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ON TWO THEOREMS REGARDING EXPONENTIAL

STABILITY

Pham Viet Hai

There are two remarkable results in the theory of stability of dynamical sys-

tems which were obtained by E. A. Barbashin in 1967 and R. Datko in

1970. After the seminal researches of Datko and Barbashin, there has been

a great number of works devoted to this results. For the case of discrete-time

systems analogous results have been obtained. This paper will give the new

versions which unify the discrete-time versions of Barbashin’s theorem and

Datko’s theorem.

1. INTRODUCTION

The theory of semigroups of linear operators has been developed extensively
and the results have found many applications. In recent years an increasing interest
in the study of evolution equations has been developed. The interest arises from a
need to extend classical results on ordinary differential equations. In this paper, we
consider the exponential stability of linear skew-evolution semiflows, generated by
a new class of evolution equations. The used method is the integral condition. We
associate a linear skew-evolution semiflow to an integral condition and then study
the exponential stability in the neighborhood of this integral inequality. Since the
present paper is closely related to previous articles we briefly recall some results
proved in references.

One of the most famous results was given by R. Datko. Datko’s theorem

states that an evolution family
{

U(t, s)
}

t≥s≥0
is uniformly exponentially stable
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if and only if there exists b ∈ N (the set of all continuous, non-decreasing func-
tions c : R+ → R+ with c(0) = 0 and c(t) > 0 for each t > 0) such that

sup
s≥0

∞
∫

s

b (‖U(τ, s)x‖) dτ < ∞ for every x ∈ X. We have a weaker result as follows.

Theorem 1. An evolution family
{

U(t, s)
}

t≥s≥0
is uniformly exponentially stable

if and only if there exists b ∈ N such that sup
s≥0

∞
∫

s

b (‖U(τ, s)‖) dτ < ∞.

Theorem 1 can be interpreted as the uniform Datko’s condition. Analo-
gous results for discrete-time case were first obtained by K. M. Przyluski, S.

Rolewicz and Z. Zabczyk in [12], [15]. An interesting idea has been presented
by Neerven in [9], where he introduced the theory of Banach function spaces.
He proved that a C0-semigroup is exponentially stable if and only if all its orbits
lie in a certain Banach function space over R+. Another approach was given in
[11] where P. Preda, A. Pogan and C. Preda characterized the uniform ex-
ponential stability of evolution families in terms of existence of some functionals
on sequence (function) spaces. In fact, they are merely generalizations of Banach
sequence (function) spaces in [8]. Using functionals on sequence spaces, the authors
generalized discrete-time versions due to K. M. Przyluski, S. Rolewicz and Z.

Zabczyk.

Theorem 2. An evolution family
{

U(t, s)
}

t≥ s≥ 0
is uniformly exponentially stable

if and only if there exists F ∈ F such that AF :=
{

x ∈ X : supt0≥ 0 F (ϕ(x, t0, .)) <

∞
}

is a set of the second Baire category, where F is the set of all functionals

F : S → [0,∞] with the properties

1. F (s1) ≤ F (s2), for every s1 ≤ s2.

2. There exists a c > 0 such that F
(

αX{n}

)

≥ cα, for every (α, n) ∈ R
∗
+ × N.

3. lim
n→∞

F
(

αX{0,...,n}

)

= ∞, for all α ∈ R
∗
+.

Here XA denotes the characteristic function of a set A.

Recently, Theorem 2 has been improved in [5] for a more general case.

Theorem 3. The linear skew-product semiflow π0 = (Φ0, σ0) is uniformly expo-

nentially stable if and only if there exists F ∈ F and a non-decreasing sequence

(tn) ⊂ R+ such that:

1. δ := sup (tn+1 − tn) < ∞.

2. The set AF :=
{

x ∈ X : supθ, n F (ϕ(x, θ, n, .)) < ∞
}

is of the second Baire

category, where

ϕ(x, θ, n, j) =

{

‖Φ0(θ, tj)x‖ , for j ∈ {0, . . . , n},

0, for j /∈ {0, . . . , n}.
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It is worth mentioning that in (uniform) Datko’s condition, the integrand
is the first parameter of the evolution family. Integral characterizations with the
second parameter as integrand were first introduced by Barbashin. Barbashin’s

theorem states that an evolution family
{

U(t, s)
}

t≥ s≥ 0
is uniformly exponentially

stable if and only if sup
t≥ 0

t
∫

0

‖U(t, τ)‖ dτ < ∞. In fact, he formulated it for non-

autonomous differential equations in the frame work of finite dimensional spaces:

(1) U ′(t) = A(t)U(t), U(0) = I, for t ≥ 0,

here A(.) and U(.) are quadratic matrices. I is the identity matrix of the same order
as A(t) and the mapping t → A(t) is continuous. This theorem was the starting
point for the article [7], where the discrete-time version of Barbashin theorem was
given.

Theorem 4. The linear skew-evolution semiflow π is uniformly exponentially stable

if and only if there exist F ∈ H(N), K > 0, b ∈ N and a non-decreasing sequence

(tn) ⊂ R+ such that sup
n, m, ∈N, θ∈ ⊖

F (ϕb(θ,m, n, .)) ≤ K, where

ϕb(θ,m, n, j) =

{

b (‖Φ(m+ tn,m+ tj , σ(m+ tj ,m, θ))‖) , for j ∈ {0, . . . , n},

0, for j /∈ {0, . . . , n},

and H(N) is the set of all functionals F : S → [0,∞] with the following properties

1. F (s1) ≤ F (s2), for every s1 ≤ s2.

2. lim
n→∞

infα> 0

F
(

αX{0,...,n}

)

α
= ∞.

The goal of this paper is to present the most general approach for both
discrete-time versions of Barbashin’s condition and uniform Datko’s condition.
Thus, we extend the results in [7], [12], [15].

2. FUNCTIONALS ON SEQUENCE (FUNCTION) SPACES

In this section, the notations S and M stand respectively for the set of all positive
sequences and functions. We write s1 ≤ s2 if s1(j) ≤ s2(j) for every j ∈ K. Here

K =

{

N, if s1, s2 ∈ S,

R+, if s1, s2 ∈ M.

This section is devoted to the basic material on functionals on sequence (function)
spaces and their basic properties needed in the sequel. In each definition, illustrative
examples will be discussed.
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Definition 1. Hk, q(N) is the set of all functionals F : S → [0,∞] with the following

properties

1. F (s1) ≤ F (s2) for s1 ≤ s2,

2. there exists c > 0 such that

(2) F
(

αX{n+k,...,n+k+q}

)

≥ cα, for every α ≥ 0,

3.

(3) lim
n→∞

F
(

αX{0,...,n}

)

= ∞, for every α > 0.

Among the important properties of the family Hk, q(N) is the following.

Proposition 2. For each L > 0 and F ∈ Hk, q(N), we have

lim
n→∞

inf
τ∈ (0, L]

F
(

τX{0,...,n}

)

τ2
= ∞.

Proof. Let an := infτ∈ (0, L]
F
(

τX{0,...,n}

)

τ 2
. Then (an) is a non-decreasing se-

quence. We need to prove that

(4) lim
n→∞

an = ∞.

Assume that (4) does not hold. If follows that there exists an a∗ ∈ (0,∞) satisfying
a∗ = lim

n→∞
an = supn∈ N an < ∞. For each n ∈ N, by the definition of infimum,

there exists βn ∈ (0, L] such that
F
(

βnX{0 ,..., n}

)

β2
n

≤ an+
1

n+ 1
. Now let n ≥ k+ q.

Using (2), we obtain

an +
1

n+ 1
≥

F
(

βnX{0,...,n}

)

β2
n

≥
F
(

βnX{n−q,...,n}

)

β2
n

≥
cβn

β2
n

=
c

βn

,

which implies

(5) inf
n≥ k+q

βn > 0.

On the other hand,

(6) inf
n≤ k+q

βn = min
n≤ k+q

βn > 0.

Combining (5) with (6), there exists β∗ := infn∈ N βn > 0. Using this, we have

F
(

β∗X{0 ,..., n}

)

≤ F
(

βnX{0,...,n}

)

≤ L2F
(

βnX{0,...,n}

)

β2
n

≤ L2

(

an +
1

n+ 1

)

≤ L2(a∗ + 1).

Taking the limit of both sides of the above inequality as n → ∞ we obtain a
contradiction to the condition (3). This completes the proof.
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Definition 3. Hk, q(R+) is the set of all functionals G : M → [0,∞] with the

following properties

1. G(f1) ≤ G(f2) for f1 ≤ f2,

2. there exists c > 0 such that

(7) G
(

αX[n+k, n+k+q]

)

≥ cα, for every α ≥ 0,

3.

(8) lim
n→∞

G
(

αX[0, n]

)

= ∞, for every α > 0.

Definition 4. H(N) is the set of all functionals F : S → [0,∞] with the properties:

1. F (s1) ≤ F (s2), for every s1 ≤ s2.

2. lim
m→∞

infn∈N, α> 0

F
(

αX{n,...,n+m}

)

α
= ∞.

Similarly, we define the family H(R+) as follows

Definition 5. H(R+) is the set of all functionals G : M → [0,∞] with the prop-

erties:

1. G(f1) ≤ G(f2), for every f1 ≤ f2.

2. lim
m→∞

infn∈N, α> 0
G
(

αX[n, n+m]

)

α
= ∞.

Example 6. A trivial example of a functional on sequence space which lies in Hk, q(N)

and H(N), is the series F1(s) :=

∞
∑

j=0

s(j).

Example 7. An example of functionals on sequence space which lies in Hk, q(N) (but not
in H(N)), is given by F2 : S → [0,∞] and

F2(s) :=

( k
∏

j=0

s(j)

)( ∞
∏

j=k+1

(1 + s(j))

)

.

One can easily check that F2 lies in Hk+1, q(N) but does not lie in H(N).

Example 8. An example of functional on sequence space which lies in H(N) (but not in
Hk, q(N)), is given by F3 : S → [0,∞] and

F3(s) :=
∞
∑

j=0

s((j + 1)(k + q + 1)).

One can easily check that F3 lies in H(N) but does not lie in Hk, q(N).

Example 9. Our last example is a functional G : M → [0,∞] which lies in Hk, q(R+) and

H(R+). It is given by G(f) :=

∞
∫

0

f(τ )dτ .
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Remark 5. It is clear thatH(N) ⊂ H(N), H(R+) ⊂ H(R+) andH0, 0(N) = F , H0, 0(R+) =
G .

Throughout this paper, the notation Sδ stands for the set of all non-decreasing
sequence (tn) ∈ S provided that δ := supn∈N(tn+1 − tn) < ∞.

3. LINEAR SKEW-EVOLUTION SEMIFLOWS

As mentioned above, we prove the main results for linear skew-evolution semi-
flows. So we next come to the basic notations of linear skew-evolution semiflows.
Let X be a Banach space, L(X)-the space of all bounded linear operators of X

into itself and T := {(t, s), t ≥ s ≥ 0}. We denote the norm of vectors on X and
operators on L(X) by ‖.‖ , and (⊖, d) is a metric space.

Definition 10. An evolution semiflow on ⊖ is a continuous mapping σ : T×⊖ → ⊖

with the properties

1. σ(t, t, θ) = θ, for all θ, t.

2. σ(t, s, σ(s, r, θ)) = σ(t, r, θ), for all t ≥ s ≥ r ≥ 0, θ ∈ ⊖.

Example 11.

1. Given a semiflow σ0 : ⊖×R+ → ⊖, we can define an evolution semiflow σ : T ×⊖ →
⊖ as σ(t, s, θ) := σ0(θ, t− s).

2. The mapping σ(t, s, θ) :=
t+ 1

s+ 1
θ is also an evolution semiflow, where ⊖ = R.

Definition 12. Suppose that σ is an evolution semiflow on ⊖. An evolution cocycle

over evolution semiflow σ is an operator-valued function Φ : T × ⊖ → L(X) with

the following properties:

1. Φ(t, t, θ) = I, the identity operator on X, for all (t, θ) ∈ R+ ×⊖.

2. Φ(t, r, θ) = Φ(t, s, σ(s, r, θ))Φ(s, r, θ), for all t ≥ s ≥ r ≥ 0 and θ ∈ ⊖.

3. In addition, there are M,ω such that ‖Φ(t+ s, s, θ)x‖ ≤ Meωt ‖x‖ for all

(t, s, θ, x) ∈ R
2
+ ×⊖× X.

Definition 13. The linear skew-evolution semiflow, associated with the above evo-

lution cocycle, is the dynamical system π = (σ,Φ) on E := X × ⊖ defined by

π : X×⊖× T → X×⊖,

π(x, θ, t, s) := (Φ(t, s, θ)x, σ(t, s, θ)).

Throughout the paper, we denote the constants M,ω defined in Definition
12.

Example 14. One can easily verify that C0-semigroups, evolution families and linear
skew-product semiflows are particular cases of linear skew-evolution semiflows.
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Example 15. The classical example of an evolution cocycle arises as the solution operator
for a variational equation. Suppose that σ is an evolution semiflow on the compact metric
space ⊖ and {A(θ) : θ ∈ ⊖} be a family of linear operators on X. If an evolution cocycle
Φ(., ., θ)x solves the variational equation

u
′(t) = A(σ(t, t0, θ))u(t), t ≥ t0

then the pair π = (Φ, σ) is a linear skew-evolution semiflow.

Example 16 (See [7]). Let π = (Φ, σ) to be a linear skew-evolution semiflow on E . We
can define some linear skew-evolution semiflows in the following ways.

1. The pair πβ = (Φβ , σ), where Φβ(t, s, θ) = e−β(t−s)Φ(t, s, θ), is also a linear skew-
evolution semiflow on E .

2. If P : ⊖ → L(X) is a strongly continuous bounded mapping, there is an unique
linear skew-evolution semiflow πP = (ΦP , σP ) on E such that

ΦP (t, s, θ)x = Φ(t, s, θ)x+

t
∫

s

Φ(t, τ, σ(τ, s, θ))P (σ(τ, s, θ))ΦP (τ, s, θ)x dτ,

for t ≥ s ≥ 0 and (θ, x) ∈ ⊖× X.

Example 17. Let {U(t, s)}t≥s≥0 be an evolution family and {P (θ)}θ ∈ ⊖ a bounded strongly
continuous family of idempotent operators with the property that

P (θ)U(t, s) = U(t, s)P (θ), t ≥ s ≥ 0, θ ∈ ⊖

then the pair π = (Φ, σ) defined by

σ(t, s, θ) = θ, Φ(t, s, θ) = P (θ)U(t, s), t ≥ s ≥ 0, θ ∈ ⊖

is a linear skew-evolution semiflow.

Definition 18. The linear skew-evolution semiflow π = (Φ, σ) is said to be uni-

formly exponentially stable if there exist K, ν > 0 such that ‖Φ(t+ s, s, θ)x‖ ≤
Ke−νt ‖x‖ for all (t, s, θ, x) ∈ R

2
+ ×⊖ × X.

The next two lemma contain key arguments for what follows.

Lemma 6. If there exist two constants p > 0 and c ∈ (0, 1) such that ‖Φ(p+m,m,
θ)‖ ≤ c for all (θ,m) ∈ ⊖×N then the linear skew-evolution semiflow π = (Φ, σ)
is uniformly exponentially stable.

Proof. See [4], [6].

In the following, instead of supn, m∈ N, θ∈ ⊖ we write sup.

Lemma 7. If there exist δ > 0 and (cn) ∈ Sδ satisfying the hypotheses

1. lim
n→∞

cn = ∞,

2. ℓ := sup ‖Φ(cn +m,m, θ)‖ < ∞,
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then the linear skew-evolution semiflow π = (Φ, σ) is uniformly bounded.

Proof. First, we prove that supt∈R+ supm∈N
‖Φ(t+m,m, θ)‖ < ∞. Indeed, for

each t ∈ R+, we consider the two following cases. The first case is t ≤ c0. In this
case, we always have ‖Φ(t+m,m, θ)‖ ≤ Meωc0. The second case is t ≥ c0. Since
lim
n→∞

cn = ∞ we can find an n ∈ N such that t ∈ [cn, cn+1]. Thus we have

‖Φ(t+m,m, θ)‖ ≤ Meω(t−cn) ‖Φ(cn +m,m, θ)‖ ≤ Mℓeω(cn+1−cn) ≤ Mℓeωδ.

In the next step we prove that supt∈R+ sups∈R+ ‖Φ(t+ s, s, θ)‖. For each pair
(t, s) ∈ R

2
+, we also consider two cases. The first case is t ≤ 1. In this case,

we always have ‖Φ(t+ s, s, θ)‖ ≤ Meωt ≤ Meω. The second case is t ≥ 1. Then
t+ s ≥ 1 + [s] > s. We have

Φ(t+ s, s, θ) = Φ(t+ s, 1 + [s], σ(1 + [s], s, θ))Φ(1 + [s], s, θ).

So,

‖Φ(t+ s, s, θ)‖ ≤ ‖Φ(t+ s, 1 + [s], σ(1 + [s], s, θ))‖ ‖Φ(1 + [s], s, θ)‖

≤ Meω(1+[s]−s) ‖Φ(t+ s, 1 + [s], σ(1 + [s], s, θ))‖

≤ Meω ‖Φ(t+ s, 1 + [s], σ(1 + [s], s, θ))‖

≤ Meω max{Meωc0,Mℓeωδ}.

This implies the desired result.

4. MAIN RESULTS

In this section, some necessary and sufficient conditions for uniform exponen-
tial stability are given in terms of the existence of some functionals on sequence
spaces. We present how discrete methods can be used in order to characterize the
asymptotic properties. We start with a characterization regarding the family H(N).

Theorem 8. The linear skew-evolution semiflow π = (Φ, σ) is uniformly exponen-

tially stable if and only if there exist α, β,K, L1, L2 > 0; (an) ∈ Sα, (bn) ∈ Sβ;

b ∈ N and F ∈ H(N) such that

1.
∞
∑

j=0

(aj + bj) > 0,

2. supF (ϕb(θ,m, n, .)) ≤ K < ∞,

3. sup ‖Φ(an + bn +m, an + bj +m,σ(an + bj +m,m, θ))‖ ≤ L1,

4. sup ‖Φ(an +m,m, θ)‖ ≤ L2,

where

ϕb(θ,m, n, j) =

{

b (‖Φ(an + bj +m, aj +m,σ(aj +m,m, θ))‖) , for j ∈ {0, . . . , n},

0, for j /∈ {0, . . . , n}.
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Proof. Necessity. Suppose that π = (Φ, σ) is uniformly exponentially stable and
let K, ν be two constants given in Definition 18. We have

n
∑

j=0

‖Φ(n+ j +m, j +m,σ(j +m,m, θ))‖ ≤
m
∑

j=0

Ke−νn =
K(n+ 1)

eνn

≤ K
1

ν
+K

∣

∣

∣

∣

1−
1

ν

∣

∣

∣

∣

.

Thus we only take aj = bj = j; α = β = 1; K = K
1

ν
+K

∣

∣

∣
1 −

1

ν

∣

∣

∣
; L1 = L2 = K;

F (s) =
∞
∑

n=0

s(n); k = q = 0; b(t) = t.

Sufficiency. Since
∞
∑

j=0

(aj + bj) > 0 there exists ℓ ∈ N such that aℓ + bℓ > 0. Using

the hypothesis (2) of Definition 4, we can fix the natural number k1 ≥ ℓ such that

(9) F
(

αX{n ,..., n+k1}

)

≥
Kα

b
(

1

2L1L2

) ,

for every n ∈ N and α ∈ R+. For all arbitrary j ∈ {0 , . . . , k1}, we have

Φ(ak1
+ bk1

+m,m, θ) = Φ(ak1
+ bk1

+m, ak1
+ bj +m,σ(ak1

+ bj +m,m, θ))

Φ(ak1
+ bj +m, aj +m,σ(aj +m,m, θ))Φ(aj +m,m, θ).

Thus,

‖Φ(ak1
+ bk1

+m,m, θ)‖ ≤ L1L2 ‖Φ(ak1
+ bj +m, aj +m,σ(aj +m,m, θ))‖ .

This implies that

ϕb(θ,m, k1, .) ≥ b

(

‖Φ(ak1
+ bk1

+m,m, θ)‖

L1L2

)

X{0,...,k1}.

Hence we have

K ≥ F (ϕb(θ,m, k1, .)) ≥ F

(

b

(

‖Φ(ak1
+ bk1

+m,m, θ)‖

L1L2

)

X{0,...,k1}

)

≥ b

(

‖Φ(ak1
+ bk1

+m,m, θ)‖

L1L2

)

K

b
(

1

2L1L2

) .

This leads us to the following estimate:

(10) ‖Φ(ak1
+ bk1

+m,m, θ)‖ ≤
1

2
,

for every (θ,m) ∈ ⊖ × N, taking into account that ak1
+ bk1

does not depend on
θ,m. On the other hand, we have ak1

+ bk1
≥ aℓ + bℓ > 0. Using Lemma 6, we

have that π = (Φ, σ) is uniformly exponentially stable.
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Using Theorem 8, we can prove the following result.

Theorem 9. The linear skew-evolution semiflow π = (Φ, σ) is uniformly exponen-

tially stable if and only if there exist α, β,K > 0; (an) ∈ Sα, (bn) ∈ Sβ; b ∈ N and

F ∈ H(N) such that

1.
∞
∑

j=0

(aj + bj) > 0.

2. supF (ϕb(θ,m, n, .)) ≤ K < ∞,

where

ϕb(θ,m, n, j) =

{

b (‖Φ(an + bj +m, aj +m,σ(aj +m,m, θ))‖) , for j ∈ {0, . . . , n},

0, for j /∈ {0, . . . , n}.

Proof. Necessity. This part of the proof is similar to that of Theorem 8 and hence
is omitted.

Sufficiency. Since
∞
∑

j=0

(aj + bj) > 0 there is ℓ ∈ N such that aℓ + bℓ > 0. From the

hypothesis (2) of Definition 4, we can fix k ≥ ℓ such that

(11) F
(

αX{n,...,n+k}

)

≥
Kα

b(1)
,

for every n ∈ N and α ∈ R+. We divide the proof into three cases depending on
the convergence of sequences (an), (bn).
Case 1. sup

n∈ N

an = ∞.

In this case, we show that ‖Φ(an + bk +m,m, θ)‖ is uniformly bounded. Indeed,
for each n ∈ N, there are two subcases which may occur. The first subcase is n ≤ k.
It is clear that

(12) ‖Φ(an + bk +m,m, θ)‖ ≤ Meω(ak+bk).

The second subcase is n ≥ k. For all arbitrary j ∈ {0, . . . , k}, we have

Φ(an + bk +m,m, θ) = Φ(an + bk +m, an + bj +m,σ(an + bj +m,m, θ))

Φ(an + bj +m, aj +m,σ(aj +m,m, θ))Φ(aj +m,m, θ),

which implies

‖Φ(an + bk +m,m, θ)‖

≤ Meω(bk−bj) ‖Φ(an + bj +m, aj +m,σ(aj +m,m, θ))‖Meωaj

≤ M2eω(ak+bk) ‖Φ(an + bj +m, aj +m,σ(aj +m,m, θ))‖ .

We can rewrite

ϕb(θ,m, n, j) ≥ b

(

‖Φ(an + bk +m,m, θ)‖

M2eω(ak+bk)

)

,
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or

ϕb(θ,m, n, .) ≥ b

(

‖Φ(an + bk +m,m, θ)‖

M2eω(ak+bk)

)

X{0,...,k}.

From (11), we can follow

K ≥ F (ϕb(θ,m, n, .)) ≥ F

(

b

(

‖Φ(an + bk +m,m, θ)‖

M2eω(ak+bk)

)

X{0,...,k}

)

≥ b

(

‖Φ(an + bk +m,m, θ)‖

M2eω(ak+bk)

)

K

b(1)
.

This yields

(13) ‖Φ(an + bk +m,m, θ)‖ ≤ M2eω(ak+bk).

(12) and (13) lead us to use Lemma 7 for cn := an+bk. Thus, there exists L > 0 such
that sup ‖Φ(t+ s, s, θ)‖ ≤ L < ∞. Using Theorem 8, π is uniformly exponentially
stable. We now consider the next case.
Case 2. A := supn∈N

an < ∞ and sup bn = ∞.
For every n ∈ N, we also consider two subcases to show the uniform boundedness
of ‖Φ(an + bn +m,m, θ)‖. The first subcase is n ≤ k. It is clear that

(14) ‖Φ(an + bn +m,m, θ)‖ ≤ M2eω(ak+bk).

The second subcase is n ≥ k. For all arbitrary j ∈ {n− k, . . . , n}, we have

Φ(an + bn +m,m, θ) = Φ(an + bn +m, an + bj +m,σ(an + bj +m,m, θ))

Φ(an + bj +m, aj +m,σ(aj +m,m, θ))Φ(aj +m,m, θ).

So

‖Φ(an + bn +m,m, θ)‖

≤ Meω(bn−bj) ‖Φ(an + bj +m, aj +m,σ(aj +m,m, θ))‖Meωaj

≤ M2eω(A+β(n−j)) ‖Φ(an + bj +m, aj +m,σ(aj +m,m, θ))‖

≤ M2eω(A+βk) ‖Φ(an + bj +m, aj +m,σ(aj +m,m, θ))‖ .

It is easy to conclude that

ϕb(θ,m, n, .) ≥ b

(

‖Φ(an + bn +m,m, θ)‖

M2eω(A+βk)

)

X{n−k,...,n}.

Thus we obtain

K ≥ F (ϕb(θ,m, n, .)) ≥ F

(

b

(

‖Φ(an + bn +m,m, θ)‖

M2eω(A+βk)

)

X{n−k,...,n}

)

≥ b

(

‖Φ(an + bn +m,m, θ)‖

M2eω(A+βk)

)

K

b(1)
.
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The last estimate is equivalent to

(15) ‖Φ(an + bn +m,m, θ)‖ ≤ M2eω(A+βk).

According to Lemma 7, there exists L > 0 such that sup ‖Φ(t+ s, s, θ)‖ ≤ L. Using
Theorem 8, π is uniformly exponentially stable. We now consider the final case.
Case 3. A := supan < ∞ and B := sup bn < ∞.
We have

‖Φ(an + bn +m, an + bj +m,σ(an + bj +m,m, θ))‖ ≤ Meω(bn−bj)≤MeωB,(16)

‖Φ(an +m,m, θ)‖ ≤ Meωan ≤ MeωA.(17)

(16) and (17) show that we can use Theorem 8 for the case L1 := MeωB and
L2 := MeωA. This completes the proof.

The following corollary is immediate.

Corollary 19. The linear skew-evolution semiflow π = (Φ, σ) is uniformly expo-

nentially stable if and only if there exist α, β,K > 0; (an) ∈ Sα, (bn) ∈ Sβ; b ∈ N
such that

(18) sup
n
∑

j=0

b (‖Φ(an + bj +m, aj +m,σ(aj +m,m, θ))‖) ≤ K < ∞.

Remark 10. From Corollary 19, we have two important remarks as follows:

1. If bj = 0 then Corollary 19 is Barbashin’s condition.

2. If aj = 0 then Corollary 19 is uniform Datko’s condition.

Next we replace the family H(N) with Hk, q(N) to obtain similar results as
Theorem 8 and Theorem 9.

Theorem 11. The linear skew-evolution semiflow π = (Φ, σ) is uniformly expo-

nentially stable if and only if there exist α, β,K, L1, L2 > 0; (an) ∈ Sα, (bn) ∈ Sβ

and k, q ∈ N; F ∈ Hk, q(N) such that

1.
∞
∑

j=0

(aj + bj) > 0,

2. supF (ϕ(θ,m, n, .)) ≤ K < ∞,

3. sup ‖Φ(an + bn +m, an + bj +m,σ(an + bj +m,m, θ))‖ ≤ L1,

4. sup ‖Φ(an +m,m, θ)‖ ≤ L2,

5. sup ‖Φ(an + bn +m,m, θ)‖ ≤ L3,

where

ϕ(θ,m, n, j) =

{

‖Φ(an + bj +m, aj +m,σ(aj +m,m, θ))‖ , for j ∈ {0, . . . , n},

0, for j /∈ {0, . . . , n}.
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Proof. Necessity. Suppose that π = (Φ, σ) is uniformly exponentially stable and
let K, ν be two constants given by Definition 18. We have that

n
∑

j=0

‖Φ(n+ j +m, j +m,σ(j +m,m, θ))‖ ≤
m
∑

j=0

Ke−νn =
K(n+ 1)

eνn

≤ K
1

ν
+K

∣

∣

∣

∣

1−
1

ν

∣

∣

∣

∣

.

Thus we only take aj = bj = j; α = β = 1; K = K
1

ν
+K

∣

∣

∣
1−

1

ν

∣

∣

∣
; L1 = L2 = L3 = K;

F (s) =
∞
∑

n=0

s(n); k = q = 0.

Sufficiency. Since
∞
∑

j=0

(aj + bj) > 0 there exists ℓ ∈ N such that aℓ + bℓ > 0.

Using Proposition 2, we can choose n0 > ℓ such that

(19)
F
(

τX{0,...,n0}

)

τ2
≥ 4KL2

1L
2
2,

for every τ ∈

(

0,
L3

L1L2

]

. For all arbitrary j ∈ {0, . . . , n0}, we have

Φ(an0
+ bn0

+m,m, θ)

= Φ(an0
+ bn0

+m, an0
+ bj +m,σ(an0

+ bj +m,m, θ))

Φ(an0
+ bj +m, aj +m,σ(aj +m,m, θ))Φ(aj +m,m, θ).

So

‖Φ(an0
+ bn0

+m,m, θ)‖ ≤ L1L2 ‖Φ(an0
+ bj +m, aj +m,σ(aj +m,m, θ))‖ .

This leads to

(20) ϕ(θ,m, n0, .) ≥

(

‖Φ(an0
+ bn0

+m,m, θ)‖

L1L2

)

X{0,...,n0}.

Applying F on both sides of (20), we have

K ≥ F

((

‖Φ(an0
+ bn0

+m,m, θ)‖

L1L2

)

X{0,...,n0}

)

≥

(

‖Φ(an0
+ bn0

+m,m, θ)‖

L1L2

)2

4KL2
1L

2
2, using (19).

One can easily conclude that ‖Φ(an0
+ bn0

+m,m, θ)‖ ≤
1

2
. On the other hand,

an0
+ bn0

≥ aℓ + bℓ > 0. This means that all conditions of Lemma 6 work. Thus π
is uniformly exponentially stable.
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Theorem 12. The linear skew-evolution semiflow π = (Φ, σ) is uniformly expo-

nentially stable if and only if there exist α, β,K > 0; (an) ∈ Sα, (bn) ∈ Sβ and

k, q ∈ N; F ∈ Hk, q(N) such that

1.
∞
∑

j=0

(aj + bj) > 0,

2. supF (ϕ(θ,m, n, .)) ≤ K < ∞,

where

ϕ(θ,m, n, j) =

{

‖Φ(an + bj +m, aj +m,σ(aj +m,m, θ))‖ , for j ∈ {0, . . . , n},

0, for j /∈ {0, . . . , n}.

Proof. The techniques used to prove the necessity are similar to those used in the
necessity part of Theorem 11. Thus it remains to prove the sufficiency. We consider
the following three cases.
Case 1. sup an = ∞. For each n ∈ N, there are two subcases. The first subcase is
n ≤ k + q. Then

‖Φ(an + bk+q +m,m, θ)‖ ≤ Meω(ak+q+bk+q).

The second subcase is n ≥ k + q. For all arbitrary j ∈ {k, . . . , k + q} we have

Φ(an + bk+q +m, ak +m,σ(ak +m,m, θ))

= Φ(an + bk+q +m, an + bj +m,σ(an + bj +m,m, θ))

Φ(an + bj +m, aj +m,σ(aj +m,m, θ))Φ(aj +m, ak +m,σ(ak +m,m, θ)).

This yields

‖Φ(an + bk+q +m, ak +m,σ(ak +m,m, θ))‖

≤ Meωbk+q ‖Φ(an + bj +m, aj +m,σ(aj +m,m, θ))‖Meωaj

≤ M2eω(ak+q+bk+q) ‖Φ(an + bj +m, aj +m,σ(aj +m,m, θ))‖ ,

It follows that

ϕ(θ,m, n, .) ≥ ϕ(θ,m, n, .)X{k,...,k+q}

≥

(

‖Φ(an + bk+q +m, ak +m,σ(ak +m,m, θ))‖

M2eω(ak+q+bk+q)

)

X{k,...,k+q}.

We obtain

K ≥ F (ϕ(θ,m, n, .))

≥ F

((

‖Φ(an + bk+q +m, ak +m,σ(ak +m,m, θ))‖

M2eω(ak+q+bk+q)

)

X{k,...,k+q}

)

≥
( c

M2eω(ak+q+bk+q)

)

‖Φ(an + bk+q +m, ak +m,σ(ak +m,m, θ))‖ .
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Thus,

‖Φ(an + bk+q +m, ak +m,σ(ak +m,m, θ))‖ ≤
KM2eω(ak+q+bk+q)

c
.

From

Φ(an+ bk+q+m,m, θ) = Φ(an+ bk+q+m, ak+m,σ(ak+m,m, θ))Φ(ak +m,m, θ),

we have

‖Φ(an + bk+q +m,m, θ)‖ ≤ ‖Φ(an + bk+q +m, ak +m,σ(ak +m,m, θ))‖

× ‖Φ(ak +m,m, θ)‖

≤

(

KM2eω(ak+q+bk+q)

c

)

Meωak .

Therefore,

‖Φ(an + bk+q +m,m, θ)‖ ≤ max

{(

KM2eω(ak+q+bk+q)

c

)

Meωak ,Meω(ak+q+bk+q)

}

.

Using Lemma 7 for cn := an+bk+q, we get the uniform boundedness of Φ(t+s, s, θ).
Assume that

sup ‖Φ(t+ s, s, θ)‖ ≤ L.

We now use Theorem 11 for L1 := L and L2 := L.
Case 2. A := supan < ∞ and sup bn = ∞.
Now we show that ‖Φ(an + bn +m,m, θ)‖ is uniformly bounded. For each n ∈ N,
there are two subcases which may occur. The first subcase is n ≤ k + q. Then

(21) ‖Φ(an + bn +m,m, θ)‖ ≤ Meω(ak+q+bk+q).

The second subcase is n ≥ k + q. For all arbitrary j ∈ {n− q, . . . , n}, we have

Φ(an + bn +m,m, θ)

= Φ(an + bn +m, an + bj +m,σ(an + bj +m,m, θ))

Φ(an + bj +m, aj +m,σ(aj +m,m, θ))Φ(aj +m,m, θ).

From

‖Φ(an + bn +m,m, θ)‖

≤ Meω(bn−bj) ‖Φ(an + bj +m, aj +m,σ(aj +m,m, θ))‖Meωaj ,

≤ M2eωAeωβ(n−j) ‖Φ(an + bj +m, aj +m,σ(aj +m,m, θ))‖

≤ M2eω(A+βq) ‖Φ(an + bj +m, aj +m,σ(aj +m,m, θ))‖ ,
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we have

ϕ(θ,m, n, .) ≥ ϕ(θ,m, n, .)X{n−q,...,n} ≥

(

‖Φ(an + bn +m,m, θ)‖

M2eω(A+βq)

)

X{n−q,...,n}.

We obtain

K ≥ F

((

‖Φ(an + bn +m,m, θ)‖

M2eω(A+βq)

)

X{n−q,...,n}

)

≥
( c

M2eω(A+βq)

)

‖Φ(an + bn +m,m, θ)‖ .

Thus,

(22) ‖Φ(an + bn +m,m, θ)‖ ≤
KM2eω(A+βq)

c
.

Since (22) and (21), we have

‖Φ(an + bn +m,m, θ)‖ ≤ max

{

KM2eω(A+βq)

c
,Meω(ak+q+bk+q)

}

.

Once again, using Lemma 7, we obtain the uniform boundedness of Φ(t + s, s, θ).
From Theorem 11, we obtain the uniform exponential stability of π.
Case 3. A := supan < ∞ and B := sup bn < ∞.
With the conditions above, we have

(23) ‖Φ(an + bn +m, an + bj +m,σ(an + bj +m,m, θ))‖≤Meω(bn−bj) ≤ MeωB,

(24) ‖Φ(an +m,m, θ)‖ ≤ Meωan ≤ MeωA,

and

(25) ‖Φ(an + bn +m,m, θ)‖ ≤ Meω(an+bn) ≤ Meω(A+B).

We now use Theorem 11 for L1 := MeωB; L2 := MeωA and L3 := Meω(A+B). This
completes the proof.

The following theorems establish a connection between discrete-time versions
and continuous-time versions.

Theorem 13. The linear skew-evolution semiflow π = (Φ, σ) is uniformly expo-

nentially stable if and only if there exist K > 0; b ∈ N and G ∈ H(R+) such that

supG (ηb(θ,m, n, .)) ≤ K < ∞, where

ηb(θ,m, n, τ) =

{

b (‖Φ(n+ τ +m, τ +m,σ(τ +m,m, θ))‖) , for τ ∈ [0, n],

0, for τ /∈ [0, n].
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Proof. Necessity. Suppose that π = (Φ, σ) is uniformly exponentially stable and
let K, ν > 0 be two constants given by Definition 18. We have that

n
∫

0

‖Φ(n+ τ +m, τ +m,σ(τ +m,m, θ))‖ dτ ≤

n
∫

0

Ke−νndτ =
Kn

eνn
≤

K

ν
.

Thus we only take b(t) = t, G(f) :=
∞
∫

0

f(τ)dτ and K :=
K

ν
.

Sufficiency. Let (aj), (bj) be two sequences given by aj := j, bj := j + 1. It is not
difficult to show that (aj), (bj) ∈ S1. We consider the function a : R+ → R+ given

by a(t) := b
(

t

M2e2ω

)

. It is clear that a ∈ N . For each s ∈ S, we define two maps

f(s, .) : R+ → R+, FG : S → [0,∞] given by

f(s, τ) := s([τ ]), FG(s) := G(f(s, .)).

Because of the hypothesis G ∈ H(R+), we deduce that FG ∈ H(N). From the
equality

Φ(n+ 1 + [τ ] +m, [τ ] +m,σ([τ ] +m,m, θ))

= Φ(n+ 1 + [τ ] +m,n+ τ +m,σ(n+ τ +m,m, θ))

Φ(n+ τ +m, τ +m,σ(τ +m,m, θ))Φ(τ +m, [τ ] +m,σ([τ ] +m,m, θ)),

we have

‖Φ(n+ 1 + [τ ] +m, [τ ] +m,σ([τ ] +m,m, θ))‖

M2e2ω

≤ ‖Φ(n+ τ +m, τ +m,σ(τ +m,m, θ))‖ .

It is not difficult to show that

(26) K ≥ G (ηb(θ,m, n, .)) ≥ G (f(ϕa, .)) ≥ FG (ϕa(θ,m, n, .)) .

Using Theorem 9, we obtain that π is uniformly exponentially stable.

In the following we give a continuous-time version of Theorem 12.

Theorem 14. The linear skew-evolution semiflow π = (Φ, σ) is uniformly expo-

nentially stable if and only if there exist K > 0 and k, q ∈ N, G ∈ Hk, q(R+) such

that supG (η(θ,m, n, .)) ≤ K < ∞, where

η(θ,m, n, τ) =

{

‖Φ(n+ τ +m, τ +m,σ(τ +m,m, θ))‖ , for τ ∈ [0, n],

0, for τ /∈ [0, n].

Proof. The rest of the proof is similar to that of Theorem 13 and is omitted.

We can rewrite Theorem 13 as follows.
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Corollary 20. The linear skew-evolution semiflow π = (Φ, σ) is uniformly expo-

nentially stable if and only if there exist K > 0 and b ∈ N such that

sup

n
∫

0

b (‖Φ(n+ τ +m, τ +m,σ(τ +m,m, θ))‖) dτ ≤ K < ∞.
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