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Abstract: The number of diabetic patients presenting to burn services is predicted to increase significantly over the 
next decades. Diabetes mellitus represents an independent risk factor for sustaining burn injuries and mediates 
alterations to key physiological systems including the vascular, renal, nervous, gastrointestinal and immune system. 
The effects of the pathophysiological permutations need to be carefully considered during both the acute as well 
as the long-term rehabilitation phase of injury. The purpose of the first part of this review is to outline the metabolic 
permutations observed in diabetes mellitus pertinent to the clinical presentation and management of burn patients. 
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Introduction 

Diabetes Mellitus (DM) is one of the largest 
global health problems of the 21st Century. It is 
anticipated that the number of Americans diag-
nosed with the disease will continue to increase 
by 165% from the year 2000 to 2050 [1]. DM 
represents a spectrum of metabolic disorders 
characterised by chronic hyperglycaemia, re- 
sulting either from endogenous insulin insuffi-
ciency/defective production or from diminished 
effectiveness at peripheral receptors [2]. There 
are several different subtypes of DM with the 
commonest being type 1 and 2.

Type 1 DM (T1DM), which results from the auto-
immune destruction of insulin-secreting pan-
creatic β-cells, has a typically acute juvenile 
onset and requires lifelong insulin treatment 
[3]. Despite being the subject of intensive study 
over the last decades, the causes of T1DM are 
still not fully understood; nevertheless a combi-
nation of environmental and genetic factors 
has been associated with disease pathogene-
sis. The chromosomal loci believed to influence 
T1DM susceptibility can be broadly categorised 
into those relating to immune function [includ-
ing the Human Leukocyte Antigen (HLA) region], 
insulin expression (polymorphisms in promoter 
gene regions) and β-cell function [including the 

protein tyrosine phosphatase, non-receptor 
type 22 gene] (PTPN22) [4].

Type 2 DM (T2DM) is characterised by exces-
sive insulin secretion, tissue insulin resistance 
and subsequent β-cell dysfunction. It tends to 
present in later life and affected patients are 
frequently diagnosed on the basis of diabetic 
complications [3]. The pathogenesis of type 2 
DM has a strong environmental component 
with obesity being one of the most important 
modifiable risk factors [5, 6]. Genetics are also 
believed to play an important role in the patho-
genesis of T2DM; over 36 genes have already 
been linked to disease development, many of 
which are associated with differing degrees of 
beta cell dysfunction. Of particular note, the 
transcription factor 7 like 2 (TCF7L2) gene 
nearly doubles the risk of developing T2DM 
most likely through the pathway, which regu-
lates proglucagon gene expression in enteroen-
docrine cells [7]. The American Diabetes 
Association (ADA) diagnostic criteria for diabe-
tes mellitus are shown in Table 1 [3]. 

Similarities between the metabolic features of 
diabetes mellitus and stress induced hypergly-
caemia (SIH) of acute illness

The hormonal profile of diabetic patients has 
multiple facets, which augment the primary 
perturbations in glucose metabolism.
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In T1DM, in addition to the lack insulin secre-
tion, there are increased levels of glucagon [8], 
which exacerbate hyperglycaemia by reducing 
hepatic glucose uptake and increasing glucose 
release [9]. Elevated levels of fasting catechol-
amines, especially found in poorly controlled 
DM, contribute to hyperglycaemia by stimulat-
ing glucagon production and impairing the 
action of insulin [10, 11]. Additionally, enhanced 
lipolysis (in the presence of high cortisol levels) 
predisposes towards increased concentrations 
of circulating free fatty-acids (FFAs) and ketone 
body formation, which can lead to ketoacidosis 
[12-15].

Type 2 DM is characterised by marked insulin 
resistance with underlying mechanisms includ-
ing the deranged expression of liver enzymes 
and changes in signalling pathways (e.g. c-Jun 
amino terminal kinase) due to the increased 
release of TNF-alpha and IL-6 by adipose tissue 
macrophages [16]. Additionally, the elevated 
levels of fatty acid metabolites (including diac-
ylglycerol) decrease insulin receptor signalling 
by activating the phosphorylation of insulin 
receptor substrates 1 and 2 [17].

Furthermore, under normal physiological condi-
tions, insulin plays an important role in the 
upregulation of protein synthesis by enhancing 
the uptake of amino acids into muscle. In DM, 
the low levels and tissue insensitivity to circu-
lating insulin (especially in poorly controlled 
patients), mediates an enhancement in prote-
olysis causing disturbances in nitrogen balance 
[18].

Burn injuries are associated with a profound 
hypermetabolic response. Metabolic features 

include increased energy expenditure, a nega-
tive nitrogen balance as well as stress-induced 
hyperglycaemia and decreased peripheral insu-
lin sensitivity. Key mediators for these derange-
ments include the augmented secretion of cat-
abolic hormones (cortisol and catecholamines), 
the suppression of endogenous activity of ana-
bolic agents (growth hormone and testoster-
one) as well as cytokine release (interleukins 1, 
6 and tumour necrosis factor-TNF) [18-27].

It is striking that the metabolic profile of diabe-
tes mellitus mirrors changes occurring in criti-
cal illness (e.g. hyperglycaemia, insulin tissue 
insensitivity, negative nitrogen balance), hence 
burn patients with pre-existing diabetes melli-
tus may be theoretically subjected to a ‘second 
hit’ phenomenon. In other words, they may be 
prone to enhanced metabolic disturbances due 
to the combined effects of the acute burn injury 
and the premorbid diabetic pathophysiology. It 
is interesting to review the different mecha-
nisms by which DM affects the different physi-
ological systems, since this forms the basis for 
investigating a potential ‘second hit’ phenome-
non. The latter will be further elucidated in the 
second part of this work, which focuses on mor-
bidity and mortality in this cohort of burn 
patients.

Key physiological system alterations in diabe-
tes mellitus

Vascular system

A variety of biochemical derangements have 
been identified as contributing factors to end 
organ tissue damage in diabetes. These include 
the utilisation of excess glucose along the poly-

Table 1. American Diabetes Association (ADA) diagnostic criteria for diabetes mellitus [3]
Test Diagnostic levels Comments
Fasting plasma glucose (FPG) level ≥ 126 mg/dl (7.0 mmol/l) Fasting is defined as no caloric intake for at 

least 8 hours
2 hour plasma glucose following 
oral glucose tolerance test (OGTT)

≥ 200 mg/dl (11.1 mmol/l) Test to be performed using glucose load with 
equivalent of 75 g glucose dissolved in water

Random plasma glucose level ≥ 200 mg/dl (11.1 mmol/l) To be used in presence of symptoms of hyper-
glycemia or hyperglycemic crisis

Glycosylated hemoglobin (HbA1c) ≥ 6.5% To be performed using a standardized assay
Fasting as well as plasma glucose levels following an oral glucose tolerance test are widely used tests for the initial diagnosis 
of diabetes; nevertheless in patients with severe classic hyperglycemic symptoms/hyperglycemic crisis, a random plasma level 
is considered adequate. Glycosylated haemoglobin (HbA1c), although widely used as a marker of chronic glycemia (reflecting 
levels over a 2-3 month period), is currently considered valid in diagnostic terms provided it is performed in a standardized 
manner. 
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ol pathway, the stimulation of the diacylglycer-
ol-protein C kinase pathway as well as the non-
enzymatic glycosylation of tissues (Figure 1) 
[28]. 

Macrovasculature

Atherosclerosis is more prevalent in diabetic 
patients with underlying contributing factors 
relating to abnormalities in the vessel wall, 
circulating cells/factors and blood flow.

Vessel wall: Increased non enzymatic glycosyl-
ation of lipoprotein leads to the accumulation 
of cholesterol ester in ‘foam’ macrophages 
[29]; the modified lipoproteins result in the for-
mation of autoantibodies and the ensuing lipo-

protein immune complexes activate the endo-
thelium and smooth muscle cells contributing 
to accelerated atheromatous plaque formation 
[30].

Circulating cells: Platelets in diabetes are char-
acterised by reduced deformability and propen-
sity to adhesion/aggregation; the latter is due 
to the enhanced release of α granule contents 
and hypersensitivity to aggregating agents 
(including collagen and arachidonic acid) [31]. 
Furthermore, red blood cells are more prone to 
oxidative stress contributing to a reduced cel-
lular life span [32-36] and their decreased oxy-
gen affinity has profound effects on tissues by 
limiting the supply of oxygen [37-40]. 

Figure 1. Pathways involved in end organ tissue damage in diabetes mellitus [28]. A. Polyol pathway-Increased 
blood glucose is converted via sorbitol into fructose. Due to the slow absorption of sorbitol, its accumulation has a 
significant intracellular osmolytic effect as well as (via interaction with the inositol pathway) increases cellular oxi-
dative stress. B. Protein Kinase C pathway-Glucose handling via the glycolysis pathway leads to an increase in the 
intermediate product diacylglycerol (DAG). This activates intracellular signalling via protein kinase C and this leads 
to a variety of cellular effects (including increased smooth muscle contractility, altered calcium homeostasis and 
sensitivity to growth factors) contributing to vascular dysfunction. C. Non-enzymatic glycosylation pathway-Glucose 
interacts with reactive amino groups in cellular proteins and forms advanced glycosylation end products (AGEs) via 
intermediate compounds (Amadori products and Schiff bases). The AGEs interact with fixed tissue elements and 
circulating cells and lead via a variety of mechanisms to oxidative stress/cellular damage contributing to diabetic 
complications. 
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Impaired rheological characteristics: Plasma 
viscosity is increased considerably in diabetic 
patients, which is thought to promote athero-
sclerosis and thrombosis in blood vessels [41-
43]. Additionally, the elevated levels of coagula-
tion factors (including fibrinogen and factors 7, 
8), decreased levels of protein C and S and the 
impaired fibrinolytic activity contribute towards 
a pro-coagulant state in the vasculature [28].

The three main macrovascular disease mani-
festations include coronary artery, cerebrovas-
cular and peripheral vascular disease. The 
increased risk of diabetic patients from macro-
vascular complications needs to be carefully 
considered during the acute and rehabilitative 
stage of burn injuries. Meticulous attention 
must be given to careful fluid management in 
order to balance the risk of under-resuscitation 
versus cardiac overload (incidence of conges-
tive heart failure is 2-5 times higher in diabet-
ics) [44]. The risk of cerebrovascular accidents 
needs to be addressed with attention to normo-
tension, normovolaemia and thromboprophy-
laxis. The implications of impaired peripheral 
vasculature concern both the acute stage of 
healing (impaired perfusion of tissues) as well 
as the mobilisation in later phases of recovery 
(decreased exercise tolerance).

Microvasculature

Microvascular complications are particularly 
prominent sequelae of chronic DM, caused by 
prolonged exposure of a wide variety of cells to 
high levels of glucose in the circulation via a 
variety of pathways shown in Figure 1. Chronic 
intracellular hyperglycaemia of endothelial and 
mesangial cells, coupled with hypercoagulabili-
ty secondary to increased platelet and adhe-
sion, causes progressive narrowing, micro-
thrombus formation and eventual occlusion of 
vascular lumina. This leads to ischemia and 
dysfunction of the affected tissues with com-
mon microvascular complications including 
nephropathy and peripheral neuropathy 
[45-47]. 

Renal system/diabetic nephropathy

Diabetic nephropathy is a chronic, progressive 
condition characterized by increasing urinary 
albumin excretion, hypertension and declining 
glomerular filtration rate. It is a relatively late 
complication of T1DM, but often established at 
the time of diagnosis of T2DM. Nephropathy is 

a marker for other diabetes related complica-
tions, including cardiovascular disease and 
cerebrovascular accidents [48-50] and can 
lead to end stage renal insufficiency necessi-
tating renal replacement therapy or transplan-
tation [51, 52]. The implications of diabetic 
renal impairment are multiple and apart from 
the need for careful fluid management include:

Pharmacokinetic/dynamic considerations

Careful administration and monitoring of medi-
cations (especially those with a narrow thera-
peutic range excreted by the kidneys) is para-
mount in order to avoid deteriorations of renal 
function in diabetic patients. This becomes 
more pertinent given the complex effect of the 
burn injury on drug metabolism; for instance 
the ‘ebb’ phase of the metabolic response is 
characterised by a reduction in renal perfu-
sion/glomerular filtration rate (GFR) whereas 
during the subsequent ‘flow’ phase, the GFR is 
considerably increased [53]. Furthermore, 
comorbid conditions including obesity can fur-
ther impact upon pharmacological strategies; 
the comparatively higher fat content in obese 
individuals mediates an increased volume of 
distribution for lipophilic drugs mandating the 
need for close liaison between clinicians and 
pharmacists in order to determine optimal drug 
dosing [54]. 

Blood product replacement

Anaemia is one of the common sequelae of dia-
betic renal disease; judicious transfusion prac-
tices are recommended in this subgroup of 
patients especially those who are candidates 
for renal transplantation. Administration of 
transfusions renders patients prone to immune 
sensitisation, which can limit the range of 
potential donor organs ahead of renal trans-
plantation [55]. In cases of planned delayed 
surgery, increasing the dose of erythropoietin 
administration is a valid option; nevertheless 
several weeks are needed for the hormone to 
raise the haematocrit considerably [56, 57]. It 
is clear that decisions regarding the mainte-
nance of haematocrit levels in this cohort of 
patients need to be made in close liaison with 
renal physicians. 

Nervous system/diabetic neuropathy

Diabetic neuropathy affects 30-50% of people 
with established diabetes [58-60]. Its patho-
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physiology is thought to result from the com-
bined effects of microangiopathy and direct 
osmotic axonal damage from elevated levels of 
glucose [61]. Diabetic distal symmetrical sen-
sory polyneuropathy (DPN) is the most relevant 
manifestation; it classically presents with a 
“glove and stocking” distribution of sensory 
loss and is a major contributor towards ulcer-
ation as well as burn injuries to the lower limb 
[62]. The loss of normal neurofeedback contrib-
utes to arch flattening and leads to abnormal 
pressure distribution in the feet. Sympathetic 
autonomic neuropathy results in dryness and 
skin fissuring and contributes to increased sus-
ceptibility to trauma and infection. Neuropathic 
arthropathy (Charcot’s joints) and oedema are 
further contributory factors towards tissue inju-
ry, which can lead to limb amputation [63, 64]. 

Neuropathic pain symptoms are quite common 
in diabetes affecting up to one third of patients 
[65, 66]. Burn injuries can be associated with 
severe symptoms of pain and pruritus, which in 
the context of established neuropathy, can 
present the burns team with unique manage-
ment challenges. Given the emerging evidence 
implicating neuropathic mechanisms in post 
burn sensory disturbances, it appears prudent 
for burn teams to utilise therapeutic agents act-
ing on the central nervous system (including 
gabapentin or pregabalin) early on for symptom 
control in this subgroup of patients [67, 68].

Gastrointestinal system

Longstanding hyperglycaemia in diabetes mel-
litus causes enteric nerve damage and dysreg-
ulation of vagal activity resulting in abnormal 
motility, gastric paresis, and bacterial over-
growth [69]. Clinical manifestations of abnor-
mal motility include diarrhea, nausea and vom-
iting, which can precipitate significant additional 
fluid and electrolyte abnormalities.

Poor glycaemic control is also strongly associ-
ated with gastrointestinal infections such as 
oral candidiasis, which can be exacerbated by 
the antibiotic polypharmacy often practised in 
the management of burn patients. Consequent 
symptoms of dysphagia and odynophagia can 
lead to on-going poor nutrition, with implica-
tions on delayed wound healing and subse-
quent rehabilitation [70]. Fluid replacement, 
judicious antibiotic therapy and nutritional sup-
port should therefore be carefully tailored in 
the care of the diabetic burn patient. 

Additionally, obesity (a frequent association 
with type 2 diabetes) is associated with a high-
er incidence of gastroesophageal reflux dis-
ease, large residual gastric volumes and com-
paratively lower pH secretions; these factors 
predispose patients to gastric ulceration/
bleeding as well as aspiration pneumonitis and 
underlie the importance of gastroprophylaxis in 
this patient cohort [71-73].

Immune system 

Many components of the immune (both innate 
and adaptive) system show significant pertur-
bations in patients with diabetes accounting for 
the increased susceptibility to infective com- 
plications.

Innate immune system

Complement system deficiencies along with a 
diminished activity of natural killer cells are 
prominent in diabetes mellitus [74, 75]. 
Furthermore, significant disturbances in the 
activity of polymorphonuclear leucocytes are 
observed; these include reduced chemotaxis, 
adherence, phagocytosis, and bactericidal 
activity of neutrophils, monocytes and macro-
phages [76-81]. 

Adaptive immune system

Lymphocytes responsible for the production of 
antibodies against pathogens show decreased 
mitogenic responses. In addition, the produc-
tion of interleukin 2 (which is vital in sustaining 
the post-injury inflammatory response via T cell 
activation) is significantly reduced [82, 83]. 
Interestingly, insulin administration appears to 
increase the activity of adenosine triphosphate 
and uptake of glucose in lymphocytes [84], a 
finding, which highlights the importance of 
good glycemic control in minimising the effects 
of diabetic metabolism on immune function. 

Healing in diabetics

Wound healing comprises three overlapping 
phases: inflammation, proliferation and remod-
elling [85, 86]. 

Diabetes exerts a detrimental effect on wound 
healing via extrinsic and intrinsic mechanisms. 
The term ‘intrinsic’ refers to mechanisms relat-
ing to the abnormal expression/activity of local 
growth factors and wound healing constitu-
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ents. ‘Extrinsic’ parameters include peripheral 
vascular disease (resulting in decreased oxy-
gen supply to tissues), neuropathy (disruption 
of neurogenic control of small vessels interfer-
ing with the inflammatory response) as well as 
infection and oedema [87-89]. 

Inflammation

The defects in neutrophil chemotaxis and func-
tion, result in defective tissue debridement and 
impaired secretion of a variety of growth fac-
tors and cytokines important in wound healing 
[90-92]. The pattern of macrophages is also 
altered in DM. Under normal circumstances, 
activation shows two distinctive phenotypes: 
classical (caM), which predominates in the ini-
tial inflammatory phase and alternative activa-
tion (aaM), which predominates in the prolifera-
tive stage of healing [93]. In diabetic wounds, 
there is insufficient caM in the early stage but 
excessive aaM in the later proliferative phase 
alongside the predominance of a T helper 2 
(TH2) over T helper 1 (TH1) cytokine response. 
These factors are believed to play a significant 
role in stalling diabetic wounds in an abnormal 
inflammatory state (comprising an increased 
number of inflammatory cells, albeit a marked 
absence of growth on cellular level) and hinder-
ing the transition into the proliferative stage 
[94, 95]. 

Proliferation

This phase is characterised by fibroplasia, neo-
vascularisation and epithelialisation involving 
fibroblasts, endothelial cells and keratino- 
cytes.

Fibroplasia: Diabetes mellitus is associated 
with excessive production of advanced glyca-
tion end products, which interferes with normal 
extracellular matrix deposition; additionally, 
fibroblasts show impaired proliferation and pre-
mature senescence. As a result, diabetic 
wounds have decreased levels of glycosamino-
glycans as well as collagen (which is also char-
acterised by an abnormal molecular structure) 
contributing to a lower wound breaking strength 
[90, 94, 96-100].

Neovascularisation: This is a vital process 
implicated in healing and comprises endotheli-
al proliferation, migration and capillary forma-
tion regulated by angiogenic factors including 
angiopoeitins [101]. Angiopoeitin 2 (Ang-2) is 

considered as an angiogenesis ‘starting media-
tor’, which initially is present in high concentra-
tions but gradually in the course of angiogene-
sis returns to normal levels [102]. Another 
important growth factor involved in new vessel 
formation is vascular endothelial growth factor 
(VEGF), which promotes endothelial cell prolif-
eration and migration [103]. There is normally a 
synergistic action between Ang-2 and high lev-
els of VEGF inducing ‘sprouting’ angiogenesis, 
whereas absence of VEGF results in capillary 
regression in the early stages [104]. The regula-
tion of neovascularisation in deep partial thick-
ness scalds in diabetic rates has revealed 
marked impairment in wound healing at 2 
weeks following injury with inhibition of vascu-
larisation at the wound edges due to a sus-
tained abnormally high expression of Ang-2 and 
downregulation of VEGF between day 14-21 
post injury [105]. Insulin has been found to 
stimulate human microvascular endothelial cell 
migration and tube formation [95], a finding, 
which further highlights the impact of good gly-
caemic control on diabetic wound healing.

Epithelialisation: Epithelialisation is a process, 
which is attenuated in DM [106]; porcine burn 
models suggest that low levels of insulin growth 
factor 1 (IGF-1) and tumour growth factor beta 
(TGF-β) in the first week post injury are most 
likely implicated in this abnormality [90, 107]. 

IGF-1 has been shown to induce chemoattrac-
tant activity in endothelial cell lines, stimulate 
keratinocyte and fibroblast proliferation and re-
epithelialisation [108], whilst TGF-beta is 
thought to be important in chemoattraction of 
monocytes, keratinocytes, fibroblasts and 
induction of these cells to release further 
growth factors [109, 110]. 

Remodelling

This phase is characterised by cessation of 
fibroblast proliferation/collagen production as 
well as diminishing vascularisation and myofi-
broblast mediated wound contraction.

Important factors contributing to disturbances 
in the remodelling phase of diabetic wounds 
include: increased levels of proteolytic enzymes 
reduced activity of growth factors due to non 
enzymatic glycosylation as well as the imbal-
ance between metalloproteases and their tis-
sue inhibitors (responsible for collagen remod-
elling) [85, 90, 111, 112].
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Diabetes mellitus as a risk factor for burn 
injuries

Diabetes mellitus represents a significant risk 
factor for burn injuries due to a variety of rea-
sons. Peripheral neuropathy and retinopathy 
result in decreased tactile sensation as well as 
visual impairment. This implies that diabetics 
are less able to detect and avoid sources of 
burn injury hence are more susceptible to sus-
taining injuries and presenting to medical care 
in a delayed manner with deeper burns. 
Additionally, gait abnormalities stemming from 
neuropathy and pre-existing amputated limbs 
can predispose an individual to injuries by 
increasing the risk of falling and limiting the 
ability to remove oneself from a source of 
injury.

The ability of the skin to dissipate heat energy 
relies on passive conduction to lateral and 
deep tissues as well as dispersion via the 
increase in blood flow in the affected tissues 
[113]. Studies have confirmed that diabetes is 
characterised by diminished heat energy trans-
fer to the surrounding skin as well as a weaker 
hyperaemic response [114]. The conductive 
properties of skin in DM are reduced by virtue 
of a comparatively thinner dermal and thicker 
subcutaneous fat layer [115] as well as physio-
logical disturbances in vasoregulation [116].

The main vasodilating factors include nitric 
oxide, substance P, calcitonin gene-related 
peptide and prostaglandins [116-119]. Dia- 
betes (as well as ageing) makes the skin more 
dependent on nitric oxide for vasodilation, 
whereas the ability to vasoconstrict remains 
unaltered [113, 117, 120-122]. Interestingly, 
the nitric oxide pathway is impaired in diabetes 
most likely due to a combination of reduced 
L-arginine in endothelial cells as well as dimin-
ished production of nitric oxide/bioavailability 
due to the presence of high concentrations of 
free radicals in vascular endothelial cells [116, 
123]. 

Conclusion

Diabetes mellitus is responsible for a host of 
physiological disturbances affecting most bodi-
ly systems and represents a significant risk fac-
tor for sustaining burn injuries. The effects of 
diabetes as a premorbid condition have an 
impact on both the acute phase of the injury as 

well as long-term rehabilitation. Recognition of 
the exact pathophysiological permutations is 
paramount in planning appropriate manage-
ment strategies to improve the standard of 
care in this cohort of burn patients.
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