between acute rejected all- 
ograft and well-functioning renal allograft. 

To better understand the complex pathology 
associated with acute rejection in renal allograft 
and improve the early diagnosis of acute rejec-
tion, study on molecular mechanism of it is ur- 
gent. In this study, we extracted a miRNA ex- 
pression profile and a mRNA expression profile 
respectively, and identified the differentially 
expressed (DE) miRNAs and the DE mRNAs. In 
order to improve the accuracy of miRNA targets 
prediction, five algorithms were combined si- 
multaneously. Then, compared with the miRNA 
targets and DE mRNAs, overlapped genes were 
selected as common genes, which were consid-
ered as more robust genetic markers and were 
more beneficial to the diagnosis and treatment 
for acute renal allograft rejection. Next, we took 
a systematic approach to investigate DE genes 
between acute rejection allograft and well-fu- 
nction allograft, included co-expression netwo- 
rk, cluster analysis and functional enrichment 
analysis. In a word, we may provide information 
for understanding the underlying molecular 
mechanisms of acute rejection, and at the sa- 
me time provide methods for advanced diag-
nostics and prognosis. 

Material and methods 

Identification of DE miRNAs and DE mRNAs 

The microarray miRNA and mRNA expression 
profiles of renal allograft were downloaded 
from ArrayExpress (http://www.ebi.ac.uk/array-
express/) database under access number of 
E-GEOD-30282 [18] and E-GEOD-1563 [26]. In 
E-GEOD-30282, the miRNA expression profiles 
of 51 samples (including 41 acute renal allo- 
graft rejection cases and 10 well-functioning 
transplants as controls) were selected, and sa- 
mples with delayed graft function were exclud-
ed. In E-GEOD-1563, 17 samples (including 7 
acute renal allograft rejection cases and 10 
well-functioning transplants as controls) were 
selected, and samples included donor, renal 
dysfunction without rejection and peripheral 
blood originated were excluded.
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We provided the Oligo package supported by 
Affymetrix to preprocess the expression chips. 
The two comparison experiments were con-
ducted by Linear Models for Microarray Data 
(LIMMA) package. DE miRNAs and mRNAs were 
identified by assimilating a set of gene-specific 
t tests with the threshold of false discovery rate 
(FDR) ≤ 0.05 and logFC > 2.

miRNA target genes prediction

The DE miRNAs identified in the previously step 
were used for predicting target genes. Since 
miRNA targets were unstable using different 
algorithms, five algorithms including miRanda 
[27], miRDB [28], miRWalk [29], RNA22 [30] 
and Targetscan [31] were employed to improve 
the reliability of miRNA targets prediction in this 
study. A gene was identified as target gene only 
if the gene was confirmed by at least four algo-
rithms (SUM ≥ 4). Target genes would be select-
ed as common genes if they overlapped with 
the DE mRNAs in E-GEOD-1563. Below, these 
methods were explained in detail.

miRanda: Originally, miRanda was used to find 
miRNA targets in Drosophila by Enright AJ et al. 
[27], and was developed to predict targets in 
humans subsequently. As one earlier miRNA 
target predictor, miRanda uses a three-phase 
method for target analysis [27]. First, the mi- 
RNA sequences are scanned against 3’ un- 
translated region (UTR) to check for whether 
two sequences are complementary using a 
position-weighted local alignment algorithm. 
Second, the free energy of each miRNA: UTR is 
calculated. Finally, evolutionary conservation is 
used as a final informational filter. The targets 
are scored based on how well they match the 
miRNAs. A predicted target is ranked high in 
the results by obtaining a high individual score 
or having multiple predicted sites.

miRDB: miRDB was developed by Wang X et al., 
which was an online database system for mi- 
NA target prediction and functional annotation 
(http://mirdb.org) [28]. For convenience in ap- 
plication, genome-wide target prediction was 
performed, and the predicted targets were pre-
loaded into miRDB. 1437 miRNAs targeting 
47946 unique genes are contained in miRDB 
version 2.0 in five species (human, mouse, rat, 
dog, and chicken). Flexible web query interface 
is developed to retrieve target prediction re- 
sults, which is sorted by target score. The de- 
tailed results contain information about the 

miRNAs, the targets and their 3’-UTR sequ- 
ences.

miRWalk: miRWalk was first presented by 
Dweep H et al. [29]. It is a comprehensive data-
base (http://mirwalk.uni-hd.de/) that can be 
used to predict all the possible miRNA binding 
sites by “walking” the genes of three genomes 
(human, mouse and rat). This algorithm is ba- 
sed on a computational approach to identify 
multiple consecutive complementary subse-
quences between miRNA and all download se- 
quences. Then the results are performed com-
parison with the results obtained from other 
established prediction programs, and valida-
tion by performing an automated text-mining 
search in the titles/abstracts of the PubMed 
articles. The predicted and validated informa-
tion is stored in miRWalk database.

RNA22: RNA22, presented by Miranda KC et 
al., was a pattern-based method for identifying 
miRNA binding sites and their corresponding 
miRNA/mRNA complexes [30]. It first finds 
putative miRNA binding sites in the sequence 
of interest without a need to know the identity 
of the targeting miRNA. RNA22 identifies target 
islands and evaluates the free energy of paired 
target islands and candidate miRNAs, and 
experimentally evaluates selected miRNA/tar-
get-island interactions. 

Targetscan: To identify the targets of mamma-
lian miRNAs, Lewis BP et al. developed the Ta- 
rgetscan algorithm, which combined thermody-
namics-based modeling of RNA: RNA duplex 
interactions with comparative sequence analy-
sis to predict miRNA targets conserved across 
multiple genomes [31]. The software is avail-
able for download at http://genes.mit.edu.lib-
proxy.tulane.edu:2048/targetscan. The specif-
ic methods are detailed in previous study [31].

Identification of co-expression network and 
modules

Based on the viewpoint of systems biology, 
genes with similar functions are frequently co-
expressed across a set of samples [32-34]. In 
this process, we applied the Differentially 
Co-expressed Genes and Links (DCGL) 2.0 pa- 
ckage in R to identify differentially co-expressed 
genes and links from mRNA microarray data 
[35]. Differential co-expression profile (DCp) 
and differential co-expression enrichment (D- 
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Ce), involved in differential co-expression anal-
ysis (DCEA) module which was one of the four 
modules in DCGL 2.0 package, were used to 
identify differentially co-expressed genes 
(DCGs) and differentially co-expressed links 
(DCLs) [36]. In our study, we implemented 
DCsum, i.e. the intersection of DCp- and DCe-
derived DCGs, to filtrate the DCGs. To improve 
the dependability of DCGs, we filtered the top 
25% of genes with the absolute value of corre-
lation coefficient higher than 0.7.

In the network, regulatory impact factors (RIF) 
metric was applied to identify the key transcrip-
tion factors (TFs). RIF metric was originally 
developed to identify causal regulators from 
gene expression data contrasting 2 conditions 
(e.g. healthy vs. disease) [37]. RIF can combine 
the change in co-expression between TFs and 
DE genes. Then the co-expression network of 
the DE mRNAs with RIF value was constructed. 

To explore the highly interconnected regions in 
the network, we implemented the cluster analy-
sis to the network using ClusterONE plugin of 
Cytoscape software. Nodes represented bio-
molecules and edges indicated functional inter-
actions between molecules in a molecular 
network.

Functional enrichment analysis

Gene Ontology (GO) database and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
database provide systematic analysis of gene 
functions by computerizing current knowledge 
on cellular processes and standardizing gene 
annotations [38, 39]. In this study, to investi-
gate the functions and enriched pathways of 
these DCGs, GO functional enrichment and 
KEGG pathway enrichment analysis for DCGs 
were performed using the online tool DAVID 
[40] (http://david.abcc.ncifcrf.gov/tools.jsp). In 
DAVID, the significant categories were identi-

targets and common genes

In E-GEOD-30282, we got 6 DE miRNAs, includ-
ing two up-regulated miRNAs (miRNA-150 and 
miRNA-155) and four down-regulated miRNAs 
(miRNA-1180, miRNA-124, miRNA-169-5P and 
miRNA-424*). Based on these DE miRNAs, 
1270 target genes (included 710 up-regulated 
and 560 down-regulated target genes) were 
predicted using five target gene prediction algo-
rithms with SUM ≥ 4 (Table 1). 

In E-GEOD-1563, we got 698 DE mRNAs under 
the criterion of FDR ≤ 0.05, including 138 up-
regulated genes and 560 down-regulated ge- 
nes. Overlapping the miRNA target genes and 
DE mRNAs, 59 genes were identified as com-
mon genes. The common genes were selected 
for further research.

Identification of co-expression network and 
modules

We applied the DCGL 2.0 package in R to iden-
tify DCGs and DCLs in acute renal allograft 
rejection cases and well-functioning allograft 
from mRNA microarray data. A total of 103 
DCGs were identified by DCp and DCe methods 
with the absolute value of correlation coeffi-
cient higher than 0.7. In RIF metric, we obtained 
5 genes with RIF value which were TFs. The 5 
TFs were ARID5B, MECOM, NFE2L1, STAT1 and 
CEBPB, thereinto ARID5B had no correspond-
ing target and only CEBPB mapped on the co-
expression network. The co-expression net-
work of the DCGs was shown in Figure 1. 

Biological network is considered as a scale-free 
network whose degree distribution follows a 
power law in the real network. The scale-free 
property strongly correlates with the network’s 
robustness. According further analysis, we fo- 
und that our co-expression network was con-
firmed to the scale-free network whose degree 

Table 1. The number of predicted target genes by different target 
gene prediction algorithms
miRNA miRanda miRDB miRWalk RNA22 Targetscan SUM ≥ 4
hsa-miR-150 348 222 346 151 349 349
hsa-miR-155 358 305 360 82 361 361
hsa-miR-139-5p 197 197 197 0 197 197
hsa-miR-124 354 354 354 0 354 354
hsa-miR-1180 9 9 9 0 9 9
has-miR-424* 0 0 0 0 0 0

fied by EASE score. The 
threshold of EASE score < 
0.05 and the minimum 
number of genes for the cor-
responding term > 2 were 
considered significant for a 
category.

Results

Identification of DE miR-
NAs, DE mRNAs, miRNA 
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distribution followed a power 
law (y = axb, where a = 38.73, 
b = -1.157; R2 = 0.9482) 
(Figure 2).

In a scale-free network, the 
vertice with a degree greatly 
exceeds the average. The 
nodes with high degree are 
often called ‘hubs’ or ‘old’ 
nodes which are thought to 
serve crucial importance. 
There were several ‘hubs’ in 
this co-expression network, 
such as C1R (degree = 13), 
OGDH (degree = 12) and TU- 
BG1 (degree = 10). Common 
genes, such as BASP1, 
AKAP10 and RXRA, also 
showed relative high degree.

Figure 1. Co-expression net-
work of the DCGs constructed 
in acute renal allograft rejec-
tion. Each node represents a 
DCG, and the edge links two 
co-expressed gene pair. The 
blue node represents DCG. 
The red node represents tar-
get gene of miRNA and DCG. 
The yellow node represents TF 
and DCG. (DCGs: differentially 
co-expressed genes; TF: tran-
scription factor).

Figure 2. The scattergram of gene degree in co-expression network. The co-
expression network was a scale-free network whose degree distribution fol-
lowed a power law (y = axb, where a = 38.73, b = -1.157).
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ClusterONE plugin of Cytoscape software was 
used to extract modules. We got 5 modules 
that were shown in Figure 3. Module 1 had the 
highest degree and it included 2 target genes 
of DE miRNAs (Figure 3A). Module 2 had the 
most number of gene and included 4 target 
genes (Figure 3B). The TF CEBPB was mapped 
on Module 4 (Figure 3D). Module 3 and 5 con-
tained fewer DCGs with lower degree (Figure 
3C and 3E). 

Pathway enrichment analysis 

To annotate the 103 DCGs, pathway analysis 
based on KEGG was preformed. These DCGs 
were significantly yielded in focal adhesion (P = 

0.011) and prion diseases (P = 0.043). By GO 
analysis, it was found that these genes mainly 
participated in bioprocess of regulation in 
apoptosis (P = 6.19E-7), programmed cell de- 
ath (P = 7.19E-7), and cell death (P = 7.60E-7).

Discussion 

Renal transplantation, which was defined as 
the organ transplant of a kidney into a patient 
with end-stage renal disease, was firstly pre-
formed on 1950 in the United States. Un- 
fortunately, the donated kidney was rejected 
because of lack of immunosuppressive drugs. 
Although renal transplantation has progressed 
from a risky experimental therapy to a safe and 

Figure 3. Modules of the co-expression network. Each 
node represents a DCG, and the edge links two co-ex-
pressed gene pair. The blue node represents DCG. The 
red node represents target gene of miRNA and DCG. 
The yellow node represents TF and DCG. A: Module 1; 
B: Module 2; C: Module 3; D: Module 4; E: Module 5. 
(DCGs: differentially co-expressed genes; TF: transcrip-
tion factor).
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life-saving treatment, acute immune rejection 
of the allograft is still a common issue for al- 
lograft recipients. At presently, the specific pa- 
thogenesis is still unclear. A deeper under-
standing of molecule mechanisms of acute 
rejection may help us to identify diagnostic 
methods and new targets for therapy.

In this study, we got 698 DE mRNAs between 
renal allograft with acute rejection and well-
functioning allograft. Meanwhile, 2 up-regulat-
ed and 4 down-regulated miRNAs were revea- 
led. Previous studies of acute renal allograft 
rejection demonstrated that there were signifi-
cant differences in the expression of multiple 
genes [21, 41-43]. Li B. et al. demonstrated 
that the expression of mRNAs encoding cyto-
toxic attack proteins granzyme B and perforin 
was increased in human acute renal allograft 
rejection [42]. Muthukumar T. et al. reported a 
noninvasive means of measurement of FOXP3 
mRNA in urine to improve the prediction of out-
come of acute renal allograft rejection [41]. 
Over the past years, the role of miRNAs in pre-
dicting allograft rejection has been investigat-
ed by several research groups and still is a 
topic of interest. However, the published results 
showed a significant heterogeneity. Anglicheau 
et al. used miRNAs expression profiles to pre-
dict human renal allograft status, and investi-
gated that miR-142-5p, -155, -223 were over-
expressed in acute rejection biopsies [44]. In 
the Wilflingseder paper, 10 up-regulated miR-
NAs and 18 down-regulated ones were found 
[18]. Sui W et al. demonstrated that 20 miRNA 
were differentially expressed in acute rejection 
samples and normal controls [19]. 

Remarkably, different from previous studies in 
which normal biopsies were selected as control 
group, our study considered well-functioning 
renal allograft as controls when detecting DE 
genes. When comparing acute rejected renal 
allograft with well-functioning allograft, it will be 
more conducive to understand the molecule 
pathogenesis of acute rejection, develop accu-
rate therapeutic strategies for acute renal 
allograft rejection, and at the same time im- 
prove success rate of renal transplantation.

In order to gain more robust genetic markers of 
human renal allograft rejection, we improved 
our study in two ways: the improvement of 
miRNA targets predictive accuracy by combin-
ing multiple bioinformatic strategies and the 

acquirement of common genes between miRNA 
targets and DE mRNAs. In this study, we pre-
dicted the target genes of DE miRNAs associ-
ated with human renal allograft rejection and 
well-functioning allograft. Comparing with DE 
mRNAs, we obtained 59 common genes, and 
seven of them were mapped on the co-expres-
sion network. 

RXRA (degree = 5), one of the common genes in 
module 2, was included in pathway in cancer. 
Previous studies had shown the biological sig-
nificance of RXRA in a variety of diseases, such 
as Alzheimer’s disease [45], colon adenoma 
[46], tetralogy of Fallot [47] and dyslipidemia 
[48, 49]. Studies of vitamin D pathway showed 
that RXRA polymorphisms were associated 
with increased renal cell carcinoma risk [50, 
51]. However, little is known whether RXRA 
plays a role in human acute renal allograft 
rejection. Our study found that RXRA was in- 
cluded in the terms of defense response, 
response to wounding and acute inflammatory 
response by the functional analysis. Combined 
with the significant role in co-expressed net-
work, we predicted that RXRA might be related 
to acute renal allograft rejection. 

In the co-expression network, CEBPB, as the 
only TF mapped on the network, was directly 
connected to C1R and LSM7. A large amount of 
target genes of CEBPB had been confirmed by 
many scientists, such as IL-6 [52], TNF-alpha 
[53], ABCC2 [54] and CREB1 [55]. Yu et al. pre-
dicted 106 potential CEBPB target genes in 
acute promyelocytic leukemia induced by all-
trans retinoic acid using high-throughput ap- 
proach [56]. A new study in mice found that in 
the case of CEBPB deficiency, musculoskeletal 
phenotypes would show the symptom of cleido-
cranial dysplasia [57]. Tsutsui T et al. indicated 
that CEBPB could regulate many target genes 
associated with immune response, such as 
PRMT5 and DNMT3A [58]. C1R as the CEBPB 
target gene showed the highest degree in the 
co-expression network (degree = 13), indicat-
ing that C1R played an important role for the 
co-expression network. C1R gene encodes a 
protein named C1r protease which belongs to 
complement component [59]. A study of C1R 
found that its deficiency was associated with 
cutaneous and renal disease because of the 
impairment of bactericidal activity and immune 
adherence [60]. It was also reported that C1R 
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was significantly expressed in both autografted 
and allografted skins in a few days after skin 
graft in mouse, and showed that C1R might be 
associated with the graft versus host immune 
responses in mouse [61]. So CEBPB and C1R 
were also predicted as genes associated with 
acute renal allograft rejection. 

In present study, clustering was used to build 
groups of co-expressed genes, in which con-
tained functionally related genes, such as ge- 
nes that were co-regulated, or genes in a spe-
cific pathway. In our research, we got 5 mod-
ules. Thereinto, module 1 showed the highest 
degree with 2 common genes. Module 2 had 
the most number of DCGs and common genes. 
Maybe module 1 and module 2 played more 
important role in acute renal allograft reje- 
ction.

Conclusion

In our study, we identified DE mRNAs and DE 
miRNAs between acute rejected renal allograft 
and well-functioning allograft, respectively. 
Then, the DE miRNA target genes were predict-
ed by combining five algorithms. Next, we 
obtained 59 common genes by overlapping DE 
mRNAs and target genes of DE miRNAs bet- 
ween renal allograft with acute rejection and 
well-functioning allograft. Co-expression net-
work of DCGs was constructed, and TF CEBPB 
and several common genes were mapped on 
the co-expression network. They were predict-
ed to be associated with human acute renal 
allograft rejection. One limitation of this study 
is that DCGL 2.0 package used to co-expres-
sion analysis is only suitable for individual mi- 
croarray dataset, thus, this limits the integra-
tion of multiple studies in present study. In con-
clusion, this study can help us to understand 
the pathogenesis of human acute renal allograft 
rejection which was helpful for the diagnosis 
and treatment of human acute renal allograft 
rejection.
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