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Abstract: TGF-β is an important biological mediator. It regulates a wide range of functions including embryonic de-
velopment, wound healing, organ development, immuno-modulation, and cancer progression. Interestingly, TGF-β is 
known to inhibit cell growth in benign cells but promote progression in cancer cells, a phenomenon known as TGF-β 
paradox. TGF-β stimulation in cancer cells leads to a differential Erk activation, which srves as the basis of TGF-β 
paradox between benign and cancer cells. The critical events of TGF-β mediated Erk activation are suppressed TBRs 
and elevated TGF-β in tumor cells but not in benign cells. These events form the basis of the “vicious cycle of TGF-β 
signaling”. The term “vicious cycle”, implies that, with each advancing cycle of TGF-β signaling, the tumor will ac-
cumulate more TGF-β and will be more “aggressive” than that of the previous cycle. Understanding this vicious cycle 
of TGF-β signaling in tumor progression and metastasis will help us to predict indolent from aggressive cancers and 
will help us to develop novel anti-cancer strategies.
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Introduction

With rare exceptions, the natural history of all 
types of tumors is known to progress from 
localized indolent stages to aggressive meta-
static stages [1, 2]. Recent advancements in 
biomarker research have made significant pro-
gresses to help prediction of cancer progres-
sion and disease outcome [3-7]. However, the 
molecular mechanism behind tumor progres-
sion remains elusive. In this review, we propose 
that a vicious cycle of TGF-β signaling is a uni-
versal mechanism that leads to tumor progres-
sion. The following paragraphs will define the 
role of TGF-β signaling in cancer progression 
and metastasis.

Biology of TGF-β signaling

There are three known mammalian isoforms of 
TGF-β (TGF-β1, -β2, and -β3) with significant 
structural and functional similarity [8]. The bio-

logical effect of TGF-β is mediated through type 
I and type II receptors (TBRI and TBRII) [9]. The 
canonical downstream events involve the acti-
vation of Smad pathways [10]. TGF-β first binds 
to TBRII, which recruits and activates TBRI [9, 
11]. The latter then activates Smad2/3. The 
activated Smad2/3 combines with Smad4 and 
migrates to the nucleus to regulate transcrip-
tion [12]. In addition to the Smad pathway, 
TGF-β also signals through a number of non-
canonical pathways, including m-TOR, RhoA, 
Ras, MAPK, PI3K/AKT, PP2A/p70s6K, and JNK 
[13]. The relative importance and interplay of 
these pathways of TGF-β signaling is still under 
investigation [14, 15]. In this review, we will limit 
our discussion to TGF-β mediated Smad and 
Erk activation.

TGF-β paradox

TGF-β is known to inhibit cell cycle in benign 
cells but promote progression and metastasis 
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in cancer cells [16, 17], a phenomenon known 
as TGF-β paradox [18]. Although there are 
numerous articles with different approaches 
tackling this topic, to date, a logical explanation 
leading to TGF-β paradox remains elusive and is 
accepted as a scientific mystery [17-20]. 
Recently, we reported that a differential activa-
tion of Erk in cancer cells is the underline 
molecular mechanism for TGF-β paradox [21]. 
In this review, we will further elaborate the role 
of a vicious cycle in TGF-β signaling as the 
mechanism of tumor progression and metas- 
tasis.

TGF-β mediates a differential activation of Erk 
between benign and cancer cells (Figure 1)

It is well known that TGF-β is able to activate 
Erk in cancer cells [22-24] and inactivate Erk in 
non-cancer cells [25]. However, a direct link of 
TGF-β mediated differential activation of Erk 
between cancer and non-cancer cells in the 
same cell system has not been reported until 
our recent report [26]. In that study, we treated 
benign cells with a low concentration of TGF-β 
(0.1 ηg/ml) which led to Erk activation; while 
the treatment of the same cells with a high con-
centration of TGF-β (10 ηg/ml) resulted in Erk 
inactivation. Activated Erk is a key regulator for 
cell proliferation. Consistent with this finding, 
we have observed cell proliferation in benign 

In contrast to the traditional concept of TGF-β 
paradox [18], TGF-β treatment in benign cells 
does not always result in growth arrest. Under 
normal physiological conditions, cellular activi-
ties are carefully monitored by TGF-β. 
Differential Erk activation seems to play a cen-
tral role in this regulation. When TGF-β level in 
the local environment is low, cells will activate 
Erk and induce TGF-β expression [26]. On the 
other hand, when the local concentration of 
TGF-β is more than sufficient, cells have a 
mechanism to shut off Erk activation, thus, pre-
vent further expression of TGF-β.

It is important to note that Erk activation or 
inactivation by TGF-β in benign cells is not a 
case of all-or-none phenomenon. In order to 
demonstrate the gradual changes in Erk or 
Smad activation in benign cells, multiple doses 
of TGF-β at different cell density must be 
employed as described by Clarke and associ-
ates [31]. Indeed, they demonstrated a linear 
increment of Smad activation within a wide 
range of available TGF-β per cell in mink lung 
epithelial cells [31]. In an attempt to validate 
the same linear relationship exists between 
TGF-β dosage and Erk inactivation, we repeat-
ed the same experiment performed by Clarke 
and associates [31] by using a different set of 
benign epithelial cells (RWPE1 and BPH1). 
Indeed, a linear Erk inactivation was demon-

Figure 1. Differential activation of Erk by TGF-β. Treatment of benign cells with a 
low dose of TGF-β (0.1 ng/ml) will lead to Erk activation. But, treatment of benign 
cells with a high dose of TGF-β (10.0 ng/ml) will lead to Erk inactivation (26). 
However, in malignant cells, especially the advanced cancer cells, the treatment 
of the same cells with a high dose of TGF-β (10 g/ml) will result in Erk activation. 
The use of different dosages of TGF-β in these studies is critical as they bring 
out the interesting phenomenon of differential responses to TGF-β stimulation. 
lt should be pointed out that cancer cells in the early stage of carcinogenesis 
retain some of the features of benign cells in that they can be inhibited by TGF-β. 
However, in advanced cancer cells, treatment with any dose of TGF-β would re-
sult in Erk activation and cell proliferation.

cells with a low dose of 
TGF-β but growth arrest 
with a high dose in benign 
stromal cells [27] as well 
as in benign epithelial 
cells [23]. The use of dif-
ferent dosages of TGF-β in 
these studies is critical as 
they bring out the interest-
ing phenomenon of differ-
ential responses to TGF-β 
stimulation. It should be 
pointed out that cancer 
cells in the early stage of 
carcinogenesis retain so- 
me of the features of 
benign cells in that they 
can be inhibited by TGF-β 
[28, 29]. However, in 
advanced cancer cells, 
treatment with TGF-β wou- 
ld result in Erk activation 
and cell proliferation [22, 
23, 27, 30].
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strated [21]. This phenomenon is only applied 
to benign cells or early stage cancer cells, as in 
advanced cancer cells, there will be no such lin-
ear relationship in Smad activation and Erk 
inactivation upon TGF-β stimulation. In 
advanced cancer cells, Erk is constantly in an 
activated state [23, 26] and Smad activation is 
suppressed, regardless the level of TGF-β 
employed. This finding has an important impli-
cation in TGF-β paradox (Figure 2), that is, in 

early event of carcinogenesis for all types of 
cancer [37]. The biological, consequence of a 
down-regulated TBR will be an attenuate 
Smad2/3 activation and an elevated Erk1/2 
activation in advanced cancer cells. The avail-
ability of TBRs dictates the relative levels of 
activated Erk1/2 and inactivated Smad2/3, 
thus determines the fate of the TGF-β paradox 
[31, 38, 39]. It follows that any condition that 
results in down regulation of functional TBRs, 

Figure 3. Activated Erk is a master regu-
lator of tumor progression. Activated Erk 
is a key regulator for cell proliferation. Its 
downstream effects are the activation of 
NF-ĸB which lead to upregulation DNA 
methyltransferases and TBRs down-reg-
ulation, loss of E-cadherin which results 
in β-catenin to interact with Wnt signal-
ing, vimentin expression which results 
in epithelial-to-mesenchymal transition, 
and TGF-β auto-induction.

benign cells or early stage 
cancer cells, TGF-β offers a 
mechanism for homeosta-
sis; while in advanced can-
cer cells it promotes tumor 
progression.

Activated Erk is a master 
regulator for tumor pro-
gression and metastasis

The activated Erk is a mas-
ter regulator for tumor pro-
gression [22] (Figure 3), it is 
responsible for a host of 
oncogenic signaling events 
including NF-kB activation 
[23], promotion of angio-
genesis [32], evasion of 
immune surveillance [33, 
34], stimulation of cancer 
cell proliferation, inhibition 
of cancer cell apoptosis 
[17], and facilitation of epi-
thelial - to -mesenchymal 
transition (EMT) and metas-
tasis [23]. 

TGF-β mediated Erk activa-
tion leads to up-regulation 
of DNA methylatransfer-
ases (DNMTs) and down-
regulation of TBRs

It is known that TGF-β medi-
ated Erk activation in can-
cer cells will lead to up-regu-
lates DNA methyltransfera- 
ses (DNMTs) [35]. Targets of 
DNMTs promoter methyla-
tion in many tumor suppres-
sor genes are TBRs [35, 
36]. A search of the litera-
ture has revealed that down 
regulation of TBRs is an 

Figure 2. TGF-β paradox between benign and malignant cells. The effects of 
TGF-β on benign cells or the early stage of carcinogenesis are two-fold.  At low 
doses of TGF-β, TBRs are activated at a low level, which will recruit a low level 
of PP2A-B56α and will activate a high level of Erk. At high doses, a high level 
of TBRs is activated, which will lead to high recruitment of PP2A-B56α and 
low level of Erk activation. In advanced cancer cells, due to a severely down-
regulated TBR, TGF-β, at any dose, will recruit low levels of PP2A-B56α and 
will activate high levels of Erk. The net consequence will be tumor progression 
and tumor invasion. An important implication in TGF-β paradox is that, in be-
nign cells or early stage cancer cells, TGF-β offers a mechanism for cellular 
homeostasis; while in advanced cancer cells it promotes tumor progression.
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such as inflammation [40, 41], Ras activation 
[42, 43], and loss-of-function mutations in 
TBRs [44-46], will be predisposed to cancer 
develop and cancer progression.

TGF-β mediates auto-induction of TGF-β in 
cancer cells 

TGF-β overproduction is a universal event in 
cancer cells and is a poor prognostic marker 
[26, 35, 47-50]. The mechanism, though which 
TGF-β regulates its own production, is different 
between benign and cancer cells. Under the 
normal physiological conditions, the level of 
TGF-β is tightly regulated within the microenvi-
ronment through a negative feedback loop to 
maintain a relatively constant level of TGF-β. 
Too little or too much TGF-β will have an unfa-
vorable consequence [37, 51, 52]. However, 
this principle does not apply to cancer. Cancer 
cells, especially the advanced cases, are capa-
ble of evading the immune surveillance pro-
gram due to the well-known phenomenon of 
auto-induction of TGF-β by cancer cells (Yu et 
al, 2010), resulting in an elevated TGF-β in the 
microenvironment through a positive feedback 
loop [53]. As a result, there is an accumulation 
of TGF-β in the microenvironment, which fur-
ther promotes tumor progression [26, 35, 49]. 

Conclusion: vicious cycle of TGF-β signaling in 
tumor progression and metastasis

With regard to TGF-β signaling, a characteristic 
feature of cancer cells, as oppose to the benign 
cells, is a suppressed TBRs (the cause) and an 
elevated TGF-β (the effect). TGF-β signaling in 

ness” can be defined by the tumor volume, the 
extent of metastatic spread, the pathological 
grading, the clinical staging, and the degree of 
resistant to therapy. This feature applies to all 
cancer cells and can be used as a biomarker 
for prediction of aggressiveness and outcome 
of therapy for cancer [23, 35]. 
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