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Abstract: Type 1 diabetes (T1D) is an autoimmune disorder characterized by the immune destruction of the 
insulin producing β cells of the pancreatic islets.  Autoimmunity towards pancreatic antigens results from complex 
interactions between multiple genes, environmental factors and the immune system.  The autoimmune process 
may occur many years before the onset of clinical diabetes and this long asymptomatic period provides excellent 
opportunities for the prediction and prevention of the disease. Research in past four decades has identified a 
number of risk factors including susceptibility genes, gene and protein expression changes, cellular changes as 
well as environmental triggers, which may serve as excellent biomarkers for risk assessment.  Furthermore, 
demographic and clinical parameters such as age and family history of diabetes and other autoimmune diseases 
are also important for risk assessment.  Despite the identification of multiple useful biomarkers, the existing tests 
for T1D prediction are still imperfect and earlier biomarkers are also urgently needed.  Because of the insufficient 
predictive power of individual risk factors, future biomarkers with better predictive power will most likely take 
advantage of the combinatorial power of multiple biomarkers of different nature and the integration of various 
biomarkers and demographic/clinical information will be the key to success. 
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Introduction 
 
Autoimmune diseases, as a whole, affect a 
significant proportion of the population, 
especially in elderly women 
(http://www.wrongdiagnosis.com/a/ai/prevale
nce.htm).  It is now recognized that 
autoimmune diseases should be considered 
as a related group of diseases because they 
share common genetic and immunological 
mechanisms[1]. Type 1 diabetes (T1D), also 
known as insulin dependent diabetes mellitus 
(IDDM), is primarily a childhood autoimmune 
disease with selective destruction of the 
pancreatic β-cells, leading to insulin 
insufficiency over time [2]. Genetic 
susceptibility in synergistic combination with 
environmental triggers leads to the 
development of immune response towards self 
antigens expressed by the pancreatic β-cells 
that produce insulin, resulting over time in the 
loss of β-cell mass and finally loss of glucose 
homeostasis.  The incidence of T1D varies in 
different countries and populations [3,4] with 

Finland, Scandinavia and Sardinia having the 
highest incidences (30-50/100,000 per year).  
The incidence is much lower in Asian countries 
(1-2/100,000 per year), while it is 12-
15/100,000 per year in the US Caucasians  
[3-7]. Approximately 90% of cases are 
sporadic, occurring in individuals with no 
family history of T1D. However, first degree 
relatives (FDR) of patients with T1D are at 
increased risk compared to the general 
population. In Caucasians, the risk of T1D in 
the general population is 0.4% and the risk of 
siblings of affected individuals is about 6%, 
approximately 15 fold higher than the general 
population [8-10]. 
 
It is believed that genetic susceptibility is a 
prerequisite for the development of T1D; 
however, not all genetically predisposed 
individuals do develop clinical disease.  The 
vast majority (~90%) of the T1D patients 
develop autoantibodies against pancreatic β-
cells before the clinical onset [11-15].  
Although the time period between the 
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appearance of autoantibodies and clinical 
onset varies greatly, it usually takes years for 
the clinical disease to occur [15].  
Furthermore, only a proportion of the 
autoantibody-positive individuals will progress 
to clinical diabetes.  This lengthy 
asymptomatic period, from genetic 
predisposition to prediabetes marked by 
autoimmunity (autoantibodies and cellular 
immunity) and finally to clinical disease, 
provides excellent opportunities for disease 
prevention.  However, prevention for human 
T1D is still not available today for many 
different reasons including the difficulties of 
accurately identifying sufficient number of high 
risk population, our inability of conducting 
large numbers of clinical trials, and 
heterogeneous and poorly understood etiology 
of the disease.  Therefore, prevention tailored 
for the whole at-risk population may not be 
effective and personalized prevention 
strategies based on one’s own risk and 
etiology may prove to be more efficient.  To 
achieve these ambitious goals, biomarkers for 
the disease process are urgently needed for 
both risk assessment and more importantly for 
tailoring and monitoring therapies.  In this 
review, we will focus on the existing knowledge 
and recent development in the area for T1D 
biomarkers and discuss pitfalls of previous 
studies and potential solutions. 
 
Susceptibility genes 
 
The increased risk in siblings versus the 
general population (λs = 15) as well as the 
high concordance rate in identical twins 
(~50%) are indications of the importance of 

genetic factors in T1D pathogenesis [16-19].  
Search for genetic factors implicated in T1D 
started in the 1970s and the effort intensified 
in the 1990s.  The search for genetic factors in 
all common diseases including T1D had three 
distinct stages, each corresponding to 
technological advances and new theoretical 
realization.  The initial phase (1970s – 1991) 
consisted of testing well known candidate 
genes.  Initially, a strict case control study 
design was employed and later study design 
has incorporated family-based 
association/linkage approach  [20-23].  
Candidate gene analysis was made possible by 
the discovery of protein-based polymorphisms 
such as the human leukocyte antigens (HLA) 
and DNA polymorphisms such as the variable 
number of tandem repeats (VNTR) in the 
insulin (INS) gene [23-25].  This strategy was 
initially quite successful and has been 
attempted for over 100 T1D candidate genes 
from the very beginning till this day.  All but 
one confirmed T1D genes currently known 
(Table 1) have been discovered using this 
candidate gene approach.  The first T1D 
susceptibility region, e.g., HLA (IDDM1), was 
initially discovered in the early 1970s using 
case control studies [20-23].  Genes within the 
HLA have since been extensively studied in 
multiple populations [26-36].  It turned out 
that the HLA is the most important 
susceptibility gene for T1D and many other 
autoimmune diseases.  The region harbors 
multiple classical and non-classical HLA genes 
implicated in susceptibility and protection of 
T1D. Insulin (IDDM2) is the second 
susceptibility gene discovered for T1D. It was 
initially found to be associated with T1D in the 
early 1980s using case control studies and 

Table 1. Known T1D susceptibility genes and strong candidate genes 
Locus Chromosome Genes or candidates Function/Mechanism 
IDDM1 6p21 DRB1, DQA1, DQB1 Antigen presentation 
IDDM2 11p15 INS Ag-specific T cell selection 
IDDM12 2q33 CTLA4 Down-regulation of T cell activation 
 1p13 PTPN22 Down-regulation of T cell activation 
 12q24 PTPN11 (?) Down-regulation of T cell activation 
IDDM10 10p11-q11 IL-2Rβ T cell activation 
 12q13 IKZF4 (?) T cell function 
IDDM5 6q25 SUMO4 Control NFKB & cytokines 
IDDM18 5q31-33 IL12B Proinflammatory cytokines 
 2q24 IFIH1/ GCA / KCNH7 (?) Innate immune response / antigen 

presentation / insulin secretion 
 6p21 ITPR3  Insulin secretion 
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then confirmed using family-based studies  
[23-25,37,38]. The third confirmed T1D gene 
was not discovered until the late 1990s when 
another well known candidate gene, CTLA4, 
was tested by association studies using both 
population and family-based study designs 
[38-42].  More recently, candidate genes 
including PTPN22 [43-46] and IL2RA [47,48] 
have been shown to be T1D genetic factors 
(Table 1).   
 
Despite the initial and more recent success of 
the candidate gene approach, it does not allow 
the systematic discovery of all genetic factors 
until all genes have been tested.  The 
discovery of large number of genetic 
polymorphisms, namely the microsatellite 
markers that are abundant and distributed 
across the whole genome, allowed the 
implementation of a more systematic 
approach to investigate the genetic factors for 
common diseases.  The approach chosen by 
all investigators was to search for linkage in 
the entire genome using patient pedigrees, an 
approach that was widely successful for single 
gene disorders and lead to the discovery of a 
large number of Mendelian disease genes 
since the late 1980s.  Because the limited 
availability of extended pedigrees for common 
diseases like T1D, affected sibpair analysis 
was the popular method of choice for linkage 
analysis [23].  Research in the 1990s in 
multiple laboratories has lead to the 
identification of over 20 suggestive linkage 
intervals including the regions for several 
known susceptibility genes [23].  Despite the 
localization of these linkage intervals, the 
studies were all underpowered and many 
linkage intervals may not true and others may 
escape detection.  The disease genes and 
etiological mutations have not been identified 
in the new linkage intervals with one notable 
exception, e.g., IDDM5.  IDDM5 was mapped 
to the 6q25 region.  A combination of linkage, 
association and functional studies using 
genetic markers in the region identified 
SUMO4 as the susceptibility gene [49]. This is 
the only T1D susceptibility gene identified 
using linkage/positional cloning techniques.  
The gene turned out to be relatively strong and 
uniform in the Asian populations; however, the 
association between SUMO4 and T1D in the 
Caucasian populations is inconsistent and 
much weak than in the Asian populations 
[36,50-54].  The lack of success with linkage 
analysis and positional cloning can be 
attributed to many factors including the 

tedious nature of positional cloning, small 
effect size of the gene and lack of sufficient 
number of families required for such studies. 
However, the lack of progress in individual 
research laboratories lead funding agencies 
(NIH and JDRF) to create the worldwide T1D 
Genetics Consortium (T1DGC), which has the 
goal of collecting thousands of sibpair and 
simplex families with T1D from all over the 
world [55].  The T1DGC collection should have 
been a valuable resource for the studies of 
T1D genetics.  However, its potential has not 
been realized.  This is partly because linkage 
analysis has proven not to be an ideal method 
for studying complex disease genes and the 
field of complex disease genetics has shifted 
its focus to the third stage of analytical 
approaches, genome-wide association (GWA) 
[56,57]. 
 
As a by product of the human genome project, 
a huge number of single nucleotide 
polymorphisms (SNPs) have been identified in 
the human population.  These SNPs provided a 
new set of tools critical for genetic analysis of 
complex traits.  In addition, the development 
of affordable high throughput technologies to 
rapidly analyze large numbers of SNPs has 
revolutionized how complex diseases are 
studied.  These technologies allowed the 
analyses of 0.5 – 1 million SNPs in the whole 
human genome and thousands of patients and 
controls.  Two whole genome scans 
[56,57]and one scan using a large number of 
non-synonymous SNPs have been reported for 
T1D [58].  These studies identified several 
new regions associated with T1D.  As cases 
and controls are much easier to ascertain, the 
studies can be quickly confirmed in other 
populations and ethnic groups.  Identification 
of associations also speeds up the 
identification of the etiological mutations as 
association only occurs when the genetic 
marker is very close to the etiological 
mutation.  It is hoped that a number of new 
T1D genes will be identified in the near future 
and functional studies will be carried out to 
elucidate the molecular mechanisms 
underlying the disease. 
 
Identification of complex disease genes is 
complicated by many factors.  Genetic 
heterogeneity is a major issue.  Due to 
differences in gene frequencies and patterns 
of linkage disequilibrium in different ethnic 
groups or populations, associations may be 
found in one study but not another 
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[36,42,50,54,59-61].  Therefore, studies of 
multiple populations and ethnic groups are 
required to identify all susceptibility genes.  
Trans-racial studies are also a powerful tool for 
identifying etiological mutations as illustrated 
by the studies of the HLA genes.  Gene-gene 
interaction is another important issue.  
Attempts to identify susceptibility loci that, on 
their own, have marginal effects by use of 
gene-gene interaction tests have increased in 
popularity. The results obtained from analyses 
of epitasis are, however performed at small 
scale and difficult to interpret. Gene-gene 
interaction, albeit only marginally significant, 
has recently been reported for the interleukin-
4 and interleukin-13 genes (IL4 and IL13) with 
the interleukin-4 receptor A gene (IL4RA), 
contributing to the susceptibility of T1D [62-
64].  There is still uncertainty concerning the 
joint action of the two established T1D 
susceptibility loci, the HLA class II genes 
(IDDM1) and the insulin gene (IDDM2) [65]. 
 
Unlike single gene disorders, complex 
diseases are influenced by environmental (or 
non-genetic) factors.  As a result, the 
correlation between genotype and phenotype 
is not perfect, with disease outcome being 
determined by interactions between 
susceptibility genes and environmental 
determinants.  Identification of susceptibility 
genes will aid the identification of 
environmental factors, which will in return aid 
the discovery of other susceptibility genes 
through analysis of gene-environment 
interactions.  The TEDDY (The Environmental 
Determinants of Diabetes in the Young) study 
was designed precisely with these goals in 
mind and should result in the discovery and 
confirmation of both genetic and 
environmental factors [66,67]. 
 
Both genome-wide linkage and association 
scans indicated that the most important T1D 
genes reside within the HLA region.  The HLA 
region may confer up to 50% of the total 
genetic risk according to some estimates,  but 
much lower according others [32]. Irrespective 
of the precise percentages, only the HLA class 
II genes have been used for assessing T1D 
risk at this time.  Genotyping the HLA class II 
loci has been used in several large population-
screening programs including the PANDA, 
DIPP, DAISY, Dewit, and DiPiS studies  [68]. 
More recently, TEDDY has also adopted the 
strategy to screen for high risk subjects using 
HLA class II genes in order to identify the 

environmental triggers of T1D through long 
term fellow up studies of the genetically at-risk 
cohort [66,67].   The HLA genes in T1D have 
been extensively reviewed elsewhere and the 
details will not be discussed here [8,9,69].  We 
should emphasize that the HLA-based test has 
very low specificity.  For example, the HLA 
genotype with the highest risk (DR3/4 with 
DQB1*0302) has only a life-time risk of about 
7% for a subject without a diabetic FDR and 
20-30% of risk for a FDR of a T1D patient [8]. 
This genotype only identifies 30-50% of the 
T1D patients depending on the populations 
[8]. Four HLA genotypes from the general 
population are eligible for TEDDY follow-up: 
DR3/4, DR4/4, DR3/3 and DR4/8 (DR3 
haplotype contains DQA1*0501-DQB1*0201, 
DR4 haplotypes contains DQA1*030x-
DQB1*0302 and DR8 haplotype contains 
DQA1*0401-DQB1*0402).  Adding additional 
genotypes will undoubtedly increase the 
sensitivity to identify T1D patient but will 
decrease the specificity of the test.  The 
frequencies of these high risk genotypes in the 
general population and T1D patients vary 
significantly among different ethnic groups as 
well as geographic populations.  For example, 
these four genotypes can identity 
approximately 62% of the Caucasian patients 
but only 32% of African American patients in 
Georgia (unpublished data).  Therefore, it is 
essential to design population-specific 
inclusion criteria for HLA-based screening 
programs. 
 
The specificity and sensitivity as well as the 
positive predictive value need to be improved 
for the test to become clinically useful.  Adding 
non-HLA genes to the test should enhance the 
value of genetic testing; however, a common 
feature for the “non-HLA genes” is their small 
effect on the disease.  Therefore, any single 
gene does not offer great value for disease 
prediction.  It is hopeful that their predictive 
value can be realized when multiple genes are 
used in combination. One of the main areas of 
future genetic studies should focus on figuring 
out how to use the HLA and non-HLA genes for 
risk assessment. 
 
Gene expression 
 
The human genome project has lead to the 
identification of some 32,000 genes in human 
cells. The expression levels for this complete 
set of genes can now be assessed using 
microarray technology.  This advancement has 
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fundamentally changed how investigators 
approach biomedical questions and provides 
unparalleled opportunities for biomarker 
discovery.   Multiple microarray platforms 
including the Affymetrix and Ilumina systems 
have been developed and are widely used for 
gene expression profiling studies. Dissection 
of global changes in gene expression during 
pre-disease states, disease progression, and 
following clinical treatment can provide great 
insight into disease mechanism and treatment 
management.  Microarray has been applied to 
many cancer studies with great success.  For 
example, early investigations distinguished 
acute myeloid and acute lymphoblastic 
leukemia cells using gene expression profiling 
[70]. Subsequent studies have used 
microarray technology to predict outcomes in 
breast and ovarian cancers [71,72]. 
Additionally, classification of diffuse large B-
cell lymphomas on the basis of gene 
expression profiles can identify clinically 
significant subtypes of cancer and the new 
classification has significant prognostic 
implications [73]. Microarray has also been 
applied to the studies of several autoimmune 
diseases. Examination of systemic lupus 
erythematosus (SLE) using microarray 
technology identified a subgroup of patients 
who may benefit from new therapeutic options 
[74,75].  Novel treatments for diseases, such 
as multiple sclerosis, have also been 
suggested by gene expression profiling 
[76,77].  Our group has extensively used 
microarray to study T1d in both animal models 
and human subjects.  A number of these 
genes are differentially expressed during the 
progression to disease in the NOD mice [78]. 
Similarly, over 100 genes are up-regulated in 
T1D subjects [79]. Most of these genes are 
also up-regulated in prediabetic subjects, 
suggesting that they may be useful predictive 
markers.  Many of the differentially expressed 
genes were found to be involved in important 
immunological functions including antigen 
processing and presentation, cytotoxicity and 
apoptosis, and immune regulation [79].  
Upregulation of several proinflammatory 
mediators and markers was found between 
diabetic and prediabetic subjects [79]. The 
expression profile of several groups of genes, 
important for cell proliferation, transcription 
and translation, as well as mitochondrial 
genes was consistent with the earlier reports 
about cellular activation in T1D and 
prediabetic subjects, as expected in an 
autoimmune state due to increased cellular 

activation and proliferation [79].  Some of the 
genes were also identified by a microarray 
study in rheumatoid arthritis patients [80], 
suggesting that autoimmune diseases may 
share common expression profiles for certain 
genes and genetic pathways.  One challenge 
for T1D studies in human subjects is the 
limited access to the pathologic tissues where 
the molecular and cellular events take place.  
Although changes in the peripheral blood may 
exist, the extent of difference is usually small 
as suggested by our global gene expression 
studies.  Further, there is large individual 
variations in both patient and control samples.  
Therefore, large number of samples may have 
to be analyzed to identify and confirm the 
differences.  Our experience indicates that at 
least several hundred subjects in each group 
must be studied to validate the expression 
differences that we have seen in the 
microarray datasets. 
 
Islet autoantibodies and autoreactive T cells 
 
The presence of autoantibodies against islet 
antigens is a hallmark for the development of 
T1D. Several autoantibodies have been 
detected before or at the onset of the disease 
[81].  Four islet autoantibodies appear to be 
the most useful T1D markers.  These are islet 
cell autoantibodies (ICA), autoantibodies to 
insulin (IAA), autoantibodies to the tyrosine 
phosphatases IA-2 and IA-2β and 
autoantibodies to glutamate decarboxylase 
(GADA)[82-86]  Other β-cell autoantigens 
include carboxypeptidase-H, islet cell antigen 
(ICA)-69, GM Gangliosides, a 38 kd 
autoantigen and SOX13.  Novel autoantibodies 
are still being discovered [87], for example, 
the zinc transporter (ZnT8) which is the most 
recently discovered T1D autoantigen [87].  ICA 
is the first major autoantibody identified for 
T1D.  At the onset of T1D more than 70% of 
the patients are positive for ICA [83]. ICA 
measurement is technically challenging due to 
the semi-quantitative indirect fluorescent 
assay systems, which are difficult to 
standardize despite of significant 
improvements.  IAA is normally among the first 
autoantibody that appears in young 
children[86].  At disease onset IAA is found in 
35-60% of young children but their frequency 
is less in teenagers and adults[86]. IAA by 
itself is not highly predictive but can be used in 
combination with other islet autoantibodies for 
prediction [11,12,86]. Autoantibodies to GAD 
have been proven to be valuable markers for 
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T1D and are detectable many years before the 
clinical onset of the disease and are seen in 
both ICA positive and ICA-negative FDR 
subjects. Approximately 70-80% of newly 
diagnosed T1D patients and 3-5% of FDR have 
autoantibody to GAD.  IA-2A and IA-2B 
autoantibodies are detected in more than 55-
75% of newly diagnosed T1D patients [82,84-
86]. These autoantibodies normally appear 
after IAA and/or GADA [88]. 
 
The zinc transporter autoantibodies (ZnT8A) 
were detected in 60-80% of new-onset T1D 
compared with <2% of controls and <3% type 
2 diabetes patients and in up to 30% of 
patients with other autoimmune disorders with 
a T1D association. ZnT8 autoantibodies 
(ZnT8A) were found in 26% of T1D subjects 
classified as autoantibody-negative on the 
basis of existing markers (GADA, IA-2A, IAA, 
and ICA). ZnT8A were detected as early as 2 
years of age and increasing levels and 
prevalence persisting to disease onset in 
prospective monitoring. ZnT8A generally 
emerged later than GADA and IAA in 
prediabetes, although not in a strict order. The 
combined measurement of ZnT8A, GADA, 
IA2A, and IAA raised autoimmunity detection 
rates to 98% at disease onset [87]. 
 
T1D prediction is greatly enhanced by islet 
autoantibodies [14,89-91].  Although the 
pathogenic implications of circulating 
autoantibodies are not fully understood, their 
use as indicators of islet cell destruction and 
impending clinical disease allow for the 
reasonable identification of individuals at 
increased risk for developing T1D, especially in 
conjunction with high-risk genetic factors 
and/or a family history of the disease. Many 
studies have shown that the presence of 
autoantibodies against islet antigens is very 
useful for T1D prediction in the FDR of diabetic 
patients as well as in the general population 
[14,81,90,92].  The risk of developing 
diabetes is strongly correlated to the number 
of autoantibody markers, that is, the presence 
of two or more autoantibodies gives a higher 
probability of developing the disease than the 
presence of single antibody [81,93,94]. The 
autoantibody assays have constantly been 
improved and the performance in most 
laboratories is quite excellent [95-97]. 
However, it is still very challenging to obtain 
consistent results across different laboratories 
for the low titer autoantibodies near the cutoff 
and a good proportion of the low titer 

autoantibodies may be false-positives.  
However, most of the discrepancies may be 
resolve when the autoantibody titer increases.  
Despite the utility of the autoantibodies in T1D 
prediction, they have several serious 
limitations.  First, the appearance of 
autoantibodies marks a relatively late stage of 
the autoimmune process and therefore is not 
suitable for early disease intervention.  
Second, only a subset of the autoantibody-
positive subjects will progress to clinical 
diabetes and therefore it would be useful to 
have biomarkers that allow the distinction of 
the progressors versus non-progressors.  Third, 
autoantibodies are not useful as biomarkers 
for therapeutic outcomes. 
 
Insulitis, infiltration of lymphocytes into 
pancreatic islets, evolves through several 
discrete stages that culminate in β-cell death. 
In the first stage, antigenic epitopes of β-cell-
specific peptides are processed by antigen 
presenting cells in local lymph nodes, and 
autoreactive lymphocyte clones are 
propagated. Subsequently, cell-mediated and 
direct cytokine-mediated reactions are 
generated against β-cells, and the β-cells are 
sensitized to apoptosis. Antigen specific 
immune reactions are believed to be involved 
in the destruction of pancreatic β-cells. 
Pancreatic β-cell autoantigens are the targets 
of immune mediated destruction. Autoreactive 
T-cells directed against β-cell autoantigens 
should be excellent markers for T1D and other 
autoimmune diseases [98,99].  However, 
currently available T cell assays are highly 
variable and lack sensitivity [100-103]. 
 
Cytokines, chemokines and other serum 
proteins 
 
Cytokines and chemokines are important 
mediators of immune responses due to their 
ability to recruit and activate leucocytes and 
other immune cells.  Cytokines have been 
proposed as inducers of β-cell damage in 
human T1D via the generation of NO 
[104,105]. Type-1 cytokines such as IL-2, IFN-γ 
and TNF-α dominate over an 
immunoregulatory subset of cytokines viz., IL-
4, IL-5 and IL-13, leading to imbalance 
between these two subsets. This allows the 
type-1 cytokines to initiate a cascade of 
immune-inflammatory processes in the islet, 
which includes activating macrophages to 
produce proinflammatory cytokines. The 
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proinflammatory cytokines IL-1β, IL-6 and TNF-
α have cytotoxic, cytostatic, or cytocidal 
actions on pancreatic islets by inducing NO 
production [106-108].  Recent reports suggest 
that the pancreas participates in TNF-α 
production during stress and the islets are 
predominantly responsible for this synthesis. 
IL-1β and TNF-α are important for the β-cell 
lyses in T1D, while IL-1 receptor antagonist (IL-
1Ra) is considered protective by blocking the 
effects of IL-1. In vitro TNF-α and IL-1β inhibit 
insulin release from β-cells [104,105]. It 
appears that the process of autoimmune 
aggression against β-cells and its effect on 
insulin release and glucose homeostasis is a 
slow and chronic process [109].  In some 
studies performed with newly diagnosed T1D 
patients, production of IL-1 was found to be 
increased significantly when compared with 
chronic T1D patients and healthy controls 

[110]. Circulating concentrations of IL-1Ra in 
chronic T1D patients was increased; with no 
changes in TNF synthesis [111,112]. A 
proinflammatory imbalance in T1D patients 
may play an important role in β-cell loss.  

Figure 1: Literature survey on systemic levels of cytokines, chemokines and other serum proteins. A: type of 
studies performed, B: Number of subjects involved in the study including controls and patients, C: Number of 
markers analyzed in each study, D: Mean expression differences observed between the controls and T1D 
patients.  
 

 
Local generation of chemokines by islet cells 
may be important in the initiation and 
regulation of inflammatory processes during 
insulitis. This hypothesis is supported by 
several reports that demonstrated that high 
levels of MCP-1, IP-10 are released by islets 
cells during autoimmune attack [113-116]. IP-
10 is a member of the CXC family of 
chemokines [116].  It attracts activated T-
helper 1 (Th1) and natural killer (NK) cells 
expressing the CXCR3 receptor [116]. Serum 
concentration of IP-10 has been found to be 
elevated in new onset T1D patients and in 
autoantibody-positive relatives [117,118].  
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Circulating levels of soluble adhesion 
molecules have been studied in T1D patients 
but the results are usually inconsistent. 
Several studies have found an increase in 
serum concentrations; however, other studies 
reported no difference or even decreased 
levels [119-125]. Whether the increased 
concentrations of soluble adhesion molecules 
represent spillover from an active destructive 
process or a compensatory mechanism by 
which the immune system tries to protect the 
target tissue against destruction remains an 
open question. The physiological role of 
soluble adhesion molecules is unknown but 
considering the crucial impact of cell adhesion 
molecules in lymphoid-endothelial interactions 

increased concentrations in circulation, shed 
from the cell surface, could be an 
epiphenomenon of immune activation and 
thus might provide a useful monitor of disease 
activity in inflammatory disorders. So far the 
studies on the role of soluble adhesion 
molecules in T1D have been cross-sectional, 
with no proper data on the dynamics of these 
molecules in pre-clinical diabetes. The only 
large study published to date is the EURODIAB 
prospective complications study group that 
analyzed 540 cross-sectional subjects. In this 
study a positive relationship was reported 
between unadjusted values of sVCAM-1 and 
sE-selectin with non-proliferative and 
proliferative retinopathy, micro- and 
macroalbuminuria and CVD. After adjusting for 
age, sex, duration of diabetes, BMI, and other 
complications strong significant associations 
were found between sVCAM-1 and 
macroalbuminuria [124]. 
 
A PubMed search on serum proteins under 
category of cytokines, chemokines, matrix 
metalloproteases, acute phase proteins and 
other soluble proteins; results in a total of 270  
reports. We analyzed these reports in terms of 
number of subjects involved in the study, type 
of study, number of markers and mean 
differences between the groups (Figure 1). All 
published literature reported positive 
relationships between various cytokines, 
chemokines and adhesion molecules in T1D 
patients. It is apparent that there studies have 
many limitations.  The vast majority of these 
studies (95%) are of cross-sectional design 
(Figure 1A).  Therefore, it is difficult to know 
whether the serum protein changes are 
involved in the disease process or 
consequence of the metabolic changes of 
diabetes. Another major drawback is the small 
number of subjects, resulting in low study 
power.  As shown in Figure 1B, 80% of the 
studies were performed with ~50 subjects 
including patients and controls. In studies with 
small number of subjects, many of the 
observations could be due to random 
variation, rendering the observations difficult 
to replicate.  On the other hand, true 
differences may be missed because of 
insufficient power to detect smaller 
differences with small sample size.  Therefore, 
all studies with small sample size would not 
allow any firm conclusion, whether positive or 
negative.  To illustrate this point, we performed 
an extensive study of serum proteins using the 
LUMINEX assays for 31 serum proteins and 

Figure 2: Heatmap showing the mean 
expression ratios between T1D and age-
matched controls for serum levels of cytokines, 
chemokines and MMPs. Each plate consists of 
40 patients and 40 controls. P1: Plate 1, P2: 
Plate 2, P3:  Plate 3, Comb: combined data from 
all three plates.  
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to thousands of samples may have to be 
analyzed to estimate the true mean 
concentrations and variations for most serum 
proteins. 
 
A third conclusion from the literature review is 
the small degree of differences between T1D 
and controls. The highest difference is 1.5 fold 

samples (120 T1D patients and 120 
ols) randomized on three 96-well plates.  
 plate contains 40 patients and 40 
ols.  Figure 2 presents the T1D/control 
s for each serum protein and each plate.  
 immediately apparent that the ratios 
ated using small sample sizes are highly 

ble.  Based on our experience, hundreds 

Figure 3: Representative charts showing distribution of mean fluorescent intensities (MFI) for selected 
proteins relative to their standard curves. Standards were serially diluted 1:3 to create 9 point standard 
curve(s).  Each concentration was assayed in duplicates (blue diamonds).  MFI’s of the samples (dashes) 
were then plotted along these standards to display distribution of MFI’s across the standard curve(s). Most 
samples have MFI’s below the lower end of the linear range of their respective standard curve. 
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or lower in more than 50% of studies (Figure 
1D). Although a few studies observed large 
differences in the means between T1D and 
controls, the differences are most likely 
caused by the extreme expression levels in a 
mall number of subjects.  In these cases, the 

ance proteins. Assay 
ensitivity is especially critical for high 

 individual or 
isease state and thus have a huge potential 

of new markers for T1D. The initial 
fforts in proteomics have focused on protein 

er in their 
ellular and sub-cellular distribution; their 

s
median expression levels are usually not 
significantly different.  A fourth conclusion 
from the literature review is the small number 
of molecules analyzed in each report (90% of 
the studies assessed only one or two 
molecules) (Figure 1C).   
 
Serum proteins that may be used as 
biomarkers for the disease process are usually 
present in sub picomolar range. With the 
complexity of the serum proteome and the 
very high dynamic range, one has to pay 
attention to the sensitivity of the assay. 
Sensitivity of the assay is the capability of the 
assay to detect low abund
s
throughput assays. Unfortunately, most assays 
available today are not ideal for serum 
analysis.  As shown in Figure 3, the serum 
concentrations for many serum proteins such 
as GM-CSF, IFNγ and interleukins are below 
the linear range of the assay. Measurements 
for such proteins are not reliable and can lead 
to wrongful conclusions.  For generation of 
quality data it is necessary that most samples 
have concentrations within the linear range of 
the standard curve.  The sample volume 
should be adjusted to achieve good results. 
Unfortunately, better assays have to be 
developed for some proteins if their 
concentration is below the detection limit of 
the currently available assays.  
 
Proteomics 
 
Human serum contains thousands of small- to 
medium-sized peptides, as a result of various 
cellular activities, known as the serum 
proteome/peptidome. These peptides and 
proteins may provide valuable information 
about the health status of the
d
in discovery 
e
identification.  Recent mass spectrometry 
(MS)-based technology developments have 
provided useful platforms for both protein 
identification and quantification. Quantitative 
analysis of global protein levels, termed 
‘quantitative proteomics’, is important for the 
system-based understanding of the molecular 

function of each protein component and is 
expected to provide insights into molecular 
mechanisms of various biological systems. 
Several methods are widely used to generate 
global quantitative protein profiles, including 
two dimensional (2D) gel electrophoresis 
followed by MS analysis, stable isotope 
labeling-based quantification, MS signal 
intensity-based quantification and protein 
array-based quantification  [126]. The mass 
pattern from MS analysis, which does not 
require a high end mass spectrometer, 
provides the global changes in the protein 
profiles in health and disease states [127-
129]. Pattern-based analysis was once a 
method of choice in the recent past for 
prediction purposes and was touted highly for 
biomarker discovery. The MS patterns do not 
provide the sequence identity of the proteins 
for the development of more reliable assays 
and hence validation of pattern-based 
biomarkers is very difficult.  Similar approach 
was applied to T1D studies using SELDI-TOF in 
our lab [130].  It was shown that a large 
number of serum proteins may differ between 
T1D and healthy controls.  However, no single 
protein is able to distinguish T1D from controls 
but the use of multiple proteins hold promise 
as potential biomarkers for T1D [130].  
However, the proteins were not identified and 
follow-up studies were not feasible because of 
drift of the MS profiles over time.   
 
Proteomic studies are still in the infancy stage.  
Many issues remain to be solved before 
complex proteomes like the serum can be fully 
analyzed.  A common feature of biological 
samples is their extraordinary complexity, 
which is a result of the high 
multidimensionality of their protein 
constituents. These proteins diff
c
occurrence in complexes; their charge, 
molecular mass and hydrophobicity; and their 
expressed levels and post-translational 
modifications (PTM). Due to the high dynamic 
range in protein concentration, the proteins 
that are readily analyzable by currently 
available methods are limited to the abundant 
proteins and low abundance proteins that are 
promising biomarkers are difficult to detect 
and quantify.  This difficulty is particularly 
noticeable in body fluids such as serum, where 
more than 99% of the protein complement 
consists of serum albumin and globulins 
[131].  Analyzing biological fluid proteomes 
with a vast dynamic range of 1012- 1015 of 

Int J Clin Exp Med (2008) 1, 98-116 107 



Purohit and She/Biomarkers for type 1 diabetes  
 

their protein abundance and occurrence of 
multiple protein isoforms, presents a major 
challenge for proteomic studies. Hence, a 
major effort in modern proteomics focuses on 
the development and application of 
complimentary fractionation/separation 
strategies that increase the detection and 
quantification of low abundance proteins. 
Most fractionation strategies utilize the 
chemical and physical properties, as well as 
post transcriptional modifications of proteins 
for development of orthogonal separation 
strategies.  Immuno-affinity based capture 
and/or depletion represents another well 
established approach to enrich protein 
subsets of interest. Multi modular 
combinations of liquid chromatography 
provide options for deconvulation of complex 
mixtures of proteins. Given the complex nature 
of mammalian proteomes, all these 
complimentary separation and enrichment 
techniques will facilitate the discovery of 
biomarkers.  Despite these recent advances, 
proteomic technologies still need significant 
improvement in several areas to become a 
powerful tool for biomarker discovery that it is 
expected to be.  
 
Computational technologies and multivariate 
models for prediction 
 
Previous and ongoing studies indicate that a 
large number of molecules may differ between 
T1D and controls; however, the degree of 
differences is too small for each single 
molecule to be an ideal biomarker.  The 

ccuracy of predictions can be significantly 
s 

 this regard, new 
omputational approaches are being 

 
roblem has been to focus more on those 

a
improved by using multiple molecule
simultaneously.  In
c
developed for selecting an optimal subset 
(model) or subsets of predictive molecules and 
assessing the prediction value of the models.  
A number of methods can be used for model 
selection based on classification of subjects 
into known classes. Discriminant analysis, a 
set of multivariate techniques, can be used to 
classify samples into known categories.  Many 
different models can be used in the 
discrimination including parametric (linear and 
quadratic discriminators) and nonparametric 
(e.g., kernel based discriminators, k-nearest 
neighbor discriminators) discriminators.  
Logistic regression is related to the parametric 
discriminators and logistic regression could be 
used to estimate the probability that an 
individual would get a complex disease [132].  

However, logistic regression suffers from the 
inability to accurately estimate the needed 
parameters when the two groups are perfectly 
separated based on the variables included in 
the model.  This problem could potentially be 
overcome using exact logistic regression 
[133].  However, genomic and proteomic data 
usually have a large number of variables 
relative to the number of study subjects 
resulting in sparse data, which may result in 
inaccurate estimates of the parameters 
needed to predict the status of new subjects.  
Principal components [134] and Classification 
and Regression Trees (CART) [135] are also 
widely used methods that can be used to 
classify subjects and predict new subjects’ 
status [136,137].  Neural networks and 
support vector machines are more 
complicated methods requiring more “training” 
than the other methods.  All of these methods 
have been used at least once with proteomic 
or microarray data; although only one study 
has compared these methods using the same 
data, finding that relatively simple 
discriminators tended to perform best [138].  
 
Irrespective of the statistical method, it is 
desirable to use only a subset of all possible 
molecules because of several considerations: 
(1) overfitting is a serious issue when a large 
number of molecules are used; (2) fewer 
molecules often give better predictions; and 
(3) it is more economic to assay for fewer 
molecules.  The simplest solution to this
p
variables that have the largest differences 
between the groups being examined 
[134,138].  However, such an approach 
ignores an important nature of the multivariate 
data; that is, molecules exhibiting small 
univariate differences can have a large 
contribution in a multivariate analysis.  Models 
with different numbers and combinations of 
variables must be examined to find an optimal 
set of molecules for multivariate models. 
However, examining all possible models would 
require evaluating 2p-1 models, where p is the 
number of variables included in the study (e.g., 
for a dataset with 100 proteins, the total 
number of models is approximately 1030) 
[79]. Such a task is not feasible when 
hundreds or thousands proteins are studied.  
One approach is to systematically search for 
an optimal set of molecules. In stepwise 
procedures, variables are added and/or 
removed at each step depending on a 
significance test or some measure of 
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information contributed by that variable to the 
difference between the groups.  This 
procedure continues until no variables can be 
added or removed.  Although stepwise 
procedures rely on tests or information for a 
single variable, all decisions are based on 
multivariate analyses [79].  
 
Regardless of the selection method, the 
selected models should have low prediction 
error rates, which are often evaluated based 
on cross-validation error rates. The actual 
prediction error rate is likely larger than the 
estimated rate because the estimates of the 
prediction error rate tend to have a high 
variance, especially leave-one-out cross-
alidation error rates.  The real predictive 

 T1D and 
otentially the therapeutic response.  

es 
ot determine the outcome of disease 

1) 
 JXS. SP is recipient of Advanced 

hip from JDRF, New York 
0-2006-792). 

v
value of a model has to be tested with future 
samples and ideally in a prospective setting.  
Because the larger the number of molecules 
included the more likely that noise has been 
modeled rather than real differences between 
groups, models with smaller number of 
molecules are preferred if good prediction 
value can be achieved. In our studies of T1D 
[79,130] we have followed the approach along 
the lines of Random Forests [139] and 
Stochastic Discrimination [140,141] to select 
multiple models by randomly searching for 
models with very small number (<10) of 
molecules and low estimated prediction error 
rates.  Such models may not have perfect 
prediction but the predictions can be improved 
using averaging of models through plurality 
voting. This approach may use more total 
number of molecules than single models, but 
each model does not overfit as smaller 
number of molecules is used and the average 
prediction may give excellent error rates that 
may be validated by future studies. 
 
Integration of different types of biomarkers 
 
As discussed in the above sections, a number 
of molecules (DNA, RNA, proteins and 
potentially others) as well as other information 
(age, family history of diabetes and other 
autoimmune diseases, environmental factors) 
can influence the development of
p
However, each of these risk factors alone do
n
because of the multifactorial nature of the 
disease.  How these risk factors interact to 
cause the disease is not well understood at 
this time as investigators are still focusing on 
the elucidation of individual risk factors.  It is 

hoped that the identification of one category of 
risk factors should aid the discovery of other 
risk factors through studies of interactions 
between different risk factors.  Precise 
prediction of disease can only be achieved by 
integrating all risk factors and biomarkers.  
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