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EDGE BIPARTITENESS AND SIGNLESS LAPLACIAN

SPREAD OF GRAPHS

Yi-Zheng Fan, Shaun Fallat

Let G be a connected graph, and let ǫb(G) and SQ(G) be the edge bi-
partiteness and the signless Laplacian spread of G, respectively. We es-
tablish some important relationships between ǫb(G) and SQ(G), and prove

SQ(G) ≥ 2
(

1+cos
π

n

)

, with equality if and only if G = Pn or G = Cn in case

of odd n. In addition, we show that if G 6= Pn or G 6= C2k+1, then SQ(G) ≥ 4,
with equality if and only if G is one of the following graphs: K1,3, K4, two
triangles connected by an edge, and Cn for even n. As a consequence, we
prove a conjecture of Cvetković, Rowlinson and Simić on minimal sign-
less Laplacian spread [Eigenvalue bounds for the signless Laplacian, Publ.
Inst. Math. (Beograd), 81 (95) (2007), 11–27].

1. INTRODUCTION

Let G be a simple graph of order n with the vertex set V = V (G) =
{v1, v2, . . . , vn} and the edge set E = E(G). The adjacency matrix of the graph
G is defined to be a matrix A(G) = [aij ] of order n, where aij = 1 if vi is ad-
jacent to vj , and aij = 0 otherwise. Let D(G) = diag{dv1 , . . . , dvn}, be a diag-
onal matrix, where dv denotes the degree of the vertex v in the graph G. The
matrix L(G) = D(G) − A(G) is called the Laplacian matrix of G, and the ma-
trix Q(G) = D(G) + A(G) is called the signless Laplacian matrix (or Q-matrix)
of G. The eigenvalues of A(G), L(G) and Q(G) are denoted by λA

i (G), λ
L
i (G) and

λ
Q
i (G) (i = 1, 2, . . . , n) respectively, all written in non-increasing order with respect
to the natural ordering on the reals.
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The spread of a graph G of order n (now called adjacency spread of G to avoid
confusion in the following discussion) is defined in [16] as

SA(G) = λA
1 (G) − λA

n (G).

The Laplacian spread of G is defined in [14] as

SL(G) = λL
1 (G)− λL

n−1(G).

The signless Laplacian spread of G is defined in [22] (also called Q-spread in [24])
as

SQ(G) = λ
Q
1 (G)− λQ

n (G).

Note that in the definition of Laplacian spread, as λL
n(G) always equals zero,

the second smallest eigenvalue λL
n−1(G) is used instead; and λL

n−1(G) > 0 if and
only if G is connected. By Lemma 2.3 in next section, if G is connected, then
λQ
n (G) = 0 if and only if G is bipartite, and hence SQ(G) > SL(G) if G is connected
and bipartite. However, there also exists a non-bipartite connected graph G such
that SQ(G) < SL(G); see [22]. In addition, if G is regular, then SA(G) = SQ(G).

The spread of a graph has received much attention recently. Petrović [25]
determines all minimal graphs whose adjacency spread does not exceed four. Gre-

gory et al. [16] present some lower and upper bounds for the spread of a graph.
They show that the path is the unique graph with minimal adjacency spread among
all connected graphs of given order. However the graph(s) with maximal adjacency
spread is still unknown, and some conjectures are presented in their paper. Lower
and upper bounds for the adjacency spread of graphs can also be found in [20].
The maximum adjacency spread of unicyclic or bicyclic graphs can be found in [18],
[13] and [27]. Further discussion on the maximum adjacency spread of graphs can
be found in [26].

For the Laplacian spread of graphs, Fan et al. [14] prove that among all
trees of fixed order, the star is the unique one with maximum Laplacian spread,
and the path is the unique one with the minimum Laplacian spread. The maximum
Laplacian spread of unicyclic graphs, bicyclic graphs, tricyclic graphs, quasi-trees
and cacti are discussed in [1], [4], [11], [23], and [30], respectively. The ordering
of Laplacian spread of trees or unicyclic graphs is discussed in [21]. The graph
with minimum Laplacian spread among all unicyclic graphs with fixed order is
determined in [31], and is a cycle.

For the signless Laplacian spread, the unique graph with maximum signless
Laplacian spread is determined in [24] and [22], which is a union of a complete
graph and an isolated vertex. Among connected graphs, the one with maximum or
minimum signless Laplacian spread is still unknown. Recent work has just appeared
on bounding the signless Laplacian spread and investigating graphs with minimum
signless Laplacian spread in [8]. Liu and Liu [22] determined the unicyclic graph
with maximum signless Laplacian spread. Cvetković, Rowlinson and Simić

have posed the following conjecture on the minimum signless Laplacian spread:
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Conjecture 1.1. [5] Among all connected graphs of order n, SQ(G) is minimized

by the path Pn, and in the case that n is odd, by the cycle Cn.

To prove this conjecture, we use a very important notion called the edge bi-
partiteness of a graph, which was introduced in [9], and used to measure how close
a graph is to being bipartite. Furthermore a number of relationships were estab-
lished between the edge bipartiteness of a graph and the least signless Laplacian
eigenvalue (see [9]).

Definition 1.2. [9] The edge bipartiteness of a graph G, denoted by ǫb(G), is the

minimum number of edges of G whose deletion yields a bipartite graph.

In this work we show that if ǫb(G) ≤ 1, then SQ(G) ≥ 2
(

1 + cos
π

n

)

, with

equality if and only if G = Pn or G = Cn in case of odd n; and if ǫb(G) ≥ 2, then
SQ(G) ≥ 4, which implies the validity of Conjecture 1.1. Furthermore, if G 6= Pn

and G 6= Cn in case of odd n, then SQ(G) ≥ 4, with equality if and only if G is
one of the following graphs: K1,3, K4, two triangles connected by an edge, and an
even cycle.

2. EDGE BIPARTITENESS AND SIGNLESS LAPLACIAN SPREAD
OF GRAPHS

We first introduce some terminology on mixed graphs. A mixed graph G is
a graph containing oriented edges and unoriented edges. The Laplacian matrix
associated with a mixed graph G is defined as D(G) + Ā(G), where Ā(G)uv = 1 if
uv is an unoriented edge, Ā(G)uv = −1 if uv is an oriented edge, and Ā(G)uv = 0
otherwise; see [2] for more details. The notion of a Laplacian matrix of a mixed
graph generalizes both the classical Laplacian matrix and signless Laplacian matrix
if all edges are oriented or unoriented, respectively.

In [28] a parameter called the edge singularity of a mixed graphG was defined
as the minimum number of edges of G such that deletion of these edges produces
components whose Laplacian matrices are all singular. Using Lemma 2.3, within
the setting of the signless Laplacian of graphs, the edge singularity is exactly the
edge bipartiteness. Thus we may recast some results from [28] as in Lemma 2.4,
Lemma 2.6(5) and Lemma 2.12 all stated below.

Lemma 2.3. [6] Let G be a connected graph of order n. Then λQ
n (G) = 0 if and

only if G is bipartite, and in this case, Q(G) is similar to L(G) by a signature

matrix (a diagonal matrix with ±1 on its diagonal).

Lemma 2.4. [28] Let G be a connected graph of order n with m edges. Then

ǫb(G) ≤ m−n+1, with equality if and only if all cycles of G are odd, and any two

cycles share no common edges.

By Lemma 2.4, any connected graphG of order n contains at least n−1+ǫb(G)
edges; and if it contains exactly n− 1+ ǫb(G) edges, then it is obtained from a tree
of order n by adding ǫb(G) edges to produce ǫb(G) odd cycles, and any two cycles
share no common edges. We also have the following fact.
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Corollary 2.5. Let G be a connected graph of order n with m edges. Then m ≥
n+ ǫb(G) if and only if G contains at least one even cycle.

We now list some bounds for the extreme signless Laplacian eigenvalues of

graphs. The first result can be obtained by the fact λ
Q
1 (G) ≥

1

n
1⊤nQ(G)1n with

equality if and only if 1n is a Perron vector of Q(G), where 1n ∈ R
n consisting of

all ones.

Lemma 2.6. Let G be a graph of order n with m edges, and let ∆(G), δ(G) be the

maximum degree and the minimum degree of the vertices of G. Then

(1) λQ
1 (G) ≥

4m

n
, with equality if and only if G is regular.

(2) [12] λQ
1 (G) ≥ ∆(G) + 1, with equality in the connected case if and only if G is

a star.

(3) [7] λQ
n (G) < δ(G).

(4) [19] λQ
n (G) ≤ minuv∈E(G)

du + dv − 2

2
.

(5) [28] λQ
n (G) ≤

4ǫb(G)

n
.

Let G be a graph, and let U ⊂ V (G). Denote by G[U ] the subgraph of
G induced by the vertices of U, and by diam(G) the diameter of G. Denote by
Pn, Cn,K1,n−1,Kn the path, the cycle, the star and the complete graph all of order
n, respectively. We let In be the identity matrix of order n and |S| be the cardinality
of a finite set S.

The eigen-equation Q(G)X = λX can be interpreted as

(2.1) (λ− du)Xu =
∑

v∈N(u)

Xv, for each vertex u ∈ V (G),

where Xv denotes the entry of X corresponding the vertex v, and N(u) denotes
the neighborhood of u. Similarly, L(G)X = λX can be interpreted as

(2.2) (du − λ)Xu =
∑

v∈N(u)

Xv, for each vertex u ∈ V (G).

Corollary 2.7. If G is a connected graph of order n with m ≥ n+ ǫb(G) edges, or
equivalently G contains an even cycle, then

SQ(G) ≥ 4,

with equality if and only if G = K4 or G = Cn in case of even n.

Proof. By Lemma 2.6 (1) and (5),

(2.3) SQ(G) ≥
4(n+ ǫb(G))

n
− 4ǫb(G)

n
= 4.
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To prove the equality case, we restate the proof of the inequality λQ
n (G) ≤

4ǫb(G)

n
in [28]. Let F ⊂ E(G) of size ǫb(G) such that G − F is bipartite. Then

G−F is connected; otherwise we can delete fewer edges from G to yield a bipartite
graph. Let (U,W ) be the bipartition of V (G − F ) such that each edge of G − F

links one vertex in U and one in W. Observe that the edges F lie within U or W.

Define a vector X such that Xv = 1 if v ∈ U and Xv = −1 otherwise. Then

λQ
n (G) ≤ ‖X‖−2X⊤Q(G)X =

1

n

∑

uv∈E(G)

(Xu +Xv)
2 =

4ǫb(G)

n
,

with equality if and only if X is an eigenvector corresponding to λQ
n (G).

Now if the equality (2.3) holds, then λ
Q
1 (G) =

4m
n

=
4(n+ ǫb(G))

n
, which

implies G contains exactly n + ǫb(G) edges and is regular of some degree d by

Lemma 2.6(1). Also λQ
n (G) =

4ǫb(G)

n
, and X is a corresponding eigenvector defined

as above. By the eigen-equation as in (2.1), Q(G)X = λQ
n (G)X, letting d′u be the

degree of a vertex u in the graph G[U ],

(λQ
n (G)− d) · 1 = d′u · 1 + (d− d′u) · (−1).

Hence λQ
n (G) = 2d′u, which implies G[U ] is regular of some degree d′. Similarly

G[W ] is regular of degree d′. So G− F is also regular as G is regular. Since G− F

is connected, bipartite, and contains exactly n edges, G − F is an even cycle. So
d′ = d− 2, and λQ

n (G) = 2d′ = 2(d− 2). However by Lemma 2.6(3), λQ
n (G) < d. So

d ≤ 3 or d′ ≤ 1.

If d = 2, then G is exactly an even cycle. Assume d = 3. Then λQ
n (G) = 2.

Noting that Q(G) = 3In + A(G), so λA
n (G) = −1, which implies G is a complete

graph Kn or a disjoint union of two or more complete graphs (see [15]). As G is
connected, G = Kn, and n = 4. The result then follows.

Lemma 2.8. If G is a connected graph of order n with m = n − 1 + ǫb(G) edges

(or equivalently G contains only odd cycles), and G contains a vertex of degree at

least 4 or a cycle whose vertices all have degree 3, then SQ(G) > 4.

Proof. By Lemma 2.6 (2), if the maximum degree ∆(G) ≥ 4, then λ
Q
1 (G) ≥ 5.

If G contains a cycle C whose vertices all have degree 3, considering the proper
principal submatrix Q′ of Q(G) indexed by the vertices of C, the spectral radius of

Q′ is exactly 5 as it has constant row sum 5. So λQ
1 (G) > 5 by the Perron-Frobenius

theory on nonnegative matrices (see [17]).

In addition, as G contains a pendent vertex (of degree 1) or a pendant cycle
(with exactly one vertex of degree 3), by Lemma 2.6 (3) or (4), λQ

n (G) ≤ 1. So

SQ(G) ≥ 5 − 1 = 4. If SQ(G) = 4, then λ
Q
1 (G) = 5, ∆(G) = 4, and G is a star of

order 5 by Lemma 2.6 (2). However in this case λQ
n (G) = 0 by Lemma 2.3, and

hence SQ(G) = 5 > 4, a contradiction.
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Lemma 2.9. Let G be a connected graph with a pendant vertex v. Then SQ(G) >
SQ(G− v).

Proof. Let e be the edge between v and G− v in the graph G. Then the signless
Laplacian eigenvalues of G− e interlace those of G (see e.g. [10]), and hence

(2.4) λQ
n (G− e) ≤ λQ

n (G) ≤ λ
Q
n−1(G− e).

Observing that G− e is union of v and G− v, so λQ
n (G− e) = 0 and λ

Q
n−1(G− e) =

λ
Q
n−1(G−v) (the least eigenvalue of Q(G−v)), which implies λQ

n (G) ≤ λ
Q
n−1(G−v).

By the Perron-Frobenius theory we have λQ
1 (G) > λ

Q
1 (G− v), which completes the

proof.

Lemma 2.10. Let G be a connected graph of order n with a cut edge e, and let

G1, G2 be the components of G− e. Then SQ(G) > min{SQ(G1), SQ(G2)}.

Proof. Assume G1 contains m vertices, and without loss of generality, λQ
m(G1) ≤

λ
Q
n−m(G2) (both are least eigenvalues of Q(G1) and Q(G2) respectively). Thus

λQ
n (G − e) = λQ

m(G1) and λ
Q
n−1(G − e) ≤ λ

Q
n−m(G2). So, by (2.4) and a similar

discussion as in the proof of Lemma 2.9, we have SQ(G) > SQ(G2). �

At the end of this section, we will establish a relationship between the signless
Laplacian spectrum of a graph G and the Laplacian spectrum of a graph dG, and
prove SQ(G) = SL(

dG) when ǫb(G) = 1, where dG is the double graph of G defined
in [9].

Suppose the vertices of G are partitioned into two sets S and T, where we
allow the possibility that S = V (G) and T = ∅. Let G′ be a copy of G, whose
vertices are labeled as u′, corresponding to the vertex u ∈ V (G). For each edge uw
within S or T (if it exists), replace it by two new edges uw′ and u′w, and preserve
the remaining edges that exist between S and T, or S′ and T ′. The resulting graph
is called the double graph of G, denoted by dG; see Figure 1. When S = V (G) and
T = ∅, the graph dG is exactly the Kronecker product G⊗K2 (see [29]), also called
bipartite double cover of G.

�

�

�

�� �

� �

� �
�

Figure 1. The graph G and its double graph dG.

Obviously dG is bipartite, so Q(dG) is similar to L(dG), and hence λQ
2n(

dG) =
λL
2n(

dG) = 0. It was proved in [9] that dG is independent of the choice of the
bipartition (S, T ) of V (G) so that dG = G⊗K2; and

dG has exactly two components
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(each being a copy of G) if G is bipartite, and is connected if G is non-bipartite.
It was also proved in [9] that the spectrum of Q(dG) is the union of those of Q(G)
and L(G). We restate the proof here for completeness.

Theorem 2.11. Let G be a connected non-bipartite graph of order n. Then the

spectrum of Q(dG) is the union of the spectrum of Q(G) and L(G), and

λ
Q
1 (

dG) = λ
Q
1 (G), λ

Q
2n−1(

dG) = min{λQ
n (G), λ

L
n−1(G)}.

Proof. We label the vertices of G as v1, v2, . . . , vn, and arrange the vertices of
dG in

the order v1, v2, . . . , vn, v
′
1, v

′
2, . . . , v

′
n. Let λ be an eigenvalue of Q(G) corresponding

to an eigenvector X. Then by the eigen-equation (2.1), the vector (X⊤, X⊤)⊤ is an
eigenvector of Q(dG) corresponding to the same eigenvalue λ.

Let µ be an eigenvalue of L(G) corresponding to an eigenvector Y. By the
eigen-equation (2.2), the vector (Y ⊤, Y ⊤)⊤ is an eigenvector of L(dG) correspond-
ing to the eigenvalue µ. As dG is bipartite, Q(dG) = ΓL(dG)Γ, where Γ = I|S| ⊕
(−I|T |) ⊕ (−I|S′|) ⊕ I|T ′|. So the vector Γ(Y ⊤, Y ⊤)⊤ is an eigenvector of Q(dG)
corresponding to the eigenvalue µ.

Noting that Γ(Y ⊤, Y ⊤)⊤ = (Y ⊤S ,−Y ⊤T ,−Y ⊤S′ , Y ⊤T ′)⊤ =: (Z⊤,−Z⊤) since
YS = YS′ and YT = YT ′ , so this vector is orthogonal to (X⊤, X⊤)⊤. By the above
discussion, we can find 2n eigenvectors of Q(dG), orthogonal to each other, which
correspond to the eigenvalues of Q(G) and eigenvalues of L(G), respectively. So
the spectrum of Q(dG) is the union of the spectrum of Q(G) and L(G).

As Q(G) is nonnegative and irreducible, the eigenvector X of Q(G) corre-

sponding to λ
Q
1 (G) can be chosen positive by the Perron-Frobenius theory. By

the above discussion, (X⊤, X⊤)⊤ is a positive eigenvector of Q(dG) correspond-

ing to the eigenvalue λ
Q
1 (G). So λ

Q
1 (

dG) = λ
Q
1 (G). The equality λ

Q
2n−1(

dG) =
min{λQ

n (G), λ
L
n−1(G)} follows obviously. �

A problem arises in which case λQ
2n−1(

dG) = λQ
n (G). The authors [28] give a

sufficient condition for the above equality.

Lemma 2.12. [28] Let G be a connected graph with ǫb(G) = 1. Then λ
Q
2n−1(

dG) =
λQ
n (G).

Theorem 2.13. Let G be a connected graph with ǫb(G) = 1. Then SQ(G) =
SL(

dG).

Proof. Suppose G has order n. By Theorem 2.11 and Lemma 2.12,

SQ(G) = λ
Q
1 (G)−λQ

n (G) = λ
Q
1 (

dG)−λ
Q
2n−1(

dG) = λL
1 (

dG)−λL
2n−1(

dG) = SL(
dG),

where the third equality follows from Lemma 2.3 as dG is bipartite.

Corollary 2.14. Let G be a non-bipartite unicyclic graph. Then SQ(G) = SL(
dG).

Proof. Obviously ǫb(G) = 1, so the result follows from Theorem 2.13.
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3. MINIMUM SIGNLESS LAPLACIAN SPREAD OF GRAPHS

In this section, we will establish some new lower bounds for the signless
Laplacian spread. With these inequalities, we establish a proof of Conjecture 1.1.
We divide the analysis according to the value ǫb(G) of a graph G.

3.1. Graphs G with ǫb(G) ≤ 1

If a connected graph G is bipartite (i.e., ǫb(G) = 0), then SQ(G) = λ
Q
1 (G) by

Lemma 2.3. The following results are known.

Lemma 3.15. [3] [6] Let G be a connected graph of order n. Then λ
Q
1 (G) ≥

λ
Q
1 (Pn) = 2

(

1 + cos
π

n

)

, with equality if and only if G = Pn. If G 6= Pn, then

λ
Q
1 (G) ≥ 4, with equality if and only if G = Cn or G = K1,3.

Corollary 3.16. [24] Let G be a connected bipartite graph of order n. Then

SQ(G) ≥ SQ(Pn) = 2
(

1 + cos
π

n

)

,

with equality if and only if G = Pn. If G 6= Pn, then

SQ(G) ≥ 4,

with equality if and only if G = Cn for even n or G = K1,3.

Now we consider graphs G with ǫb(G) = 1 and begin with unicyclic graphs.
We need a result from [31] on the Laplacian spread of unicyclic graphs.

Theorem 3.17. [31] Let G be a unicyclic graph of order n. Then SL(G) ≥ SL(Cn),
with equality if and only if G = Cn.

Theorem 3.18. Let G be a non-bipartite unicyclic graph of order n. Then

SQ(G) ≥ 2
(

1 + cos
π

n

)

,

with equality if and only if G = Cn and n is odd. If G is not an odd cycle, then

SQ(G) > 4.

Proof. By Corollary 2.14 and Theorem 3.17, noting that dG is a bipartite unicyclic
graph of order 2n, we have

SQ(G) = SL(
dG) ≥ SL(C2n) = 2

(

1 + cos
π

n

)

.

The equality case is easily verified.

Now suppose that G contains an odd cycle Ck (k < n). If the maximum
degree ∆(G) ≥ 4, then by Lemma 2.8, SQ(G) > 4. So assume ∆(G) = 3. By
Theorem 2.8, Lemmas 2.11 and 2.12 in [31], if k ≥ 9, then SL(G) > 4. So, if k ≥ 5,
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then dG contains a cycle C2k with length greater than or equal to 10, and hence
SQ(G) = SL(

dG) > 4 by Corollary 2.14 and the above discussion. So we can assume
k = 3. In this case, G contains a triangle with a pendant edge, denote such a graph
by H. By Lemma 2.9, we have SQ(G) ≥ SQ(H) =

√
17 > 4. �

By Theorem 3.18 and Corollary 2.7, we have the following consequence.

Corollary 3.19. Let G be a unicyclic graph of order n. Then

SQ(G) ≥ 2
(

1 + cos
π

n

)

,

with equality if and only if G = Cn and n is odd. Furthermore, excluding odd

cycles, SQ(G) ≥ 4 with equality if and only G = Cn and n is even.

Theorem 3.20. Let G be a connected graph of order n with ǫb(G) = 1. Then

SQ(G) ≥ 2
(

1 + cos
π

n

)

,

with equality if and only if G = Cn and n is odd. Furthermore, excluding odd

cycles, SQ(G) > 4.

Proof. As ǫb(G) = 1, the graph G contains at least one odd cycle. If G is unicyclic,
the result follows from Theorem 3.18. Otherwise, G contains an even cycle, and
hence SQ(G) > 4 by Corollary 2.7 since ǫb(G) = 1.

3.2. Graphs G with ǫb(G) ≥ 2

We break the discussion into some special cases. By Corollary 2.7, if a con-
nected graph G contains m ≥ n+ ǫb(G) edges, then SQ(G) ≥ 4. Also if G satisfies
the property as in Lemma 2.8, then SQ(G) > 4; and if G contains a pendant vertex,
then SQ(G) > SQ(G − v) by Lemma 2.9. Thus we first consider the graphs G of
order n with following property: contain exactly n− 1 + ǫb(G) edges, contain only

vertices of degree 2 or 3, and contain no cycles with each vertex having degree 3. Let
G0
n be the set of graphs G on n vertices with above property, and with ǫb(G) ≥ 2.

Lemma 3.21. If G ∈ G0
n, then

λQ
n (G) ≤

2ǫb(G)

n− ǫb(G)
.

Proof. Pick one vertex of degree two from each odd cycle of G, for a total of ǫb(G)
vertices which will form the set U. Let W = V (G)−U. As G[W ] is bipartite, there
exists a vectorX with entries 1 and −1 defined onW, such that X⊤Q(G[W ])X = 0.
Now define a vector Y on V (G) such that Yv = 0 if v ∈ U and Yv = Xv if v ∈ W.

Then

� λQ
n (G) ≤

(

∑

v∈V (G)

Y 2
v

)−1
∑

uw∈E(G)

(Yu + Yw)
2 =

2ǫb(G)

n− ǫb(G)
.
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For a graph G ∈ G0
n, contract each cycle of G into a single vertex, and each

path not on a cycle with the following property into an edge: if it has length greater
than one and connects two vertices of degree 3 and contains no other vertices of
degree 3. We then arrive at a contracted graph of G, denoted by cG. Evidently, cG
is a tree of order at least ǫb(G). See Figure 2 for an example of a graph and its
contraction as described above

Figure 2. Example of a graph and its contraction.

Lemma 3.22. If G ∈ G0
n satisfies diam(cG) ≥ 3, then there exists a subgraph

H ∈ G0
m of G for some positive integer m, such that diam(cH) < diam(cG) and

SQ(G) > SQ(H).

Proof. In the tree cG, find a path of length diam(cG), and choose a non-pendant
edge e of this path. Then the two components of cG − e both have order greater
than or equal to 2. The edge e of cG corresponds to a path P of G connecting
two vertices of degree 3. Deleting an (arbitrary) edge on the path P will yield two
components of G, denoted by G1 and G2, respectively. Noting that each vertex of
cG corresponds to a cycle or a vertex of degree 3. So, in any case, ǫb(G1) ≥ 2 and
ǫb(G2) ≥ 2.

By Lemma 2.10, without loss of generality, SQ(G) > SQ(G2). If G2 contains a
pendant vertices, by Lemma 2.9, we have a subgraph H of G2 such that H ∈ G0

m for
some positive integer m and SQ(G2) > SQ(H). If diam(cH) = diam(cG), repeating
the discussion for H, we finally arrive at a graph H ′ ∈ G0

m′ for some positive integer
m′, with diam(cH ′) < diam(cG), and SQ(G) > SQ(H

′). The result now follows. �

By Lemma 3.22, we may further reduce the discussion to graphs G ∈ G0
n with

diam(cG) ≤ 2. There are exactly two such types of graphs: type (i)-graphs G with

ǫb(G) = 3 obtained from 3 cycles each connected to a fixed vertex by a path; type
(ii)-graphs G with ǫb(G) ≥ 2 obtained from ǫb(G)−1 cycles each connected to a fixed

cycle at different (but not all) vertices by a path. Denote by G1
n the set of graphs

on n vertices of the two types described above. See Figure 3 for an illustration of
the two types of graphs described above.

Lemma 3.23. Let G ∈ G1
n, and let α be the number of edges of the subgraph of G

induced by the vertices of degree 3. Then

λ
Q
1 (G) ≥ 4 +

15(ǫb(G)− 1) + α

2n+ 5(ǫb(G)− 1)
.
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Figure 3. Type (i) and Type (ii) graphs.

Proof. First suppose G is of type (ii) in G1
n. Let U,W be the sets of vertices of

G with degree 2 and 3, respectively. Then U,W form a bipartition of the vertex
set V (G). Note that the contracted graph cG contains exactly ǫb(G) vertices and
ǭb(G) := ǫb(G) − 1 edges. So G has exactly 2ǭb(G) vertices of degree 3, which
implies |W | = 2ǭb(G), |U | = n − 2ǭb(G). As there are α edges in G[W ], there are
exactly 6ǭb(G) − 2α edges in E(W,U) (the set of edges between W and U), and
n − 5ǭb(G) + α edges in G[U ]. Define a vector X such that Xv = 2 if v ∈ U and
Xv = 3 if v ∈ W. Then

λ
Q
1 (G) ≥

(

∑

v∈V (G)

X2
v

)−1
∑

uw∈E(G)

(Xu +Xw)
2

=

∑

uw∈E(G[W ])∪E[W,U ]∪E(G[U ])

(Xu +Xw)
2

∑

v∈W∪U

X2
v

=
62α+ 52 · [6ǭb(G)− 2α] + 42 · [n− 5ǭb(G) + α]

32 · 2ǭb(G) + 22 · [n− 2ǭb(G)]

= 4 +
15ǭb(G) + α

2n+ 5ǭb(G)
.

If G is of type (i) in G1
n, the result also holds by retracing the above proof. �

Lemma 3.24. Let G ∈ G1
n, and let α be the number of edges of the subgraph of

G induced by the vertices of degree 3. If α = 0, then n ≥ 6ǫb(G) − 5; otherwise,

n ≥ 4ǫb(G)− 3.

Proof. First suppose G is of type (ii) in G1
n. Let C be the cycle of G such that

other cycles are connected to C by paths, respectively. We count the vertices of
G. If α = 0, then every two vertices of degree 3 are not adjacent. So, |V (C)| ≥
2(ǫb(G)− 1)+1, and |V (G−C)| ≥ 3(ǫb(G)− 1)+ (ǫb(G)− 1) = 4(ǫb(G)− 1), which
implies n ≥ 6(ǫb(G)− 1) + 1. Now suppose α > 0. Then |V (C)| ≥ (ǫb(G)− 1) + 1;
and there are at least 3(ǫb(G) − 1) vertices in total for the pendant cycles of G
attached to C. So, n ≥ 4(ǫb(G) − 1) + 1.

If G is of type (i) in G1
n, the above result also holds by a simple counting

argument. �
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Note that a graph G ∈ G0
n with ǫb(G) = 2 or 3 must satisfy diam(cG) ≤ 2,

and hence G ∈ G1
n.

Lemma 3.25. Let G ∈ G0
n (or G1

n) with ǫb(G) = 2 or 3. Then SQ(G) ≥ 4, with
equality if and only if G is obtained from two triangles connected by an edge.

Proof. First we consider the case ǫb(G) = 2. By Lemma 3.21 and Lemma 3.23,

SQ(G) ≥ 4 +
15 + α

2n+ 5
− 4

n− 2
= 4 +

7n− 50 + α(n− 2)

(2n+ 5)(n− 2)
,

where α is as defined in Lemma 3.23. If α = 0, then n ≥ 7, with equality if
and only if G is obtained from two triangles connected by a path of length 2;
denote this graph by H0. Using basic mathematical software it can be checked that
SQ(H0) ≈ 4.15653 > 4. Using the formula above, it follows that if α = 0 and n ≥ 8,
then SQ(G) > 4.

If α = 1, then SQ(G) ≥ 4 +
8n− 52

(2n+ 5)(n− 2)
. In this case, n ≥ 6 with equality

if and only if G is obtained from 2 triangles connected by an edge. Denoting this
graph by H1, we find that SQ(H1) = 4. Furthermore, if n ≥ 7, then SQ(G) > 4.

Next suppose ǫb(G) = 3. Similarly, by Lemma 3.21 and Lemma 3.23, we have

SQ(G) ≥ 4 +
30 + α

2n+ 10
− 6

n− 3
= 4 +

18n− 150 + α(n− 3)

(2n+ 10)(n− 3)
.

If α = 0, then n ≥ 13 by Lemma 3.24, and hence SQ(G) > 4. If α ≥ 1, then
18n− 150 + α(n− 3) ≥ 19n− 153 > 0 as n ≥ 9, which implies SQ(G) > 4.

Lemma 3.26. Let G ∈ G1
n, where ǫb(G) ≥ 4. Then SQ(G) > 4.

Proof. To avoid a complicated computation, we use Lemma 2.6(1) for the lower

bound of λQ
1 (G). By Lemma 2.6(1) and Lemma 3.21 we observe that,

SQ(G) ≥ 4 +
4(ǫb(G)− 1)

n
− 2ǫb(G)

n− ǫb(G)
= 4 +

n(2ǫb(G)− 4)− 4ǫb(G)(ǫb(G) − 1)

n(n− ǫb(G))
.

By Lemma 3.24, n ≥ 4ǫb(G)− 3. Combining this with the fact ǫb(G) ≥ 4, we have

n(2ǫb(G)− 4)− 4ǫb(G)(ǫb(G) − 1) ≥ 4ǫb(G)
2 − 18ǫb(G) + 12 > 0.

So SQ(G) > 4. �

We are now in a position to confirm one of our key observations regarding
the signless Laplacian spread of a graph, which is needed for our main result.

Theorem 3.27. Let G be a graph of order n with n − ǫb(G) + 1 edges, where

ǫb(G) ≥ 2. Then SQ(G) ≥ 4, with equality if and only if G is obtained from two

triangles connected by an edge.
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Proof. First assume G contains no pendant vertices. If G has the property as in
Lemma 2.8, then SQ(G) > 4. So it is enough to consider G ∈ G0

n. If diam(
cG) ≤ 2,

then G ∈ G1
n, and SQ(G) ≥ 4 by Lemma 3.25 and Lemma 3.26, with equality if

and only if G is obtained from two triangles connected by an edge. Otherwise,
by repeated use of Lemma 3.22, there exists a subgraph H ∈ G1

m for some pos-
itive integer m such that diam(cH) ≤ 2 and SQ(G) > SQ(H) ≥ 4 by the above
discussion.

If G contains a pendant vertex v, repeatedly using Lemma 2.9, we arrive at a
subgraph H of G without pendant vertices, and SQ(G) > SQ(H) ≥ 4 by the above
discussion. �

Now we are in a position to confirm the validity of Conjecture 1.1.

Theorem 3.28. Let G be a graph of order n. Then

SQ(G) ≥ 2
(

1 + cos
π

n

)

,

with equality if and only if G = Pn or G = Cn in case of odd n. Furthermore,

except for Pn or C2k+1,

SQ(G) ≥ 4,

with equality if and only if G is one of the following graphs: K1,3, K4, two triangles

connected by an edge, and Cn for even n.

Proof. If G is bipartite, then by Corollary 3.16, SQ(G) ≥ SQ(Pn) = 2
(

1+ cos
π

n

)

,

with equality if and only if G = Pn. If G 6= Pn, then SQ(G) ≥ 4, with equality if
and only if G = K1,3 or G = Cn.

Suppose G is non-bipartite. If G containsm ≥ n+ǫb(G) edges, then SQ(G) ≥
4 by Corollary 2.7, with equality if and only if G = K4. So we can assumeG contains

exactly n− 1+ ǫb(G) edges. If ǫb(G) = 1, by Theorem 3.18, SQ(G) ≥ 2
(

1+cos
π

n

)

,

with equality if and only if G = Cn and n is odd; and if G 6= Cn for odd n then
SQ(G) > 4. Otherwise, ǫb(G) ≥ 2, and by Theorem 3.27, SQ(G) ≥ 4, with equality
if and only if G is obtained from two triangles connected by an edge.

Remark 3.29 (Added During Review). The paper [8] was brought to our attention by
the referee during review of our paper and we acknowledge that the first part of Theorem
3.28 was also proved in [8], but here we provide a different proof technique using edge
bipartiteness.
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26. M. Petrović, T. Aleksić, S.K. Simić: Further results on the least eigenvalue of

connected graphs. Linear Algebra Appl., 435 (2011), 2303–2313.
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