
Geosci. Instrum. Method. Data Syst., 5, 1–15, 2016

www.geosci-instrum-method-data-syst.net/5/1/2016/

doi:10.5194/gi-5-1-2016

© Author(s) 2016. CC Attribution 3.0 License.

Designing optimal greenhouse gas monitoring

networks for Australia

T. Ziehn1, R. M. Law1, P. J. Rayner2, and G. Roff3

1CSIRO Oceans and Atmosphere Flagship, Aspendale, VIC 3195, Australia
2School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
3Australian Bureau of Meteorology, Docklands, VIC 3008, Australia

Correspondence to: T. Ziehn (tilo.ziehn@csiro.au)

Received: 30 June 2015 – Published in Geosci. Instrum. Method. Data Syst. Discuss.: 5 August 2015

Revised: 18 December 2015 – Accepted: 4 January 2016 – Published: 19 January 2016

Abstract. Atmospheric transport inversion is commonly

used to infer greenhouse gas (GHG) flux estimates from con-

centration measurements. The optimal location of ground-

based observing stations that supply these measurements can

be determined by network design. Here, we use a Lagrangian

particle dispersion model (LPDM) in reverse mode together

with a Bayesian inverse modelling framework to derive op-

timal GHG observing networks for Australia. This extends

the network design for carbon dioxide (CO2) performed by

Ziehn et al. (2014) to also minimise the uncertainty on the

flux estimates for methane (CH4) and nitrous oxide (N2O),

both individually and in a combined network using multiple

objectives. Optimal networks are generated by adding up to

five new stations to the base network, which is defined as

two existing stations, Cape Grim and Gunn Point, in south-

ern and northern Australia respectively. The individual net-

works for CO2, CH4 and N2O and the combined observing

network show large similarities because the flux uncertain-

ties for each GHG are dominated by regions of biologically

productive land. There is little penalty, in terms of flux un-

certainty reduction, for the combined network compared to

individually designed networks. The location of the stations

in the combined network is sensitive to variations in the as-

sumed data uncertainty across locations. A simple assess-

ment of economic costs has been included in our network

design approach, considering both establishment and main-

tenance costs. Our results suggest that, while site logistics

change the optimal network, there is only a small impact on

the flux uncertainty reductions achieved with increasing net-

work size.

1 Introduction

Carbon dioxide (CO2), methane (CH4) and nitrous ox-

ide (N2O) are the three most important greenhouse gases

(GHGs), and they amount to 80 % of the total current ra-

diative forcing from well-mixed GHGs. Their concentrations

in the atmosphere have increased since pre-industrial times

by 40 % for CO2, 150 % for CH4 and 20 % for N2O. Their

combined increases are the main driver for climate change

(Ciais et al., 2013). It is therefore important to monitor ma-

jor GHGs, not only for the continuous observation of atmo-

spheric concentrations to detect global trends, but also for

deriving better constrained budgets and a better attribution

of the flux components.

Surface fluxes can be derived, for example, by running

a process-based model in forward mode, where atmospheric

concentration measurements have been used to constrain

model parameters. This has been successfully demonstrated

for CO2 in the form of the Carbon Cycle Data Assimilation

System (CCDAS) (Rayner et al., 2005; Ziehn et al., 2011).

However, the most commonly used tool for deriving surface

fluxes on multiple temporal and spatial scales has been atmo-

spheric transport inversion (e.g. Gurney et al., 2002; Peylin

et al., 2013). Both approaches rely heavily on accurate mea-

surements from observing stations.

A global network of ground-based measurement stations

has been developed over the years to monitor CO2, CH4

and N2O. The Global Atmosphere Watch (GAW) programme

of the World Meteorological Organization (WMO), for ex-

ample, coordinates activities on greenhouse gas observa-

tions, including quality assurance, calibration, validation and

archiving of data for climate research purposes. Stations are
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2 T. Ziehn et al.: Greenhouse gas network design

actively hosted by more than 80 countries around the world

(WMO, 2014). Most of these stations perform flask sampling

only (selected for background conditions), but continuous in-

situ data are becoming increasingly available.

Network design studies can be used to provide guidance

on how to extend existing observational networks in an op-

timal way, particularly as new types of instruments or mea-

surements become available. One major advantage of net-

work design is that stations can be assessed where no data

are available yet and potential new stations can be added

to the network by minimising a defined cost function. Most

GHG network design studies have been performed for CO2

only (e.g. Rayner et al., 1996; Law et al., 2004). However

since current-generation instruments now typically measure

more than one GHG, and logistical benefits are derived from

co-locating instruments, it is helpful to extend the CO2-only

studies to consider the network design requirements for the

three major GHGs together.

We focus our study on the Australian continent and use

the methodology developed by Ziehn et al. (2014), although

the method could equally be applied to other regions (e.g.

Nickless et al., 2015, for South Africa). We consider con-

tinuous concentrations measurements for all three GHGs at

an hourly timescale, which results in a network that could

be used to derive surface fluxes at a high spatial and tem-

poral resolution. Australia is an interesting case study since

it is a large, mostly sparsely populated, continent with only

a small current GHG observing network compared to other

continents such as North America and Europe. Haverd et al.

(2013) noted that global inversions provided no meaning-

ful constraint on the Australian carbon budget due to lim-

ited observations that were usually selected for background

(i.e. ocean not continental) conditions. Hence, given resource

constraints, it is vital that any additional measurement ca-

pability be targeted not only at locations with the greatest

potential to reduce flux uncertainties across the three GHGs

but also at locations that are logistically feasible and min-

imise ongoing maintenance costs. For this reason the net-

work design process applied here is based on pre-selected

potential locations, chosen for their existing infrastructure.

We also test the sensitivity to a simple accessibility measure

which would be a likely contributor to ongoing maintenance

costs. Establishment and maintenance costs have also been

considered in a network design study for a synthetic green-

house gas in California (Lucas et al., 2014). While they did

not pre-select locations, the establishment cost was chosen to

be smaller for locations near to existing sites, while mainte-

nance cost was related to measurement frequency (a factor

that we do not consider to be relevant for our application).

2 Methodology

The approach used in this study for the network design

is based on a combination of Bayesian inverse modelling

methodology applied to an atmospheric transport model. We

only provide a short summary of the methodology here and

refer for details to Ziehn et al. (2014).

A simple linear expression can be used to represent the

relationship between surface fluxes (f ) and modelled con-

centrations (cmod):

cmod = cmodf
= Tf , (1)

where T is the transport or sensitivity matrix which needs

to be determined. If we omit contributions from outside the

region of interest and the initial conditions, then our mod-

elled concentrations are derived from surface fluxes only, i.e.

cmod = cmodf
.

Using a Bayesian synthesis inversion scheme (Tarantola,

1987; Enting, 2002) and assuming a Gaussian error distri-

bution for the surface fluxes and concentrations, we obtain

the maximum likelihood estimated for f by minimising the

following cost function:

J (f )=
1

2

(
(cmod− c)TC−1

c (cmod− c)

+(f −f 0)
TC−1

f 0
(f −f 0)

)
, (2)

where Cc is the error covariance matrix of the observations,

vector f 0 contains prior flux estimates, vector f represents

predicted fluxes and Cf 0
is the prior error covariance matrix

of the surface fluxes.

The solution of the optimisation problem expressed

through the cost function in Eq. (2) provides optimal sur-

face fluxes based on the observations provided and also pos-

terior uncertainties for the GHG fluxes expressed through the

posterior covariance matrix Cf . For the network design ap-

proach we are only interested in the latter, because our aim is

to find a network (set of observations) that minimises the sur-

face flux uncertainties. The posterior covariance matrix can

be calculated by (Tarantola, 1987)

Cf =

(
TTC−1

c T+C−1
f 0

)−1

. (3)

Incremental optimisation is then applied to design a net-

work by adding one location at a time, with each new lo-

cation chosen to minimise the network design cost function.

The network design cost function (Sect. 3.1) is calculated

based on the posterior flux uncertainties.

As noted by Hardt and Scherbaum (1994), the calcula-

tion of the posterior flux uncertainties does not depend on

a particular value of the surface fluxes or concentration ob-

servations. It only depends on the transport model, the prior

flux uncertainties and observational uncertainties. We discuss

each in turn.

2.1 Transport model

The relationship between surface fluxes and atmospheric

concentrations is calculated using the Lagrangian Particle
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Dispersion Model (LPDM) (Uliasz, 1994), which we run in

reverse mode for each potential and existing measurement

station we would like to include in the network design pro-

cess. Particles are released (from the known or proposed

measurement height) every 20 s for a total of four weeks

for all four seasons of the year, and the particle’s position

is recorded at 15 min intervals. Particles that are near the sur-

face are counted for each grid cell to determine the surface

influence or sensitivity, from which a source–receptor rela-

tionship can be defined (Seibert and Frank, 2004; Ziehn et al.,

2014) as

∂χ

∂q̇in

=
1Tg

1P

(
Nin

Ntot

)
Mair

Mx

× 106, (4)

where χ is a volume mixing ratio (receptor) and q̇in is a mass

flux density (source). Nin is the number of particles in a grid

element (source) at each time interval 1T , and Ntot is the

total number of particles released during a time interval. The

overbar indicates temporal averaging over the time interval

1T .1P is the pressure difference in the surface layer, and g

is the gravity of Earth.Mair represents the molecular mass of

air, and Mx is the molecular mass of our quantity of interest,

which is carbon C and nitrogen N. Other than the molecular

mass scaling the source–receptor relationships are the same

for all three greenhouse gases, on the assumption that any at-

mospheric loss of CH4 or N2O will have a negligible impact

on the spatial pattern of surface influence over the relatively

short periods being modelled.

LPDM requires meteorological driving fields, which are

provided in this study by the regional version of the Aus-

tralian Community Climate and Earth System Simulator

(ACCESS-R) (NMOC, 2013) at 12 km resolution for the

Australian region at an hourly timescale. Driving data in-

clude the 3-D wind field, temperature and turbulent kinetic

energy (TKE) at 39 vertical levels up to 18 km in height.

Ziehn et al. (2014) only calculated source–receptor relation-

ships for one summer and one winter month. Here, we also

run LPDM for the intermediate seasons and calculate source–

receptor relationships for January, April, July and October.

Since LPDM is run over a limited area, any boundary ef-

fects need to be assessed. This was done by Ziehn et al.

(2014), who found that the uncertainty contribution of the

boundary concentrations to the uncertainty of the observa-

tions could be considered negligible. That assessment was

generic and hence is equally as applicable to CH4 and N2O

as CO2, and therefore we do not include boundary concen-

trations in the network design process.

As stated in Ziehn et al. (2014) the contribution from the

initial conditions are also negligible, because they are very

well constrained by the observations and their contribution

to the flux uncertainty is therefore thought to be small.

2.2 Prior flux uncertainties

The Bayesian inversion method requires an estimate of the

prior surface flux uncertainties, which are incorporated in

the error covariance matrix for prior surface fluxes. Here, we

do not consider correlations between different fluxes, which

means the error covariance matrix only has elements in the

diagonal. The effect of temporal correlations for the same

grid cell and spatial correlations for neighbouring grid cells

for surface fluxes was investigated by Nickless et al. (2015),

and they found that the correlation structure has a signifi-

cant impact on the results of the network design. However,

in order to include correlations in the prior error covariance

matrix, one needs to be confident in the size and structure

of those correlations (Rayner, 2004). Including, for exam-

ple, correlations that are too large can lead to an overly con-

strained system (Lauvaux et al., 2012; Nickless et al., 2015).

We therefore decided to assume independence between prior

fluxes.

The prior flux uncertainties are provided at a weekly tem-

poral resolution and separately for daytime and nighttime,

consistent with the weekly temporal resolution at which

fluxes are estimated. Flux uncertainties are expressed as 1

standard deviation.

2.2.1 CO2 prior flux uncertainties

For the prior CO2 surface flux uncertainties we consider con-

tributions from the terrestrial biosphere and from fossil fuel

combustion. The biosphere flux uncertainties are estimated

based on modelled net primary productivity (NPP) using the

following simple relationship (Chevallier et al., 2010):

σNEP =min(4gCm−2 day−1,NPP), (5)

where NEP is the net ecosystem productivity (net carbon

flux). NPP is derived for the Australian continent from

BIOS2 model simulations (Haverd et al., 2013) at a daily

timescale. BIOS2 is a modelling framework that uses the

Community Atmosphere Biosphere Land Exchange (CA-

BLE) model (Wang et al., 2010) at 5 km resolution (0.05◦×

0.05◦). We then aggregate the high-resolution fluxes to the

resolution that we use for the network design (1.8◦× 1.8◦)

and estimate the uncertainties for NEP according to Eq. (5)

for each week divided into day- and night-time (Fig. 1).

Fossil fuel uncertainties are derived from the Fossil Fuel

Data Assimilation System (FFDAS) (Rayner et al., 2010;

Asefi-Najafabady et al., 2014). We use 10 realisations from

FFDAS version II at 0.1◦× 0.1◦, aggregate them to our net-

work design resolution and then calculate the uncertainties

from the 10 realisations. Due to the fact that fossil fuel fluxes

are derived on the basis of power plant locations and night

lights, they are very localised and vary a lot in magnitude.

As pointed out in Ziehn et al. (2014), an aggregation of those

high-resolution fluxes to the network design resolution re-

sults in fluxes which are much smoother and with uncer-
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4 T. Ziehn et al.: Greenhouse gas network design

Figure 1. Prior biosphere CO2 flux uncertainties (1 standard deviation) in grams carbon per square metre per week at 1.8◦ resolution for the

first week in (a) January, (b) April, (c) July and (d) October.

tainties much smaller than the uncertainties from the bio-

sphere fluxes. Therefore, the total surface flux uncertainties

are dominated by the uncertainties from the biosphere fluxes.

The fossil fuel uncertainties would become more important

if we increased our network design resolution.

The combined CO2 prior flux uncertainties for all four sea-

sons are shown in Fig. 1. The additional two seasons, not

used in Ziehn et al. (2014), have larger prior uncertainty con-

tributions from the terrestrial biosphere, with maximum val-

ues in Queensland in April and in south-eastern Australia in

October.

2.2.2 CH4 prior flux uncertainties

Prior CH4 flux uncertainties are assumed to be proportional

to estimated CH4 fluxes. Total CH4 emissions are taken from

the Australian CH4 budget of Fraser et al. (2011). Here, we

consider contributions from anthropogenic sources such as

ruminant animals, coal mining, oil production and landfills

as well as contributions from natural sources including wet-

lands, termites and coastal ocean. For each sector (except

coastal ocean, which we take as uniform), we generate a sim-

ple spatial distribution of fluxes (at the network design reso-

lution). We assume three different flux levels (high, moderate

and low), with a factor of 2 between the levels. The three flux

levels are than scaled in a way that they match the sector to-

tal. Although this provides only a crude approximation of the

real flux distribution, it is sufficient in this case due to the fact

that we assign an uncertainty of 50 % to the flux values.

Emissions from wetlands vary seasonally, whereas emis-

sions from other sectors are assumed to be constant through-

out the year. Derived prior flux uncertainties for ruminant

animals and the Australian total are presented in Fig. 2. All

variances are multiplied by the land fraction in a similar way

to CO2 (Ziehn et al., 2014); however variances for coastal

ocean fluxes are multiplied with the ocean fractions instead,

and variances for fluxes from oil production are not multi-

plied by land or ocean fractions because we consider contri-

butions from both offshore and onshore.

The largest anthropogenic source of CH4 in Australia

is due to enteric fermentation from ruminant animals, ac-

counting for about 2.1 TgCyr−1. Here we include emis-

sions from the dairy and beef industry and from sheep

grazing (ABS, 2005; MLA, 2011a, b). Fluxes are assigned

based on the distribution and density of animals, with the

largest concentration to be found in New South Wales

(NSW), Queensland (QLD) and Victoria (VIC). In order
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Figure 2. Prior CH4 flux uncertainties (1 standard deviation) in grams carbon per square metre per week at 1.8◦ resolution for (a) the total

and (b) ruminant land animals only. The seasonality of the wetland fluxes is not shown here in the total.

to match the sector total for ruminant animals, we assign

a high flux of about 0.016 gCm−2 week−1, a medium flux

of about 0.008 gC m−2 week−1 and a low flux of about

0.004 gCm−2 week−1, with 50 % of theses values used as

prior flux uncertainties (Fig. 2b). All other sectors are treated

in a similar way.

Coal mining accounts for about 0.6 TgCyr−1, with the

largest density of coal mines found in NSW and QLD

(GA, 2012). Emissions from oil production sum up to about

0.5 TgCyr−1. The majority of the oil basins are located off-

shore along the coast of Western Australia (WA) and VIC

(GA, 2010). Landfills also contribute by about 0.5 TgCyr−1

and are spread out across the continent, with the highest con-

centration near populated areas (DOE, 2013).

Wetlands are one of the largest natural sources of CH4 in

Australia, with a flux of about 1.1 TgCyr−1. Emissions de-

pend mainly on temperature and groundwater (Bloom et al.,

2010), and the tropical north of Australia shows a strong

seasonality, with highest emissions during the wet season

and soon after (December–May) (Fraser et al., 2011). Wet-

lands in the south of Australia show a peak in emissions dur-

ing springtime (October–November) with a minimum dur-

ing late autumn and winter (Bloom et al., 2012; Loh et al.,

2015). The spatial distribution of the wetland CH4 fluxes

used in this study is based on Australian annual mean rain-

fall with a seasonality as described above. Emissions from

coastal oceans surrounding Australia are estimated to be

about 1.1 TgCyr−1. Termites contribute about 1.0 TgCyr−1

and are present throughout Australia. The largest contribu-

tion however comes from the tropical north. Emissions from

termites are not well characterised, which results in large un-

certainties (Fraser et al., 2011).

2.2.3 N2O prior flux uncertainties

We derive prior uncertainties for N2O fluxes based on

emissions from agriculture. In Australia, almost 80 % of

N2O is emitted from agricultural land, accounting for about

60 ktNyr−1 (Dalal et al., 2003). The total annual flux is

distributed across Australia at the network design resolu-

tion using three different levels (as for CH4) based on Aus-

tralia’s land uses (DOA, 2006). We assign larger fluxes to

irrigated areas, because N2O emissions are generally higher

from poorly drained soils and irrigation tends to increase

the chance of the soils becoming waterlogged (Dalal et al.,

2003). Finally, we assign the prior flux uncertainties of N2O

to be 50 % of the flux value as shown in Fig. 3a.

2.3 Observational uncertainties

Observational uncertainties include measurement, transport

and aggregation errors, and if not stated otherwise we as-

sume the same uncertainties for all existing and potential

measurement stations. In the standard case, we set the ob-

servational uncertainties to 2 ppm for CO2, to 4 ppb for CH4

and to 0.1 ppb for N2O.

3 Set-up and data

The network design for Australia is performed at 1.8◦×1.8◦

grid resolution by running LPDM in backward mode for sta-

tions that we would like to include in this study. Each station

is assessed in terms of its ability to reduce the uncertainty

on CO2, CH4 and N2O flux estimates. Incremental optimi-

sation is used to find the station for which our cost function

(Sect. 3.1) is minimal. This station is then removed from the

candidate list (Sect. 3.2), and we repeat the incremental op-

timisation until the final size of the new network is reached.

www.geosci-instrum-method-data-syst.net/5/1/2016/ Geosci. Instrum. Method. Data Syst., 5, 1–15, 2016
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Table 1. Location of existing greenhouse gas measurement stations in Australia. Stations that are currently operational and have been selected

for the base network are highlighted in bold typeface. The factor aobs is used to scale the observational uncertainties for CO2, CH4 and N2O

in a sensitivity experiment. For Cape Grim and Gunn Point aobs is used in all experiments.

No. Station Location Operation period Measurements aobs

lat, lon in situ

1 Arcturus −23.86, 148.47 2010–2014 CO2, CH4 2, 1, 1

2 Aspendale −38.01, 145.01 2003–present CO2, CH4 2, 2, 2

3 Cape Ferguson −19.30, 147.10 1991–present − 2, 1, 1

4 Cape Grim −40.70, 144.70 1976–present CO2, CH4, N2O 0.5, 0.5, 0.5

5 Darwin −12.42, 130.89 2005–present CO2, CH4, N2O 1, 1, 1

6 Gunn Point −12.20, 131.00 2011–present CO2, CH4, N2O 0.75, 0.75, 0.75

7 Otway −38.31, 142.49 2005–2012 CO2, CH4 1, 1, 1

8 Tumbarumba −35.39, 148.09 2004–2008 CO2 2, 1, 1

9 Wollongong −34.41, 150.88 2008–present CO2, CH4, N2O 1, 1, 1

Figure 3. Prior N2O flux uncertainties (1 standard deviation) in milligrams nitrogen per square metre per week at 1.8◦ resolution for (a) the

total (agriculture). The random variation in flux uncertainties used for the sensitivity test is shown in (b).

In this study we add a maximum of five new stations to the

base network.

3.1 Cost function for network design

The aim of the network design is to reduce the uncertainties

on GHG flux estimates by minimising a cost function. In or-

der to do this, we require a scalar quantity, which we obtain

from the posterior covariance matrix by summing over all el-

ements (uncertainty of the integrated flux). The cost function

J is then defined as

J =

√√√√ n∑
i=1

n∑
j=1

Cfij
, (6)

where n is the number of elements in the diagonal of the

matrix Cf which covers all four seasons.

We apply incremental optimisation to minimise J and de-

sign observational networks for each of the three GHGs indi-

vidually. The design of an optimal network which considers

all three GHGs together at the same time requires a multi-

objective optimisation approach. The simplest way of solv-

ing a multi-objective problem is to combine its multiple ob-

jectives into a single-objective scalar function, which is also

known as a weighted sum. The advantage of this approach

is that we can still use the incremental optimisation method.

However, a significant drawback is that we need to choose

appropriate weights for each of the objectives, which can be

challenging.

The new cost function Jm that combines multi-objectives

is defined as

Jm =

√(
JCO2

wCO2

)2
+
(
JCH4

wCH4

)2
+
(
JN2OwN2O

)2
, (7)

where JCO2
, JCH4

and JN2O are the objective cost functions

for the three GHGs, CO2, CH4 and N2O respectively. We

use the global-warming potential (GWP) for a 100-year time

horizon as the weight for each GHG, i.e. wCO2
= 1, wCH4

=

34 and wN2O = 298 (Myhre et al., 2013).

The performance of each network is evaluated in terms of

the uncertainty reduction UR we achieve, with UR defined as

UR = 1−
Ĵ

J ∗
· 100%, (8)
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Figure 4. Location of the existing GHG measurement stations in Australia (a) and potential sites using mainly the location of the stations in

the Bureau of Meteorology’s National Radar Loop (b). Station names are provided in Table 1 for existing sites and Table 2 for potential sites.

In (a) existing stations that are included in the base network are marked in brown, and stations that are no longer operational are marked in

light blue.

where Ĵ is the optimal cost function value and J ∗ is the cost

function values based on the prior uncertainties.

3.2 Existing network and potential stations

Although Australia already commands a network of nine

ground-based measurement stations as listed in Table 1 with

their locations shown in Fig. 4a, only six of them are cur-

rently operational. For the base network we further select

two of those six stations, located at Cape Grim and Gunn

Point, for the following reasons: (1) both stations are part of

the WMO/GAW global monitoring network and the South-

east Asia–Australian regional network. (2) Both stations are

managed by the Australian Bureau of Meteorology (BoM),

with the Commonwealth Scientific and Industrial Research

Organisation (CSIRO) providing GHG research strategy. (3)

Both stations provide in situ measurements for CO2, CH4

and N2O.

For the network design, we introduce a scaling factor aobs

in order to distinguish between the difference in quality of

observations we expect to obtain from different sites. For ex-

ample, for Cape Grim we set aobs to 0.5, which means that we

halve the observational uncertainties for CO2, CH4 and N2O

in comparison to what we assume in the standard case (see

Sect. 2.3). Similarly, for Gunn Point we choose aobs = 0.75

to reflect the high accuracy of observation we expect from

this station. The reason why we choose a slightly larger ob-

servational uncertainty for Gunn Point is that Gunn Point has

only been operational since 2011 with a sampling height of

40 m, which might lead to noisier records. Cape Grim, on the

other hand, is our primary ground-based observing station in

Australia, with data records from 1976 and a sampling height

of 70 m. For all other existing stations aobs is set to 1.

There are many ways of setting up a list of potential sta-

tions that one would like to include in the network design

process. Commonly those stations are assigned according to

a regular grid that covers the whole modelling domain. De-

pending on the resolution chosen, one might end up with

a large list of stations that need to be assessed. Many of

these potential stations might be located in inaccessible ar-

eas where it would be impossible to set up and maintain

a new measurement site. Therefore, it is more beneficial to

pre-select potential station locations according to a certain

criterion, for example, by making use of existing infrastruc-

ture.

Here, we use mainly the locations of the Australian BoM

weather watch radar stations (NRL, 2014) as potential sta-

tions. This guarantees that all stations are accessible by road,

have power available and are maintained. The list of all 59

BoM stations can be found in Table 2, with their location

shown in Fig. 4b. We also include one additional potential

station, the Lucinda Jetty Coastal Observatory, which is cur-

rently used to collect optical data on the coastal waters and

the atmosphere.

3.3 Sensitivity tests

The sensitivity of the network design to certain parameters

used to obtain the source–receptor relationship and choices

in the set-up of the network design and their consequences

on the results has already been investigated by Nickless et al.

(2015). Here, we focus on five different sensitivity tests,

which are related to the weights assigned in the cost func-

tion for the multi-objective optimisation and the importance

of prior flux uncertainties and observational uncertainties on

the outcome of the network design.

SE1 In the first sensitivity test we choose a different set

of weights (different to the GWP weights) in the cost

function Jm such that each single objective contributes

equally to the multi-objective problem, i.e. by normalis-

ing with the prior cost function values J ∗ using wCO2
=

1/J ∗CO2
, wCH4

= 1/J ∗CH4
and wN2O = 1/J ∗N2O. In this
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Table 2. Location of potential greenhouse gas measurement stations using the location of the Bureau of Meteorology weather watch radar

stations including one additional station at Lucinda Jetty. The factor aobs is used to scale the observational uncertainties for CO2, CH4 and

N2O in a sensitivity experiment.

No. Station Location aobs No. Station Location aobs

lat, lon lat, lon

10 Adelaide Airport −34.95, 138.53 2,1,1 40 Lemon Tree Pass −32.73, 152.03 2,1,1

11 Albany −34.95, 117.80 1,1,1 41 Letterbox −34.26, 150.87 1,1,1

12 Alice Springs −23.82, 133.90 1,1,1 42 Longreach −23.43, 144.29 2,1,1

13 Berrimah −12.46, 130.93 1,1,1 43 Mackay −21.12, 149.22 2,1,1

14 Bowen −19.87, 148.08 2,1,1 44 Marburg −27.61, 152.54 1,2,1

15 Brisbane Airport −27.39, 153.13 1,2,1 45 Melbourne Laverton −37.85, 144.75 2,2,2

16 Broadmeadows −37.69, 144.95 2,2,2 46 Mildura −34.23, 142.08 1,1,1

17 Broome −17.95, 122.23 1,1,1 47 Moree −29.50, 149.85 2,1,1

18 Buckland Park −34.62, 138.57 2,1,1 48 Mornington Island −16.67, 139.17 1,1,1

19 Cairns Airport −16.88, 145.75 1,1,1 49 Mt. Gambier −37.75, 140.78 1,1,1

20 Cape Range −22.10, 114.00 1,1,1 50 Mt. Kanighan −25.97, 152.58 1,1,1

21 Captains Flat −35.66, 149.51 1,2,2 51 Mt. Stuart −19.35, 146.78 1,1,1

22 Canarvon −24.88, 113.67 1,1,1 52 Perth −31.95, 115.84 2,2,1

23 Ceduna −32.13, 133.70 1,1,1 53 Port Hedland −20.38, 118.63 1,1,1

24 Charleville −26.42, 146.27 2,1,1 54 Rockhampton −23.38, 150.47 2,1,1

25 Coffs Harbour −30.32, 153.12 1,2,1 55 Saddle Mtn −16.82, 145.68 1,1,1

26 Dampier −20.65, 116.69 1,1,1 56 Sellicks Hill −35.33, 138.50 2,1,1

27 Darwin Airport −12.42, 130.87 1,1,1 57 Sydney Airport −33.93, 151.17 2,2,1

28 East Sale −38.12, 147.13 1,2,1 58 Tennant Creek −19.63, 134.18 1,1,1

29 Esperance −33.82, 121.83 1,1,1 59 Tindal −14.51, 132.45 1,1,1

30 Eucla −31.68, 128.89 1,1,1 60 Townsville −19.25, 146.77 2,1,1

31 Geraldton −28.80, 114.70 1,1,1 61 Wagga −35.17, 147.47 2,1,1

32 Giles −25.03, 128.30 1,1,1 62 Weipa −12.67, 141.92 1,1,1

33 Gladstone −23.85, 151.27 2,1,1 63 West Takone −41.18, 145.58 1,1,1

34 Gove −12.28, 136.82 1,1,1 64 Williamtown −32.80, 151.83 2,1,1

35 Grafton −29.62, 152.97 1,2,1 65 Willis Island −16.30, 149.98 1,1,1

36 Halls Creek −18.23, 127.66 1,1,1 66 Woomera −31.16, 136.80 1,1,1

37 Hobart Airport −42.83, 147.51 1,1,1 67 Wyndham −15.45, 128.12 1,1,1

38 Kalgoorlie −30.79, 121.45 1,1,1 68 Yarrawonga −36.03, 146.03 2,2,1

39 Kurnell −34.02, 151.23 2,2,1 69 Lucinda Jetty −18.50, 146.40 1,1,1

way we ensure that no priority is given to a GHG with

larger prior flux uncertainty values.

SE2 The second sensitivity test focuses on the way we as-

sign observational uncertainties for stations not in the

base network. Rather than use the same uncertainty for

all potential stations, we double the uncertainty for sites

close to large GHG sources (aobs = 2). The assumption

is that sites close to large sources will have “noisier”

measurements and may be more difficult to model, and

this should be accounted for by a larger observational

uncertainty.

We test the impact of the increased uncertainties on the

network design. The scaling factor aobs that we use for

this sensitivity test is provided in Tables 1 and 2 for each

of the stations and GHGs investigated here.

SE3 In a third sensitivity experiment we look at the impact

of the way we derive the prior flux uncertainties for

CH4 and N2O. In contrast to the prior flux uncertainties

for CO2 which are derived from high-resolution model

simulations with daily output, the prior flux uncertain-

ties for CH4 and N2O are based an annual budgets with

a spatial distribution generated using density maps from

various sectors as described in Sect. 2.2. We acknowl-

edge that the spatial pattern and the magnitude of the

flux components we derive in this way are to some de-

gree arbitrary. In order to test the impact of our prior

flux uncertainties for CH4 and N2O on the network de-

sign results, we randomly vary assigned fluxes for each

sector in the following way: (a) if a grid cell already has

a flux assigned, we randomly vary the current flux by

a maximum of ±25 %, and (b) if a grid cell has a zero

flux, we give that grid cell a 50 % chance of a flux at

a moderate level. Flux uncertainties are then derived as

before by using 50 % of the assigned flux value.

SE4 Although the focus of this study is not on minimising

exact economic costs associated with setting up and

maintaining a new station, in the fourth sensitivity ex-

periment we include the distance d from Aspendale (as

the location of the base laboratory from which a net-

work could be run) to any other existing or potential

station by adding the following term to the cost func-

tion:

Jmd = Jm+
d

max(d)
wd. (9)
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The distance to a remote site is a possible factor in the

maintenance costs for a site, assuming service visits re-

quire staff to travel from the base laboratory. We also

introduce a weight factor wd to scale the overall impor-

tance of the distance in the cost function.

SE5 In a final sensitivity test we combine SE2 and SE4 to

consider increased observational uncertainties together

with distance for the combined optimisation using GWP

weights in the cost function.

4 Results and discussion

4.1 Base network

Our base network consists of only two stations, Cape Grim

and Gunn Point. However, observations from those two sta-

tions are already able to significantly reduce the uncertain-

ties on GHG flux estimates for Australia as shown in Table 3.

Gunn Point is the most important station in terms of its ability

to reduce uncertainties on CO2 flux estimates (about 11 %),

whereas Cape Grim is the most important station in terms of

its ability to reduce uncertainties on CH4 and N2O flux esti-

mates (about 8 and 10 % respectively). Overall, both stations

together are able to reduce the uncertainties on all three GHG

flux estimates between 12 and 17 %.

4.2 Extended networks

We first design optimal network extensions for each GHG

individually by adding up to five new stations to the base

network using incremental optimisation as described earlier.

The ranking of the new stations is presented in Table 4, with

their uncertainty reduction shown in Fig. 5a and their loca-

tion shown in Fig. 6a.

The CO2 network extension is similar to the one derived

in Ziehn et al. (2014), despite using a different base network

(two instead of six stations) and using all four seasons (in-

stead of only two seasons) as driving data. The first station

that is added to the base network is located at Charleville,

which is the only station that was not included in the network

derived in Ziehn et al. (2014). This is mainly driven by the

large prior biosphere flux uncertainties in April in the east-

ern part of the Australian continent (see Fig. 1b). The other

four stations added to the network are identical to the ones

selected in Ziehn et al. (2014). The new optimal CO2 ob-

serving network is able to reduce the CO2 flux uncertainties

by about 47 % and consists of three stations in the tropical

north (Gunn Point, Wyndham and Mornington Island), two

stations in eastern Australia (Charleville and Moree) and two

stations in the south-east of Australia (Cape Grim and Tum-

barumba).

The network extension focussing on CH4 only is similar

to the optimal CO2 network extension due to a similar distri-

bution of prior flux uncertainties, at least for the eastern part

Figure 5. Uncertainty reduction for the five stations added to the

base network for (a) each GHG individually, (b) the multi-objective

optimisation (solid lines: GWP weights; dashed lines: equal weights

(SE1)), (c) the sensitivity test (SE2) with changed observational un-

certainties for each GHG individually and (d) the sensitivity test

(SE4) with multi-objective optimisation using GWP weights that

also includes the distance (solid lines) and SE5 (dashed lines) (red:

CO2; green: CH4; and blue: N2O).

of the Australian continent. Tumbarumba becomes the most

important station in the CH4 network extension, and, as in

the CO2 case, Moree is the second-most-important location.

However, the optimisation also places a station in Perth on

the west coast of Australia, which was not required for CO2.

In total we are able to achieve a reduction of about 32 % on

CH4 flux uncertainties.

The optimal N2O network shows some similarities with

the optimal CO2 and CH4 network. Moree is added first by

the optimisation, which highlights the importance of this lo-

cation for all three GHGs. Three stations in the N2O observ-

ing network are located in the south-east (Cape Grim, Broad-

meadows and Captains Flat), which is the region where we

also assume the largest prior flux uncertainties. The new N2O

network is able to reduce the N2O flux uncertainties by about

38 %.

We now use the cost function that combines multi-

objectives (Eq. 7) to design a network that is optimal for

all three GHGs combined. Although the ranking of the sta-

tions shown in Table 4 is for the combined network; the un-

certainty reduction is calculated for each GHG individually

(Fig. 5b) to make it comparable with the previous networks.

From the ranking of the stations in Table 4 we can see that

the optimal combined network is exactly the same as the op-
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Table 3. Uncertainty reduction (UR) for the two existing stations in the base network in terms of their ability to reduce the uncertainties on

CO2, CH4 and N2O flux estimates. The station number is provided in brackets.

Station (No.) UR CO2 UR CH4 UR N2O

Cape Grim (4) 7.1 % 8.4 % 10.4 %

Gunn Point (6) 11.3 % 4.1 % 3.9 %

Cape Grim (4) + Gunn Point (6) 17.4 % 12.3 % 13.7 %

Table 4. Ranking for new stations added to the base network in terms of their ability to reduce the uncertainties on CO2, CH4 and N2O flux

estimates individually and in combination (using GWP weights in cost function). The station number is provided in brackets.

Rank CO2 stations CH4 stations N2O stations Combined GWP

1 Charleville (24) Tumbarumba (8) Moree (47) Charleville (24)

2 Moree (47) Moree (47) Longreach (42) Moree (47)

3 Mornington Island (48) Perth (52) Captains Flat (21) Mornington Island (48)

4 Tumbarumba (8) Longreach (42) Perth (52) Tumbarumba (8)

5 Wyndham (67) Wyndham (67) Broadmeadows (16) Wyndham (67)

timal CO2-only network. This is due to the way the weights

are assigned for the contributions of all three GHGs (accord-

ing to the GWP); priority is given to the reduction of CO2

flux uncertainties, because the prior CO2 fluxes have by far

the largest uncertainties. For example, the CO2 prior flux un-

certainties are by about 3 orders of magnitude larger than the

CH4 prior flux uncertainties (Figs. 1 and 2 ).

Given that the optimal combined network is the same as

the optimal CO2 network, the reduction in uncertainty for

CO2 is unchanged. For CH4 and N2O uncertainty reductions

are 30 and 33 % respectively, only 2 and 5 % less than for the

individual networks.

4.3 Sensitivity tests

Sensitivity test SE1 changes the weights in the cost func-

tion Jm so that each single objective for the three GHGs

contributes equally to Jm (Sect. 3.3) despite the order-of-

magnitude difference in the prior flux uncertainty values for

each of the three GHGs (Figs. 1–3). Table 5 and Fig. 6b

indicate that the network based on equal weights is some-

what different to the network based on GWP weights. Moree,

Tumbarumba and Mornington Island appear in both net-

works, but the network based on equal contributions now in-

cludes Perth (instead of Wyndham) and Longreach (instead

of Charleville,) which are stations that were only included in

the CH4 and N2O networks (Table 4). In particular, a station

in Perth does not significantly contribute to a reduction in

CO2 flux uncertainties, but it is selected now that a reduction

of flux uncertainties is equally important for all three GHGs.

The replacement of Charleville with Longreach is only a mi-

nor change since both stations are located in roughly the

same region in the east of the continent.

As expected, the SE1 network trades off decreased uncer-

tainty reductions for CO2 with increased uncertainty reduc-

tions for CH4 and N2O (Fig. 5b). However the changes in

uncertainty reduction are relatively small, at only 2–4 % for

the networks with five additional sites.

Networks for the SE2 test were optimised for each GHG

individually using increased observational uncertainties for

sites that are expected to be close to large fluxes. For CO2

the new network (Fig. 6c) is mostly different from the pre-

vious one since the original network contained three sites

(Charleville, Moree, Tumbarumba) that we penalised for be-

ing close to large sources. All are removed from the new net-

work, being replaced by Marburg, Captains Flat and Coffs

Harbour, which are closer to the east coast. Interestingly the

optimisation also chose to replace Wyndham with Tennant

Creek despite Wyndham not having an increased observa-

tional uncertainty. However, in this configuration both sta-

tions provide about the same reduction in uncertainty and are

therefore interchangeable. The uncertainty reduction for the

SE2 CO2 network was 4 % lower than for the original net-

work (Fig. 5c).

For CH4, only one site (Perth) in the standard network was

allocated an increased uncertainty, and the SE2 optimisation

produces the same network, retaining Perth though adding it

to the network as additional site 4 rather than site 3 in terms

of the ranking. The increased observational uncertainty for

Perth results in a slightly smaller flux uncertainty reduction.

We also explored replacing Perth with either Geraldton or Al-

bany, which do not have increased observational uncertain-

ties for SE2, and this would result in a network with almost

the same performance.

Large N2O sources are mainly located in the south-east of

the country, and two stations (Captains Flat and Broadmead-

ows) from the previous optimal N2O network are allocated

higher observational uncertainty in SE2. Consequently these

are dropped from the new optimal N2O network, being re-

placed by different locations in SE Australia (Tumbarumba
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Table 5. Ranking for new stations added to the base network in terms of their ability to reduce the uncertainties on CO2, CH4 and N2O

flux estimates for some of the sensitivity tests: SE1 – using equal contributions of the three GHGs; SE4 – using GWP weights and distance

measure; and SE5 – using GWP weights, distance measure and increased observational uncertainties for stations close to large sources. The

station number is provided in brackets.

Rank Combined SE1 Combined SE4 Combined SE5

1 Moree (47) Moree (47) Letterbox (41)

2 Longreach (42) Longreach (42) Longreach (42)

3 Tumbarumba (8) Tumbarumba (8) Moree (47)

4 Perth (52) Broadmeadows (16) Captains Flat (21)

5 Mornington Island (48) Williamtown (64) East Sale (28)

Figure 6. Location of the proposed GHG measurement stations in Australia using the network design for (a) each GHG individually (red:

CO2; green: CH4; and blue: N2O), (b) the multi-objective optimisation (light blue: GWP weights; pink: equal weights – SE1), (c) the

sensitivity test (SE2) with changed observational uncertainties for each GHG individually (red: CO2; green: CH4; and blue: N2O) and (d)

the sensitivity test (SE4) with multi-objective optimisation using GWP weights that also includes the distance (light blue) and SE5 (pink).

The location of the stations in the base network is marked in brown.

and Mildura). The performance of the new network is com-

parable to the standard case.

SE3 assessed the impact of changing the prior CH4 and

N2O flux values and their distribution, finding only a mi-

nor impact on the optimal CH4 and N2O network. For CH4,

Moree, Perth and Longreach remain in the optimal network.

Tumbarumba in the south-east is replaced by Captains Flat,

also in the south-east, and Wyndham located in the north is

replaced by Halls Creek, also located in the north but further

inland. For N2O the change in flux uncertainties produces

a different ranking of sites but only one change in selected

sites; Broadmeadows in the south is replaced by Charleville

in the east of the country. At first it seems surprising that

Broadmeadows is dropped from the network, taking into ac-

count the large N2O uncertainties in Victoria. However, Cape

Grim in the base network already constrains fluxes from Vic-

toria, and the random change in prior N2O fluxes has also led

to a reduction in the prior uncertainties for south-east Aus-

tralia.

Sensitivity tests SE4 (standard observational uncertainties)

and SE5 (observational uncertainties from SE2) included the

distance of stations to Aspendale as an additional criterion
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in the cost function used for determining a combined net-

work (with GWP weights for the three different GHGs). The

sum of distances to the five stations in the original network

is about 8200 km. If we add the distance to the cost func-

tion setting wd = 10, we obtain network extensions (Table 5,

Figs. 5d and 6d) for both SE4 and SE5 where the sum of

station distances is reduced to about 4000 km. For SE4 the

new network retains Moree and Tumbarumba, and adds Lon-

greach and Williamtown to the network in the east of the

country. The final station in the SE4 optimal network ex-

tension is Broadmeadows, which is very close to Aspendale

(base laboratory). For SE5 two locations (Longreach and

Moree) are the same as for SE4; the other three sites are rel-

atively close to those selected for SE4 but are chosen in pref-

erence to the SE4 selection because their CO2 observational

uncertainty is lower.

The additional distance constraint in our multi-objective

problem means that we generally see a decrease in the perfor-

mance of the new networks. Compared to the standard com-

bined network, the reduction in flux uncertainty for SE4 is

lower by about 4.5 % for CO2 and 1 % for CH4 but larger

for N2O by 3.5 % (Fig. 5). This is because the largest prior

flux uncertainties for N2O are located in the south-east of

the country, and hence N2O benefits from moving the net-

work closer to Aspendale in SE Australia. For SE5, the re-

duction in flux uncertainty is further decreased for CO2 and

CH4 (8.5 and 2.5 %), but still slightly larger for N2O by 1 %

when compared to the standard combined network.

We also varied the weights wd in SE4 to assess the per-

formance of the optimal network with respect to the sum of

stations’ distances as show in Fig. 7a. For CO2 and CH4 the

performance of the network decreases relatively slowly when

decreasing the stations’ total distance from about 8200 km to

about 3000 km (6 % decrease for CO2 and 3 % decrease for

N2O), but it drops significantly for CO2 after that. The net-

work performance for N2O increases by about 3 % for the

reasons given above before it drops at about 4000 km.

4.4 Limitations

When we add more constraints to the cost function or in-

crease the observational uncertainties for our stations, we ex-

pect that the performance of the optimal network expressed

through the uncertainty reduction will be reduced. Although

this is generally true for the full network extension consist-

ing of five additional stations, we notice that, for example,

by adding only two stations the performance of the CO2-

only network is actually slightly worse than the performance

of the combined network using equal contributions of the

three GHGs in the cost function (Fig. 5a, b). This is be-

cause the incremental optimisation adds one station at a time,

which maximises the performance of the network only at

each stage. The incremental optimisation is not able to as-

sess benefits that may arise by adding a number of stations at

the same time, which other optimisation methods such as the

Figure 7. (a) Uncertainty reduction for the three GHGs (red: CO2;

green: CH4; and blue: N2O) with respect to the total distance to As-

pendale for the five stations in the network extension and (b) uncer-

tainty reduction for CO2 for the default case (solid line), increased

observational uncertainties SE2 (dashed line) and observational un-

certainty for all stations set to almost zero (dotted line).

genetic algorithm (Rayner, 2004; Lucas et al., 2014) are able

to do. However, Nickless et al. (2015) found that the genetic

algorithm provided only marginally better solutions when

compared with the incremental optimisation, but at a much

larger computational cost.

Due to the fact that we pre-select the location of new sta-

tions through a list of potential sites, we impose an initial

constraint on the network design. Even if we include all po-

tential stations in our network, we would only achieve an un-

certainty reduction of about 70 % for CO2 in the standard

case (Fig. 7b). Lowering the observational uncertainty to al-

most zero for all stations only provides an additional 5 % in

uncertainty reduction for all stations to the network. This in-

dicates that our network design is ultimately limited by our

pre-selection of sites rather than our ability to model the

GHG concentrations at those sites. Given that almost all of

our optimal networks selected inland sites in eastern Aus-

tralia ahead of coastal sites, this study would suggest that ad-

ditional locations with existing infrastructure should be iden-

tified in inland NSW and Queensland to supplement our po-

tential site list, which, using the BoM radar network, is bi-

ased to coastal or near-coastal locations.

5 Summary and conclusions

In this study we used the Bayesian framework and a La-

grangian particle dispersion model in reverse mode to de-

sign optimal GHG observing networks for Australia individ-

ually for the three GHGs and together through a combina-

tion of multi-objectives with weights assigned to each GHG.

The choice of weights would depend on the network design

application. Only when we chose the weights in a way that

ensured that each single objective contributed equally to the

multi-objective problem were we able to derive an optimal

combined network that did not favour one of the three GHGs;

a GWP-based weighting clearly favoured CO2.
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Due to similarities in the distribution of the prior flux un-

certainties for the three GHGs, we obtained optimal individ-

ual and combined networks that showed a number of similar-

ities, which is a positive outcome for any application of this

study to investment in new sites. Most stations in the network

extensions are located in the eastern part of the Australian

continent (e.g. Moree and Tumbarumba), with a few stations

in the north. For CH4 and N2O, a site in SW Australia is also

of value.

The assignment of appropriate observational uncertainties

to each station was found to be critical; network selection

avoided sites that were assigned a larger uncertainty, replac-

ing them with sites further from large sources and resulting in

a small penalty in the overall effectiveness of the network for

reducing flux uncertainty. Future work should be directed to

better characterising the observational uncertainty for differ-

ent sites, particularly at the component that accounts for our

ability (or inability) to model GHG concentrations at specific

locations. Observations from our existing network could be

used for this characterisation as they span a range of site con-

ditions. For example, Tumbarumba, which is often selected

by the network design, is a forested site which may be chal-

lenging to model. Though not currently operational, existing

measurements could be used to test assumptions about ob-

servational uncertainties.

Economic costs were included in two ways. Firstly, we

pre-selected potential stations to account for existing infras-

tructure. In fact, we only included potential stations that were

already set up and maintained for other measurement pur-

poses. This places an initial constraint on the network de-

sign, which means that even with almost no observational er-

ror we would only achieve an uncertainty reduction of 75 %

for CO2 with all potential stations included in our network.

Secondly, we included the distance from Aspendale (location

of the base laboratory) to all other stations as a measure of

maintenance costs in the cost function. We demonstrated that

the total distance to the additional five stations in the optimal

combined network can be more than halved with only a slight

decrease in the performance of the network. By changing the

weights for the distance, the user can decide if the priority is

on a more cost-efficient network or a network that provides

the largest overall reduction in GHG flux uncertainties.

We conclude that an optimal measurement network de-

signed for CO2 only also performs well for CH4 and N2O.

This is due to large similarities in the pattern of the prior

flux uncertainties derived for each of the three GHGs. This

might change if we are able to obtain more detailed informa-

tion particularly on the CH4 and N2O flux distribution and

increase the resolution so that point sources (i.e. fossil fuel

emissions) become more important.
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