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Abstract. Digital applications that must be on-board space
missions must comply with a very restrictive set of require-
ments. These include energy efficiency, small volume and
weight, robustness and high performance. Moreover, these
circuits cannot be repaired in case of error, so they must be
reliable or provide some way to recover from errors. These
features make reconfigurable hardware (FPGAs, Field Pro-
grammable Gate Arrays) a very suitable technology to be
used in space missions. This paper presents a Martian dust
devil detector implemented on an FPGA. The results show
that a hardware implementation of the algorithm presents
very good numbers in terms of performance compared with
the software version. Moreover, as the amount of time
needed to perform all the computations on the reconfigurable
hardware is small, this hardware can be used most of the time
to realize other applications.

1 Introduction

Digital systems for space applications have some special re-
quirements not needed on normal systems. These require-
ments include energy/power efficiency, small volume, ro-
bustness and high performance as well as resistance under
extreme conditions of pressure, temperature fluctuations, ra-
diation and mechanical shock. Traditionally, this has been
achieved using embedded microprocessors and dedicated
hardware peripherals. But many times the performance of
these devices is not enough for the applications. Moreover,
many applications have a high degree of internal parallelism
that it is not used to improve the performance.

In general, hardware-based solutions provide better per-
formance and less energy consumption than purely software

solutions, since they eliminate the overhead due to instruc-
tion decoding and they include optimized hardware for the
requested operations instead of carrying out those opera-
tions, executing a sequence of predefined generic instruc-
tions. However, due to the exigent volume restrictions and
the complex and expensive design process, it is not always
feasible to implement all the needed functionalities of an em-
bedded system using only a hardware solution based on Ap-
plication Specific Integrated Circuits (ASICs). Nevertheless,
since embedded systems are targeting more and more com-
plex applications, it is not likely that a software-based solu-
tion will achieve the requested performance. Hence, hard-
ware accelerators for the most complex tasks are needed.

During the last 20 yr, the hardware reconfigurable technol-
ogy has evolved from small uniform devices, able to imple-
ment small circuits and are statically reconfigurable, to very
huge heterogeneous devices with capacity to be dynamically
reconfigured. This evolution has produced FPGAs (the most
popular type of reconfigurable hardware) which are used in
a great number of applications, automotive circuits, digital
image processing, video games, etc.

Although FPGAs are very promising to be used in space
applications, they have several problems that must be fixed
in the future in order to be a really practical solution. The
main problem seems to be that the reprogramming feature
of the current FPGAs is more sensitive to radiation than the
programmed device and might fail at a much lower total ra-
diation dose than stated by the manufacturers for the pro-
grammed device. So, more research must be done in this
issue in order to get FPGAs totally reliable.

In the field of space applications, one additional require-
ment is that all the hardware sent in space missions must be
certified for space operation. This is because space-based
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Fig. 1. Trade-off flexibility performance for different technologies.

systems must operate in an environment in which radiation
effects have an adverse impact on integrated circuit opera-
tion (Thomson, 2005). Ionizing radiation can cause soft er-
rors in the static cells used to hold the configuration data.
This will affect the circuit functionality and ultimately re-
sult in system failure. This requires special FPGAs that pro-
vide on-chip reconfiguration error detection and/or correc-
tion circuitry. High-speed, radiation-hardened FPGA chips
with million gate densities have recently emerged to support
the high throughput requirements for space applications. In
fact, radiation-hardened FPGAs are in great demand for mil-
itary and space applications. For instance, companies such as
Actel Corporation or Xilinx have been producing radiation-
tolerant anti-fuse FPGAs for several years, intended for high-
reliability space-flight systems. Actel FPGAs have been on-
board more than 100 launches and Xilinx FPGAs have been
used in more than 50 missions (for instanceXilinx , 2003a,b
andGraham et al., 1999).

FPGAs are an intermediate solution between software de-
velopments (highly flexible, but power consuming and with
performance problems) and ASICS (static applications, with
good numbers in performance and power consumption), as
we can see in Fig. 1.

FPGAs are now fully reconfigurable (DeHon and
Wawrzynek, 2009; Hauck and DeHon, 2008), a technolog-
ical feature that allows a control station on Earth to adap-
tively select a data processing algorithm (out of a pool of
available algorithms implemented on the FPGA) to be ap-
plied on-board. The idea is that FPGAs can be reconfigured
on the fly. This approach is called run-time reconfiguration
(Resano et al., 2008). Basically, the FPGA (or a region of
the FPGA) executes a series of tasks one after another by
reconfiguring itself between tasks. The reconfiguration pro-
cess updates the functionality implemented in the FPGA, and
a new task can then be executed. This time-multiplexing ap-
proach supports the reduction of hardware components on-
board since one single reconfigurable module can substitute

several hardware peripherals, carrying out different functions
during different phases of the mission.

The flexibility provided by reconfigurable hardware can
also be used to modify the functionality of the satellite instru-
mentation during the flight, or to automatically recover the
system from malfunction. Moreover, the hardware design-
cycle for FPGAs is much shorter than the one for custom in-
tegrated circuits, mainly because the design can be tested on
the target platform since the first steps of the design process,
thus, avoiding a complex chip fabrication process. Neverthe-
less, in space applications always exists an additional cost of
the designed circuits dedicated to verify the quality require-
ments of the instrumentation.

In this paper we are going to present a space application
that shows that the use of FPGAs is a good alternative in
this kind of situations. The application is used to detect dust
devils on the Martian surface. A dust devil is a hot whirlwind
generated by a huge contrast between the atmospheric air and
the surface in contact. This phenomenon has been studied on
Earth and Mars (Renno et al., 2000) and it is well-known. We
have to be able to detect dust devils before they happen due
to their destructive potential. This weather phenomenon can
cause great damage to instrumentation and human beings. It
is known that some big dust devils, about 1 km of height,
have been reported. On Mars some dust devils have been
identified with a height over 10 km. Apart from that, the fric-
tion caused by suspended particles brings a huge static load
over dangerous levels.

The dust devils are detected as sudden changes in tem-
perature and pressure. The need to have an automatic system
that detects these phenomenon is due to the distance between
Earth and Mars. The key to propose a dust devil detector over
an FPGA is that (1) an application like this is cheap in terms
of space in an FPGA, (2) we can implement a lot of differ-
ent applications in the FPGA at the same time, (3) we can
reprogram it if we need to and (4) there are FPGAs tested for
space for other applications.

2 System description

To develop the design many ideas have been studied. We
have studied several approaches to the STA/LTA algorithm
and have implemented a software version in order to obtain
a first approach to the solution. STA and LTA mean Short
Time Average and Long Time Average, respectively. The
idea about having STA and LTA is that STA represents the
recent changes and LTA represents the long time changes in
some parameters. If we detect changes between the behavior
of the temperature and pressure parameters in the short and
large time, we will declare an event that could be a dust devil.
In order to achieve a better realism, we used real data from
Mars Pathfinder (PF) mission to test our design. Once the
algorithm has been validated in software, we implemented a
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Fig. 2. A dust devil implies a temperature rise and a pressure drop.

hardware design in an FPGA and a communication strategy
between PC and FPGA.

2.1 Input data

In order to recreate appropriately the Martian environment,
we have used real data from the experiments in Mars PF mis-
sion (Schofield, 1997). In 1997 this mission, which included
the PF lander and a surface rover, the Sojourner completed
a successful landing on Mars. This mission recovered data
from the red planet for more than 3 months.

The sensors of the PF lander (Seiffet et al., 1997) mea-
sured pressure at one height and temperature at three differ-
ent heights (0.25 m, 0.5 m and 1 m over the surface). The PF
lander also had a wind sensor (1.1 m over the surface) but
it experienced problems and its data are not available in the
Planetary Data System web page. The nominal period be-
tween two samples was 4 s and the minimum period was 1 s
for periods no longer than 1 h.

Data from this mission can be accessed by anybody in
NASA Planetary Data System web pageNASA PDS(1997),
where we can find Mars PF mission data in a tabulated text
plain format containing sensor lectures and date information.
During the mission was detected certain number of dust dev-
ils (Renno et al., 2000) that we used to test our system.

For our interest and with the purpose of dust devil detec-
tion, we needed to study data from temperature and atmo-
spheric pressure, because these are the variables involved
when a dust devil runs over a surface. Specifically, a dust
devil produces a temperature rise and a pressure drop (see
Fig. 2). In order to minimize the temperature error induced
for the heat of the PF lander, we only take into account the
temperature data of the higher temperature sensor.

2.2 Algorithm

STA/LTA algorithms were developed for the first time byLee
and Stewart(1981) and therefore were improved for seismic
detection byAllen (1982). These algorithms are based on
two sample sets: a short time set (STA) and long time set
(LTA).

With these two sample sets, we can do different opera-
tions to achieve the current value (CV) and predicted value
(PV) results of our algorithm, which are compared with each
other and if we get significant changes between them with
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Fig. 3. Data flow diagram STA/LTA algorithm.

respect to a threshold value (THR), we will report an event
(see Fig. 3).

2.3 Software approximation

Different possibilities have been studied with software built
around STA/LTA algorithms and their configuration param-
eters (number of STA and LTA samples and THR value).
Once tested, they were implemented on an FPGA. To exe-
cute the variants of these algorithms, these are needed (1) a
suitable storage structure for STA and LTA sets, (2) a specific
implementation of primary characteristic function (PCF) and
(3) the definition of a THR value and its associated charac-
teristic function.

The STA and LTA sets have a finite and static number of
samples. We have decided to use a circular array to handle
the refreshing of the STA and LTA sets efficiently. That cir-
cular array, which stores the samples as we see in Fig. 4, is a
contiguous memory zone with two more variables to manage
it: (a) an auxiliary pointer, that points to a position in mem-
ory where is stored the oldest element of the array; and (b) an
integer, which represents the occupation level of the array.

The PCF represents the operations made with the samples.
Usually, the most used operation is the arithmetic average of
each set, but we can make more complex calculations. Other
usual functions are root mean square and dispersion.

Finally, we have the THR concept and its associated char-
acteristic function (ACF). In our case we want to detect rise
and descent events on temperature and pressure values. For
that we have a rising THR (THRR) and a descending THR
(THRD). To detect variations between STA and LTA sets, we
realize a division between STA average (STAAVG) and LTA
average (LTAAVG) and then we compare its result with THRU
and THRD, as we show in Fig. 5. STAAVG is equivalent to
CV and LTAAVG is equivalent to PV.

2.4 Hardware

Once we tested the different variants of STA/LTA algorithms,
we implemented the hardware version. We used a Virtex II
Pro to develop our designs and all the logic was implemented
with CLBs (Configurable Logic Blocks)(see in Fig. 6 the
board used to realize this implementation). Each CLB con-
tains four slices (Xilinx , 2007). In a Virtex II the time used to
reconfigure one fifth of the total reconfigurable area is around
4 ms.
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Fig. 4. Circular array occupation.

2.4.1 Hardware improvements

With a hardware design we can achieve a better performance
than with a software design for several reasons.

A hardware design in an FPGA allows a high degree of
parallelism. We can implement a system with a module for
each magnitude without overhead on time execution. Also,
with this alternative, we can have different modules with
arithmetic average, root mean square, dispersion or any other
functions as we want.

For all hardware algorithms we have taken the following
design decisions:

1. We work with fixed point numbers. The reason is that
the hardware required to execute integer division is not
as expensive as float point division hardware. So we
send data to the FPGA in fixed point format. Also,
the studied magnitudes such as pressure and tempera-
ture are presented in millibar and kelvin units, respec-
tively, which allows us to work with unsigned integers.
The use of integer arithmetic is not always possible; in
most situations it will be necessary to work with floating
point numbers.

2. We have defined a four byte-wide data for each in-
sample and return value.

3. In order to achieve a better performance, we have im-
plemented a circular FIFO RAM to access and compute
data samples. This FIFO RAM has an integer occupa-
tion variable and a least recently used pointer to run.

4. As we said we have two sample sets, STA and LTA,
being STA the set used to compute STAAVG (STA aver-
age) and LTA used to compute LTAAVG (LTA average).
In order to calculate efficiently the arithmetic average
and the root mean square, we introduce an integer vari-
able for each set, which represents the sum of all values
in each set. So when we introduce a new sample, we do
not have to sum up all samples again; we only have to
subtract the least recently used sample from this integer
variable and add the new sample obtaining the sum of
all samples at O(1) time,

a1 + a2 + ... + an

n
a1 + a2 + ... + an

n
+

an+1 − a1

n
a2 + ... + an + an+1

n
(1)

5. Eventually, we studied the viability of change integer
division by binary right shift. Each right shift of an in-
teger represents a division by two; so if we can utilize
this replacement, the division would be done in a single
clock cycle instead of several. This produces an impor-
tant reduction in area and execution time.

2.4.2 Hardware communication

The data to be analyzed was sent from a PC to the FPGA.
This communication was performed through a serial port us-
ing RS232 protocol at 115 200 baud rate without hardware
flow control, one stop bit and no parity. The reason to use
this method is that we do not need a system that computes a
huge amount of data in the minimum possible time; we need
a system that computes a single piece of data in the mini-
mum number of cycles, because the maximum frequency of
new data is 1 Hz. So this strategy (see Fig. 7) is enough for
our requirements. We have defined not only a sample four
bytes frame to send data to the FPGA, but also for test pur-
poses we have defined a four bytes return frame that contains
execution information.

2.4.3 Arithmetic average version

This algorithm calculates STAAVG and LTAAVG (see Fig. 9),
being the PCF the arithmetic average, and then executes the
ACF (Associated Characteristic Function), which obtains the
result of the algorithm, i.e. declares or does not declare an
event. The core ACF is composed by a division between
STAAVG · 100 and LTAAVG (see Fig. 8). Then, we compare
this result with THRR and THRD and we declare the event as
appropriate or not. The reason to multiply STAAVG by one
hundred is that we are using fixed point arithmetic and we
want two digit precision to compare with the THRs.

About cycles of execution we have to comment that when
we receive a new sample until we finish the execution for that

Geosci. Instrum. Method. Data Syst., 1, 23–31, 2012 www.geosci-instrum-method-data-syst.net/1/23/2012/
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Fig. 5. Data flow diagram dust devils detector.

Fig. 6. XUPV2P30 Development System.

sample, we consume 79 clock cycles. A big amount of those
cycles are due to the two divisions of the algorithm (36 clock
cycles per division): one division to calculate STA and LTA
averages and other division to calculate STA average and
LTA average quotient. So if we are able to eliminate these
divisions, we would accelerate rather the whole algorithm.
We cannot eliminate the second division, because we cannot
guarantee that LTAAVG is a power of two, but the number of
samples of STA and LTA sets can be a power of two; it de-
pends on if we are able to achieve configuration parameters
with this characteristic and if that fulfills our requirements.

Eventually, we have to speak about FPGA utilization. The
final report provided by Xilinx shows us an utilization of
29 % of slices, with a number of samples of 64 for the STA
set and 128 for the LTA set.
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Fig. 7. (a)Data flow diagram of system’s communication.(b) Table
of states.(c) Frame sample and return value format.

2.4.4 Arithmetic average optimized version

As we said if we can achieve a configuration with a number
of samples power of two by each sample set, we can replace
the division by a right shift. This shift will be ofx positions,
beingx = log2(number of samples). The algorithm is sim-
ilar to the original algorithm, being the only difference the
substitution of the divider by a right shifter. Due to this right
shift, it will be necessary a new initial stage to initialize the
content of the FIFO RAMs before we start to divide. Only
when we have filled the FIFO RAMs, we can start to divide;
otherwise, we will obtain several incorrect initial values (up
to the number of LTA samples). With this variation we save
36 clock cycles. The final report provided by Xilinx shows us
an utilization of 11 % (instead 29 %) of slices, with a number
of samples of 64 for the STA set and 128 for the LTA set.
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2.4.5 Root mean square version

This variation of the algorithm calculates the root mean
square of the samples. When we receive the new sample,
we calculate the square of it and this is what we send to the
FIFO RAM of STA and LTA modules (see Fig. 10). The rest
of the algorithm is the same as the arithmetic average algo-
rithm. As we have to calculate the square of each sample, we
have introduced a multiplier in the design.

Each multiplier adds 5 clock cycles in parallel with execu-
tion time and due to that we need to store the new sample;
to calculate the square we add one more clock cycle. Then,
we have an algorithm that can compute a new sample each
79+ 5+ 1 = 85 clock cycles.
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Fig. 10. Core root mean square version.

Table 1. Algorithm parameters.

Parameter Pressure Temperature

No STA samples 8 4
No LTA samples 1024 32

THRR 0.997 –
THRD – 1.01

Regarding the FPGA occupation, now, we have two new
32-bit multipliers so the size of the design grows signifi-
cantly. Each multiplier occupies 1088 LUTs of the FPGA.
Due to the fact that we have similar results with this algo-
rithm and the first algorithm, we have decided not to imple-
ment it in hardware.

2.4.6 Dust devils detector version

This algorithm consists of two copies of the first algorithm
(arithmetic average algorithm), one for each magnitude to
analyze, in our case a module for pressure and the other for
temperature. The difference to the first algorithm is the fi-
nal part of the ACF, which is the condition to determine if
we signal an event or not. In our study of the data with the
software version of this algorithm, we obtained the configu-
ration parameters contained in Table 1. These parameters are
the number of samples for each set for pressure and temper-
ature and the values for THRR and THRD.

As we can see we achieved, for a number of samples,
power of two for each sample set, so the dust devil detec-
tor will be implemented with the optimized version of the
first algorithm. So we have the same number of clock cycles
as the first algorithm: 79 for normal algorithm and 43 for
the optimized version. Regarding the FPGA occupation, we
obtained a rate of 59 % of slices for the normal version and
23 % for the optimized version. The number of samples of
each set could change dynamically depending on the evolu-
tion of the algorithm, using larger sets when it is necessary
more sensitivity.
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Table 2. Hardware and Software comparative.

Arithmetic Average

Software Hardware∗ Optimized Hardware∗

Samples freq. (Hz) 94 931.0070 1 327 311.9241 2 383 127.2727
Gain 1.0 13.9819 25.1037

Dust Devils Detector

Software Hardware∗ Optimized Hardware∗

Samples freq. (Hz) 91 819.5936 1 327 311.9241 2 383 127.2727
Gain 1.0 14.4562 25.9543

∗ Results obtained supposing that we have a new data every time we need it.

Table 3. Test 1. Dust devils detected each sol.

Algorithm parameters Test 1

Parameter Pressure Temperature

No STA samples 8 4
No LTA samples 1024 32

THRR 0.997 –
THRD – 1.01

Results for Test 1

Sol Local Hour Detected

25 13:10 Yes
25 13:53 Yes
34 09:52 No
34 11:32 Yes
34 11:38 Yes
38 12:32 Yes
39 11:31 No
39 13:47 Yes
49 11:02 Yes
52 12:03 No
55 14:19 Yes
60 10:09 No
62 12:31 No
62 12:34 Yes
62 14:06 Yes
68 11:42 No
68 13:29 Yes
69 12:54 Yes
70 14:25 Yes

3 Results

In this section we show the performance of the dust devil
detector with the data provided and also we comment on the
pros of the hardware system versus a software system.

Table 4. Test 2. Dust devils detected each sol.

Algorithm parameters Test 2

Parameter Pressure Temperature

No STA samples 4 4
No LTA samples 1024 32

THRR 0.998 –
THRD – 1.01

Results Test 2

Sol Local Hour Detected

25 13:10 Yes
25 13:53 Yes
34 09:52 No
34 11:32 Yes
34 11:38 Yes
38 12:32 Yes
39 11:31 Yes
39 13:47 Yes
49 11:02 Yes
52 12:03 No
55 14:19 Yes
60 10:09 No
62 12:31 Yes
62 12:34 Yes
62 14:06 Yes
68 11:42 No
68 13:29 Yes
69 12:54 Yes
70 14:25 Yes

The data provided from Mars PF mission is a suitable data
set to test the algorithms implemented in this work since in
that mission were detected several dust devils. Using that
data we have tuned our dust devils detector. The tuning pro-
cess was done with the software alternative and once some
suitable parameters were achieved, we incorporated these in

www.geosci-instrum-method-data-syst.net/1/23/2012/ Geosci. Instrum. Method. Data Syst., 1, 23–31, 2012
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Table 5. Dust devils detected.

Test Number of dust devils detected

Test 1 13 (of 19)
Test 2 15 (of 19)

the hardware system, obtaining the results shown in Tables 3
and 4.

We can see that when we improve the pressure variations
sensitivity, we have an increment in the number of dust devil
detections (Table 5), but we also increment the number of
possible detections that are not reported in the original data
as dust devils.

The software algorithm was run over an Intel Q8200 Core2
Quad, with 2.33 Ghz frequency, 4 GB RAM at 1333 Mhz and
Ubuntu 10.04LTS operative system. The FPGA clock used in
this comparative has a frequency of 100 Mhz. Table 2 shows
us the number of samples per second that the hardware and
software algorithms can run. We observed that the perfor-
mance of the hardware of the not optimized version is about
15 times higher than the software algorithm performance and
the performance of the hardware of the optimized version is
about 25 times higher. Also, we obtain a decrease of about
61 % in area with the hardware optimized version.

4 Conclusions

As we said, many applications have a high degree of inter-
nal parallelism, which cannot be used by traditional software
solutions to improve the performance. A hardware design in
an FPGA allows us to use that high degree of internal par-
allelism, given that we can implement an algorithm with an
independent module for each magnitude; even more, we can
implement different algorithms and all without overhead on
execution time. Another relevant aspect of the use of FP-
GAs is that the flexibility provided by reconfigurable hard-
ware can be used to modify the functionality of the satellite
instrumentation during the flight or to automatically recover
the system from malfunction.

The results show that the hardware implementation of the
algorithm presents very good numbers in terms of perfor-
mance compared with the software version (up to 25 times
higher). Moreover, as the amount of time needed to per-
form all the computations on the reconfigurable hardware is
small, this hardware can be used most of the time to realize
other applications. With these results and keeping in mind
the difference between FPGA and PC clocks frequency, we
can conclude that the use of FPGAs to implement these al-
gorithms is a better alternative.

Future work

In a real scenario the dust devils detector should be used to
increment or decrease the measuring frequency of sensors.
This would allow a system to not lose events and to preserve
power consumption. We would not need to have a high mea-
suring frequency all the time to record all the events, but we
would only need a minimum initial measuring frequency and
capacity to modify that frequency, in order to avoid the loss
of events. Also, in order to minimize the false positives in the
detection of events, we could add to the system information
about the normal values of the parameters involved in the de-
tection. This will be possible as soon as we have an accurate
characterization of the Martian surface layer (Mart́ınez et al.,
2008).
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