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Abstract: Multiple Sclerosis (MS) is an autoimmune disease in which Central Nervous System (CNS) lesions result 
from perivascular immune cell infiltration associated with damage to myelin, oligodendrocytes and neurons. CNS 
autoimmunity and its regulation are dominated by the inflammatory cytokines IL17 and IFNγ, and the opposing 
regulatory cytokines IL10 and the type I IFNs. Toll-like receptors (TLR) play a critical role in modulating cytokine 
and chemokine secretion in response to exogenous Pathogen Associated to Molecular Patterns and endogenous 
Danger-Associated to Molecular Patterns. Here, we systematically examine the evidence that TLR play a major role 
in the initiation disease, the triggering of relapses, and regulation of CNS damage. Data from human studies are 
supported analyses of a variety of animal models, including Experimental Autoimmune Encephalomyelitis in TLR-
deficient mice.

Keywords: Multiple sclerosis, toll-like receptors, hygiene hypothesis, microbial flora, gene/environment interac-
tions, autoimmunity, TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10

Introduction

Multiple Sclerosis (MS) is an autoimmune dis-
ease in which Central Nervous System (CNS) 
lesions result from perivascular immune cell 
infiltration associated with damage to myelin, 
oligodendrocytes and neurons. Clinically, symp-
toms include numbness, weakness, loss of 
muscle coordination, and problems with vision, 
speech, and bladder control. The timing and 
severity of each attack are unpredictable, and 
can vary in severity from being detected only by 
magnetic resonance imaging or neural conduc-
tion studies, to being devastating, leaving the 
patient severely disabled. Three patterns of dis-
ease are seen: relapsing-remitting (RRMS), in 
which episodic exacerbations are separated by 
periods of recovery, secondary progressive 
(SPMS), which can develop in patients who ini-
tially present with RRMS and is characterized 
by progressive disability, and primary progres-
sive (PPMS), in which disability progresses 
steadily from disease onset. 

The evidence that MS is an autoimmune dis-
ease includes the following features it shares 
with other autoimmune diseases: an HLA asso-

ciation [1]; associations with other autoimmune 
diseases and their autoantibodies [2]; the pres-
ence of oligoclonal autoreactive T and B cell 
expansion in the target organ [3, 4]; therapeutic 
efficacy of corticosteroids [5], plasmapheresis 
[6] and antilymphocyte globulin [7]; and cure by 
lymphoid ablation and autologous haematopoi-
etic cell transplantation [8].

The immune system responds to many environ-
mental stimuli by the maturation of antigen pre-
senting cells (APCs) and activation of lympho-
cytes via cellular receptors such as Toll-like 
receptors (TLR; [9, 10]). TLR mediate responses 
to autologous components, termed Danger-
Associated to Molecular Patterns (DAMPs; e.g., 
high mobility group box 1 (HMGB1), heat shock 
protein 70 (HSP70), heat shock protein 90 
(HSP90), and cellular RNA), and microbial con-
stituents, termed Pathogen Associated to 
Molecular Patterns (PAMPs; e.g., lipoproteins or 
lipopeptides, peptidoglycans, lipopolysaccha-
rides (LPS), single stranded ribonucleic acid 
(ssRNA), double stranded ribonucleic acid 
(dsRNA) and CpG-DNA). TLR ligation can trigger 
inflammation, prime adaptive immune respons-
es and initiate leukocyte migration [11-14]. 
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In MS, leukocytes such as monocytes, dendritic 
cells (DCs), NK cells, CD4+ and CD8+ T cells and 
B cells, migrate to the CNS and mediate myelin 
destruction, axon damage and neuronal cell 

death [15-17]. Both infiltrating and resident 
cells of the CNS express TLRs and their expres-
sion increases in MS [18-20]. While potentially 
involved in the pathogenesis of disease, raised 

Figure 1. Toll-like receptors in Multiple Sclerosis. Ligation of TLR2 and TLR4 induces the production of IL1, IL6 and 
IL12, which induce the differentiation of naïve T cells into Th1 and Th17 cells. Th17 and Th1 cells secrete IL17 and 
INFγ respectively. IL17/INFγ-producing cells facilitate leukocyte migration across the blood-brain barrier and con-
tribute to CNS damage. IL1 and IL6 also inhibit the differentiation of induced regulatory T cells (iTregs). Tregs are a 
major source of IL10, a cytokine that plays a critical role in suppressing CNS autoimmunity. Activation of TLR3, TLR7 
and/or TLR9 can lead to the production of IFNβ, which activates T suppressor cells and inhibits the production of 
IL17 and IL23.
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TLR expression in the CNS has also been impli-
cated in neuro-protective and restorative func-
tions [21-23].

Toll-like receptor one in multiple sclerosis

TLR1 is expressed as a heterodimer with TLR2, 
and binds bacterial triacyl lipopeptides. It is 
widely expressed on the APC monocytes, mac-
rophages, DC and B cells. It is also expressed 
on Human NT2-N and CHP-212 neuronal cell 
lines [19, 20, 24] and has been identified by RT 
PCR on microglia [25]. TLR1 is down regulated 
in peripheral blood mononuclear cells (PBMC) 
of MS patients and up regulated in patients 
treated with INFβ [26, 27].

Toll-like receptor two in multiple sclerosis

TLR2 is expressed as both a homodimer and as 
a heterodimer, partnered with either TLR1 or 
TLR6. It is expressed on monocytes, macro-
phages and myeloid DC, and can bind a wide 
range of ligands, including lipoteichoic acid 
from Gram-positive bacteria, bacterial lipopep-
tides and glycolipids, fungal beta glucan (zymo-
san) and the endogenous DAMPs Hyaluronan, 
HSP70 and HMGB1. TLR2 has been identified 
on CNS endothelial cells, microglia, astrocytes 
and oligodendrocytes [25, 28] and on infiltrat-
ing cells in MS (Figure 1). It is up regulated on 
PBMCs, cerebrospinal fluid (CSF) mononuclear 
cells and in demyelinating lesions of MS 
patients [19, 20, 24, 25, 29]. 

MS relapses have been reported during bacte-
rial infections [30]. Monocyte-derived dendritic 
cells from MS patients with bacterial infections 
express high levels of HLA-DR and costimula-
tors than those from uninfected patients and 
drive higher production of IL12, IL17 and INFγ 
[31]. Several TLR2 ligands have been identified 
in the brains and CSF of MS patients. For exam-
ple, the TLR2 ligand peptidoglycan, a major 
component of the Gram-positive bacterial cell 
walls, has been reported as present in the 
brains of MS patients within macrophage/
DC-like APC that express co-stimulatory mole-
cules (CD80, CD86 and CD40) and proinflam-
matory cytokines (IL1α, IL6, IL12, TNF and 
INFγ; [32]. High numbers of macrophages and 
microglia expressing the endogenous TLR2 
ligand HMGB1 are also found in acute and 
RRMS [33]. The migration and differentiation of 
oligodendrocyte precursor cells (OPC) play 

important roles in myelin repair after inflamma-
tory damage. MS lesions contain hyaluronan 
deposits that, once fragmented by the hyal-
uronidases expressed by OPCs, inhibit the mat-
uration of OPC and remyelination via TLR2 liga-
tion [10, 29, 34].

The TLR2 ligand zymosan can modulate the 
severity of MS by inducing peripheral blood DC 
from MS patients treated with INFβ to secrete 
IL10, which suppresses IL23 and IL1β produc-
tion [35]. Similarly, surface expression of TLR2 
on B cells and DC was significantly higher in 
helminth-infected MS patients, who had better 
clinical and radiological outcomes than unin-
fected patients. Protection was associated with 
regulatory T cell induction and increased TGFβ 
and IL10 levels. In contrast, immunization with 
S. pneumoniae exacerbates MS [36]. 

Toll-like receptor three in multiple sclerosis

TLR3 is expressed in DC and B cells and binds 
double-stranded (viral) RNA and the endoge-
nous microtubule regulator stathmin. TLR3 liga-
tion induces the activation of NF-κB via the 
adaptor TRIF to increase production of type I 
interferons. Cerebral endothelial cells [28], 
neurons, microglia, astrocytes and oligoden-
drocytes express TLR3 [19, 25, 37, 38]. Normal 
adult human astrocytes increase the produc-
tion of anti-inflammatory cytokines such as 
IL10 and downregulate proinflammatory cyto-
kines such as IL12 (p40) and IL23 in response 
to TLR3 ligation [25]. The endogenous TLR3 
ligand stathmin was identified in astrocytes, 
microglia, and neurons of MS-affected human 
brain, and was shown by cDNA arrays to initiate 
the same set of neuroprotective factors as the 
synthetic TLR3 agonist polyinosinic: polycyti-
dylic (poly I:C) acid [39].

Association studies of TLR3 sequence variants 
have failed to identify any significant associa-
tion with MS [40, 41].

Toll-like receptor four in multiple sclerosis

TLR4 is expressed on monocytes and macro-
phages, myeloid DC and T and B lymphocytes, 
as well as intestinal epithelium. It can bind LPS 
from Gram-negative bacteria, bacterial and 
endogenous HSP, as well as the endogenous 
ligands HMGB1, fibrinogen, heparan sulphate 
and hyaluronic acid. 
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TLR4 expression has been identified in cerebral 
endothelial cells [28] and microglia by RT-PCR 
[25]. Both TLR4 and its endogenous ligand 
HMGB1 are increased in expression in the CSF 
mononuclear cells of MS patients compared to 
healthy controls [33]. Association studies of 
functional (missense) mutations in TLR4 
(Asp299Gly and Thr399Ile) failed to identify 
any association with MS [42, 43]. A subsequent 
study of nine TLR4 single nucleotide polymor-
phisms (SNP) tested for association with MS in 
362 MS patients and 467 healthy controls also 
failed to identify any significantly associated 
loci [44].

Toll-like receptor five in multiple sclerosis

TLR5 binds bacterial flagellin and is expressed 
on monocytes and macrophages, some DC and 
intestinal epithelium; its expression has been 
identified in microglia by RT-PCR [25]. Little has 
been published on any role it may play in MS.

Toll-like receptor six in multiple sclerosis

TLR6 is expressed on monocytes and macro-
phages, B cells and mast cells and it binds to 
diacyl lipopeptides from Mycoplasma. It has 
been identified in cerebral endothelial cells and 
microglia by RT-PCR [25]. The TLR6 SNP 
rs5743810 was associated with the develop-
ment of INFβ -specific neutralizing antibodies in 
men but not in women after 24 month of treat-
ment with INFβ [23]. 

Toll-like receptor seven in multiple sclerosis

TLR7 is expressed in monocytes and macro-
phages, plasmacytoid DC and B cells, and 
binds to single-stranded (viral) RNA. TLR7 
expression has been identified in microglia by 
RT-PCR [25].

The pro-inflammatory cytokine IL17 plays a crit-
ical role in the immunopathogenesis of MS and 
EAE [45-49] and its production is downregulat-
ed by type I IFNs [50, 51]. In vitro treatment of 
human monocyte-derived DCs with IFNβ1a 
induced the expression of TLR7 and, in a TLR7-
dependent fashion, the members of its down-
stream signaling pathway (MyD88, IRAK4, and 
TRAF6), but inhibited the expression of IL1R. 
TLR7 expression was also necessary for 
IFNβ1a-induced secretion of IL27 by DCs and 
the inhibition of IL1β and IL23. Supernatants 

from IFNβ1a-treated DCs inhibited Th17 differ-
entiation of CD4 T cells, with down regulation of 
retinoic acid-related orphan nuclear hormone 
receptor C (RORC) and IL17A gene expression 
and IL17A secretion. Again, inhibition of IL17A 
was TLR7 dependent and could be blocked by 
TLR7 siRNA silencing [52]. 

At the onset of MS, a subset of patients (11 of 
61) expressed elevated mRNA levels of TLR7, 
together with RIG-1 and IFIH1 – an IFN expres-
sion signature potentially attributable to an 
overactivity of IFN-stimulated gene factor 3 
(ISGF3, a complex formed by STAT1, STAT2 and 
IFN regulatory factor 9). This phenotype was 
shared by a subset of healthy control subjects 
[53]. Patients with a relatively high IFN expres-
sion signature at baseline showed no signifi-
cant modulation in the expression of the genes 
involved in IFN -related pathways during IFNβ 
therapy. In contrast, patients with a low endog-
enous IFN gene signature showed strong gene 
induction after 1 month of treatment [53].

Toll-like receptor eight in multiple sclerosis

TLR8 is expressed on monocytes and macro-
phages, a subset of DC and mast cells; it binds 
to single stranded (viral) RNA. TLR8 expression 
has also been identified in microglia by RT-PCR 
[25]. As is the case for TLR7, at the onset of MS, 
a subset of patients and healthy controls 
express elevated mRNA levels of TLR8, as part 
of an endogenous IFN gene signature [53].

Toll-like receptor nine in multiple sclerosis

TLR9 is expressed in monocytes and macro-
phages, plasmacytoid DC and B cells; it binds 
to unmethylated CpG DNA, which is present in 
bacteria and DNA viruses. TLR9-expressing 
plasmacytoid DC are present in the leptomenin-
ges and demyelinating lesions of patients with 
MS. Plasmacytoid DC are a major source of 
type I IFN, and secrete IFNα in response to 
TLR9 ligation within the early endosomes [54] 
and this response is enhanced in untreated 
patients with MS [55]. INFβ treatment down 
regulates the expression of TLR9 in MS patients 
with a low endogenous IFN gene signature [53] 
and inhibits TLR9 processing (activation) and 
TLR9 ligation-induced secretion of IFNα by 
plasmacytoid DC in all treated patients [55, 
56]. 
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Following stimulation of TLR9 by CpG-DNA (with 
or without stimulation via the B cell receptor 
and CD40), the B cells of MS patients secrete 
more lymphotoxin (LT), TNF and IL12, and less 
IL10, than those of healthy controls [57, 58]. 
The TLR9-stimulated production of IL10 corre-
lates with TLR9 expression levels in CD27+ 
(memory) B cells, which is significantly reduced 
in MS patients [58].

Toll-like receptor ten in multiple sclerosis

Little is known about TLR10, its tissue distribu-
tion, its specificity or any possible role in MS.

Toll-like receptor eleven in multiple sclerosis

TLR11 is expressed on monocytes and macro-
phages, as well as in the liver and in kidney and 
urinary bladder epithelial cells. It binds profilin 
from the parasite Toxoplasma gondii and an 
unidentified ligand from uropathogenic 
Escherichia coli. Little has been published on 
any role TLR11 may play in MS.

Animal models of multiple sclerosis

Clinical research of MS is supported by animal 
models of the pathogenesis and immunoregu-
lation of CNS autoimmunity. Commonly used 
models in the research of MS include: 

Cuprizone 

Cuprizone is a copper chealator that induces 
oligodendrocyte cell death, reversible demye-
lination, axonal injury and microglial activation 
[59, 60]. It is used to model aspects of demye-
lination, OPG migration and activation, and 
remyelination.

Theiler’s murine encephalomyelitis virus 

Theiler’s murine encephalomyelitis virus 
(TMEV) is a single stranded RNA murine cardio-
virus used to infect genetically susceptible 
mice (e.g. SJL strain) intra-cerebrally, resulting 
in persistent infection and chronic demyelinat-
ing disease [61]. The TMEV DA strain infects 
astrocytes, microglia and macrophages, result-
ing in chronic encephalomyelitis that resembles 
the chronic and progressive forms of MS [62, 
63]. The disease can also be induced in resis-
tant mouse strains (e.g. C57BL/6 strain) by 
activating innate immunity with two LPS injec-
tions after TMEV infection [61].

Experimental autoimmune encephalomyelitis 

Experimental autoimmune encephalomyelitis 
(EAE) is a family of models of autoimmune CNS 
damage induced by the immunization of experi-
mental animals with CNS components (either 
an extract, purified protein or a peptide), usu-
ally in the presence of an adjuvant [64]. 

Experimental autoimmune encephalomyelitis 

The pathogenesis of CNS damage caused by 
EAE, and the specific CNS components target-
ed, are affected by strain and species of ani-
mal, choice of antigen (e.g. myelin oligodendro-
cyte glycoprotein (MOG), proteolipid protein 
(PLP) or myelin basic protein (MBP)) and adju-
vant (e.g. Complete Freund’s Adjuvant (CFA), 
CpG, LPS or Pertussis toxin (PTX)), and whether 
the disease studied is active (i.e. that occurring 
in the immunised individual) or passive (i.e. 
that occurring in the recipient of adoptively 
transferred T cells from the immunised individ-
ual). Various combinations can result in mono-
phasic, relapsing–remitting or chronic EAE [65, 
66]

As a generalization, EAE in mice is associated 
with an autoimmune CD4 T cell response domi-
nated by the production of IFNγ and IL6, IL23 
and IL17; features it shares with MS [66-72]. 
Damage to the blood-brain barrier permits the 
influx of monocytes and macrophages, DCs, NK 
cells, CD4+ and CD8+ T cells, NKT cells and 
B-lymphocytes. CNS resident cells respond 
with astrocytic hypertrophy, microglial activa-
tion and OPG migration and activation [38, 
73-76]. The model is characterized by autoanti-
body production and inflammation, demyelin-
ation, axon damage and atrophy of the CNS 
[77-80]. CNS inflammation in the mouse model 
is predominately restricted to the spinal cord, 
causing an ascending flaccid paralysis that 
starts in the tail and progresses to the hind 
limbs and then the forelimbs [66].

Responses to the antigens administered are 
associated with the generation of auto-reactive 
T cells and the induction of autoantibodies [81]. 
While disease can occur in the absence of adju-
vant, the rate of onset, incidence and severity 
of disease are all enhanced by the administra-
tion of adjuvant at the time of immunization 
[64]. CFA is the most commonly used [82]. PTX 
is believed to facilitate leucocyte infiltration 
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into the CNS [83], increase secretion of IL12 
and IL6 [84, 85], decrease production of IL10 
and decrease differentiation of CD4+CD25+ 
regulatory T cells (Tregs; [86]). 

This system has significant limitations in mod-
eling some aspects of MS, but these limitations 
are generally well characterized: i) The initiation 
is unlikely to reflect a natural correlate in MS; ii) 
Where a single protein or peptide has been 
introduced, the diversity of antigenic targets 
seen in MS is not reflected; iii) As disease is 
induced by introduction of an extrinsic antigen, 
the roles of MHC class I presentation and CD8 
T cells in induction are completely absent, and 
in pathogenesis are imperfectly modelled; and 
iv) Not all molecular and cellular components of 
the immune system have identical functions in 
non human species. 

These limitations have resulted in failure of 
some therapies identified in preclinical studies 
to exhibit significant activity in clinical trials. In 
particular, therapies targeted at specific HLA/
peptide/TCR interactions resulting from EAE 
studies using defined induction antigens have 
performed poorly (reviewed in Baxter, [64]). 
Nevertheless, EAE has been, and remains, a 
critically important model system for studying 
many aspects of CNS autoimmunity, such as: 
immune cell trafficking, CNS entry and apopto-
sis; roles of endogenous and infiltrating cells in 
CNS damage and repair; interactive cellular 
and cytokine networks; and the immunoregula-
tion of remission and relapse. To date, every 
effective therapy for MS has been successfully 
trialed in EAE. 

The mouse model of EAE has a particular 
advantage in studying the roles of TLR in CNS 
autoimmunity, because it provides a well-vali-
dated platform for specific gene deletion.

MyD88 in animal models of multiple sclerosis

There is a consensus that EAE is dependent on 
MyD88 [87-89], an adaptor protein for both TLR 
and cytokine signaling [90, 91]. The cytoplas-
mic portions of TLR receptors include a con-
served motif, termed the toll/interleukin-1 
receptor (TIR) domain. The TIR domains of TLRs 
are homologous with the respective domain of 
the interleukin 1 receptor (IL1R) and the cyto-
plasmic adaptor protein family. The TIR domains 
of the adaptor proteins interact with those of 

TLRs or IL1R and trigger the activation of down-
stream protein kinases and multiple transcrip-
tion factors, including the NFκB family. All TLR 
except TLR3 signal through the adaptor protein 
MyD88; TLR3 signals through a MyD88-
independent, TRIF-dependent pathway and 
TLR4 uses both MyD88-dependent and -inde-
pendent pathways [92]. 

Increased expression of MyD88 mRNA was 
found in the MOG35-55/CFA+PTX induced model 
of EAE in C57BL/6 mice [87] and targeted gene 
deletion of Myd88 reduced expression of sev-
eral key inflammatory cytokines, including IL6, 
IL23 and IL17, and prevented EAE [87-89]. 
Paradoxically, MyD88-signaling in B cells 
induced IL10, which inhibited secretion of IL-6, 
IL-12, IL-23, and TNF by CpG-activated DC, sup-
pressing inflammatory T cell responses in EAE 
and aiding recovery from disease [93]. 

Toll-like receptor one in animal models of 
multiple sclerosis

Although Tlr1 mRNA expression is increased in 
the MOG35-55/CFA+PTX induced (active) model 
of EAE, the disease is unaffected by targeted 
Tlr1 gene deletion in C57BL6 mice ([87, 89]; 
Table 1). 

Toll-like receptor two in animal models of 
multiple sclerosis

Increased expression of TLR2 mRNA was found 
in the MOG35-55/CFA+PTX induced model of EAE 
in C57BL/6 mice [87], as well as in the EAE 
model induced in rats immunized with recombi-
nant rat MOG in IFA [33] and in mice after TMEV 
infection [61].

The effects of Tlr2 targeted deletion on active 
EAE appear to be operator dependent. While 
Prinz et al [87] and Hermann et al [94] reported 
mice deficient of TLR2 developing a normal 
clinical course of active EAE, Shaw et al [95] 
reported a mild decrease in the clinical scores 
in female mice, and Reynolds et al [96] 
described a similar result in adoptive transfer 
recipients of Tlr2-/- bone marrow. We reported a 
partial resolution of this discrepancy when we 
described a mild reduction in EAE clinical 
scores of female, but not male, Tlr2-/- C57BL/6 
mice [89]. 

When the role of TLR2 in passive (adoptive 
transfer) EAE was studied, adoptive transfer of 
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Table 1. Toll-like receptors in EAE
Mutation Strain mouse Sex Auto antigen Adjuvant Enhancement Age of induction Result Reference
TLR1-/-  C57BL/6 Male

Female
MOG35–55
MOG35–55

CFA
CFA

PTX
PTX

7-13 weeks
7-13 weeks

Susceptible
Susceptible

[89]
[89]

TLR2-/- C57BL/6
C57BL/6
C57BL/6
C57BL/6

Male
Female
Female
Female

MOG35–55
MOG35–55
MOG35–55
MOG35–55

CFA
CFA
CFA
CFA

PTX
PTX
PTX
PTX

7-13 weeks
7-13 weeks
6-10 weeks
7 weeks

Susceptible
Ameliorated
Susceptible
Ameliorated

[89]
[89]
[87]
[95]

TLR3-/- Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown
TLR4-/- C57BL/6

C57BL/6
C57BL/6
C57BL/10ScCr
C57BL/10ScCr

Male
Female
Female
Not specified
Not specified

MOG35–55
MOG35–55
Recombinant rat MOG protein
MOG35–55
MOG35–55

CFA
CFA
CFA
CFA
CFA

PTX
PTX
PTX
PTX
PTX

7-13 weeks
7-13 weeks
8-12 weeks
9 weeks
9 weeks

Susceptible
Susceptible
Exacerbated
Susceptible
Ameliorated

[89]
[89]
[88]
[102]
[102]

TLR5-/- Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown
TLR6-/- C57BL/6

C57BL/6
C57BL/6

Male
Female
Female

MOG35–55
MOG35–55
Recombinant rat MOG protein

CFA
CFA
CFA

PTX
PTX
PTX

7-13 weeks
7-13 weeks
8-12 weeks

Susceptible
Susceptible
Susceptible

[89]
[89]
[88]

TLR7-/- Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown
TLR8-/- Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown
TLR9-/- C57BL/6

C57BL/6
C57BL/6

Male
Female
Female

MOG35–55
MOG35–55
Recombinant rat MOG protein

CFA
CFA
CFA

PTX
PTX
PTX

7-13 weeks
7-13 weeks
8-12 weeks
6-10 weeks

Susceptible
Ameliorated
Exacerbated

[89]
[89]
[88]

  C57BL/6 Female MOG35–55 CFA PTX Ameliorated [87]
TLR10-/-

TLR11-/-

TLR12-/-

TLR13-/-

Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown

MyD88-/- C57BL/6
C57BL/6
C57BL/6
C57BL/6
C57BL/6

Male
Female
Female
Female 
Not specified

MOG35–55
MOG35–55
MOG35–55
Recombinant rat MOG protein 
MOG35–55

CFA
CFA
CFA
CFA
CFA

PTX
PTX
PTX
PTX 
PTX

7-13 weeks
7-13 weeks
6-10 weeks
8-12 weeks
Not specified

Resistant
Resistant
Resistant
Resistant 
Resistant

[89]
[89]
[87]
[88]
[93]

TLR2/4-/- C57BL/6 Not specified MOG35–55 CFA PTX Not specified Susceptible [93]
TLR2/9-/- C57BL/6 Male

Female
MOG35–55
MOG35–55

CFA
CFA

PTX
PTX

7-13 weeks
7-13 weeks

Ameliorated
Ameliorated

[89]
[89]

Susceptible - no difference between knockout mice and the control group. Exacerbated - knockout mice show a significantly increase in the clinical signs of EAE when compared to the 
control group. Ameliorated - knockout mice show a significantly decrease in the clinical signs of EAE when compared to the control group. Resistant - knockout mice do not develop 
clinical signs of EAE.
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T cells from Tlr2-/- C57BL/6 mice into wild type 
(WT) or Tlr2-/- mice resulted in ameliorated dis-
ease [89, 96]. The dependency of passive EAE 
on TLR2 expression in the recipient suggested 
the presence of tonic signaling through the 
receptor.

In this context, TLR2 signaling was associated 
with detectable levels of circulating IL6, 
reduced numbers of central (CD62L-expressing) 
Treg and increased recruitment of activated, 
IL17-screting CD4 T cells to the brain [89]. Cells 
differentiated in the presence of the TLR2 
ligand Pam3Cys showed a ∼50% increase in 
the proportion expressing IL17, while Tlr2−/− 
T  cells did not exhibit obvious differences in 
Th17 polarization in the absence of exogenous 
TLR2 ligands compared to WT controls; the 
number of IL-17-producing Tlr2−/− cells was also 
unaffected when stimulated with Pam3Cys 
[96]. 

Exacerbation of MS after active immunization 
with a pneumococcal vaccine has been report-
ed [36], and Herrmann et al [94] confirmed a 
similar effect of Streptococcus pneumonie 
infection on EAE; this effect was TLR2 depen-
dent. Similarly, phosphorylated dihydrocerami-
des from the common human oral bacterium 
Porphyromonas gingivalis induced dendritic 
cell IL6 production, decreased spinal cord 
Foxp3+ T cells and enhanced EAE in a TLR2-
dependent manner [97, 98].

Visser et al [10, 99] hypothesized that peptido-
glycan can contribute to disease development 
and progression in MS and EAE in the absence 
of infection or bacterial replication. They found 
that bacterial peptidoglycan was able to be 
substituted for heat killed Mycobacteria tuber-
culosis in CFA in the induction of active EAE 
[10]. They subsequently reported persistence 
of TLR ligands in the CNS in MS patients as well 
as in two nonhuman primate models of EAE, 
associated with reduced local expression of 
two major PGN-degrading enzymes, lysozyme 
and N-acetylmuramyl-l-alanine amidase [99]. 
As peptidoglycan can be sensed by cytoplasmic 
PAMP receptors (NOD1 and NOD2) in addition 
to TLR2, Shaw et al [95] compared induction of 
MOG35-55/CFA+PTX EAE in female Tlr2-/-, 
Nod1−/−, Nod2−/−, and Ripk2−/− mice. Tlr2-/- mice 
developed a severity of disease similar to that 
reported by ourselves [89], while Nod1−/−, 
Nod2−/−, and Ripk2−/− mice showed arguably 

greater protection. The authors make a good 
case for RIP2 at least contributing to activation 
of CNS-infiltrating dendritic cells, and thereby 
EAE, in WT/Ripk2−/− bone marrow chimeric 
mice [95].

As for MS, DAMPs that are TLR2 ligands have 
also been associated with EAE. For example, 
HMGB1 has been identified in active EAE 
lesions and its levels correlate with active 
inflammation [33]. Increased serum concentra-
tions of 15-α-hydroxicholestene (15-HC) have 
also been identified in mice with secondary pro-
gressive EAE and 15-HC activated microglia, 
macrophages and astrocytes, and enhanced 
expression of TNF, iNOS and CCL2 mRNA in 
CNS-infiltrating monocytes/macrophages, 
through a pathway involving TLR2 [100].

Toll-like receptor three in animal models of 
multiple sclerosis

Although increased expression of TLR3 was not 
found in the MOG35-55/CFA+PTX induced model 
of EAE in C57BL/6 mice [87], it was in mice 
susceptible to demyelinating disease (SJL 
strain) after TMEV infection, but not in resistant 
mice [61].

Repeated i.p. injections of the TLR3 ligand poly 
I:C (a double-stranded RNA analog) induced 
expression of endogenous IFNβ and the periph-
eral induction of the CC chemokine CCL2, and 
strongly inhibited EAE induced in SJL/J mice by 
immunization of PLP peptide 139-151 in CFA 
[101].

Toll-like receptor four in animal models of 
multiple sclerosis

Increased expression of Tlr4 mRNA was found 
in the MOG35-55/CFA+PTX induced model of EAE 
in C57BL/6 mice [87], as well as in the Dark 
Agouti rat EAE model with MOG emulsified in 
incomplete Freud’s adjuvant [33].

Conflicting outcomes have been published in 
studies of EAE susceptibility in mice deficient in 
TLR4. C57BL/6.Tlr4 deficient mice showed 
increased Il6 and Il23 mRNA expression by 
myeloid DC, an increased proportion of T cells 
producing IL17 and increased EAE clinical 
scores following immunization with recombi-
nant rat MOG [88]. In contrast, in the MOG35-55 
peptide-induced model, the severity of disease 
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was unaffected by targeted deletion of Tlr4 [89, 
102], unless a marginal dose of M. tuberculosis 
was used in the inoculum, in which case the 
severity of disease was sometimes reduced 
compared to C57BL/6 in a mechanism that 
appeared to involve pertussis toxin (PTX) sig-
naling through TLR4 [102]. In a model of active 
EAE induced in C57BL/6. Rag1-/- hosts recon-
stituted by CD4 T cell adoptive transfer from 
either WT or Tlr4-/- mice, the prevalence of EAE 
induced by MOG35-55/CFA+PTX was halved in 
the recipients of Tlr4-/- T cells [103]. The protect-
ed mice had reduced numbers of infiltrating 
cells and consequently reductions in Il17, Ifng, 
Ccr6 and Ccl2 transcripts in total CNS mRNA 
analyses. 

The TLR4 ligand poly-γ-glutamic acid from 
Bacillus subtilis signals naive CD4+ T cells via 
TLR4 and MyD88 to induce TGFβ and upregu-
late FoxP3 expression, suppressing EAE in the 
C57BL/6 MOG35-55/CFA+PTX model [104]. 

Complement C5a synergizes with TLR4 ligation 
by LPS to induce APC to produce serum factors, 
including IL6, that drive Th17-cell differentia-
tion [105]. In the passive (adoptive transfer) 
model of MOG38-50/CFA, if the T cells to be 
adoptively transferred were first re-stimulated 
in vitro in the presence of serum from mice 
treated with C5a in addition to LPS, a greater 
severity of EAE resulted [105]. 

Toll-like receptor five in animal models of 
multiple sclerosis

Little is known about the role of TLR5 in animal 
models of MS. TLR5 was not increased in 
expression in the MOG35-55/CFA+PTX induced 
model of EAE in C57BL/6 mice [87].

Toll-like receptor six in animal models of mul-
tiple sclerosis

Increased expression of Tlr6 mRNA was found 
in the MOG35-55/CFA+PTX induced model of EAE 
in C57BL/6 mice [87], as well as in mice sus-
ceptible to demyelinating disease (SJL strain) 
after TMEV infection, but not in resistant mice 
[61]. Targeted deletion of Tlr6 did not affect the 
severity of EAE in C57BL mice [87-89].

Toll-like receptor seven in animal models of 
multiple sclerosis

Increased expression of Tlr7 mRNA was found 
in the MOG35-55/CFA+PTX induced model of EAE 

in C57BL/6 mice [87] as well as in mice after 
TMEV infection [61].

Repeated low dose administration of the syn-
thetic TLR7 agonist 9-benzyl-8-hydroxy-2-(2-
methoxyethoxy) adenine upregulated expres-
sion of the TLR signal inhibitors IRAK-M, and 
SHIP-1, and induced hyporesponsiveness to 
TLR2, -7 and -9, resulting in reduced EAE clini-
cal scores in the MOG35-55/CFA+PTX induced 
model [106]. The TLR7 agonist Imiquimod, 
administered on days one, three and five post 
administration of MOG35-55/CFA+PTX also 
delayed disease onset and reduced EAE clini-
cal scores; the treatment was associated with 
the endogenous production of IFNβ [107].

Toll-like receptor eight in animal models of 
multiple sclerosis

Increased expression of Tlr8 mRNA was found 
in the MOG35-55/CFA+PTX induced model of EAE 
in C57BL/6 mice [87] as well as in mice sus-
ceptible to demyelinating disease (SJL strain) 
after TMEV infection, but not in resistant mice 
[61]. Intra-axonal accumulations of TLR8 pro-
tein were confirmed for the MOG35-55/CFA+PTX 
model [108]. Little else is known about the 
potential role of TLR8 in animal models of MS.

Toll-like receptor nine in animal models of 
multiple sclerosis

Increased expression of Tlr9 mRNA was found 
in the MOG35-55/CFA+PTX induced model of EAE 
in C57BL/6 mice [87], as well as in mice after 
TMEV infection [61].

Whereas C57BL/6.Tlr9-/- mice showed a 
decreased severity of disease following EAE 
induction with MOG35-55 [87], disease was exac-
erbated in TLR9-deficient mice treated with 
recombinant rat MOG [88]. In our hands, the 
EAE clinical scores were reduced in female, but 
not male, C57BL/6 mice in which disease was 
induced with MOG35-55/CFA+PTX [89]. 
Lampropoulou et al [93] examined EAE suscep-
tibility of mice bearing TLR9-deficiency on only 
B cells by using a mixed bone marrow chimeric 
system with μMT mice (carrying a gene deletion 
of the µ heavy chain) and Tlr9−/−Cd40−/− mice 
as donors and WT mice as recipients. The onset 
and recovery from EAE was indistinguishable 
from that of control mice [93]. 

Consistent with TLR9 playing a role in EAE 
pathogenesis, TLR9 ligation with CpG DNA was 
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able to induce EAE. Mice that expressed the 
transgenic TCR 5B6, which is specific for the 
PLP peptide 139-151, on the EAE-resistant 
(EAE-resistant) B10.S background rarely devel-
oped spontaneous EAE, in contrast to 5B6 
transgenic mice on the EAE-susceptible SJL 
background. The relative resistance to sponta-
neous EAE in transgenic B10.S mice appeared 
to be due to a lower activation state of the 
APCs. When APCs in 5B6 transgenic B10.S 
mice were activated by TLR9 ligation with CpG 
DNA, T cell tolerance was broken, resulting in 
encephalomyelitis [17]. Similar results were 
obtained in an analogous, but non-transgenic 
system: Adult SJL mice injected i.p. with a PLP 
peptide emulsified in IFA fail to mount prolifera-
tive or cytokine responses and are protected 
from EAE upon subsequent challenge with the 
PLP/CFA. Again, the tolerized PLP-specific 
lymph node cells regained the ability to transfer 
EAE once reactivated in vitro in the presence of 
CpG oligonucleotides [109]. Finally, a combina-
tion of TLR4 and TLR9 agonists (CpG-ODN and 
LPS) was able to replace mycobacteria in 
Freunds adjuvant to induce EAE in Lewis rats 
immunized with MBP peptide 68-86 [110]. 

Toll-like receptors eleven, twelve and thirteen 
in animal models of multiple sclerosis

Nothing has been published on the potential 
roles of these TLR in animal models of MS.

Importance of toll-like receptors to adjuvants 
used in experimental autoimmune encepha-
lomyelitis

The induction of EAE commonly involves the 
use of CFA, which contains Mycobacteria tuber-
culosis. While the adjuvant activity of M. tuber-
culosis is primarily mediated by NOD2 recogni-
tion of muramyl dipeptide, TLR do play 
nonredundant roles in cytokine responses to 
mycobacteria as cell lines transfected with 
human TLR2 or TLR4 were responsive to M. 
tuberculosis [111]. The mycobacterial TLR2 
ligand 19 kDa triacyl lipoprotein (LpqH), and the 
NOD2 ligand muramyl dipeptide synergized in 
the induction of cytokines, and this synergism 
was lost in cells defective in either TLR2 or 
NOD2 [111]. TLR1 contributes to the TLR2 rec-
ognition of the 19 kDa lipoprotein as a compo-
nent of the TLR1/TLR2 heterodimer [112-114]. 
Despite the ability of the M. tuberculosis 19 
kDa lipoprotein to activate innate immune func-

tions early in infection, it induces TLR2-
dependent inhibition of MHC-II expression and 
Ag processing during later phases of macro-
phage infection [113]. 

Several other mycobacterial lipoproteins stimu-
late TNF secretion by macrophages via TLR2 
ligation, including PhoS1 (38-kDa lipoprotein; 
[115], LprA [116] and LprG [117]. Like the 19 
kDa lipoprotein, most of these subsequently 
inhibit MHC-II expression and Ag processing 
[115-117]. Mycobacterial phosphatidyl-myo-
inositol mannosides can activate primary mac-
rophages to secrete TNF via TLR2 [118] and 
TLR4 [119] and mycobacterial DNA contributes 
to the adjuvant properties of BCG [120] via the 
recognition of CpG motifs by TLR9 [121].

As there is no evidence of an adjuvanted immu-
nization event in the initiation of MS, the depen-
dence of EAE on induction by CFA containing M. 
tuberculosis raises the concern that TLR-
dependencies identified in the active model of 
EAE represent limitations of the model, and not 
characteristics of the disease. In our own work, 
we partly addressed this issue by examining 
the effects of targeted TLR gene deletion on 
the passive (adoptive transfer) model of EAE. 
For both TLR2 and TLR9, we confirmed depen-
dence [89]. We did not examine the role of 
TLR4 in passive EAE, because we found no evi-
dence of a role in active EAE.

In 1955, Lee and Olitsky [122] found that pre-
treatment of EAE resistant mice with Bordetella 
pertussis (then termed Hemophilis pertussis) 
vaccine (killed organisms) increased suscepti-
bility to EAE. Wiener, et al [123] subsequently 
reported that Bordetella pertussis organisms 
could be substituted for the mycobacteria in 
Freud’s oily adjuvant in the induction of EAE, 
and Levine and Wenk [124], found that the 
killed cellular vaccine could be replaced with an 
aqueous pertussis vaccine (US Patent 24,748 
“Pertussis Vaccine Preparation, the superna-
tant produced after washing phenol treated 
cells for one-to-three weeks). Levine et al [125] 
used this latter system as a platform in an 
attempt to identify the active constituent of 
Bordetella pertussis. In these and subsequent 
experiments, the ability of Bordetella pertussis 
and its soluble extracts to induce vascular per-
meability in the CNS was associated with the 
ability to induce EAE; an active fraction was 
highly purified by electrophoresis on a sucrose 
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density-gradient column and termed “pertussi-
gen” [126]. The major molecular mechanism 
appeared to be via vasoactive amine sensitiza-
tion, consistent with pertussigen being PTX 
[83]. Using intravital microscopy of the murine 
cerebromicrovasculature, Kerfoot et al [102] 
demonstrated that PTX alone induces the 
recruitment of leukocytes, including activated T 
cells, via induction of P-selectin expression; 
P-selectin blockade prevented the PTX-induced 
increase in permeability across the blood-brain 
barrier, demonstrating that permeability is a 
secondary result of recruitment, rather than 
the primary mechanism by which PTX induces 
disease [102]. This effect on the vasculature is 
enhanced by its effect on peripheral naïve T 
cells, which undergo proliferation, cytokine 
polarization, increased expression of CD49d 
and reduction in CD62L [127].

Kerfoot et al [102] proposed that PTX-induced 
leukocyte recruitment is dependent on TLR4 
signaling and suggested that the disease-
inducing mechanisms initiated by PTX are also 
at least partly dependent on TLR4. They illus-
trated independent experiments in which EAE 
in C57BL/6.Tlr4-/- mice was either ameliorated, 
prevented, or unaffected. In our own work, we 
found no significant role for TLR4 in active EAE, 
and while clinical signs were ameliorated in 
C57BL/6.Tlr4-/- mice in the passive model, the 
inhibition of disease was not as great as in the 
mice that did not receive PTX, indicating that, if 
PTX does act through TLR4, it is also likely to 
have activities mediated by other mechanisms 
in this model [89]. A partial explanation for 
these discrepancies is provided by the finding 
of Millward et al [128] that IFNγ-induces expres-
sion of the chemokines CXCL10 and CCL5, 
which synergize with PTX to promote T cell entry 
to the central nervous system. Neither IFNγ-
induced chemokine expression alone, nor PTX 
alone, led to histologically detectable inflam-
mation [128]. These results suggest that the 
ephemeral TLR4-dependence of the action of 
PTX may not be due to direct activity, but rather 
due to TLR4 signaling enhancing the produc-
tion of IFNγ.

A model of the role of toll-like receptors in 
multiple sclerosis

Three groups of cytokines appear to play key 
roles in both MS and EAE. The production of 

IL17-secreting CD4 (Th17) T cells appears to 
play a consistent role in generating CNS auto-
immune damage in both diseases [45-49, 
129]. The production of this lineage(s) of cells 
is dependent on IL23, the expression of which 
is dependent on that of TGFβ and IL6. In con-
trast, IL2, IL4, IFNγ, and IL27 inhibit the differ-
entiation of Th17 cells [130]. TGFβ is produced 
within the intestinal immune system in 
response to the development of a normal 
microflora [131, 132] and IL6 is generated in 
response to ligation of TLR2 and TLR4 
[133-136].

Members of the second group of cytokines also 
contribute to disease pathogenesis: IL12 drives 
the production of IFNγ, which in turn contrib-
utes to leukocyte migration to the CNS, vascu-
lar adhesion and exocytosis, by upregulating 
the expression of ICAM-1 and VCAM-1 on CNS 
vasculature [137-139]. 

Lymphocytes obtained from the blood of RRMS 
patients have an increased tendency to express 
both ROR-γt and T-bet, and secrete both IFNγ 
and IL17, following expansion in the presence 
of IL23. IFNγ/IL17 dual expressing T cells 
showed a selective advantage in migrating 
across blood-brain barrier endothelial cells and 
T lymphocytes coexpressing IL17 and IFNγ are 
found disproportionately in the brain tissue of 
MS patients [139]. Similarly, during the devel-
opment of EAE, IFNγ in the spinal cord was pro-
duced almost exclusively by cells that had also 
produced IL17 [140].

Ligation of TLR2 or TLR4 on myeloid DC can 
induce the production of IL23, which supports 
the production of IL17A by CD4 T cells [141] as 
well as the emergence of IL17/IFNγ-producing 
cells [139, 140]. Conditioned media from 
PBMC’s stimulated with a TLR4 agonist were 
able to elicit IL17 secretion by CD4 T cells – 
even in the absence of APC [142]. TLR4 ligation 
also promotes the production of IL12 p70, 
which in its turn induces IFNγ [143]. These con-
sequences of TLR ligation can therefore con-
tribute to CNS autoimmunity, and may do so 
even in the absence of other causes of IL17 
and IFNγ polarisation. 

The degree of partial redundancy in this activity 
was illustrated by our experiments on the role 
of Tlr2-/- in passive EAE: adoptive transfers 
were performed in which TLR2 was deleted 
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from either the donor T cells, the recipient, both 
or neither. Adoptive transfer of WT lymphocytes 
into WT recipients resulted in robust signs of 
EAE as expected. The adoptive transfer of 
C57BL/6.Tlr2-/- cells into either WT or C57BL/6.
Tlr2-/- recipients resulted in ameliorated dis-
ease, similar to active EAE in female C57BL/6.
Tlr2-/- mice. In contrast, the transfer of WT cells 
into C57BL/6.Tlr2-/- recipients resulted in com-
plete protection; suggesting that the presence 
of TLR2 at the induction of disease creates a 
dependence on TLR2 signaling in the effector 
phase [89]. Given the role of IL6 in Th17 cell 
differentiation, via sequential engagement of 
the IL21 and IL-23 pathways, our finding of IL6 
circulating in the plasma of WT, but not 
C57BL/6.Tlr2-/- mice may provide a potential 
mechanism. 

Opposing the actions of CNS-damaging IL17/
IFNγ-producing cells, is type I IFN which induc-
es IL27, which in turn induces the secretion of 
IL10 [144-148]. IFNβ directly decreases pro-
duction of IL17 by T cells in a dose-dependent 
manner. It also induces the production of IL27 
and acts in synergy with IL27 to inhibit the pro-
duction of IL17 and promote the secretion of 
IL10 [148]. IL10 inhibits the production of IFNγ 
by downregulating IL12 [149]. The production 
of IL10 is, itself, suppressed by either IL1β 
[149] or the combination of IFNγ and TLR2 liga-
tion. IFNγ can alter TLR2-induced signal trans-
duction by increasing GSK3 activity and sup-
pressing MAPK activation, leading to diminished 
IL-10 production [150].

Plasmacytoid DC are the primary source of type 
I IFN and predominantly express TLR7 and 
TLR9. There is some suggestion that the TLR9/
IFN axis is deficient in MS patients [58]. The 
EAE model does not appear to mimic the activi-
ties of TLR9 in this regard [17, 110]. It is possi-
ble that this discrepancy results from the man-
ner of experimental administation of the TLR9 
ligands in these experiments, as it was unlikely 
to result in targeting of TLR9 ligands to plasma-
cytoid DC. TLR3 ligation also upregulates IFNb1 
[151], resulting in the production of IL10 and 
downregulation of IL12 and IL23 [25]. TLR3 is 
widely expressed in the CNS [19, 25, 37, 38], 
including on cerebral endothelial cells [28] and 
the presence of its endogenous ligand stath-
min in the CNS suggests the possibility of anti-
inflammatory, homeostatic pathways. 
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