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Abstract: Heterotrimeric Gi proteins have been previously implicated in signaling leading to inflammatory mediator 
production induced by bacterial lipopolysaccharide (LPS). β-arrestins are ubiquitously expressed proteins that 
alter G-protein-coupled receptors signaling. β-arrestin 2 plays a multifaceted role as a scaffold protein in 
regulating cellular inflammatory responses. Polymorphonuclear leukocytes (PMNs) activated by LPS induce 
inflammatory responses resulting in organ injury during sepsis. We hypothesized that β-arrestin 2 is a critical 
modulator of inflammatory responses in PMNs.  To examine the potential role of β-arrestin 2 in LPS-induced 
cellular activation, we studied homozygous β-arrestin 2 (-/-), heterozygous (+/-), and wildtype (+/+) mice. PMNs 
were stimulated with LPS for 16h. There was increased basal TNFα and IL-6 production in the β-arrestin 2 (-/-) 
compared to both β-arrestin 2 (+/-) and (+/+) cells.  LPS failed to stimulate TNFα production in the β-arrestin 2 (-
/-) PMNs.  However, LPS stimulated IL-6 production was increased in the β-arrestin 2 (-/-) cells compared to (+/+) 
cells. In subsequent studies, peritoneal PMN recruitment was increased 81% in the β-arrestin 2 (-/-) mice 
compared to (+/+) mice (p<0.05). β-arrestin 2 deficiency resulted in an augmented expression of CD18 and 
CD62L (p<0.05). In subsequent studies, β-arrestin 2 (-/-) and (+/+) mice were subjected to cecal ligation and 
puncture (CLP) and lung was collected and analyzed for myeloperoxidase activity (MPO) as index of PMNs 
infiltrate. CLP-induced MPO activity was significantly increased (p<0.05) in the β-arrestin 2 (-/-) compared to (+/+) 
mice.  These studies demonstrate that β-arrestin 2 is a negative regulator of PMN activation and pulmomary 
leukosequestration in response to polymicrobial sepsis. 
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Introduction 
 
Polymorphonuclear leukocytes (PMNs) are 
critical cells involved in process of innate 
immunity [1, 2].  Activation of toll-like receptor 
(TLR)s on granulocytes result in induction of 
signaling pathways that produce chemokines, 
cytokines and other inflammatory mediators 
[3, 4].  Lipopolysaccharide (LPS) binds to TLR4 
and leads to the secretion of pro-inflammatory 
molecules including TNF-α, IL-6 and chemo-
kines. Fluorescence resonance energy transfer 
analysis has demonstrated that LPS binds 
initially to the membrane-bound CD14 and is 
transferred not only to TLR4 but to a cluster of 
receptors in lipid rafts which elicit the 
associated immune response [5]. Among 

these clustered receptors are G-protein 
coupled receptors (GPCRs). Previous studies 
have elucidated the involvement of post 
receptor heterotrimeric guanine nucleotide 
binding regulatory (Gi) proteins in LPS signal 
transduction [6-10].  In vitro kinase assays 
performed on human CD14 co-immuno-
precipitated proteins demonstrated the 
presence of Gαi2 and Gαi3 proteins [7].  Our 
studies and others suggest that TLR4 signaling 
is, in part, Gi protein regulated [6, 9].  The 
importance of Gi proteins in regulating TLR 
activation also has been underscored by 
findings in Gαi2 KO mice.  Although there are 
phenotype differences of inflammatory cell 
responses to TLR activation in Gαi2 KO mice, 
the in vivo pro-inflammatory response to 
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endotoxin is augmented suggesting that Gi2 
KO mice signaling pathways predominantly 
down-regulate TLR activation [8]. 
 
β-Arrestins 1 and 2 are adaptor proteins that 
regulate Gi protein function by forming 
complexes with most GPCRs.  This occurs 
following agonist binding and phosphorylation 
of receptors by G protein-coupled receptor 
kinases.  β-arrestins play a central role in the 
processes of homologous desensitization and 
GPCR sequestration that leads to termination 
of G protein activation by endocytosis in 
clathrin-coated pits [11-14].  It has also been 
shown that β-arrestins 1 and 2 function as 
multifunctional scaffold/adaptor proteins for 
GPCR activation of signaling cascades [15-19].  
Our studies and others have recently 
demonstrated that β-arrestins 1 and 2 also 
regulate TLR activation in specific cell lines 
and bone marrow macrophages from β-
arrestins 2 KO mice [20-23].   

 
PMNs are the most numerous type of white 
blood cell involved in the innate immune 
response.  PMNs have a very short life span 
(hours), have phagocytic functions, and 
produce cytokines and chemokines that are 
critical in the innate immune response [1, 2].  
However, the role of β-arrestins in the 
regulation of PMN innate immune activation 
has not been previously investigated.  The 
availability of β-arrestin 2 KO mice provides an 
approach to evaluate the role of this β-
arrestins isoform in innate immunity [24].  
Therefore, we hypothesized that β-arrestins 2 
regulates the inflammatory response in PMNs 
upon activation of TLR4 and chemotactic 
responses to an inflammation stimulus.  
Specifically, we examined the effect of β-
arrestins 2 deficiency on: 1) oyster glycogen-
induced recruitment of PMNs to the peritoneal 
cavity, 2) LPS-induced PMN pro-inflammatory 
mediator production, 3) LPS binding/uptake by 
PMNs, 4) the expression of specific surface 
adhesion receptors of PMNs, and 5) In a 
clinically relevant murine model, we examined 
the effect of β-arrestins 2 deficiency on 
pulmonary myeloperoxidase activity at 18h 
after cecal ligation and puncture (CLP) induced 
polymicrobial sepsis.   
 
Materials and Methods 
 
Mice 
 

Male WT (+/+), heterozygous (+/-), and β-
arrestin 2 knockout (-/-) C57BL/6 mice, 6-9 
weeks of age, housed at the Medical University 
of South Carolina were used in this study. Mice 
were allowed access to food and water ad 
libitum and maintained on a 12-hr light/12-hr 
dark cycle. The investigations conformed to 
the Guide for the Care and Use of Laboratory 
Animals published by the National Institutes of 
Health and commenced with the approval of 
the Institutional Animal Care and Use 
Committee. 
 
Reagents 

 
Protein-free S. minnesota R595 LPS was 
provided by Dr. Ernst Reitschel, Borstel, 
Germany. Oyster glycogen, type II, was 
purchased from Sigma (St. Louis, MO). RPMI 
1640 media was purchased from Gibco 
Invitrogen Corporation (Carlsbad, CA). DPBS, 
fetal bovine serum, and penicillin/ strepto-
mycin were purchased from Cellgro Mediatech 
Inc. (Herndon, VA). TNF-α and IL-6 ELISA kits, 
flow cytometry staining buffer, and as anti-
mouse FITC-labeled antibodies to CD45, 
CD11b, F4/80, CD18, and CD62L for flow 
cytometry were purchased from eBioscience 
(San Diego, CA). 
 
Experimental methods 
 
Mice were injected with 10 ml of 2% oyster 
glycogen in sterile DPBS to recruit PMNs to the 
peritoneal cavity, as previously described [25]. 
After 5 h, the peritoneal cells were lavaged 
and harvested using 10 ml per mouse of RPMI 
1640 supplemented with 1% fetal bovine 
serum and 1% penicillin/streptomycin. The 
peritoneal exudate cells were counted and 
centrifuged in a Beckman GPR Centrifuge at 
1500 rpm for 30 minutes. The supernatant 
was removed and the cells resuspended in 3 
ml of media. Based upon CD45 expression 
and morphologic criteria, the cell population 
was >95% PMNs.  The cells were counted and 
plated in a 24-well plate such that each well 
contained 1 ml of medium with 5 x 105 
cells/ml. The samples in each well were 
treated with increasing concentrations of LPS 
(0, 10, 100, or 500 ng/mL) and allowed to 
incubate for 16 hr. The incubation time was 
selected based on previous studies that the 
cells produce measurable amounts of 
cytokines after 12-24h. Viability was greater 
than 90% after 16hs of LPS stimulation as 
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determined by Trypan Blue.  After incubation, 
the plate was centrifuged at 1500 rpm for 5 
minutes. The supernatant was collected for 
ELISAs to measure TNF-α and IL-6 levels. 
 
Flow cytometry  

 
To study expression of surface molecules, 
specifically activation markers and adhesion 
molecules, cells were plated in a 96-well plate 
such that each well contained 5 x 105 cells. 
Antibodies used for flow cytometry were 
diluted 1:50, and 50 μL was added to each 
well, after which the samples were allowed to 
incubate at 4°C for at least 20 minutes. 
Samples were washed twice and then 
resuspended in flow cytometry staining buffer, 
after which the samples underwent analysis 
with a Becton Dickinson FACSCalibur analytical 
flow cytometer housed at the Analytical Flow 
Cytometry Facility at the Medical University of 
South Carolina. 
 
To study LPS uptake, PMNs were plated in 6-
well plates containing 5 x 106 cells. The cells 
were incubated with FITC-LPS (10 μg/ml) for 
various times. Cells were scraped into flow 
cytometry staining buffer and washed twice, 

after which the samples underwent flow 
cytometry analysis. Since LPS binding to the 
cell surface receptors and LPS uptaking into 
the cells were not differentiated

Figure 1. TNFα production by oyster glycogen elicited peritoneal cells. Murine PMNs were stimulated with 
LPS (0, 10, 100, or 500 ng/ml) for 16 hours. The supernatant was collected to test for TNF-α production 
using ELISA. Wildtype n=7; heterozygous n=11; knockout n=10. * = p<0.05 compared to wildtype.  

 

, we refer to 
e response as binding/uptake. 

ecal ligation and puncture  

s than 10% mortality within 
8 hours of CLP.  

easurement of myeloperoxidase activity 

th
 
C
 
Sepsis was induced by cecal ligation and 
puncture (CLP) as described previously [26]. 
Specifically, a midline incision was made 
below the diaphragm to expose the cecum. 
The cecum was ligated at the colon juncture 
with a 6-0 silk ligature suture without 
interrupting intestinal continuity and 
punctured twice with a 22-guage needle. The 
cecum was returned to the abdomen, and the 
incision was closed in layer with a 6-0 silk 
ligature suture. With this procedure, WT mice 
exhibit considerably prolonged survival times 
beyond 24 hs. Les
1
 
M
 
Myeloperoxidase activity was determined in 
lung as an index of neutrophil accumulation as 
previously described [27]. Tissues were 
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homogenized in a so
hexa-dec

lution containing 0.5% 
yl-trimethylammonium bromide dis-

olved in 10mM potassium phosphate buffer 
centrifuged for 30 min at 

× °

al analysis 

 
ith 

nce test 
sing Microsoft Excel nd Statview software 

matory mediator production by PMNs 
 
PMNs harvested from β-arrestin (-/-), (+/-) and 
(+/+) mice were stimulated with LPS. TNF-α 

. In the β-
rrestin (-/-) there was a significant (p<0.05) 

LPS compared to (+/-) or 
/+) PMNs (Figure 2). As with TNF-α oyster 

PS 
LPS concentration. 
mice, the (-/-) mice 

s
(pH 7.0) and were 
20,000 g at 4 C. An aliquot of the 
supernatant was allowed to react with a 
solution of tera-methyl-benzidine (1.6mM) and 
0.1 mM H2O2. The rate of change in 
absorbance was measured by spectrophoto-
metry at 650 nm. Myeloperoxidase activity was 
defined as the quantity of enzyme degrading 1 
μmol hydrogen peroxide/min at 37°C and was 
expressed in units per 100 mg of tissue.  
 
Statistic
 
Data are expressed as mean ± SE. Statistical
significance was determined using ANOVA w
Fisher’s probable least-squares differe
u  a
(SAS Institute, Cary, NC). Nonparametric 
statistical analysis was performed using the 
Mann-Whitney Test for two-group comparisons 
with Statview software. P < 0.05 was 
considered significant. 
 
Results 
 

and IL-6 production was determined

β-Arrestin 2 deficiency augments proinflam-

 

a
increase in basal and stimulated TNF-α 
production compared to (+/-) or (+/+) extent at 
the lowest LPS concentration (10 ng/mL, 
Figure 1). Thus, oyster glycogen alone 
appeared to have maximally stimulated TNF-α 
production in the (-/-) cells. 
 
There were significantly greater increases in IL-
6 production in (-/-) cells in basal and at all 
concentrations of 
(+
glycogen obscured further stimulation with L
except at the highest 

hen compared to (+/+) W
exhibited a 85±1% (376pg/ml) increase in IL-6 
production when stimulated with LPS (500 
ng/mL) (p<0.05). 
 
β-Arrestin 2 deficiency does not affect  LPS 
binding/uptake to PMNs 
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To determine if β-arrestin 2 deficiency alters 
the binding/uptake of LPS to PMNs, the 
uptake of FITC-labeled LPS by flow cytometry 
was examined at 30, 60, and 120 min in β-
arrestin2 (-/-) PMNs and (+/+) cells. FITC- 
labeled LPS was significantly increased in β-
arrestin 2 KO and WT PMNs at 30 minutes but 
no further increase occurred at 60 and 120 
min of incubation (Figure 3).  There were no 
significant differences between β-arrestin 2 (-
/-) and (+/+) cells.  Additionally, flow cytometry 

xpression of TLR4 was not altered between β-

-Arrestin 2 deficiency aug

titated at 5h. A si
%

ld (p<0.05) compared to (+/+) 

e
arrestin 2 (-/-) and (+/+) cells (data not 
shown).   
 
β ments PMN 

taxic response of PMNs 
 of oyster glycogen, 

nt of PMNs was 
gnificant (p<0.05) 

 4.2E+6 cells, p<0.05) in 
 observed in the (-/-) 
th (+/+) and (+/-) mice 

ugments  expression 
Ns 

β-Arrestin 2 deficiency augments cecal ligation 
and puncture-induced myeloperoxidase 
activity in lung 
 
β-Arrestin 2 (-/-) and (+/+) mice were 
subjected to CLP. 18h after CLP lung was 
collected and myeloperoxidase activity (MPO) 
as index of PMNs infiltrate into lung were 
examined. CLP-induced MPO activity was 
significantly increased (2.8 fold, p<0.05) in the 
β-arrestin 2 (-/-) compared to (+/+) (Figure 6). 
 
Discussion 
 

chemotaxis 
 
To analyze the chemo
after administration
peritoneal recruitme
quan
increase (81± 1 
PMN recruitment was
mice as compared to bo
(Figure 4). 
  
β-Arrestin 2 deficiency a
of CD18 and CD62L by PM
 

The expression of selected activation markers 
and adhesion molecules known to be 
expressed on the surface of PMNs were 
examined. Flow cytometry was used to 
determine expression of CD45, a 
granulocyte/leukocyte marker used to confirm 
the purity of the harvested cells. In addition, 
expression of F4/80, a pan-macrophage 
marker; CD11b and CD18, adhesion receptors 
and CD62L, also known as L-selectin were 
determined. In β-arrestin 2 (-/-) cells, CD18 
expression was elevated by 22% (p<0.05), and 
CD62L expression was elevated in the KO 

ice by 4.9 fom
cells (Figure 5).  
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Our studies demonstrate that LPS-induced IL-6 
production was significantly increased in 
PMNs harvested from β-arrestin 2 (-/-) mice 
compared to (+/+) mice.  Thus, β-arrestin 2 is 

a negative regulator of pro-inflammatory 
mediator production in PMNs. β-arrestin 2 
deficiency had no effect on LPS 
binding/uptake to PMNs or TLR4 expression 
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on the surface of PMNs. However, we found 
that PMN chemotaxis was greatly augmented 
in β-arrestin 2-deficient mice, suggesting that 
it may play a significant role in the mediation 
of PMN recruitment and activity at the site of 

flammation. Expression of adhesion 
d particularly CD62L were 

lso found to be increased in β-arrestin 2-

these receptors at 

t -arrestin 2 
egatively regulates PMN tissue infiltration 

. 

in
receptors CD18 an
a
deficient mice, suggesting a role for the β-
arrestin 2 in expression of 
the cell surface. In our study with β-arrestin 2 
we demonstrated a marked increase in 
pulmonary MPO activity relative to WT mice. 
These findings suggest tha β
n
during sepsis
 
The measured basal +LPS stimulated 

uction of TNFα and IL-6 in oyster glycogen 
uited PMNs from β-arrestin 2-deficient 

prod
recr

stud  2 

HEK

dem

resp
over

κ

stud

IκBα
deg

6 a
arre
ubiq
The ory role 

sign
incr
is p
regu
sim
 
In a

che
glyc
defi
The

betw
rece
che
pron
inclu
increased concentrations of chemokines, e.g. 

unre
infla
des

func
sho

β

incr
arre

che
incr ient mice, and 

the 
sup
KO 
mar

regu
med
and
sign

 

mice suggest a predominant anti-inflammatory 
function of β-arrestin 2 in PMNs.  Our recent 

ies showed that both β-arrestin 1 and
negatively regulate NFκB activation [20].  In 

293 cells rendered LPS-responsive by 
stable transfections with CD14 and TLR4, we 

onstrated by siRNA depletion of β-arrestin 
1 and 2 augmented NFκB activation in 

onse to LPS [20].  On the other hand, 
-expression of WT β-arrestins 1 and 2 in 

these cells suppressed LPS-induced NF B 
activation [20].  These findings agree with 

ies that β-arrestin 2 directly interacts with 

, thus preventing the phosphorylation and 
radation of IκBα [21, 28].  Recent studies 

have demonstrated that β-arrestins 1 and 2 
directly interact with TRAF6 following TLR or IL-

ctivation [29].  The complexes of β-
stins and TRAF6 prevented its auto-
uitination and activation of NFκB [29].  

se studies further support an inhibit
for β-arrestins in the regulation of LPS 

aling.  Since cytokine production was also 
eased in oyster glycogen recruited PMNs, it 
robable that β-arrestin 2 may negatively 
late other inflammatory stimuli through 

ilar mechanisms.   

ddition to studying the effect of β-arrestin 
2 on the production of pro-inflammatory 
cytokines, we demonstrated an increase in 

motaxis of PMNs induced by oyster 
ogen in the peritoneal cavity of β-arrestin 2 
cient mice as compared to (+/+) mice. 
se findings are in accordance with other 
ies implicating stud β-arrestins as negative 

regulators of chemotaxis. The interactions 
een β-arrestins and Gi protein-coupled 
ptors involved in regulation of PMN 

motaxis, specifically in neutrophils, are 
ounced in the CXC subfamily of receptors, 
ding CXCR1 and CXCR2 [29]. Exposure to 

IL-8 can cause neutrophils to become 
sponsive to further stimulation by other 
mmatory cytokines; therefore, 

ensitization and internalization of CXC 
receptors is necessary for proper neutrophil 

tioning during inflammation. Barlic et al. 
wed that CXCR1 internalization is 
reased in HEK293 cedec lls with low -arrestin 

2 expression, and that such internalization is 
eased with additional expression of β-
stin 1 or 2  [30, 31]. Su et al. showed that 

neutrophil recruitment with the binding of the 
mokine CXCR1 to the CXCR2 receptor was 
eased in β-arrestin 2 defic

that although increased neutrophil activity in 
form of calcium mobilization and 

eroxide anion production were increased in 
mice, receptor internalization was 

kedly decreased  [32]. These two studies 
suggest that β-arrestin 2 may be negatively 

late chemotaxic activity of neutrophils by 
iating chemokine receptor internalization 

 ultimately terminating chemokine 
aling.  However, such an interpretation 
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suggesting that the strain of mice has low 
response to sepsis induced inflammation. 
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