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ALGEBRAIC CONNECTIVITY FOR SUBCLASSES OF

CATERPILLARS

Nair Abreu, Oscar Rojo, Claudia Justel

A caterpillar is a tree in which the removal of all pendent vertices make it a

path. In this paper, we consider two classes of caterpillars. We present an

ordering of caterpillars by algebraic connectivity in one of them and find one

that maximizes the algebraic connectivity in the other class.

1. PRELIMINARIES

Ordering of subclasses of trees by algebraic connectivity is a very active area
of research. Let G = (V, E) be a simple undirected graph on n vertices. The
Laplacian matrix of G is the n × n matrix L (G) = D (G) − A (G) where A (G) is
the adjacency matrix and D (G) is the diagonal matrix of vertex degrees. It is well
known that L (G) is a positive semidefinite matrix and that (0, e) is an eigenpair of
L (G) where e is the all ones vector. Let us denote the eigenvalues of L (G) by

0 = λn (G) ≤ λn−1 (G) ≤ · · · ≤ λ2 (G) ≤ λ1 (G) .

In [7], some of the many results known for Laplacian matrices are given. Fiedler
[3] proved that G is a connected graph if and only if λn−1 (G) > 0. This eigenvalue
is called the algebraic connectivity of G and it is denoted by a (G). In [1], a survey
on old and new results on the algebraic connectivity of graphs is given.

We recall that a tree is a connected acyclic graph. Let Pn be a path and Sn

be a star both of them with n vertices. A caterpillar is a tree in which the removal
of all pendent vertices makes it a path.

Let n and d ≥ 3 fixed positive integers. Let p and q natural numbers such
that n = p+q+d−1. For given p and q, let Sn,d(p, q) be the tree with n vertices and
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diameter d obtained from the path Pd−1 and two stars on p + 1 and q + 1 vertices,
Sp+1 and Sq+1, by identifying the pendent vertices in Pd−1 with the centers of the
stars. It’s easy to see that Sn,d(p, q) is a caterpillar with n vertices and diameter d.

Ordering subclasses of trees by algebraic connectivity is extensively studied
problem. The first paper about this appeared in 1990 and it is due to Grone and
Merris [5]. Since any tree of order n and diameter 3 can be expressed in the form
of the caterpillar Sn,3 (p, q) with p ≤ q and 1 ≤ p ≤ 1

2 (n− 2), the following theorem
solves the problem of ordering in the subclass of trees of order n and diameter 3.

Theorem 1. [5] For fixed n ≥ 3, the algebraic connectivity of Sn,3 (p, q) , q =
n−p−2, is the unique Laplacian eigenvalue less than 1 and it is a strictly decreasing
function for 1 ≤ p ≤ 1/2 (n− 2) .

Important contributions to the problem for trees of order n and diameter
d = 4 are due to X-D Zhang in [14]. Yuan et al. in [12] introduce six classes
of trees with n vertices and determine the ordering of those trees by this spectral
invariant. Shao et al. in [10] determine the first four trees of order n ≥ 9 with
the smallest algebraic connectivity. In this same year, Zhang and Liu in [15]
find the largest twelve values of algebraic connectivity of trees in a set of trees on
2k + 1 vertices with nearly perfect matching. However, one of the most important
ordering of trees is implicitly given by Fallat and Kirkland in [2]. There, they
exhibit the unique tree on n vertices and diameter d that minimizes the algebraic
connectivity over all such trees.

Theorem 2. [2] Among all trees on n vertices and diameter d, for each natural
numbers p and q such that n = p + q + d− 1, the minimum algebraic connectivity
is attained by Sn,d

(⌊
p + q

2

⌋
,
⌈

p + q

2

⌉)
.

Let p = [p1, p2, . . . , pd−1] such that pi ≥ 1, 1 ≤ i ≤ d − 1, and
d−1X
i=1

pi = n −
d+1. We denote C (p) as the caterpillar obtained from the stars Sp1+1,Sp2+1, . . . ,
Spd−1+1 and the path Pd−1 by identifying the center of Spi+1 with the i−vertex of
Pd−1. From now on, let Sn,d and Cn,d the following subclasses of caterpillars with
n and diameter d :

Sn,d =
{
Sn,d (p, q) : 1 ≤ p ≤ 1

2
(n− d + 1) , q = n− p− d + 1

}

and, for n > 2 (d− 1) ,

Cn,d =

{
C (p1, p2, . . . , pd−1) : pi ≥ 1, 1 ≤ i ≤ d− 1,

d−1∑

i=1

pi = n− d + 1

}
.

We determine relationships between the values of the algebraic connectivity
for trees in the classes above. For this, we organize the paper as follows: in Section
2, we present the basic results about Laplacian eigenvalues of generalized Bethe
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trees that will be used to determine the algebraic connectivity of caterpillars in
Sn,d. In the next section, we give the ordering in that class (see Theorem 4). In
Section 4, we prove that P4 is the caterpillar with maximum algebraic connectivity
among all caterpillars with n vertices and diameter d, when we take n and d as
variables. Finally, in Section 5, we search for caterpillars with maximum algebraic
connectivity in Cn,d. When the diameter is even, we completely solve the problem
and, for the odd case, we only suggest a caterpillar that satisfies this property.

2. THE ALGEBRAIC CONNECTIVITY OF Sn,d (p, q)

A generalized Bethe tree is a rooted tree in which vertices at the same level
from the root have the same degree. We may consider Sn,d (p, q) as the union of
two generalized Bethe trees with a common root v which is the root of Sp+1. Let
us illustrate this fact with the following example.

Example 1. For instance, S10,4 (3, 4) is the union of two generalized Bethe trees with

vertex degree sequences, from the pendent vertices to the root v, given by (1, 3) and

(1, 5, 2, 1) , respectively.

In [8], we have characterized completely the

Laplacian eigenvalues of a tree, including their mul-

tiplicities, given by the union of two generalized

Bethe trees having a common root. Applying The-

orem 2 from [8] to the tree Sn,d (p, q), we have the

following lemma.

The degree of the common root

v as a vertex of S10,4 (3, 4) is

3 + 1 = 4.

Lemma 1. The eigenvalues of Sn,d (p, q) are 1, with multiplicity at least p + q− 2,
and the eigenvalues of the singular tridiagonal symmetric matrix A (p) of order
(d + 1) :

(1) A (p) =




1
√

p√
p p + 1 1

1 2
. . .

. . . . . . . . .
. . . 2 1

1 q + 1
√

q√
q 1




.

In order to prove our first main result, we recall the following lemmas:

Lemma 2. [3] If T is a tree of order n then a (T ) ≤ 1 and the equality occurs if
and only if T is the star graph Sn.

Lemma 3. [4] Let A be an m × m symmetric tridiagonal matrix with nonzero
codiagonal entries. Then the eigenvalues of any (m− 1) × (m− 1) principal sub-
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matrix strictly interlace the eigenvalues of A. In particular, the eigenvalues of A
are simple.

We are ready to characterize the algebraic connectivity of Sn,d (p, q) .

Theorem 3. The algebraic connectivity of Sn,d (p, q) is the smallest eigenvalue of
the positive definite tridiagonal matrix B (p) of order d :

(2) B (p) =




p + 1
√

p√
p 2 1

1
. . . . . .
. . . . . . 1

1 2
√

q√
q q + 1




.

Proof. By Lemma 1 and Lemma 2, the algebraic connectivity of Sn,d (p, q) is the
smallest positive eigenvalue of the matrix A (p) given in (1) . This matrix has the
LLT−decomposition

A (p) = LLT ,

where L is the lower bidiagonal matrix

L =




1√
p 1

1
. . .
. . . 1

1
√

q
1 0




of order (d + 1) . Computing the product LT L, we obtain

(3) LT L = Ã (p) =




p + 1
√

p 0
√

p 2 1
...

. . . . . . . . .
. . . . . . 1

1 2
√

q
...√

q q + 1 0
0 · · · · · · 0 0




.

We recall the fact that if A and B are complex matrices, AB and BA have the same
nonzero eigenvalues [13], to conclude that A (p) = LLT and Ã (p) = LT L have the
same nonzero eigenvalues. Therefore, the algebraic connectivity of Sn,d (p, q) is the
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smallest eigenvalue of Ã (p) . From (3) , the nonzero eigenvalues of Ã (p) are the
eigenvalues of the matrix B (p) of order d given in (2) . The proof is complete. ¤

At this point, we introduce the following notations:
β (λ, p) is the characteristic polynomial of the d × d matrix B (p) defined in

(2) and α1 (p) < α2 (p) < . . . < αd (p) are the eigenvalues of B (p) .

So β (λ, p) = (λ− α1 (p)) (λ− α2 (p)) . . . (λ− αd (p)) .

From Theorem 3, α1 (p) is the algebraic connectivity of Sd (n, p, q) and from
the fact that B (p) is a positive definite matrix and also from Lemma 2, we have
0 < α1 (p) < 1.

Lemma 4. [11] The characteristic polynomials of the j × j leading principal
submatrices of the symmetric tridiagonal matrix Qk of order k × k,

Qk =




a1 b1

b1 a2 b2

b2
. . . . . .
. . . . . . . . .

. . . ak−1 bk−1

bk−1 ak




,

satisfy the three-term recursion formula

(4) Qj (λ) = (λ− aj) Qj−1 (λ)− b2
j−1Qj−2 (λ)

with
Q0 (λ) = 1 and Q1 (λ) = λ− a1.

3. ORDERING OF TREES BY ALGEBRAIC CONNECTIVITY IN
THE CLASS Sn,d

The ordering given in the next theorem is embedded in the proof of Theorem 2
given by Fallat and Kirkland [2]. However, we decided to include our proof here
for two reasons. Firstly, to emphasize the ordering of trees in Sn,d, and, secondly,
because our arguments of proof are distinct that those used by the authors refereed
above.

Theorem 4. For given n, d ≥ 3, the algebraic connectivity of Sn,d (p, q) , q = n−p

− (d− 1) , is a strictly decreasing function for 1 ≤ p ≤ 1

2
(n− (d− 1)) .

Proof. Case d = 3 : Then, n = p + q + 2. Although, in this case, Grone and
Merris have proved this result in [5], we prove it here by using Theorem 3. From
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it, the algebraic connectivity of Sn,3 (p, q) is the smallest eigenvalue α1 (p) of the
3× 3 matrix

B (p) =




p + 1
√

p√
p 2

√
q√

q q + 1


 .

It is easy to see that the eigenvalues of
[

p + 1
√

p√
p 2

]
are 1 and p + 2. By Lemma

3, these eigenvalues strictly interlace the eigenvalues of B (p) . Hence,

α1 (p) < 1 < α2 (p) < p + 2 < α3 (p) .

It follows that α1 (p) is the unique Laplacian eigenvalue of Sn,3 (p, q) in the interval

(0, 1) . Let 1 ≤ p ≤ 1

2
(n− 4) . Then, p+1 ≤ 1

2
(n− 2) and q−p−1 > n−4−2p ≥ 0.

An easy computation shows that

β (λ, p) = λ3 − (n + 2) λ2 + (pq + 2n + 1) λ− n.

So,
β (λ, p + 1)− β (λ, p) = (q − p− 1)λ.

Since β (α1 (p) , p) = 0, q − p− 1 > 0 and 0 < α1 (p) < 1, we have

(5) β (α1 (p) , p + 1) > 0.

It follows from this inequality that α1 (p) 6= α1 (p + 1) . Suppose that α1 (p) <
α1 (p + 1) . Then,

α1 (p) < αi (p + 1) , i = 1, 2, 3.

Hence,

β (α1 (p) , p + 1) =
3∏

i=1

(α1 (p)− αi (p + 1)) < 0,

which contradicts (5). Therefore, α1 (p) > α1 (p + 1) . Thus, the proof for d = 3 is
complete.

Case d = 4 : Then, n = p + q + 3. By Theorem 3, the algebraic connectivity
of Sn,4 (p, q) is the smallest eigenvalue α1 (p) of the 4× 4 matrix

B (p) =




p + 1
√

p√
p 2 1

1 2
√

q√
q q + 1


 .

One can easily get

(6) β (λ, p) = λ4 − (n + 3) λ3 + (pq + 4n)λ2 − (2pq + 4n− 2) λ + n.
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Let 1 ≤ p ≤ 1

2
(n− 5) . Then, p + 1 ≤ 1

2
(n− 3) and q− p− 1 = n− p− 3− p− 1 >

n− 5− 2p ≥ 0. Applying (6) , we obtain

β (λ, p + 1)− β (λ, p) = ((p + 1) (q − 1)− pq)λ2 − 2 ((p + 1) (q − 1)− pq)λ.

Then,

(7) β (λ, p + 1)− β (λ, p) = λ (λ− 2) (q − p + 1) .

Since β (α1 (p) , p) = 0, q − p + 1 > 0 and 0 < α1 (p) < 1, and from (7) we obtain

(8) β (α1 (p) , p + 1) < 0.

It follows that α1 (p) 6= α1 (p + 1) . Suppose that α1 (p) < α1 (p + 1) . Then,

α1 (p) < αi (p + 1) , i = 1, 2, 3, 4.

Hence,

β (α1 (p) , p + 1) =
4∏

i=1

(α1 (p)− αi (p + 1)) > 0,

which contradicts (8). Therefore, a (p) > a (p + 1) and the proof of the case d = 4
is complete.

Case d ≥ 5 : Let 1 ≤ p ≤ 1

2
(n − (d + 1)). Then, p + 1 ≤ 1

2
(n − (d− 1)) and

q − p− 1 > n− 2p− (d + 1) ≥ 0. The recursive formula (4) applied to B (p) gives

β (λ, p) = (λ− (q + 1))γd−1 (λ, p)− qγd−2 (λ, p) ,

where, for j = d− 1 and j = d− 2, γj (λ, p) is the characteristic polinomial of the
matrix

Cj (p) =




p + 1
√

p√
p 2 1

1
. . . . . .
. . . . . . 1

1 2




of order j × j. Similarly, the recursive formula (4) applied to the matrix B (p + 1)
gives

β (λ, p + 1) = (λ− q) γd−1 (λ, p + 1)− (q − 1) γd−2 (λ, p + 1) .

Then,

β(λ, p + 1)− β (λ, p) = (λ− q) (γd−1 (λ, p + 1)− γd−1 (λ, p))(9)
− q(γd−2 (λ, p + 1)− γd−2 (λ, p)) + γd−1 (λ, p) + γd−2 (λ, p + 1) .



188 Oscar Rojo, Nair Abreu, Claudia Justel

At this point, we observe that Cj (p) is similar to the j × j matrix

Ej (p) =




2 1
1 2 1

1
. . . . . .
. . . 2

√
p√

p p + 1




.

Hence, the matrices Cj (p) and Ej (p) have the same characteristic polynomial. The
recursive formula (4) applied to Ed−1 (p) and Ed−2 (p) gives

(10) γd−1 (λ, p) = (λ− (p + 1))δd−2 (λ)− pδd−3 (λ)

and

(11) γd−2 (λ, p) = (λ− (p + 1))δd−3 (λ)− pδd−4 (λ) ,

where, for j = d−2, j = d−3 and j = d−4, δj (λ) is the characteristic polynomial
of the matrix

Dj =




2 1
1 2 1

1
. . . . . .
. . . 2 1

1 2




of order j × j. Similarly,

(12) γd−1 (λ, p + 1) = (λ− (p + 2))δd−2 (λ)− (p + 1) δd−3 (λ)

and

(13) γd−2 (λ, p + 1) = (λ− (p + 2))δd−3 (λ)− (p + 1) δd−4 (λ) .

From (10) and (12),

(14) γd−1 (λ, p + 1)− γd−1 (λ, p) = − (δd−2 (λ) + δd−3 (λ)) ,

and, from (11) and (13),

(15) γd−2 (λ, p + 1)− γd−2 (λ, p) = − (δd−3 (λ) + δd−4 (λ)) .

Replacing (14) and (15) in (9) , we have

β (λ, p + 1)− β (λ, p) = − (λ− q) (δd−2 (λ) + δd−3 (λ)) + q(δd−3 (λ) + δd−4 (λ))
+γd−1 (λ, p) + γd−2 (λ, p + 1) .
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Using now (10) and (13) , we obtain

β (λ, p + 1)− β (λ, p) = − (λ− q) (δd−2 (λ) + δd−3 (λ)) + q(δd−3 (λ) + δd−4 (λ))
+(λ− (p + 1))δd−2 (λ)− pδd−3 (λ) + (λ− (p + 2))δd−3 (λ)
− (p + 1) δd−4 (λ) .

Therefore,

β (λ, p + 1)− β (λ, p) = δd−2 (λ) (−λ + q + λ− p− 1)
+δd−3 (λ) (−λ + q + q − p + λ− p− 2) + δd−4 (λ) (q − p− 1) .

Then,

(16) β (λ, p + 1)− β (λ, p) = (q − p− 1) (δd−2 (λ) + 2δd−3 (λ) + δd−4 (λ)).

We now apply the recursion formula (4) to Dd−2 to see that

δd−2 (λ) = (λ− 2) δd−3 (λ)− δd−4 (λ) .

Thus,

(17) δd−2 (λ) + 2δd−3 (λ) + δd−4 (λ) = λδd−3 (λ) .

From (16) and (17),

(18) β (λ, p + 1)− β (λ, p) = (q − p− 1)λδd−3 (λ) .

We observe that Dd−3 is a proper submatrix of B (p) . From Lemma 3, the smallest
eigenvalue α1 (p) of B (p) is strictly less than the smallest eigenvalue of Dd−3.
Therefore,

δd−3 (α1 (p)) < 0, if d is even

or
δd−3 (α1 (p)) > 0, if d is odd.

By applying this result in (18) , together with the facts q−p−1 > 0, β (α1 (p) , p) = 0
and 0 < α1 (p) , we obtain

β (α1 (p) , p + 1) < 0, if d is even

or
β (α1 (p) , p + 1) > 0, if d is odd.

It follows that α1 (p) 6= α1 (p + 1) . Suppose that α1 (p) < α1 (p + 1) . Then,

α1 (p) < αi (p + 1) , i = 1, 2, . . . , d.

Therefore,

β (α1 (p) , p + 1) =
d∏

i=1

(α1 (p)− αi (p + 1)) > 0, if d is even
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or

β (α1 (p) , p + 1) =
d∏

i=1

(α1 (p)− αi (p + 1)) < 0, if d is odd,

which is a contradiction. Consequently, α1 (p) > α1 (p + 1) . The proof for case
d ≥ 5 is complete. ¤
Example 2. Let us consider the trees T1

and T2.

Remark 1. We are ready to justify the

inequality a (T2) < a (T1) where T1 and T2

are the trees of Example 2. Tree T1 Tree T2

In fact, T1 = S7,4 (1, 3) and T2 = S7,4 (2, 2) . We apply the case d = 4 of Theorem 4

to obtain that a (T2) < a (T1) .

4. MAXIMIZING THE ALGEBRAIC CONNECTIVITY ON Cn,d

From now on, e is the all ones vector of the appropriate order. We recall the
following result.

Lemma 5. [6, Corollary 4.2] Let v be a pendent vertex of the graph G̃. Let G be
the graph obtained from G̃ by removing v and its edge. Then, the eigenvalues of
L (G) interlace the eigenvalues of L(G̃).

Corollary 1. Let T be a subtree of the tree T̃ . Then,

(19) a(T̃ ) ≤ a (T ) .

In particular, if C (p) ∈ Cn,d and the order of e is (d− 1),

(20) a (C (p)) ≤ a (C (e)) .

Proof. From Lemma 5, it follows that the algebraic connectivity of a graph do not
increase if a pendent vertex and its edge are added to the graph. From this fact
and since we may construct T̃ from T by successively adding in pendents vertices
and edges, we conclude that a(T̃ ) ≤ a (T ) . Since C(e) is a subtree of C(p), (20) is
an immediate consequence of (19) . ¤

Let Cn = ∪3≤d≤d(n+1)/2eCn,d and C = ∪n≥4Cn.

Corollary 2. For every caterpillar C(p) ∈ C, a(C(p)) ≤ a(P4).

Proof. Since d ≥ 3, the path P4 is a subtree of any caterpillar C(p) ∈ C. From
Corollary 1, the result is immediate. ¤
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Although the result given on Corollary 2 solves the problem of maximizing
the algebraic connectivity on C in which n and d are variables, the problem to
maximize the algebraic connectivity in Cn,d, a subclass of C where n and d ≥ 3 are
fixed, is much difficult. Next we solve this problem for caterpillars of even diameter.

4.1 The case d even. If we find C (p̃) in Cn,d such that a (C (p̃)) = a (C (e)) then
C (p̃) is the caterpillar in Cn,d with the greatest algebraic connectivity. We look for
C (p̃) .

In [9], one can find a complete characterization of the Laplacian eigenvalues of
the tree Pm {Bi} obtained from Pd−1 and the generalized Bethe trees B1,B2, . . . ,Bd−1

obtained by identifying the root vertex of Bi with the i− th vertex of Pd−1. In par-
ticular, the spectral radius and the algebraic connectivity are characterized. Before
to recall these results, we introduce some notation.

For i = 1, 2, . . . , d−1, let ki be the number of levels of Bi. For j = 1, 2, 3, . . . , ki,
let di,ki−j+1 and ni,ki−j+1 be the degree of the vertices and the number of them at
the level j of Bi. For i = 1, 2, . . . , d− 1, let

Ωi = {j : 1 ≤ j ≤ ni,ki−1 : ni,j > ni,j+1} .

For i = 1, 2, 3, . . . , d− 1, let

(21) Ti =




di,1

√
di,2 − 1√

di,2 − 1 di,2

. . .
√

di,ki−1 − 1√
di,ki−1 − 1 di,ki−1

√
di,ki√

di,ki di,ki + c




of order ki × ki, where c = 2 for i = 2, 3, .., d− 2 and c = 1 for i = 1 and i = d− 1.
Moreover, for i = 1, 2, . . . -.1 and for j = 1, 2, 3, . . . , ki − 1, let Ti,j be the j × j
leading principal submatrix of Ti.

Let r =
d−1X
i=1

ki. Let G be the symmetric matrix of order r × r defined by

(22) G =




T1 E1

ET
1 T2

. . .
. . . . . . E(d−1)−1

ET
(d−1)−1 Td−1




,

where Ei the matrix of order ki × ki+1 whose entries are 0 except for the entry
Ei (ki, ki+1) = 1.

We are ready to recall the main results of [9] concerning the Laplacian eigen-
values of Pd−1 {Bi} .

Theorem 5. [9] (a) The Laplacian spectrum of Pd−1{Bi} is

σ (L (Pd−1 {Bi})) =
(∪d−1

i=1 ∪j∈Ωi σ (Ti,j)
) ∪ σ (G) .
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(b) The multiplicity of each eigenvalue of the matrix Ti,j, as an eigenvalue of
L (Pd−1 {Bi}) , is at least (ni,j − ni,j+1) for j ∈ Ωi.

(c) The matrix G is singular.

Theorem 6. [9] The largest eigenvalue of the matrix G is the spectral radius of
L (Pd−1 {Bi}) .

Theorem 7. [9] The smallest positive eigenvalue of the matrix G is the algebraic
connectivity of Pd−1 {Bi} .

Clearly, each star Spi+1 (1 ≤ i ≤ d− 1) is a generalized Bethe tree of 2 levels
in which di,1 = 1, di,2 = pi, ni,1 = pi, ni,2 = 1.

We apply the above results to C (p) . The matrices Ti define in (21) become

T1 = T (p1) =
[

1
√

p1√
p1 p1 + 1

]
,

Ti = S (pi) =
[

1
√

pi√
pi pi + 2

]
(2 ≤ i ≤ (d− 1)− 1) ,

Td−1 = T (pd−1) =
[

1 √
pd−1√

pd−1 pd−1 + 1

]

and the matrices Ei become E1 = E2 = . . . = E(d−1)−1 = E =
[

0 0
0 1

]
, where 0

denotes the zero matrix of the appropriate order.
Suppose d = 2s + 2. Let p = [p1, . . . , ps, ps+1, ps, . . . , p1].
For the symmetric caterpillar C (p) , the matrix G defined in (22) becomes

(23) G (p) =




U (p1, . . . , ps)
[

0
E

]
0

[
0 E

] [
1 √

ps+1√
ps+1 ps+1 + 2

] [
E 0

]

0
[

E
0

]
V (p1, . . . , ps)




,

where

U (p1, . . . , ps) =




T (p1) E

E S (p2)
. . .

. . . . . . . . .
. . . E

E S (ps)



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and

V (p1, . . . , ps) =




S (ps) E

E S (ps−1)
. . .

. . . . . . . . .
. . . E

E T (p1)




.

Let J be the permutation matrix of order 2s in which the 2 × 2 blocks along the
secondary diagonal is the identity matrix of order 2, that is,

J =




I2

I2

I2

I2




.

For instance, if d = 8 then s = 3 and

J =




1
1

1
1

1
1




.

We claim that the submatrices U and V in (23) are similar. In fact, JUJ = V.
Therefore,

(24) G (p) =




U (p1, . . . , ps)
[

0
E

]
0

[
0 E

] [
1 √

ps+1√
ps+1 ps+1 + 2

] [
E 0

]

0
[

E
0

]
JU (p1, . . . , ps) J




.

Lemma 6. Let d = 2(s + 1) and p = [p1, . . . , ps, ps+1, ps, . . . , p1]. The eigenvalues
of G (p) are the eigenvalues of the positive semidefinite matrix

G1 =




U (p1, . . . , ps)
[

0√
2E

]

[
0

√
2E

] [
1 √

ps+1√
ps+1 ps+1 + 2

]




and the eigenvalues of the positive definite matrix

G2 = U (p1, . . . , ps) .
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Proof. Easy computations show that det G1 = 0 and det G2 = 1. Let us consider
the orthogonal matrix Q of order (4s + 2)× (4s + 2) defined as

Q =
1√
2




I 0 J

0
√

2I2 0
I 0 −J


 .

One can easily check that

QG (p)QT =




U (p1, . . . , ps)
[

0√
2E

]
0

[
0

√
2E

] [
1 √

ps+1√
ps+1 ps+1 + 2

]
0

0 0 U (p1, . . . , ps)




.

Then the matrix G (p) in (24) is orthogonally similar to
[

G1

G2

]
. ¤

Example 3. For the caterpillar we

have p = [ 4 3 2 3 4 ] and, from

Lemma 6, the eigenvalues of G(p) are the

eigenvalues of the following matrices

G1 =




1.
√

4 0 0 0 0√
4 5 0 1 0 0

0 0 1
√

3 0 0
0 1

√
3 5 0

√
2

0 0 0 0 1
√

2
0 0 0

√
2

√
2 4




and G2 =




1
√

4 0 0√
4 5 0 1

0 0 1
√

3
0 1

√
3 5


 .

Theorem 8. Let d = 2(s + 1) and p = [p1, . . . , ps, ps+1, ps, . . . , p1]. The algebraic
connectivity of the caterpillar C (p) is the smallest eigenvalue of

U (p1, . . . , ps) =




T (p1) E

E S (p2)
. . .

. . . . . . E
E S (ps)




.

Proof. From Lemma 7, the smallest positive eigenvalue of G (p) is the algebraic
connectivity of the caterpillar C (p) . Then, we search for such smallest positive
eigenvalue. From Lemma 6, the eigenvalues of G (p) are the eigenvalues of the
matrices G1 and G2 = U (p1, . . . , ps). We know that det G1 = 0 and det G2 = 1. So,
the smallest eigenvalue of G1 is 0 and the smallest eigenvalue of G2 = U (p1, . . . , ps)
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is positive and strictly less than 1. Let G11 be the submatrix of G1 obtained by
deleting its last row and its last column. That is

G11 =
[

G2 0
0 1

]
.

By the eigenvalue interlacing property for Hermitian matrices, the eigenvalues of
G2 = U (p1, . . . , ps) and the eigenvalue 1 interlace the eigenvalue of G1. Therefore,
the smallest eigenvalue of U (p1, . . . , ps) is the smallest positive eigenvalue of G (p) .
This completes the proof. ¤

Corollary 3. Let d = 2(s + 1) and p̃ = [p1, p2, . . . , pd−1] where p̃i = 1 for all
i 6= s + 1 and p̃s+1 = n− 2d + 3. Then,

a (C (p̃)) = a (C (e)) .

Proof. Follows straightforward from Theorem 8 and the fact that U (p1, . . . , ps)
does not depend on ps+1. ¤
Theorem 9. Let d = 2(s + 1). Among the caterpillars in Cn,d the maximum
algebraic connectivity is attained by the caterpillar C (p̃) defined in Corollary 3.
That is a (C (p)) ≤ a (C (p̃)) , for all C (p) ∈ Cn,d.

Proof. We begin observing that C(p̃) ∈ Cn,d. Let C(p) ∈ Cn,d. From Corollary
1, a(C(p)) ≤ a(C(e)). If now we use Corollary 3, we can conclude that a(C(p)) ≤
a(C(p̃)). ¤

4.2 The case d odd: a difficult problem. We have used AutoGraphiX and
NewGraph systems to determine the algebraic connectivity of caterpillars in the
family Cn,d for many different odd integer values of d. All the computations suggest
that if d = 2s + 1 and p =

[
p1, p2, . . . , pd−1

]
, where pi = 1 for all i 6= s + 1 and

ps+1 = n− 2d + 3, then the caterpillar C(p) has maximum algebraic connectivity
among all caterpillars in Cn,d.
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