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Abstract: The aim of the study was to establish a parametric transfer function to describe the relationship between 
ocular perfusion pressure (OPP) and blood flow (BF) in the optic nerve head (ONH). A third-order parametric theoreti-
cal model was proposed to describe the ONH OPP-BF relationship within the lower OPP range of the autoregulation 
curve (< 80 mmHg) based on experimentally induced BF response to a rapid intraocular pressure (IOP) increase in 
6 rhesus monkeys. The theoretical and actual data fitted well and suggest that this parametric third-order transfer 
function can effectively describe both the linear and nonlinear feature in dynamic and static autoregulation in the 
ONH within the OPP range studied. It shows that the BF autoregulation fully functions when the OPP was > 40 mmHg 
and becomes incomplete when the OPP was < 40 mmHg. This model may be used to help investigating the features 
of autoregulation in the ONH under different experimental conditions.
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Introduction

Blood flow (BF) autoregulation (AR) is an intrin-
sic ability of the retina and optic nerve head 
(ONH), among many other bodily tissues, to 
maintain a relatively constant level of blood in 
response to variations in perfusion pressure 
and metabolic demand [1-3]. This process 
involves multiple mechanisms that may fail as 
a part of pathogenic processes e.g. glaucoma 
[2, 4-7]. Thus, assessment of autoregulation 
capacity in ocular tissues is important to under-
stand the mechanisms of the disease and to 
establish potential therapeutic targets.

The classic method to assess autoregulation 
capacity within ocular tissue is to compare BF 
changes before and after ocular perfusion 
pressure (OPP) is altered, by manipulation of 
either arterial blood pressure (BP) or intraocu-
lar pressure (IOP) [6, 8-11]. After this induced 
OPP change, autoregulation proceeds chrono-
logically in two phases: dynamic (dAR) and stat-
ic (sAR). During the dAR phase, the pressure 
change evokes a rapid BF response (increase 
or decrease), which lasts on average 10-20 
sec. When the vascular resistance and BF sta-

bilizes to either its original or a new level, the 
sAR phase is then reached [12]. A series of BF 
changes measured during the sAR phase in 
response to varying levels of perfusion pres-
sure constitute a classic AR curve, or P-F rela-
tionship [1] as demonstrated in Figure 1.

Whilst sAR analysis utilizes the BF change in 
amplitude before and after the OPP change, 
analysis of the dAR phase includes both ampli-
tude and time latencies [13]. Thus, dAR analy-
sis has been considered as a more effective 
clinical method at revealing potential autoregu-
lation dysfunction, as demonstrated in isch-
emic and traumatic brain injuries [14-18]. Yet, 
previous studies relating to ocular autoregula-
tion have focused on sAR, and overlooked the 
dAR component.

The inherent complexities of BF AR encourage 
the use of mathematical modeling. Utilizing the 
mechanistic features of autoregulation, dis-
crepancies between theoretical systems behav-
iors and actual behaviors measured in vivo can 
point to hitherto unknown components that are 
missing, thereby assisting in developing a more 
comprehensive picture of this biological pro-
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cess. However, there are limited BF AR mathe-
matical models [19, 20] and few studies spe-
cifically focusing on the eye [3, 21]. One of the 
difficulties applying a mathematic model to 
describe autoregulation capacity is the nonlin-
earity of the relationship between BF response 
and OPP [22].

Previously, first-order linear time-invariant 
transfer functions have been used for analysis 
of dAR. However, most of these first-order lin-
ear models are focused specifically upon the 
plateau region of the autoregulation curve [22, 
23]. Consequently, grading the autoregulatory 
response is limited to either, the lower or upper 
critical points of the autoregulation curve or the 
shifts of the curve by altering the physiological 
parameters.

Second-order transfer functions, designed 
within the scenario of spontaneous BP fluctua-
tions have been used to represent the proper-
ties of BF autoregulation in which the perfusion 
pressure changes do not extend to the nonlin-
ear range of the autoregulation curve, though it 
is adequate to describe the descending phase 
and the steady state of the BF response, the 
model is too rigid to depict the gradually 
ascending property during recovery so that it 
describes only the linear property of autoregu-
lation but not the full course of autoregulation 
from dAR phase to sAR.

As such, a higher order of differential model 
may be more appropriate to represent the auto-
regulation pattern since it is capable of provid-
ing more flexibility to describe both the linear 
and nonlinear features of autoregulation during 
the BF response. In our previous study [24], it 
has shown that the magnitude of both maximal 
dAR change and the steady state BF are closely 
related to the IOP and BP and for both dAR and 
sAR, the OPP is a determining factor to mediate 
the interaction between sAR and dAR. To incor-
porate sAR and dAR into a single model, BF 
response to variations of different OPP need to 
be assessed.

To accomplish the previously stated goals a 
theoretical third-order parametric model was 
established to describe the OPP-BF relation-
ship incorporating both dAR and sAR. This 
model was then validated utilizing in vivo data, 
where the ONH dAR and sAR responses were 
induced by rapidly increasing the IOP. The resul-

tant parametric transfer function may serve as 
a tool to predict and gauge the impairment of 
autoregulation in disease conditions and may 
have a potential application to assess the auto-
regulation capacity in humans.

Materials and methods

Quantification of rapid IOP increase induced 
BF autoregulation in ONH

Six male rhesus (Macaca mulatta) monkeys 
without observable eye diseases, ranging from 
9 to 12 (10.7 ± 1.4, mean ± SD) years old and 
weighing 5.6 to 13 kg (10.1 ± 3.4 kg), were 
used. All experimental protocols and animal 
care procedures adhered to the ARVO 
Statement for the Use of Animals in Ophthalmic 
and Vision Research and were approved by the 
Legacy Research Institutional Animal Care and 
Use Committee.

The animal was sedated initially by an intra-
muscular injection of ketamine/xylazine (15 
mg.kg-1 and 0.8 mg.kg-1); anesthesia was main-
tained thereafter by continuous administration 
of pentobarbital (6-9 mg.kg-1.hour-1, IV) using 
an infusion pump (Aladdin, World Science 
Instruments Inc., Sarasota, FL). Pentobarbital 
was selected because this anesthetic, unlike 
the volatile gas anesthetics [18, 25], has mini-
mal impact on autoregulation capacity [26-28]. 
Animals were intubated and breathed with 
room air.

The animal was placed on a table in prone posi-
tion. Body temperature was maintained with a 
37°C circulating warm-water heating pad. Pulse 
rate and oxygen saturation were monitored 
continuously (Propaq Encore model 206EL; 
Protocol Systems, Inc., Beaverton, OR) and 
maintained between 85-125 per minute and O2 
above 95%, respectively. One of the superficial 
arteries in a leg was cannulated with a 27G 
needle, which was connected to a pressure 
transducer (BLPR2, WPI, NH) and a four-chan-
nel amplifier system (Lab-Trax-4/24T, WPI, NH). 
BP in the artery was recorded continuously and 
stored into a computer.

A laser speckle flowgraphy (LSFG. Softcare, 
Japan) device was used to estimate the BF in 
the ONH. In brief, a fundus camera equipped 
within the LSFG device was focused on an area 
centered on the ONH. The area is approximate-
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ly 3.8 mm x 3 mm (Width x Height). After the 
laser is switched on (λ = 830 nm, maximum 
output power, 1.2 mW), a speckle pattern is 
generated due to random interference of the 
scattered light from the illuminated tissue area. 
The speckle pattern is continuously imaged by 
a charge coupled device (700 x 480 pixels) at a 
frequency of 30 frames per second for 4 sec-
onds at a time. Offline analysis software (LSFG 
Analysis, Softcare, Iizuka, Japan) computed a 
mean blur rate (MBR) of the speckle images. 
MBR is a squared ratio of mean intensity to the 
standard deviation of light intensity of the 
image, which varies temporally and spatially 
according to the velocity of blood cells move-
ment and correlates well with capillary BF with-
in the ONH validated by the microsphere [29] 
and the hydrogen clearance methods [30]. 
Thus, the MBR has been used as a BF index. A 
composite MBR map representing BF distribu-
tion within the ONH disc was generated from 
the images of each 4-second series. After elimi-
nating the area corresponding to large blood 
vessels within the images, capillary BF within 
the remaining ONH disc area was averaged and 
reported in arbitrary units (A.U.) of MBR.

Manometrical IOP control and recording

Two 27G needles were inserted into the anteri-
or chamber of the eye via the temporal corneo-
scleral limbus. One of the two needles was con-
nected to a pressure transducer to register the 
IOP; the other needle was connected to either 
one of two sterile saline reservoirs, each set at 
a different height. The connection of the reser-
voirs to the anterior chamber was controlled by 

a solenoid valve (Valcor Engineering, Springfield, 
NJ), which allows one of the reservoirs to be 
opened and the other closed so that the IOP 
can be changed from one level to the other 
nearly instantaneously. A computer mouse syn-
chronized the valve control with the BF mea-
surement program. The OPP was computed 
using the equation OPP = BP – IOP – 5 (mmHg), 
where 5 mmHg is the height difference from 
eye to heart when the animal was in a prone 
position.

IOP step increase induced sAR and dAR re-
sponses

Under a range of BP between 80 and 95 mmHg 
and IOP set manometrically at 10 mmHg, base-
line ONH BF images was acquired by the LSFG. 
Ten seconds after the completion of baseline 
imaging, the electronic valve connected to a 
saline reservoir at a height equivalent to either 
30 or 40 or 50 mmHg (IOP1030; IOP1040; IOP1050 
respectively) was switched open by the syn-
chronized computer mouse to induce a rapid 
IOP change. The BF recording continued for 60 
seconds and, thereafter, for 10 seconds every 
minute for a total of 5 minutes. The above tests 
were repeated three times in both eyes of the 6 
animals (12 eyes) to obtain the empirical BF 
response at varied OPPs. The percentage dif-
ference of BF between the baseline value and 
that at the end of 5 min of IOP increase was 
calculated as sAR. All the sAR measured over 
different OPPs was used for the construction of 
the autoregulation curve and the subsequent 
mathematic modeling.

Mathematical modeling of autoregulation 
system

As the schematically illustrated OPP-BF rela-
tionship, or sAR autoregulation curve shown in 

Figure 1. A schematic view of the relationship be-
tween OPP and BF. The middle segment of the curve 
represents the autoregulation range, within which 
the autoregulation remains effective. When OPP 
fluctuations exceed this range, i.e. higher than the 
upper or lower than the lower limit, BF will passively 
increase or decrease.

Figure 2. Simplified transfer function representation 
of the relationship between BF and OPP. Where the 
OPP is considered as an input, determined by both 
BP and IOP, and utilizing the black box system, the BF 
or the output is processed and exported.
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Figure 1, a plateau covers a range of OPP where 
the autoregulation remains effective. When the 
OPP exceeds the critical range defined by this 
plateau, i.e. beyond the upper and below lower 
limits of the AR range, BF will passively become 
either greater or lower following the OPP 
changes.

Because BF autoregulation is not a simple 
response to a mechanical stimulus, but also to 
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where s is the Laplace operator; n ≥ m accord-
ing to the initial value theorem and final value 
theorem [31].

Considering the model is an approximation of a 
physiology procedure, the degree of activation 
of the vascular smooth muscle arising through 

Figure 3. A typical recording of OPP (calculated based on the BP and IOP) and BF response. A: IOP was acutely 
increased from 10 mmHg to 40 mmHg, starting at the 10th second and induced an OPP decrease from 76 to 46 
mmHg; B: BF decreases correspondingly during the initial OPP decrease for approximately 10-15 seconds (dAR 
phase) and then gradually returns towards a stabilized level (sAR).

Figure 4. The simulated BF response (red dotted) fits with the in vivo BF 
response (solid black). In this typical example, the IOP was increased from 
10 mmHg to 40 mmHg. As shown in the 60 seconds recording (solid black 
curve), BF response induced by this IOP increase underwent dAR and sAR 
phases. The simulated BF response by the parametric transfer function was 
fitted well with the experimental derived BF response.

(1)

different chemical and biologi-
cal stimuli through a variety of 
scales and pathways, thus 
complicates efforts to repre-
sent it. In order to simplify the 
mathematical analysis of the 
system, all procedures could be 
described as an input-output 
model (black-box) between OPP 
and BF (Figure 2). Subsequently, 
a linear or nonlinear transfer 
function, in terms of spatial or 
temporal frequency, can be 
derived to depict the relation-
ship between OPP and BF. The 
transfer function then can be 
estimated using a system iden-
tification method or curve fit-
ting from a series of experimen-
tal measurements.

The transfer function in Figure 
2 can be expressed as a quo-
tient of polynomials
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the myogenic mechanism is given by a first 
order transfer function [32, 33]:

1
G s

T s
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1

1

p

=
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^ h                                                (2)

where k1 is the regulation gain and Tp the time 
constant.

Based on published models on transfer func-
tion analysis, the degree of activation arising 
through the metabolic and other mechanisms 
was hypothesized to fit by a second order trans-
fer function of the form [34, 35].
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where k2 is regulation gain, Tw is a time con-
stant, and ζ is the damping ratio.

Combining the two procedures, the autoregula-
tion procedure of BF could be expressed by a 
third-order transfer function of the form:
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where Kp = k1k2.

To verify the validity of the third order model, we 
analyzed the experimental data from six mon-
keys. This third order system conformed to the 
model prepared from in vivo measurements as 
shown in Figure 3. When applying the same 
input to the theoretical model with parameters 
Kp = 0.03, Tp = 14.46, Tw = 2.54, ζ = 1.20 in 
Equation 4, the output of the transfer function 
model (simulated BF) correlates with the in vivo 
experimental output (measured BF) as illustrat-
ed in Figure 4.

BF autoregulation is clearly a nonlinear phe-
nomenon, thus, a linear approximation of a 
nonlinear model can be justified in a small 
range of OPP around a point of equilibrium by 
utilizing the segmental linear property of the 
autoregulation curve without altering the fea-
tures of the curve. Therefore, a piecewise linear 
transfer function, i.e., a parametric transfer 
function, was used to describe the static and 
dynamic properties of autoregulation under dif-
ferent OPP. Since BF is a nonlinear function of 
OPP, the OPP level can be used as a parametric 
input of the piecewise transfer function, that is, 
each parameter in Equation 4 could be 
described as a function of the OPP level. 
Defining x as an independent variable repre-
senting the OPP level, it is possible to find the 
functions Kp = f1 (x), Tp = f2 (x), Tw = f3 (x), and ζ = 
f4 (x), from experimental data to complete the 
parametric transfer function over the full range 
of OPP. All values of Kp at a full range of OPP, is 
composed of the static autoregulation curve 
from the final value theory of linear system step 
response. In the scenario of this study, the OPP 
was limited to the lower half of the autoregula-
tion curve (OPP < 80 mmHg) since BP was from 
80 mmHg to 100 mmHg in all experiments.

Results

Quantification of rapid IOP increase induced 
BF autoregulation in ONH

Static BF autoregulation curve of ONH: Due to 
varied BP in animals during each test, the IOP 
increase from 10 mmHg to either 30, 40 or 50 
mmHg resulted in a range of OPP decrease 
between 15 and 67 mmHg. The percentage BF 
change after IOP elevation normalized to their 
baseline values are plotted against each corre-
sponding OPP to construct portion of a com-
plete autoregulation curve as shown in Figure 
5.

The BF and OPP were fitted to a polynomial 
function to describe the static relationship 
between OPP (x) and BF (yBF) at the lower half 
(OPP < 70 mmHg) of the static autoregulation 
curve:

yBF = 7.6 × 10-6x3 – 1.1 × 10-3x2 + 5.6 × 10-2x 
(P<0.0001, r=0.8)                                            (5)

The shape of the fitted curve resembles the 
theoretical autoregulation curve in the lower 
half of OPP shown in Figure 1. In the curve, BF 
maintained at a constant level when the OPP 

Figure 5. The sAR measured at a range of OPP. Each 
data point (averaged from three repeated measures) 
represents the sAR at a given level of OPP. The data 
is best fit with a polynomial function. Since the high-
est OPP in these anesthetized animals can only be 
reached to a certain level below 70 mmHg, the curve 
represents only a portion of the autoregulation curve 
within the lower OPP range.

(4)
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was higher than 40 mmHg, reflecting BF recov-
ering to baseline completely and a fully func-
tional autoregulation. When the OPP was below 
40 mmHg, BF decreased with the decrease of 
OPP, indicating an incomplete recovery.

Parameters of transfer function

Figure 6 shows the four parameters (Kp, Tp, Tw 
and ζ) in Equation 4 estimated from the experi-
ments measured at different OPP levels. The 
data points of each parameter in Figure 6 were 
derived from the measured BF curves at a dif-
ferent range of OPP (see Figure 4). Each param-
eter was fitted to a polynomial function of the 
OPP (x) at steady state:

Kp = 1.31 × 10 -5x2 – 1.5 × 10-3x + 6.15 × 10-2 
(P<0.0001, r=0.94)                                          (6)

Tp = 9.9 × 10-3x2 – 0.347x + 12.50 (P<0.0001, 
r=0.85)                                                              (7)

Tw = 6.9 × 10-4x2 – 0.0852x + 4.84 (P<0.0001, 
r=0.69)                                                              (8)

ζ = 2.41 × 10-4x2 – 0.047x + 2.69 (P<0.0001, 
r=0.92)                                                              (9)

In Figure 6A, the gain of the transfer function 
(Kp) has a nonlinear relationship with OPP, 
which decreases when OPP increases and 
reaches a constant when OPP is above a cer-
tain value. Panel B and Panel C illustrate the 
relationship of the two time constants (Tp and 
Tw) with the OPP. Tp increases monotonically 
with OPP and approaches to a constant of 10 
sec when OPP becomes lower than 25 mmHg. 
Tw is a monotonically descendant function of 
OPP and converges to a value of 2.5 seconds 
when OPP is above 50 mmHg. Tw is relative sta-
ble and varies in a range of 1.7-3.8 seconds. 
The damping ratio ζ is a quasi-linear function of 

Figure 6. Estimations of Kp, Tp, Tw and ζ from experimental data. Each parameter is a nonlinear function of OPP to 
gain (A), the time constants Tp (B) and Tw (C), and a damping ratio ζ (D).

Table 1. Percentage change of BF at 45 sec 
and 55 sec compared to 5 min under IOP1030 
and IOP1040

IOP BF deviation at 
45 sec

BF deviation at 
55 sec

10-30 mmHg 2 ± 3% 2 ± 3%
10-40 mmHg 3 ± 1% 4 ± 1%
IOP: intraocular pressure; BF: blood flow.
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OPP and monotonically decreasing with OPP; 
the lower the OPP, the lower the damping ratio.

Dynamic autoregulation time duration

In order to find out the dynamic duration of the 
BF autoregulation, BF measured at 45 seconds 
and 55 seconds were compared with averaged 
BF measured from 4-5 minutes, as shown in 
Table 1. Since BF stabilizes at approximately a 
constant after 5 minutes, averaged BF mea-
sured from 4-5 minute can be readily assumed 
as final value. At 45 seconds, the BF reached a 
state which was less than 5% variation from the 
steady state (2 ± 3% and 4 ± 1% for IOP1030 and 
IOP1040, respectively). If a percentage variation 
of ± 5% from the final value was considered a 
new steady state, it is reasonable to conclude 
that the dynamic autoregulation happened in 
duration of about 1 min; thus, a continuous 
time course measurement of BF of 1 min pro-
vides enough spatial resolution for dynamic 
analysis.

The transient changes of OPP induced by differ-
ent IOP elevations, the experimentally and pre-
dicted BF changes are presented in Figure 7. 
The OPP was considered as the input of trans-
fer function and the parameters of the transfer 
functions were calculated from Equations 6 to 
9 using the steady state OPP of each mean. 
The simulated BF followed the mean in vivo BF, 

suggesting that the transient BF change under 
different OPPs can be modeled by a parametric 
transfer function even though autoregulation is 
nonlinear to OPP.

Discussion

In this study, a mathematical model was devel-
oped that utilized a parametric transfer func-
tion to analyze the relationship between BF and 
OPP following acute IOP elevations. This trans-
fer function consists of 4 parameters: gain Kp, 
time constant Tp, time constant Tw and a damp-
ing ratio, ζ. The real parts of all poles of the 
denominator within Equation 4 are negative, 
which requires that ζ > 0. This criterion is satis-
fied as long as OPP < 80 mmHg, as shown in 
Figure 6D.

The gain Kp is a monotonically decreasing func-
tion of the OPP and is directly related to the 
recovery rate of the BF in the steady state. After 
the transient phase of the BF response follow-
ing IOP elevation, Kp is the only functional 
parameter in this model; and it resembles the 
capability of static autoregulation. The higher 
the value of Kp, the less the BF recovers to the 
baseline.

The first-order model represents the response 
time of the vascular muscle after acute OPP 
drop [33, 36]. Tp is the only parameter in this 

Figure 7. Comparison of predicted transient BF responses with the measured BF responses during OPP lowing. The 
OPP was reduced manometrically by IOP1030 (A), IOP1040 (B) and IOP1050 (C), respectively (top panels). The BF respons-
es at each corresponding OPP decrease are shown in bottom panels. The broken red lines are the BF responses 
simulated by the parametric transfer function. The solid blue lines are mean BF responses obtained experimentally 
from the 6 animals (solid lines = mean, dotted lines = SD).
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equation monotonically increasing function of 
OPP. From system simulation, it is found that a 
smaller Tp reproduces a bigger change of BF 
and strongly regulated the BF back to the base-
line. This complies with the phenomenon that a 
larger drop of OPP resulting in larger BF 
decrease and consequently stronger recovery. 
Therefore, the parameter Tp likely represents 
the strength of the vascular muscle and depicts 
the myogenic process of the BF response fol-
lowing IOP elevation.

Two parameters, Tw and ζ, are involved in the 
second-order model. Tw was a monotonically 
decreasing function of OPP and varied in a 
range of 2-4 sec. Compared with the wide range 
variation of Tp, it may be applicable to limit Tw as 
a constant of 3 second and thus to assume the 
second-order model is more related to the met-
abolic process. ζ is an unvarying decreasing 
function of OPP and was a damping ratio of 
second-order equation from simulation. 
However, from the facts of dynamic response of 
BF, ζ means more than a damping ratio since it 
also reflects the regulation strength in the sec-
ond-order model. In system simulation it is well 
known that higher ζ indicates higher damping 
thus less overshoot. In a scenario where bigger 
drop of OPP results in bigger BF decrease; con-
sidering only the activities of the vascular mus-
cle in the recovery period, the BF will recover 
quicker with the consequence of higher over-
shoot. However, in all experiments no such 
overshoot was observed; this leads to the 
assumption that a high value of ζ exerted to 
yield the overshoot of the BF. The assumption is 
consistent to the estimation results that OPP 
drop is proportional to value of ζ. Since ζ func-
tions dominantly in the recovery period, it might 
be very informative when exploring the auto-
regulation in pathological condition.

Our previous study introduced factors affecting 
the normal pattern of dAR and sAR including 
the magnitude of the stimuli (IOP), the response 
time, the magnitude of BF response and the 
recovery rate [24]. These multiple factors inter-
act with each other and obscure the interpreta-
tion of whether an autoregulation response is 
normal. The transfer function provided a meth-
od to detect the early or moderate change of 
dynamic response of certain pathologies by 
comparing the parameters of transfer function 
estimated from pathological condition and con-
trol condition.

The challenge of modeling a physiological sys-
tem mathematically is to balance its predictive 
capability and its simplicity to enable interpre-
tation of the physiology dynamics. There must 
also be a balance between the scope of ques-
tions posed and comprehensiveness of the 
model. The first limitation of the model is that 
the parameters of this model were limited to an 
OPP less than 80 mmHg since the regression of 
all curves were performed under OPP 80 
mmHg. Clearly, the model applies to dynamic 
autoregulation caused by an acute IOP eleva-
tion or an acute BP decrease, but is not appli-
cable to a spontaneous fluctuation of OPP. The 
second limitation is that this model does not 
specify each parameter with the underlying 
physiological processes. The first-order differ-
ential equation likely represents the action of 
vascular smooth muscle [33], but the second-
order differential equation may better corre-
spond with the processes [34, 37]; more than 
metabolic mechanism, which remains to be 
determined in future work. The other limitation 
is the use of multiple parameters) to simulate 
spatially distributed hemodynamics, i.e., the 
parametric linear approximation of the autoreg-
ulation curve. Clearly the predicted BF autoreg-
ulation is just an approximation around small 
equilibrium points, but it enables valuable data 
to be extrapolated from the experimental data.

As has been noted above, the ocular BF auto-
regulation system is more complex than the 
parametric transfer function presented in this 
study. However, one of the advantages of the 
parametric transfer function is that it describes 
the relationship between OPP and BF not only 
within the linear range but also in the nonlinear 
range of autoregulation. In addition, it predicts 
the quantitative BF change over a range of OPP 
that represents the systematic property of BF 
autoregulation. Though this estimated para-
metric transfer function cannot to be phrased 
as a theorem, the model gives reasonable 
behavior despite many uncertainty and inaccu-
racies in parameter estimation. Presumably it 
reflects the fact that the biological system have 
evolved to be robust.

Conclusions

The simulated BF response within the transfer 
function model corroborated the in vivo mea-
sured BF response in not only static autoregula-
tion but also within the dynamic autoregulation. 
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Thus, a parametric third-order transfer function 
can effectively describe the ONH BF autoregu-
lation following IOP elevation, because it illus-
trates the linear and nonlinear features of auto-
regulation and predicts quantitative BF change 
over a wide range of OPPs. Future studies may 
extend the application of the model to investi-
gate the effect of physiological variation such 
as aging effects and blood pressure induced 
OPP changes in BF autoregulation.
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