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ENUMERATING SET PARTITIONS BY THE NUMBER

OF POSITIONS BETWEEN ADJACENT

OCCURRENCES OF A LETTER

Toufik Mansour, Mark Shattuck, Stephan Wagner

A partition Π of the set [n] = {1, 2, . . . , n} is a collection {B1, . . . , Bk} of
nonempty disjoint subsets of [n] (called blocks) whose union equals [n]. Sup-
pose that the subsets Bi are listed in increasing order of their minimal ele-
ments and π = π1π2 · · ·πn denotes the canonical sequential form of a parti-
tion of [n] in which i ∈ Bπi for each i. In this paper, we study the generating
functions corresponding to statistics on the set of partitions of [n] with k
blocks which record the total number of positions of π between adjacent oc-
currences of a letter. Among our results are explicit formulas for the total
value of the statistics over all the partitions in question, for which we provide
both algebraic and combinatorial proofs. In addition, we supply asymptotic
estimates of these formulas, the proofs of which entail approximating the size
of certain sums involving the Stirling numbers. Finally, we obtain comparable
results for statistics on partitions which record the total number of positions
of π of the same letter lying between two letters which are strictly larger.

1. INTRODUCTION

A partition Π of the set [n] = {1, 2, . . . , n} is a collection {B1, B2, . . . , Bk} of
nonempty disjoint subsets of [n] whose union equals [n]. The elements of a partition
are called blocks. We assume that B1, B2, . . . , Bk are listed in increasing order of
their minimal elements, that is, minB1 < minB2 < · · · < minBk. The set of all
partitions of [n] with k blocks is denoted by P (n, k) and the set of all partitions
of [n] by P (n). The cardinality of P (n, k) is the well-known Stirling number of the
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second kind [11], which is usually denoted by Sn,k. The cardinality of P (n) is given

by Bn =
n
∑

k=0

Sn,k, the n
th Bell number, which satisfies the recurrence relation

(1) Bn =
n−1
∑

j=0

(

n− 1

j

)

Bj , n ≥ 1,

with initial value B0 = 1. Any partition Π can be written in the canonical sequential
form π = π1π2 · · ·πn, where i ∈ Bπi

for each i (see, e.g., [4, 8]). From now
on, we identify each partition with its canonical sequential form. For example, if
Π = {1, 4}, {2, 5, 7}, {3}, {6} is a partition of [7], then its canonical sequential form
is π = 1231242 and in such a case we write Π = π.

In this paper, we consider statistics on P (n, k) which record the total number
of positions between adjacent occurrences of a letter as well as statistics which
record the total number of positions of the same letter lying between two letters
which are strictly larger. For other statistics on finite set partitions, see, e.g.,
[2, 5, 9, 12]. To aid in our analysis, we will represent a partition π = π1π2 · · ·πn of
[n] with exactly k blocks as a set of points (πi, i), i = 1, 2, . . . , n, in the lattice Z2.We
will call this picture a graph representation. For example, the graph representation
of the partition π = 1231242 ∈ P (7, 4) is given below in Figure 1.

In fact, a set A of points in the first quarter of the lattice
Z2 is a graph representation for a member of P (n, k) if A
contains only points of the form (j, i) such that j ≤ i, j =
1, 2, . . . , k and i = 1, 2, . . . , n, with at least one point on each
vertical line and no two points on the same horizontal line.

In this paper, we study the ordinary generating functions
corresponding to the aforementioned statistics on P (n, k). Sev-
eral of our results are readily expressed in terms of Stirling
numbers of the second kind and Bell numbers. Among the
results are explicit formulas for the total value of statistics on
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P (n, k) and P (n), for which we provide both algebraic and combinatorial proofs.
In addition, we also provide asymptotic estimates of these formulas, the proofs
of which entail finding the approximate size of certain sums involving the Stirling
numbers.

2. MAIN RESULTS

Having drawn the graph representation of a partition π of [n], we say that
the two points (j, i) and (j, i′) lying on the vertical line x = j have j-distance
m if there are m points in the interior of the subset of the first quadrant of Z2

bounded by the line segment between (j, i) and (j, i′) and the horizontal lines
emanating in the positive direction from these points. For instance, the points
(2, 2) and (2, 5) have distance 1; see Figure 1. We denote the total sum of the
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j-distances between any two adjacent points lying on the line x = j in the graph
representation of the partition π by dj(π). For example, if π = 1231242, then

d1(π) = d2(π) = 2 and d3(π) = d4(π) = 0; see Figure 1. Define dis(π) =
∑

j≥1

dj(π)

for any partition π of [n]. In our example, Figure 1, we have dis(π) = 4. In other
words, the statistics dj (and dis) can be defined directly on the canonical sequential
form of the partition as follows. Let π = π1 · · ·πn be any partition of [n] with
exactly k blocks. Two elements πi, πi′ have j-distance m if πi = πi′ = j and
|{πs | πs > j, i < s < i′}| = m.

Putting this in subword terminology, the statistic dj records the number of
occurrences of the generalized pattern 1-2-1 in which the 1’s correspond to adja-
cent occurrences of the letter j, which implies that the dis statistic records the total
number of occurrences of the pattern 1-2-1 in which the 1’s correspond to adjacent
occurrences of the same letter. For information on the enumeration problem of gen-
eralized patterns, see, e.g., [1] (for strings), [7] (permutations), [6] (compositions),
or [5] (partitions). The statistics dj and dis also have an interpretation directly
in terms of sets. Suppose Π = {B1, B2, . . . , Bk} ∈ P (n, k), where the blocks are
arranged by increasing size of minimal elements, and let Bj = {b1, b2, . . . br}, with
b1 < b2 < · · · < br. For each consecutive pair bi, bi+1, 1 ≤ i ≤ r − 1, consider
the number of elements c in [n] occurring in blocks of Π to the right of Bj , with
bi < c < bi+1. Doing this for each pair bi, bi+1, and adding the resulting numbers,
yields dj and repeating this for all blocks Bj , and summing over j, yields dis.

Let Fn(r; q1, q2, . . .) be the joint generating function for the number of parti-
tions of [n] with exactly k blocks according to the statistics d1, d2, . . . ; that is,

Fn(r; q1, q2, . . .) =
∑

k≥0

∑

π

rk
∏

j≥1

q
dj(π)
j ,

where the internal sum is over all partitions of [n] with exactly k blocks. Sup-
pose that there are j + 1 occurrences of the letter 1 within a member of P (n, k),
their positions being denoted by 1, i1, i2, . . . , ij . From the definitions, we obtain the
recurrence relation

(2) Fn(r; q1, q2, . . .) = rFn−1(r; q2, q3, . . .)

+r

n−1
∑

j=1

(

Fn−1−j(r; q2, q3, . . .)
∑

2≤i1<i2<···<ij≤n

q
ij−j−1
1

)

,

with the initial condition F0(r; q1, q2, . . .) = 1.We must first simplify the rightmost
sum in (2) above.

Lemma 2.1. Let an,j =
∑

2≤i1<i2<···<ij≤n

xij−1 for all 0 < j < n. Then

an,j =
xj

(1− x)j
−

xn

(1− x)j

j−1
∑

i=0

(

n− 1− j + i

i

)

(1− x)i.
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Proof. Direct calculations lead to

an,j =
∑

2≤i1<i2<···<ij−1≤n−1

n
∑

ij=ij−1+1

xij−1

=
x

1− x

∑

2≤i1<i2<···<ij−1≤n−1

xij−1−1 −
xn

1− x

∑

2≤i1<i2<···<ij−1≤n−1

1

=
x

1− x
an−1,j−1 −

xn

1− x

(

n− 2

j − 1

)

.

Using the initial condition an,1 =
x− xn

1− x
and iterating the above recurrence, we

obtain

an,j =
xj

(1− x)j
−

xn

(1− x)j

j−1
∑

i=0

(

n− 1− j + i

i

)

(1− x)i,

as claimed.

Combining Lemma 2.1 and (2) yields

(3) Fn(r; q1, q2, . . .) = rFn−1(r; q2, q3, . . .)

+r

n−1
∑

j=1

Fn−1−j(r; q2, q3, . . .)

(

1

(1− q1)j
−

j−1
∑

i=0

(

n− 1− j + i

i

)

qn−j1

(1− q1)j−i

)

,

with the initial condition F0(r; q1, q2, . . .) = 1.

Define F (t, r; q1, q2, . . .) =
∑

n≥0

Fn(r; q1, q2, . . .)t
n. Multiplying (3) by tn and

summing over all n ≥ 1, we get

(4) F (t, r; q1, q2, . . .) = 1 +
rt

1− t/(1− q1)
F (t, r; q2, q3, . . .)

−
rt2q1
1− q1

∑

n≥0

tn

[

n
∑

j=0

Fn−j(r; q2, q3, . . .)

(

j
∑

i=0

(

n− j + i

i

)

qn−j1

(1− q1)j−i

)]

= 1 +
rt

1− t/(1− q1)
F (t, r; q2, q3, . . .)

−
rt2q1
1− q1

∑

n≥0

tn

[

n
∑

m=0

Fm(r; q2, q3, . . .)

(

n−m
∑

i=0

(

m+ i

i

)

qm1
(1− q1)n−m−i

)]



288 Toufik Mansour, Mark Shattuck, Stephan Wagner

= 1 +
rt

1− t/(1− q1)
F (t, r; q2, q3, . . .)

−
rt2q1
1− q1

∑

k≥0

[

tkqk1Fk(r; q2, q3, . . .)
∑

n≥k

tn−k

(1− q1)n−k

n−k
∑

i=0

(

k + i

i

)

(1− q1)
i

]

= 1 +
rt

1− t/(1− q1)
F (t, r; q2, q3, . . .)

−
rt2q1
1− q1

∑

k≥0

[

tkqk1Fk(r; q2, q3, . . .)
∑

n≥0

tn

(1− q1)n

n
∑

i=0

(

k + i

i

)

(1− q1)
i

]

.

Using the fact that
∑

n≥0

tn

(1− q1)n

n
∑

i=0

(

m+ i

i

)

(1 − q1)
i =

1

(1− t)m+1(1− t/(1− q1))
,

we obtain the following result.

Theorem 2.2. The generating function F (t, r; q1, q2, . . .) satisfies

F (t, r; q1, q2, . . .) = 1 +
rt(1− q1)

1− q1 − t
F (t, r; q2, q3, . . .)

−
rt2q1

(1− t)(1− q1 − t)
F

(

tq1
1− t

, r; q2, q3, . . .

)

.

2.1. The statistic dis

Let F (t, r; q) = F (t, r; q, q, . . .). Theorem 2.2 gives

F (t, r; q) = 1 +
rt(1− q)

1− q − t
F (t, r; q)−

rt2q

(1− t)(1− q − t)
F

(

tq

1− t
, r; q

)

,

which is equivalent to

F (t, r; q) =
1− q − t

1− q − t− rt(1− q)
−

rt2q

(1− t)(1− q − t− rt(1− q))
F

(

tq

1− t
, r; q

)

.

Applying this recurrence relation an infinite number of times, we obtain the follow-
ing result.

Theorem 2.3. The generating function F (t, r; q) for the number of partitions of

[n] according to the statistic dis is given by

∑

j≥0

(−1)jrjt2jqj
2

(1− q)j(1− q − t)
j
∏

i=1

(

1− q − t(1− qi)
)

j
∏

i=0

(

1− q − t(1 + rqi − rqi+1)
)

.
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Remark. Theorem 2.3 for q = 1 implies

F (t, r; 1) =
∑

j≥0

lim
q→1







(−1)jrjt2jqj
2

(1− q)j(1− q − t)
j
∏

i=1

(

1− q − t(1− qi)
)

j
∏

i=0

(

1− q − t(1 + rqi − rqi+1)
)







=
∑

j≥0

rjtj lim
q→1

1
j
∏

i=1

(

1− t lim
q→1

1− qi

1− q

)

=
∑

j≥0

rjtj

j
∏

i=1

(1− it)

,

which gives us the familiar fact (see, e.g., p. 34 of [10]) that the generating function for
the number partitions of [n] with exactly k blocks is given by

tk

k
∏

i=1

(1− it)

=
∑

n≥k

Sn,kt
n,

where Sn,k is the Stirling number of the second kind.

When q = 0 in Theorem 2.3, we get

F (t, r; 0) =
1− t

1− t− rt
=
∑

j≥0

(

rt

1− t

)j

,

which implies that there are

(

n− 1

k − 1

)

members of P (n, k) with zero dis if n ≥ k ≥ 1

and hence 2n−1 members of P (n) with zero dis if n ≥ 1. This also follows directly
from the definitions since partitions π = π1π2 · · ·πn for which dis(π) = 0 must be
non-decreasing.

Corollary 2.4. The generating function for the total dis over all the partitions of
[n] is given by

t
∑

j≥0

rjtj

j
∏

i=0

(1− it)





j
∑

i=2

(

i

2

)

1− it



 .

Proof. Let F ′(t, r; 1) =
d

dq
F (t, r; q) |q=1 . Theorem 2.3 implies

F ′(t, r; 1) =
∑

j≥0

lim
q→1

(−1)jrjt2jqj
2

(1− q)j(1− q − t)
j
∏

i=1

(

1− q − t(1− qi)
)

j
∏

i=0

(

1− q − t(1 + rqi − rqi+1)
)

Vj(t; q),
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where

Vj(t, r; q) =
j2

q
−

1

1− q − t
−

j −
j
∑

i=1

1− iqi−1t

1− t
1− qi

1− q

1− q
+

j
∑

i=0

1 + rqi−1t(i− (i+ 1)q)

1− q − t(1 + rqi − rqi+1)
.

By the preceding remark, we get

F ′(t, r; 1) =
∑

j≥0

rjtj

j
∏

i=0

(1− it)

lim
q→1

Vj(t, r; q).(5)

On the other hand,

lim
q→1

Vj(t, r; q) = j2 + r(j + 1)−
j

t
− lim

q→1

j −
j
∑

i=1

1− iqi−1t

1− t
1− qi

1− q

1− q

= j2 + r(j + 1)−
j

t
−

j
∑

i=1

lim
q→1

d

dq





1− iqi−1t

1− t
1− qi

1− q





= j2 + r(j + 1)−
j

t
+

j
∑

i=1

(

i

2

)

t

1− it
.

Hence, by (5),

F ′(t, r; 1) =
∑

j≥0

rjtj

j
∏

i=0

(1− it)



 j2 + r(j + 1)−
j

t
+ t

j
∑

i=1

(

i

2

)

1− it





=
∑

j≥0

rjtj

j
∏

i=0

(1− it)



 j2 + r(j + 1)−
r(j + 1)

1− (j + 1)t
+ t

j
∑

i=1

(

i

2

)

1− it





=
∑

j≥0

rjtj

j
∏

i=0

(1− it)



 j2 −
r(j + 1)2t

1− (j + 1)t
+ t

j
∑

i=1

(

i

2

)

1− it





= t
∑

j≥0

rjtj

j
∏

i=0

(1− it)





j
∑

i=1

(

i

2

)

1− it



 ,
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as claimed.

The above corollary, together with the fact that

tk

k
∏

i=1

(1− it)

=
∑

n≥k

Sn,kt
n,

yields the following result.

Corollary 2.5. The total dis over all the partitions of [n] with exactly k blocks is

given by

k
∑

i=2

(

(

i

2

) n−1
∑

j=k

in−1−jSj,k

)

,

for all n ≥ k ≥ 1.

This formula can be simplified; for this and later purposes, we convert the or-
dinary generating function to an exponential generating function, which has several
advantages. This can be achieved by means of a partial fraction decomposition:
one has

t
∑

j≥0

rjtj

j
∏

i=1

(1− it)





j
∑

i=1

(

i

2

)

1− it



 =
∑

j≥0

rj

j
∏

i=1

(t−1 − i)





j
∑

i=1

(

i

2

)

t−1 − i





=
∑

j≥1

(

aj(r)

(t−1 − j)2
+

bj(r)

t−1 − j

)

for certain aj(r) and bj(r) that depend only on r. In order to determine these values,
we need the expansion around u = t−1 = m for fixed m: for j ≥ m, one has

rj

j
∏

i=1

(t−1 − i)





j
∑

i=1

(

i

2

)

t−1 − i





=
rj

u−m

j
∏

i=1
i6=m

(u− i)−1





(m

2

)

u−m
+

j
∑

i=1
i6=m

(

i

2

)

m− i
+O(u−m)





=
rj

u−m

j
∏

i=1
i6=m

(m− i)−1 ·

j
∏

i=1
i6=m

(

1 +
u−m

m− i

)−1

·





(m

2

)

u−m
+

j
∑

i=1
i6=m

(

i

2

)

m− i
+O(u−m)




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=
rj(−1)j−m

(m− 1)!(j −m)!(u−m)
·



 1−

j
∑

i=1
i6=m

u−m

m− i
+O((u−m)2)





·





(m

2

)

u−m
+

j
∑

i=1
i6=m

(

i

2

)

m− i
+O(u−m)





=
rj(−1)j−m

(m− 1)!(j −m)!(u−m)
·





(m

2

)

u−m
+

j
∑

i=1
i6=m

(

i

2

)

−
(m

2

)

m− i
+O(u−m)





=
rj(−1)j−m

(m− 1)!(j −m)!(u−m)
·





(m

2

)

u−m
−

j2 − j + 2 + 2mj − 4m

4
+O(u−m)





=
rj(−1)j−m

(m

2

)

(m− 1)!(j −m)!(u−m)2
−

rj(−1)j−m(j2 − j + 2 + 2mj − 4m)

4(m− 1)!(j −m)!(u−m)
+O(1).

Hence, we have

am(r) =
∑

j≥m

rj(−1)j−m
(m

2

)

(m− 1)!(j −m)!
=

rm
(m

2

)

(m− 1)!

∑

k≥0

(−r)k

k!
=

rm
(m

2

)

e−r

(m− 1)!
,

and, similarly,

bm(r) = −
rme−r(r2 − 4mr + 3m2 − 5m+ 2)

4(m− 1)!
.

Now we can pass on easily from the ordinary generating function

∑

j≥1

(

aj(r)

(t−1 − j)2
+

bj(r)

t−1 − j

)

=
∑

j≥1

aj(r)
∑

k≥0

(k + 1)jktk+2 +
∑

j≥1

bj(r)
∑

k≥0

jktk+1

to the exponential generating function

∑

j≥1

aj(r)
∑

k≥0

(k + 1)jktk+2

(k + 2)!
+
∑

j≥1

bj(r)
∑

k≥0

jktk+1

(k + 1)!

=
∑

j≥1

aj(r)
ejt(jt− 1) + 1

j2
+
∑

j≥1

bj(r)
ejt − 1

j
.
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This can be simplified to obtain

∑

j≥1

aj(r)
ejt(jt− 1) + 1

j2
+
∑

j≥1

bj(r)
ejt − 1

j

=
∑

j≥1

rj
(

j

2

)

e−r

(j − 1)!
·
ejt(jt− 1) + 1

j2
−
∑

j≥1

rje−r(r2 − 4jr + 3j2 − 5j + 2)

4(j − 1)!
·
ejt − 1

j

= t
∑

j≥2

rje−rejt

2(j − 2)!
−
∑

j≥1

(j − 1)rje−r(ejt − 1)

2j!

−
∑

j≥1

(r2 − 4jr + 3j2 − 5j + 2)rje−r(ejt − 1)

4j!

=
tr2e2t

2
er(e

t−1) −
∑

j≥1

(r2 − 4jr + 3j2 − 3j)rje−r(ejt − 1)

4j!

=
tr2e2t

2
er(e

t−1) −
∑

j≥0

rj+2e−r(ejt − 1)

4j!

+
∑

j≥1

rj+1e−r(ejt − 1)

(j − 1)!
−
∑

j≥2

3rje−r(ejt − 1)

4(j − 2)!

=
tr2e2t

2
er(e

t−1) −
r2

4

(

er(e
t−1) − 1

)

+ r2
(

eter(e
t−1) − 1

)

−
3r2

4

(

e2ter(e
t−1) − 1

)

=
r2

4
er(e

t−1)
(

(2t− 3)e2t + 4et − 1
)

.

Extracting coefficients implies that the total dis over P (n, k) is given by

k(k − 1)(2n− 3k)

4
Sn−1,k +

(k − 1)(4n− 5k + 2)

4
Sn−1,k−1 +

n− k + 1

2
Sn−1,k−2.

Simplifying this, using the recurrence Sn,k = kSn−1,k + Sn−1,k−1 several
times, yields the following result.

Theorem 2.6. The total dis over all the partitions of [n] with exactly k blocks is

given by

(n+ 1− k)Sn+1,k −

[

(

k

2

)

+ n

]

Sn,k

2
,

for all n ≥ k ≥ 1.

It is well known that Sn,k =
kn

k!
+O((k − 1)n) for fixed k; hence one has the

following immediate corollary.
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Corollary 2.7. For fixed k, the total dis over all the partitions of [n] with exactly

k blocks is asymptotically

(k − 1)kn

4k!
(2n− 3k) +O(n(k − 1)n),

and the average dis over all such partitions is therefore asymptotically

(k − 1)(2n− 3k)

4
+O

(

n

(

k − 1

k

)n)

.

For the total over all partitions of [n], without restrictions as to the number
of blocks, one simply has to set r = 1 to find the exponential generating function

1

4
ee

t−1
(

(2t− 3)e2t + 4et − 1
)

,

and again extracting coefficients yields the following result.

Theorem 2.8. The total dis over all the partitions of [n] is given by

2n+ 7

4
Bn+1 −

3

4
Bn+2 −

2n+ 1

4
Bn.

Since
Bn+1

Bn

=
n

logn
+O

(

n log logn

log2 n

)

(see [3]), one obtains an asymptotic formula

for the mean.

Corollary 2.9. The average dis over all the partitions of [n] is asymptotically

n2

2 log n
+O

(

n2 log log n

log2 n

)

.

2.2. The statistic m-distance

Our aim in this subsection is to study the generating function G(t, r; q) =
F (t, r; q, 1, 1, . . .), which is the generating function for the number of partitions of
[n] with exactly k blocks according to the statistic 1-distance. Theorem 2.2 gives

G(t, r; q) = 1 +
rt(1− q)

1− q − t
F (t, r; 1)−

rt2q

(1− t)(1− q − t)
F

(

tq

1− t
, r; 1

)

.

By the q = 1 case, we get

G(t, r; q) = 1 +
rt(1− q)

1− q − t

∑

j≥0

rjtj

j
∏

i=1

(1− it)

−
rt2q

1− q − t

∑

j≥0

rjtjqj

j
∏

i=0

(

1− t(1 + iq)
)

,

which implies the following result.
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Theorem 2.10. The generating function for the number of partitions of [n] with
exactly k blocks according to the statistic 1-distance is given by

G(t, r; q) = 1 +
rt

1− q − t

∑

j≥0

rjtj





1− q
j
∏

i=1

(1− it)

−
tqj+1

j
∏

i=0

(

1− t(1 + iq)
)



 .

For instance, the generating function for the number of partitions π of [n]
with exactly k blocks and d1(π) = 0 is given by

G(t, r; 0) = 1 +
rt

1− t

∑

j≥0

rjtj

j
∏

i=1

(1− it)

,

which implies that the number of partitions of [n] with exactly k blocks and having

zero d1 is given by
n−1
∑

j=k−1

Sj,k−1 if n ≥ k ≥ 1. Thus, the number of partitions of [n]

with zero d1 is given by
n−1
∑

j=0

Bj if n ≥ 1, where Bj is the j
th Bell number. This

is also apparent from the definitions since members of P (n, k) with zero d1 must
start with n − j 1’s for some j, k − 1 ≤ j ≤ n − 1, and have no other occurrences
of 1.

Differentiating the generating function G(t, r; q) with respect to q, setting
q = 1, and finding the coefficient of rk yields

[rk]

(

d

dq
G(t, r; q) |q=1

)

=
tk

k
∏

i=0

(1− it)

k
∑

i=1

(i− 1)t

1− it
,(6)

which implies the following result.

Corollary 2.11. The total d1 over all the partitions of [n] with exactly k blocks is

given by

k
∑

i=2



(i− 1)

n−1
∑

j=k

in−1−jSj,k



 ,

for all n ≥ k ≥ 1.

Corollary 2.11 may be extended to find the total dm over all the partitions
of [n] with exactly k blocks as follows. At first, delete all the letters 1, 2, . . . ,m− 1
from the partition π and denote the resulting partition by π′. Then counting d1(π

′)
over all possible partitions π′ yields the following result.
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Corollary 2.12. For all n > k ≥ 1, the total dm over all the partitions of [n] with
exactly k blocks is given by

n−j1
∑

i1=0

n−j2
∑

i2=0

· · ·

n−jm−1
∑

im−1=0





m−1
∏

s=1

(

n− js
is

) k+1−m
∑

i=2

(

(i− 1)

n−jm
∑

j=k+1−m

in−jm−jSj,k+1−m

)



 ,

where js = i1 + · · ·+ is−1 + s.

As in the case of the statistic dis, it is possible to derive a simpler formula for
d1 as well as its asymptotic behavior by means of exponential generating functions.
In a totally analogous manner, one obtains the partial fraction decomposition

∑

k≥1

rktk

k
∏

i=1

(1− it)

k
∑

i=1

(i− 1)t

1− it
=
∑

j≥2

rje−r

(j − 2)!(t−1 − j)2
−
∑

j≥1

rje−r(j − r − 1)

(j − 1)!(t−1 − j)
,

and as an immediate consequence the exponential generating function

∑

j≥2

rje−r

(j − 2)!
·
ejt(jt− 1) + 1

j2
−
∑

j≥1

rje−r(j − r − 1)

(j − 1)!
·
ejt − 1

j
.

Since the sums do not evaluate directly to elementary functions, we differen-
tiate with respect to t (which merely means a shift of coefficients) to obtain, after
some simplifications,

∑

j≥2

rje−r

(j − 2)!
· tejt −

∑

j≥1

rje−r(j − r − 1)

(j − 1)!
· ejt = r2et(tet − et + 1)er(e

t−1).

Extracting coefficients implies that the total d1 over P (n, k) is given by

k(k − 1)(n− k − 1)Sn−2,k + (k − 1)(2n− 2k − 1)Sn−2,k−1 + (n− k)Sn−2,k−2,

which may be simplified using the recurrence for S(n, k) to obtain the following
result.

Theorem 2.13. The total d1 over all the partitions of [n] with exactly k blocks is

given by

(n− k)Sn,k − (n− 1)Sn−1,k,

for all n ≥ k ≥ 1.

Furthermore, one has the following asymptotic result which parallels Corol-
lary 2.7.

Corollary 2.14. For fixed k, the total d1 over all the partitions of [n] with exactly

k blocks is asymptotically

(k − 1)(n− k − 1)kn−1

k!
+O(n(k − 1)n),
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and the average d1 over all such partitions is therefore asymptotically

(k − 1)(n− k − 1)

k
+O

(

n

(

k − 1

k

)n)

.

From the exponential generating function

et(tet − et + 1)ee
t−1

that results when r = 1, one also obtains the following theorem for the total d1
over all partitions of [n] which parallels Theorem 2.8.

Theorem 2.15. The total d1 over all the partitions of [n] is given by

(n+ 1)Bn −Bn+1 − (n− 1)Bn−1.

Corollary 2.16. The average d1 over all the partitions of [n] is asymptotically

n+O(n/ log n).

2.3. Combinatorial proofs

In this section, we provide direct combinatorial proofs of Corollaries 2.5 and 2.11
and Theorems 2.13 and 2.15. To do so, we first consider some additional statistics
on P (n, k). Let π = π1π2 · · ·πn ∈ P (n, k). Define the statistic ` by `(π) := t − 1,
where t denotes the position in π corresponding to the rightmost 1, 1 ≤ t ≤ n. The
total ` on P (n, k) is easily computed.

Lemma 2.17. The total ` over all the partitions of [n] with exactly k blocks is

given by (n− k)Sn,k for all n ≥ k ≥ 1.

Proof. Assume k ≥ 2 and induct on n ≥ k, the n = k case clear. If n > k and
λ = λ1λ2 · · ·λn ∈ P (n, k), then considering the cases (i) λn = 1; (ii) λn > 1, with
λ1λ2 · · ·λn−1 ∈ P (n − 1, k); or (iii) λn = k, with λ1λ2 · · ·λn−1 ∈ P (n − 1, k − 1),
implies that the total ` value over P (n, k) is given by

(n− 1)Sn−1,k + (k − 1)(n− 1− k)Sn−1,k + (n− k)Sn−1,k−1

= (n− k)(Sn−1,k−1 + kSn−1,k) = (n− k)Sn,k,

which completes the induction.

We define two more statistics as follows. If π = π1π2 · · ·πn ∈ P (n, k), then
let α(π) denote the number of distinct elements of {2, 3, . . . , k} which occur to the
left of the rightmost 1 in π and let β(π) denote the number of positions to the right
of the rightmost 1 in π and not corresponding to the initial occurrence of a letter.
For example, if π = 1232134252 ∈ P (10, 5), then α(π) = 2 and β(π) = 3.

Lemma 2.18. The total α over all the partitions of [n] with exactly k blocks is

equal to the total β for all n ≥ k ≥ 1.
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Proof. If a(π) denotes the number of distinct elements of [k] occurring to the
left of (and including) the rightmost 1 in π ∈ P (n, k), then α(π) = a(π) − 1 and
β(π) = (n − k) − (`(π) + 1 − a(π)), from the definitions. Thus, the total α over
P (n, k) equals the total β if and only if

∑

π∈P (n,k)

(a(π)− 1) =
∑

π∈P (n,k)

(n− k − (`(π) + 1− a(π)),

which reduces to
∑

π∈P (n,k)

`(π) = (n−k)Sn,k, the statement of the previous lemma.

We now provide a direct proof of Corollary 2.11 as follows. First let γ(π)
denote the total number of positions in π ∈ P (n, k) corresponding to letters greater
than 1 and not corresponding to an initial occurrence of a letter. Then the total γ
over P (n, k) is given by

k
∑

i=2

(

(i− 1)

n−1
∑

j=k

in−1−jSj,k

)

.

To see this, suppose i and j are given, where 2 ≤ i ≤ k ≤ j ≤ n− 1, and consider
those members of P (n, k) which may be expressed uniquely as

(7) π = π′ixy,

where π′ is a partition with i− 1 blocks, x is a non-empty word in the alphabet [i]
of length n− j whose last letter is greater than 1, and y is a possibly empty word.
Note that there are (i − 1)in−1−j choices for the word x and Sj,k choices for the
remaining letters π′iy which together constitute a partition of a j-element set into
k blocks. Thus, the total γ over P (n, k) may be obtained by finding the number
of partitions which may be expressed as in (7) for each i and j and then summing
over all possible values of i and j, which yields the expression above.

Furthermore, from the definitions and Lemma 2.18, we may write

t(γ) = t(d1)− t(α) + t(β) = t(d1),

where t of a statistic denotes its total taken over P (n, k), which implies that the
total d1 over P (n, k) is as in Corollary 2.11.

This proof may be extended to explain Corollary 2.5 as follows. We first
generalize the prior statistics. For each i ∈ [k − 1], let αi(π) denote the number
of distinct elements of the set {i + 1, i + 2, . . . , k} which occur to the left of the
rightmost i in π = π1π2 · · ·πn ∈ P (n, k) and let βi(π) denote the number of
positions to the right of the rightmost i in π that do not correspond to an initial
occurrence of a letter but are larger than i. Note that αi and βi are α and β when
i = 1. For each i, note that the total αi over P (n, k) equals the total βi, by Lemma
2.18, upon deleting all occurrence of 1, 2, . . . , i− 1 within members of P (n, k) and
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then considering α1 and β1 on the resulting partitions, much like as in the proof of
Corollary 2.12 above.

Given i ∈ [k − 1] and π ∈ P (n, k), let γi(π) denote the number of positions
of π greater than i and not corresponding to an initial occurrence of a letter. Then

(8)

k−1
∑

i=1

t(γi) =

k
∑

i=2

(

(

i

2

) n−1
∑

j=k

in−1−jSj,k

)

.

To see this, first fix i and j, where 2 ≤ i ≤ k ≤ j ≤ n − 1, and consider the set
of all ordered pairs (π, a), where π = π′ixy is a member of P (n, k) which may be
expressed as in (7) above and a is a positive integer strictly less than the last letter
of x. Then the right side of (8) gives the total number of ordered pairs as i and j
vary over all possible values. By definition and similar reasoning, t(γ i) equals the
total number of ordered pairs (π, a) where a = i for each i ∈ [k − 1], which gives
(8).

From the definitions and the fact that t(αi) = t(βi), we may write for each
i ∈ [k − 1],

t(γi) = t(di)− t(αi) + t(βi) = t(di),

which implies

t(dis) =
k−1
∑

i=1

t(di) =
k−1
∑

i=1

t(γi),

from which Corollary 2.5 follows from (8).

Finally, this proof can be extended to explain Theorems 2.13 and 2.15 as
follows. Given π = π1π2 · · ·πn ∈ P (n, k), let b(π) denote the number of positions
i > 1 such that πi = 1. Then the total b over all members of P (n, k) is (n−1)Sn−1,k,
as there are Sn−1,k occurrences of 1 in the i

th position, taken over P (n, k), for each
i, 2 ≤ i ≤ n. Since there are clearly (n− k)Sn,k positions in all of the members of
P (n, k) which do not correspond to initial occurrences of letters, we see from the
definition that

t(γ) = (n− k)Sn,k − (n− 1)Sn−1,k,

upon subtracting all non-initial 1’s. However, we have t(γ) = t(d1), from the proof
of Corollary 2.11 above. Summing the expression in Theorem 2.13 over k yields

Theorem 2.15, upon noting
n
∑

k=1

kS(n, k) = Bn+1 −Bn.

Remark. Wemay give another expression for the total d1 over P (n, k) as follows. Suppose
that π ∈ P (n, k) is to contain exactly i+1 1’s for some i, 0 ≤ i ≤ n− k, and that exactly
j letters greater than 1 come after the final occurrence of 1 for some j, 0 ≤ j ≤ n− i−1. If
j < n−1−i, then we may write π = 1α1β, where α is non-empty and contains i−1 1’s and
n− 1− i− j letters greater than 1 and β is a possibly empty word having length j. There

are then

(

n− 2− j

i− 1

)

Sn−1−i,k−1 such partitions, each having a d1 value of n− 1− i− j.



300 Toufik Mansour, Mark Shattuck, Stephan Wagner

Summing over all possible i and j implies that the total d1 over P (n, k) is given by

n−k
∑

i=0

Sn−1−i,k−1

n−2−i
∑

j=0

(

n− 2− j

i− 1

)

(n− 1− i− j) =

n−k
∑

i=0

Sn−1−i,k−1

n−1−i
∑

j=1

(

i− 1 + j

j

)

j

=

n−k
∑

i=1

iSn−1−i,k−1

(

n− 1

i+ 1

)

.

Equating this with the expression in Theorem 2.13 for the total d1 over P (n, k)
yields the following recurrence for Stirling numbers:

(n− k)Sn,k − (n− 1)Sn−1,k =

n−k
∑

i=1

iSn−1−i,k−1

(

n− 1

i+ 1

)

, n ≥ k ≥ 1.

3. OTHER STATISTICS

Suppose π = π1π2 · · ·πn is represented graphically as in Figure 1 above. We
will call a point P in the graph of π internal if there exist points in the graph both
above and below it lying to its right. In the partition pictured in Figure 1, only
the points (1, 4) and (2, 5) are internal. Note that a point (πi, i) belonging to the
graph of a partition π = π1π2 · · ·πn is internal if and only if there exist j and k
with j < i < k such that πi < min{πj , πk}.We will call the corresponding letter πi
in π an internal letter. Given π ∈ P (n, k) and m ∈ [k − 1], let intm(π) record the

number of internal points of π whose x-coordinate ism. Then int(π) :=
k−1
∑

m=1

intm(π)

records the total number of internal points of π. For example, if π = 123214331431 ∈
P (12, 4), then int1(π) = 2, int2(π) = 1, int3(π) = 2, and int(π) = 5.

Let Fn(r; q1, q2, . . .) be the joint generating function for the number of par-
titions of [n] with exactly k blocks according to the statistics int1, int2,. . . ; that
is,

Fn(r; q1, q2, . . .) =
∑

k≥0

∑

π

rk
∏

j≥1

q
intj(π)
j ,

where the internal sum is over all partitions of [n] with exactly k blocks.

If n ≥ 2, suppose that there are to be a total of j + 1 1’s in a partition of
[n], where 1 ≤ j ≤ n− 1. If j = n− 1, then there is only one possible partition, so
assume j ≤ n− 2. Suppose that j − k + 1 of the 1’s appear before the first 2 and i
of the 1’s are internal (so the partition ends in a run of exactly k− i 1’s). Then the

i 1’s are to be distributed in n − j − 2 positions in

(

n− j − 3 + i

i

)

possible ways.

Thus, the total int1 weight contribution is

j
∑

k=0

k
∑

i=0

qi1

(

n− j − 3 + i

i

)

=

j
∑

i=0

qi1

(

n− j − 3 + i

i

)

(j − i+ 1).
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If n ≥ 2, then we may write

Fn(r; q1, q2, . . .) = r + rFn−1(r; q2, q3, . . .)(9)

+ r

n−2
∑

j=1

Fn−1−j(r; q2, q3, . . .)

j
∑

i=0

qi1

(

n− j − 3 + i

i

)

(j − i+ 1).

Define F (t, r; q1, q2, . . .) =
∑

n≥0

Fn(r; q1, q2, . . .)t
n. Multiplying both sides of (9) by

tn and summing over n ≥ 2 yields

F (t, r; q1, q2, . . .) = 1 +
rt2

1− t
+ rtF (t, r; q2, q3, . . .)(10)

+ r
∑

n≥3

tn





n−2
∑

j=1

Fn−1−j(r; q2, q3, . . .)

j
∑

i=0

qi1

(

n− j − 3 + i

i

)

(j − i+ 1)



 .

Now

r
∑

n≥3

tn





n−2
∑

j=1

Fn−1−j(r; q2, q3, . . .)

j
∑

i=0

qi1

(

n− 3− j + i

i

)

(j + 1− i)



(11)

= rt3
∑

n≥0

tn





n
∑

j=0

Fn+1−j(r; q2, q3, . . .)

j+1
∑

i=0

qi1

(

n− 1− j + i

i

)

(j + 2− i)





= rt3
∑

n≥0

tn





n+1
∑

j=1

Fj(r; q2, q3, . . .)

n−j+2
∑

i=0

qi1

(

j − 2 + i

i

)

(n+ 3− j − i)





= rt2
∑

j≥1

tjFj(r; q2, q3, . . .)





∑

n≥0

tn
n+1
∑

i=0

qi1

(

j − 2 + i

i

)

(n+ 2− i)



 .

Observe that

∑

n≥0

tn
n+1
∑

i=0

qi1

(

j − 2 + i

i

)

(n+ 2− i)

=
∑

n≥0

tnqn+11

(

j − 1 + n

n+ 1

)

+
∑

i≥0

tiqi1

(

j − 2 + i

i

)

∑

n≥0

tn(n+ 2)

=
1

t

(

1

(1− tq1)j−1
− 1

)

+

(

1

(1− tq1)j−1

)(

2− t

(1− t)2

)

,

so that (10) and (11) imply

F (t, r; q1, q2, . . .) = 1 +
rt2

1− t
+ rtF (t, r; q2, q3, . . .)

− rt(F (t, r; q2, q3, . . .)− 1) +
rt(1− tq1)

(1− t)2

(

F

(

t

1− tq1
, r; q2, q3, . . .

)

− 1

)

,
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which yields the following recurrence for the generating function

H(t, r; q1, q2, . . .) := F (t, r; q1, q2, . . .)− 1.

Theorem 3.1. The generating function H(t, r; q1, q2, . . .) satisfies

H(t, r; q1, q2, . . .) =
rt

1− t
+

rt(1− tq1)

(1− t)2
H

(

t

1− tq1
, r; q2, q3, . . .

)

.

Remark. Theorem 3.1 yields F (t, 1; 0, 0, . . .) =
1− 2t

1− 3t+ t2
, which implies that the num-

ber of partitions of [n] with zero int value is F2n−1 if n ≥ 1, where Fm is the Fibonacci

number defined by Fm = Fm−1 + Fm−2 if m ≥ 2, with F0 = 0, F1 = 1.

3.1. The statistic int

Let H(t, r; q) := H(t, r; q, q, . . .) and F (t, r; q) := H(t, r; q, q, . . .) + 1. Theorem 3.1
gives

H(t, r; q) =
rt

1− t
+

rt(1− tq)

(1− t)2
H

(

t

1− tq
, r; q

)

,

and applying this recurrence relation an infinite number of times, we obtain the
following result.

Theorem 3.2. The generating function F (t, r; q) for the number of partitions of

[n] with exactly k blocks according to the statistic int is given by

1 +
∑

j≥1

rjtj

1− [(j − 1)q + 1]t

j−1
∏

i=1

1− itq
(

1− [(i− 1)q + 1]t
)2 .

Setting q = 0 in Theorem 3.2 implies

F (t, r; 0) = 1 +
∑

j≥1

rjtj

(1− t)2j−1
,

which implies that the number of partitions of [n] with exactly k blocks and having

zero int is given by

(

n+ k − 2

n− k

)

if n ≥ k ≥ 1. This also follows directly from the

definitions. Note that a member π of P (n, k) for which int(π) = 0 must be of
the form π = α1 · · ·αk−1αkβk−1βk−2 · · ·β1, where αi is a non-empty string of the
letter i for each i ∈ [k] and βi is a (possibly empty) string of the letter i for each

i ∈ [k − 1]. Conditioning on the value of m :=
k
∑

i=1

|αi| implies that the members of

P (n, k) with zero int have cardinality

n
∑

m=k

(

m− 1

k − 1

)(

n−m+ k − 2

k − 2

)

=

(

n+ k − 2

2k − 2

)

.
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Note that
n
∑

k=1

(

n+ k − 2

2k − 2

)

=
n−1
∑

k=0

(

2n− 2− k

k

)

= F2n−1, in accordance with the

last remark.

Differentiating the generating function F (t, r; q) with respect to q, setting
q = 1, and finding the coefficient of rk yields

[rk]

(

d

dq
F (t, r; q) |q=1

)

=
tk+1

k
∏

i=1

(1− it)

(

1

1− kt
+

k
∑

i=1

i− 2

1− it

)

,(12)

which implies the following result.

Corollary 3.3. The total int over all the partitions of [n] with exactly k blocks is

given by

n−1
∑

j=k

kn−1−jSj,k +

k
∑

i=1

(

(i− 2)

n−1
∑

j=k

in−1−jSj,k

)

,

for all n ≥ k ≥ 1.

Comparing this to Corollary 2.11, we also obtain the following trivial conse-
quence.

Corollary 3.4. The total int over all the partitions of [n] with exactly k blocks is

always less or equal to the total d1 over all such partitions.

Substituting q = −1 into F (t, r; q) and collecting the coefficient of rk yields

[rk](F (t, r;−1)) =
(−1)k−1t3(1 + (k − 1)t)

(1− t)2





(−t)k−3

k−3
∏

i=1

(1 + it)



 , k ≥ 3,(13)

which implies the following result.

Corollary 3.5. The partitions of [n] having exactly k blocks and even int value
differ in number with those having odd int value by

(n− 2) · δk,3 + (−1)
k−1

n−1
∑

i=3

(−1)n−i(i− 2)[Sn−i,k−3 − (k − 1)Sn−1−i,k−3],

for all n ≥ k ≥ 3.

We now provide a combinatorial explanation for the expression in Corollary
3.3 for the total int over P (n, k), rewritten slightly as

k
∑

i=2

(

(i− 1)

n−1
∑

j=k

in−1−jSj,k

)

−

k−1
∑

i=1

(

n−1
∑

j=k

in−1−jSj,k

)

.
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Given i and j, where 2 ≤ i ≤ k ≤ j ≤ n − 1, consider those members of P (n, k)
which may be decomposed exactly as in (7) above except that now the last letter of
the word x must be less than i (instead of greater than 1). Note that, once again,
there are (i − 1)in−1−j choices for the word x and Sj,k choices for the remaining
letters π′iy. Call a letter πi in a partition π = π1π2 · · ·πn secondary if there exists
a letter to its left which is larger. The total number of secondary letters in all the
members of P (n, k) may be obtained by finding the number of partitions which
may be expressed as in (7) for each i and j and then summing over all possible
values of i and j, which gives the first part of the expression above.

From the total number of secondary letters, we must subtract the total num-
ber of secondary letters which are not internal, i.e., those letters less than k for
which there is no strictly larger letter occurring to the right. Given i and j, where
1 ≤ i ≤ k−1 < j ≤ n−1, consider all members of P (n, k) which may be decomposed
as

(14) π = π′iρ,

where π′ is a member of P (j, k) and ρ is a word of length n− 1− j in the alphabet
[i]. Finding the number of partitions which may be expressed as in (14) for each i
and j and then summing over all possible values yields the total number of letters
within members of P (n, k) which are secondary but not internal. This gives the
second sum in the expression above, which we subtract to obtain the total int.

While it seems that there are no nice formulas for the total int analogous to
Theorem 2.6 and Theorem 2.8 (the partial fraction approach leads to very com-
plicated exponential generating functions), one can at least again determine the
asymptotic behavior. For fixed k, note that the generating function is rational,

with a dominant double pole at
1

k
. By means of the classical singularity analysis

[3], we get the expansion

tk+1

k
∏

i=1

(1− it)

(

1

1− kt
+

k
∑

i=1

i− 2

1− it

)

=
k − 1

k · k!(1− tk)2
+
3− k − k2 − kHk

k · k!(1− tk)
+O(1),

where Hk denotes the kth harmonic number, which yields

Corollary 3.6. For fixed k, the total int over all the partitions of [n] with exactly

k blocks is asymptotically

kn−1

k!
((k − 1)n+ 2− k2 − kHk) +O(n(k − 1)n),

and the average int over all such partitions is therefore asymptotically

(k − 1)n

k
+
2

k
− k −Hk +O

(

n

(

k − 1

k

)n)

.
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For the total over all partitions, regardless of the number of blocks, one has
to proceed differently: in view of Corollary 3.4, the total int is at most the total
d1, which is (n+1)Bn−Bn+1− (n−1)Bn−1, by Theorem 2.15. On the other hand,
it is greater than

n
∑

k=1

k
∑

i=1

(

(i− 2)

n−1
∑

j=k

in−1−jSj,k

)

,

by Corollary 3.3. The partial fractions technique can then be applied to this ex-
pression to yield the exponential generating function et(et−1)(t−1)ee

t−1, as in the
proof of Theorem 2.15 above. Extracting coefficients yields the following theorem.

Theorem 3.7. The total int over all partitions of [n] satisfies

(n+ 1)Bn −Bn+1 − 2(n− 1)Bn−1 ≤ t(int) ≤ (n+ 1)Bn −Bn+1 − (n− 1)Bn−1,

and so the average int is
t(int)

Bn

= n+O(n/ log n).

Proof. Simply note that the difference between the two sides of the inequality is
(n− 1)Bn−1 = O(Bn log n). Therefore,

t(int)

Bn

=
(n+ 1)Bn −Bn+1 − (n− 1)Bn−1

Bn

+O(log n) = n+O(n/ log n).

3.2. The statistic int1

Setting q2 = q3 = · · · = 1 in Theorem 3.1 and using the q = 1 case implies that
the generating function G(t, r; q) := F (t, r; q, 1, 1, . . .) for the number of partitions
of [n] with exactly k blocks according to the int1 statistic is given by

Theorem 3.8. The generating function for the number of partitions of [n] with
exactly k blocks according to the statistic int1 is given by

G(t, r; q) = 1 +
rt

1− t
+

rt(1− tq)

(1− t)2

∑

j≥1

rjtj
j
∏

i=1

1

1− (q + i)t
.

Setting q = 0 in Theorem 3.8 implies that the number of elements of P (n, k)

having zero int1 is given by
n−1
∑

j=k−1

(n− j)Sj,k−1 if n ≥ k ≥ 2, and hence the number

of elements of P (n) having zero int1 is given by 1 +
n−1
∑

j=1

(n − j)Bj if n ≥ 2. This

also follows directly from the definitions since within a member of P (n) having zero
int1, the 1’s can only occur as runs at the very beginning or at the very end.

Differentiating the generating function G(t, r; q) with respect to q, setting
q = 1, and finding the coefficient of rk yields

[rk]

(

d

dq
G(t, r; q) |q=1

)

=
tk+1

k
∏

i=1

(1− it)

(

−
1

1− t
+

k−1
∑

i=1

1

1− (i+ 1)t

)

, k ≥ 2,(15)
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which implies the following result.

Corollary 3.9. The total int1 over all the partitions of [n] with exactly k blocks is

given by

k
∑

i=2

(

n−1
∑

j=k

in−1−jSj,k

)

−

n−1
∑

j=k

Sj,k,

for all n ≥ k ≥ 1.

The combinatorial proof above for Corollary 3.3 applies to Corollary 3.9 as
well. There are in−1−j choices for the word x, which now must end in a 1. Thus,
the first sum counts the total number of secondary 1’s over P (n, k). From this, we
subtract the total number of secondary 1’s which are not internal, which is given

by
n−1
∑

j=k

Sj,k (to see this, let i = 1 in (14)).

Substituting q = −1 into G(t, r; q) and collecting the coefficient of rk yields

[rk](G(t, r;−1)) =
t2(1 + t)

(1− t)2





tk−2

k−2
∏

i=1

(1− it)



 , k ≥ 2,(16)

which implies the following result.

Corollary 3.10. The partitions of [n] having exactly k blocks and even int1 value
differ in number with those having odd int1 value by

(n− 1) · δk,2 +
n
∑

i=3

(i− 2)[Sn−i,k−2 + Sn+1−i,k−2],

for all n ≥ k ≥ 2.

Finally, let us determine the asymptotic behavior for the total int1. For fixed

k, we can again expand around the dominant pole t =
1

k
:

tk+1

k
∏

i=1

(1− it)

(

−
1

1− t
+

k−1
∑

i=1

1

1− (i+ 1)t

)

=
1

k · k!(1− kt)2
−

2(2k − 1)

(k − 1)k · k!(1− kt)
+O(1),

so that one obtains the following result.
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Corollary 3.11. For fixed k, the total int1 over all the partitions of [n] with exactly
k blocks is asymptotically

kn−1

k!

(

n−
3k − 1

k − 1

)

+O(n(k − 1)n),

and the average int1 over all such partitions is therefore asymptotically

n

k
−
3k − 1

k(k − 1)
+O

(

n

(

k − 1

k

)n)

.

For the total int1 over all partitions of [n], one has to rely on estimates again.
First observe

k
∑

i=2

(

n−1
∑

j=k

in−1−jSj,k

)

−

n−1
∑

j=k

Sj,k =

k
∑

i=1

(

n−1
∑

j=k

in−1−jSj,k

)

− 2

n−1
∑

j=k

Sj,k

and
n
∑

k=1

n−1
∑

j=k

Sj,k =
n−1
∑

j=1

j
∑

k=1

Sj,k =
n−1
∑

j=1

Bj <
n−1
∑

j=0

(

n− 1

j

)

Bj = Bn.

Furthermore, one finds, as in the proofs of Theorem 2.8 and Theorem 2.15 above,

n
∑

k=1

k
∑

i=1

(

n−1
∑

j=k

in−1−jSj,k

)

= (n− 1)Bn−1.

The following theorem is now immediate.

Theorem 3.12. The total int1 over all partitions of [n] satisfies

(n− 1)Bn−1 − 2Bn ≤ t(int1) ≤ (n− 1)Bn−1,

and so the average int1 is
t(int1)

Bn

= log n+O(log log n).
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