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A SHARP LOWER BOUND OF THE SPECTRAL

RADIUS OF SIMPLE GRAPHS

Shengbiao Hu

Let G be a simple connected graph with n vertices and let ρ(G) be its spectral
radius. The 2-degree of vertex i is denoted by ti, which is the sum of degrees
of the vertices adjacent to i. Let Ni =

∑

j∼i

tj and Mi =
∑

j∼i

Nj . We find a

sharp lower bound of ρ(G), which only contains two parameter Ni and Mi.
Our result extends recent known results.

1. INTRODUCTION

Let G be a simple connected graph with vertex set V = {1, 2, . . . , n}. Let
d(i, j) denote the distance between vertices i and j. For i ∈ V , the degree of i and
the average of the degree of the vertices adjacent to i are denoted by di and mi,
respectively. The 2-degree of vertex i is denoted by ti, which is the sum of degrees
of the vertices adjacent to i, that is ti = midi. Let Ni be the sum of the 2-degree
of vertices adjacent to i.

Let A(G) be the adjacency matrix of G. By the Perron-Frobenius theorem [1,
2], the spectral radius ρ(G) is simple and there is a unique positive unit eigenvector.

Since A(G) is a real symmetric matrix, its eigenvalues must be real, and may
ordered as λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G). The sequence of n eigenvalues is called
the spectrum of G, the largest eigenvalue λ1(G) is often called the spectral radius
of G, denoted by ρ(G) = λ1(G).

In this paper, we give a sharp lower bound on the spectral radius of simple
graphs. For some recent surveys of the known results about this problem and
related topics, we refer the reader to [3, 4, 7] and references therein.
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2. MAIN RESULTS

Lemma 1. Let G be a bipartite graph with V = V1 ∪ V2, V1 = {1, 2, . . . , s} and

V2 = {s+1, s+2, . . . , n}. Let Y1 = (y1, y2, . . . , ys)
T and Y2 = (ys+1, ys+2, . . . , yn)T .

If Y =

(

Y1

Y2

)

is an eigenvector of A(G) corresponding to ρ(G), then ‖ Y1 ‖=‖ Y2 ‖.

Proof. Let A(G) =

(

0 B

BT 0

)

, where B is an s × (n − s) matrix. We have

(

0 B

BT 0

) (

Y1

Y2

)

= ρ
(

A(G)
)

(

Y1

Y2

)

,

BY2 = ρ
(

A(G)
)

Y1 ⇒ Y T
1 BY2 = ρ

(

A(G)
)

Y T
1 Y1,

and
BT Y1 = ρ

(

A(G)
)

Y2 ⇒ Y T
2 BT Y1 = ρ

(

A(G)
)

Y T
2 Y2.

Since (Y T
1 BY2)

T = Y T
2 BT Y1, we have that Y T

1 Y1 = Y T
2 Y2, that is

‖ Y1 ‖=‖ Y2 ‖ . �

Theorem 2. Let G be a simple connected graph of order n and ρ(G) be the spectral

radius of G. Then

(1) ρ(G) ≥

√

( n
∑

i=1

M 2
i

)/( n
∑

i=1

N 2
i

)

,

where Ni =
∑

j∼i

tj and Mi =
∑

j∼i

Nj. The equality in (1) holds if and only if

M1

N1
=

M2

N2
= · · · =

Mn

Nn

or G is a bipartite graph with V = V1 ∪ V2, V1 = {1, 2, . . . , s} and V2 = {s + 1, s +
2, . . . , n}, such that

M1

N1
=

M2

N2
= · · · =

Ms

Ns

and
Ms+1

Ns+1
=

Ms+2

Ns+2
= · · · =

Mn

Nn

.

Proof. By Rayleigh quotient, we have

ρ(G)2 = ρ
(

A(G)2
)

= max
x 6=0

xT A(G)2x

xT x
.

Let A(G)2 =
(

a
(2)
ij

)

, where a
(2)
ij is the number of (i, j)-walks of length 2 in G.

Clearly, a
(2)
ii = di and a

(2)
ij = a

(2)
ji .
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For a fixed (i, j)-walk in G, denote by w(i, j) the length of this walk. Then

a
(2)
ij 6= 0 if w(i, j) = 2, and a

(2)
ij = 0 otherwise. If X = (N1, N2, . . . , Nn)T , we have

XT A(G)2X =
n
∑

i=1

Ni

( n
∑

j=1

a
(2)
ij Nj

)

=
n
∑

i=1

Ni

∑

w(j,i)=2

a
(2)
ij Nj =

∑

w(i,j)=2

a
(2)
ij NiNj

=
n
∑

i=1

diN
2

i +
∑

w(i,j)=2,i6=j

a
(2)
ij NiNj =

n
∑

i=1

(

∑

j∼i

Nj

)2

=
n
∑

i=1

M 2
i

and XT X =
n
∑

i=1

N 2
i . So

ρ(G) =

√

max
x 6=0

xT A(G)2x

xT x
≥

√

( n
∑

i=1

M2
i

)/( n
∑

i=1

N2
i

)

.

If the equality holds, then X is a positive eigenvector of A(G)2 correspond-
ing to ρ(G)2. Moreover, if the eigenvalue ρ

(

A(G)2
)

of A(G)2 has the multiplicity
one, then by the Perron-Frobenius theorem, X is an eigenvector of A(G) corre-
sponding to ρ(A(G)), therefore A(G)X = ρ(G)X . For all i = 1, 2, . . . , n, we have
(

A(G)X
)

i
=

(

ρ(G)X
)

i
, that is

∑

j∼i

Nj = ρ(G)Ni. Since
∑

j∼i

Nj = Mi, we get

Mi

Ni

= ρ(G) i = 1, 2, . . . , n,

and therefore
M1

N1
=

M2

N2
= · · · =

Mn

Nn

= ρ(G).

If the eigenvalue ρ
(

A(G)2
)

of A(G)2 has the multiplicity two, it is well known

that −ρ
(

A(G)
)

is an eigenvalue of A(G). Hence G is a bipartite graph. Without
loss of generality, we assume that

A =

(

0 B

BT 0

)

,

hence

A2 =

(

BBT 0
0 BT B

)

.

Let X1 = (N1, N2, . . . , Ns)
T and X2 = (Ns+1, Ns+2, . . . , Nn)T , we have

(

BBT 0
0 BT B

) (

X1

X2

)

= ρ
(

A(G)2
)

(

X1

X2

)

,

BBT X1 = ρ(A(G)2)X1 and BT BX2 = ρ
(

A(G)2
)

X2.

Let Y = (y1, y2, . . . , yn)T be a positive eigenvector of A(G) corresponding to ρ(G).
Let Y1 = (y1, y2, . . . , ys)

T and Y2 = (ys+1, ys+2, . . . , yn)T . Thus

BBT Y1 = ρ
(

A(G)2
)

Y1 and BT BY2 = ρ
(

A(G)2
)

Y2.
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Since BBT and BT B have the same nonzero eigenvalues, BBT and BT B have
eigenvalues ρ(A(G)2) with multiplicity one, respectively. Hence by the Perron-
Frobenius theorem, we have Y1 = aX1(a 6= 0) and Y2 = bX2 (b 6= 0). Now, it
follows from A(G)Y = ρ(G)Y that

∑

j∼i

bNj = ρ(G)aNi, i = 1, 2, . . . , s

and
∑

j∼i

aNj = ρ(G)bNi, i = s + 1, s + 2, . . . , n.

Since
∑

j∼i

Nj = Mi,

thus we have
Mi

Ni

=
a

b
ρ(G) i = 1, 2, . . . , s

and
Mi

Ni

=
b

a
ρ(G) i = s + 1, s + 2, . . . , n.

Therefore,
M1

N1
=

M2

N2
= · · · =

Ms

Ns

=
a

b
ρ(G) i = 1, 2, . . . s

and

Ms+1

Ns+1
=

Ms+2

Ns+2
= · · · =

Mn

Nn

=
b

a
ρ(G) i = s + 1, s + 2, . . . , n.

In addition, by Lemma 1 we have

(2) a2(N 2
1 + · · · + N 2

s ) = b2(N 2
s+1 + · · · + N 2

n ).

Conversely, we have:

(i) If
M1

N1

=
M2

N2

= · · · =
Mn

Nn
, then

√

( n
∑

i=1

M 2
i

)/( n
∑

i=1

N 2
i

)

= ρ(G).

(ii) If G is a bipartite graph with
M1

N1

=
M2

N2

= · · · =
Ms

Ns
=

a

b
ρ(G) i =

1, 2, . . . , s and
Ms+1

Ns+1

=
Ms+2

Ns+2

= · · · =
Mn

Nn
=

b

a
ρ(G) i = s + 1, s + 2, . . . , n. Then

by (2) we have
√

√

√

√

√

√

√

n
∑

i=1

M 2
i

n
∑

i=1

N 2
i

=

√

√

√

√

ρ(G)2
(

a2

b2

(

N 2
1 + . . . + N 2

s ) +
b2

a2

(

N 2
s+1 + · · · + N 2

n

)

)

N 2
1 + N 2

2 + · · · + N 2
n

= ρ(G),
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and the proof follows. �

We now show that our bound improves the bound of Hong and Zhang [6].

Corollary 3 (Hong and Zhang [6]). Let G be a simple connected graph of order

n, then

(3) ρ(G) ≥

√

( n
∑

i=1

N 2
i

)/( n
∑

i=1

t 2
i

)

,

with equality if and only if

N1

t1
=

N2

t2
= · · · =

Nn

tn

or G a bipartite graph with V = V1 ∪ V2, V1 = {1, 2, . . . , s} and V2 = {s + 1, s +
2, . . . , n} such that

N1

t1
=

N2

t2
= · · · =

Ns

ts
and

Ns+1

ts+1
=

Ns+2

ts+2
= · · · =

Nn

tn
.

Proof. By Cauchy-Schwartz inequality, we have

( n
∑

i=1

M 2
i

)( n
∑

i=1

t 2
i

)

≥
( n

∑

i=1

tiMi

)2

=
( n

∑

i=1

ti
∑

j∼i

Nj

)2

=

(

n
∑

i=1

ti
∑

j∼i

(

∑

k∼j

tk

)

)2

=
( n

∑

i=1

ti
∑

w(k,i)=2

tk

)2

=
(

∑

w(i,j)=2

titj

)2

=
( n

∑

i=1

dit
2
i +

∑

w(i,j)=2,i6=j

titj

)2

=

(

n
∑

i=1

(

∑

j∼i

tj

)2
)2

=
( n

∑

i=1

N 2
i

)2

.

The equality holds if and only if

M1

N1
=

M2

N2
= · · · =

Mn

Nn

.

Hence
n
∑

i=1

M 2
i

n
∑

i=1

N 2
i

≥

n
∑

i=1

N 2
i

n
∑

i=1

t 2
i

.

Therefore it follows from Theorem 1 that the result holds. �
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A graph is called pseudo-semiregular if its vertices have the same average
degree. A bipartite graph is called pseudo-semiregular if all vertices in the same
part of a bipartition have the same average degree.

Corollary 4 (Yu et al. [8]). Let G be a simple connected graph of order n. Then

(4) ρ(G) ≥

√

( n
∑

i=1

t 2
i

)/( n
∑

i=1

d 2
i

)

,

with equality if and only if G is either a pseudo-regular graph or a pseudo-semiregular

graph.

Proof. This corollary follows from Corollary 3 (See [3]). �

Corollary 5 (Hofmeister [5]). Let G be a simple connected graph with degree

sequence d1, d2, . . . , dn. Then

(5) ρ(G) ≥

√

1

n

n
∑

i=1

d 2
i .

Proof. This corollary follows from Corollary 4 (See [6]. �

The lower bound (1) is complicated though it is better than (3). But if G is
a tree, then the Ni and the Mi have a simple expression

Ni =
∑

j∼i

tj =
∑

j∼i

(

∑

k∼j

dk

)

= d 2
i +

∑

d(j,i)=2

dj

and

Mi =
∑

j∼i

Nj =
∑

j∼i

(

d 2
j +

∑

d(k,j)=2

dk

)

=
∑

j∼i

d 2
j + (di − 1)

∑

j∼i

dj +
∑

d(j,i)=3

dj .

Hence we have

Corollary 6. Let T be a tree of order n and ρ(T ) be the spectral radius of T. Then

(6) ρ(T ) ≥

√

√

√

√

√

√

√

√

n
∑

i=1

(

∑

j∼i

d 2
j + (di − 1)

∑

j∼i

dj +
∑

d(j,i)=3

dj

)2

n
∑

i=1

(

d 2
i +

∑

d(j,i)=2

dj

)2 .

The equality holds if and only if

M1

N1
=

M2

N2
= · · · =

Mn

Nn

or for the bipartite graph T with V = V1 ∪ V2, V1 = {1, 2, . . . , s} and V2 = {s +
1, s + 2, . . . , n} such that

M1

N1
=

M2

N2
= · · · =

Ms

Ns

and
Ms+1

Ns+1
=

Ms+2

Ns+2
= · · · =

Mn

Nn

,
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where

Mi =
∑

j∼i

d 2
j + (di − 1)

∑

j∼i

dj +
∑

d(j,i)=3

dj

and

Ni = d 2
i +

∑

d(j,i)=2

dj .

Proof. This corollary follows from Theorem 2. �
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3. D. Cvetković, M. Doob, H. Sachs: Spectra of Graphs - Theory and Application.

Academic Press, New York, 1980.
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