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A SHARP LOWER BOUND OF THE SPECTRAL
RADIUS OF SIMPLE GRAPHS

Shengbiao Hu

Let G be a simple connected graph with n vertices and let p(G) be its spectral
radius. The 2-degree of vertex i is denoted by t;, which is the sum of degrees
of the vertices adjacent to i. Let Ny = > t; and M; = Y N;. We find a

g~ jovi
sharp lower bound of p(G), which only contains two parameter N; and M;.
Our result extends recent known results.

1. INTRODUCTION

Let G be a simple connected graph with vertex set V' = {1,2,...,n}. Let
d(i,j) denote the distance between vertices ¢ and j. For ¢ € V, the degree of ¢ and
the average of the degree of the vertices adjacent to i are denoted by d; and m;,
respectively. The 2-degree of vertex ¢ is denoted by t;, which is the sum of degrees
of the vertices adjacent to i, that is t; = m;d;. Let N; be the sum of the 2-degree
of vertices adjacent to i.

Let A(G) be the adjacency matrix of G. By the Perron-Frobenius theorem [1,
2], the spectral radius p(G) is simple and there is a unique positive unit eigenvector.

Since A(G) is a real symmetric matrix, its eigenvalues must be real, and may
ordered as A1 (G) > A2(G) > - -+ > Ay (G). The sequence of n eigenvalues is called
the spectrum of G, the largest eigenvalue A (G) is often called the spectral radius
of G, denoted by p(G) = A1 (G).

In this paper, we give a sharp lower bound on the spectral radius of simple
graphs. For some recent surveys of the known results about this problem and
related topics, we refer the reader to [3, 4, 7] and references therein.

2000 Mathematics Subject Classification. 05C50.
Keywords and Phrases. Eigenvalues, spectral radius, lower bound, trees.

379



380 Shengbiao Hu

2. MAIN RESULTS
Lemma 1. Let G be a bipartite graph with V. =V; UVa, V1 = {1,2,...,s} and
Vo={s+1,5+2,...,n}. Let Y1 = (y1,%2,-.-,¥s) and Yo = (Ysi1,Yss2s--->Yn)" .

Ify= (}}jl) is an eigenvector of A(G) corresponding to p(G), then || Y1 ||=| Y2 ||
2

0 B
BT 0

(5r0) (31) =rtaen (31).

BY; = p(A(G))Y1 = Y{' BY: = p(A(G))Y{' Y1,

Proof. Let A(G) = < ) , where B is an s X (n — s) matrix. We have

and
BTY, = p(A(Q))Y2 = Y B"Y, = p(A(G)) Y] Ya.

Since (VI BY2)T = Yl BTY1, we have that Y'Y, = Y['Ys, that is

[ Yafl=[ Y2 | - U

Theorem 2. Let G be a simple connected graph of order n and p(G) be the spectral
radius of G. Then

) o= [(£0)/(£0).

where N; = > t; and M; = Y N;. The equality in (1) holds if and only if

gt j~i
My - Mo - M,
N, Ny o N,

or G is a bipartite graph with V=V, UV,, V1 ={1,2,...,8} and Vo ={s+ 1,5+
2,...,n}, such that
% _ % Ms Merl Ms+2

N1 N N, Ney1 Ngyo

SE

Proof. By Rayleigh quotient, we have

Let A(G)? = (az(-?)), where az(-?) is the number of (7,7)-walks of length 2 in G.
(2 (2) (2)
ii i =a

Clearly, a ) = di and a;; i -
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For a fixed (i, j)-walk in G, denote by w(i, j) the length of this walk. Then
(2) # 0if w(i,j) = 2, and a( ) = 0 otherwise. If X = (N1, No,...,N,)T, we have

"

XTA(G)QX:Zn:N-(Za ) YN Y aZN = Y dNN,

i=1 = i w(ish=2
_\ a2 g2
STdiN + > N;N; = Z SN ) =Y M,
i=1 w(iyg)=2,i%j i i=1
n
and XTX = Y N,%. So
i=1
xT A( G
p(GQ) = [ max ———— \/ ZMQ ZNE)
z#0 1

If the equality holds, then X is a positive eigenvector of A(G)? correspond-
ing to p(G)?. Moreover, if the eigenvalue p(A(G)?) of A(G)? has the multiplicity
one, then by the Perron-Frobenius theorem, X is an eigenvector of A(G) corre-
sponding to p(A(G)), therefore A(G)X = p(G)X. For all i = 1,2,...,n, we have
(A(G)X)i = (p(G)X)i7 that is > N; = p(G)N;. Since Y N; = M;, we get

i~ g

M;
EZP(G) i:1,2,...,n,
and therefore M I M
1 2 n
N N, N, p(G)

If the eigenvalue p(A(G)?) of A(G)? has the multiplicity two, it is well known
that —p(A(G)) is an eigenvalue of A(G). Hence G is a bipartite graph. Without
loss of generality, we assume that

0 B
A<BT 0>7

» (BBT 0
A< 0 BTB)"

Let X; = (N1, No,...,N,)T and X5 = (Ngy1, Neyo,...,Nu)T, we have
BBT 0 X\ o (X1

BB X, = p(A(G)*)X; and BTBX, = p(A(G)?)X,.

hence

Let Y = (y1,¥2,---,yn)T be a positive eigenvector of A(G) corresponding to p(G).
Let Y1 = (y1,%2,---,9s)" and Ya = (Ys11,Yst2,--->Yn)’ . Thus

BB"Y; = p(A(G)*)Y1 and BT BY: = p(A(G)?)Ya.
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Since BBT and BT B have the same nonzero eigenvalues, BB” and B” B have
eigenvalues p(A(G)?) with multiplicity one, respectively. Hence by the Perron-
Frobenius theorem, we have Y7 = aXj(a # 0) and Y3 = bXs (b # 0). Now, it
follows from A(G)Y = p(G)Y that

>bN; = p(G)aN;, i=1,2,...,s

jri
and
> aN; = p(G)bN;, i=s+1,s+2,...,n.
i
Since
> Nj = M;,
jroi
thus we have M
i a
— == =1,2
N,L bp(G) ? ) Y 78
and M
#:—p(G) i=s+1,54+2,...,n.
i
Therefore,
My M, My a
E:E::N:EP(G) Z:].,Q, s
S
and
Ms+1 Ms+2 Mn b .
= == —=-p(G i=s+1,s+2,...,n.
Ngiq Ngy2 Ny, ap( )
In addition, by Lemma 1 we have
(2) (N2 + -+ N2 = (N2, + -+ N2).
Conversely, we have:
oM M M.
(1) IfFl = N2 = = Nn ,then
() /(£02) =i
i=1 i=1
(i) If Gz\i; a bip&]m‘ztite graph Wlch %b % == ]‘J\{: = %p(G) i =
1,2,...,s and NL‘H: Ns+2 :...:N_”: EP(G) it=s+1,5+2,...,n. Then
s+1 s+2 n

by (2) we have

2 a’ 2 2 b? 2 2
PG (& (N2 4.+ N2+ 5 (N2 +-o+ N,2))

- N12+N22+---—|—Nn2 :P(G),
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and the proof follows. O

We now show that our bound improves the bound of HONG and ZHANG [6].

Corollary 3 (HONG and ZHANG [6]). Let G be a simple connected graph of order
n, then

(3) p(G) = \/ (zm2)/(2t):

with equality if and only if

M o_

N, N,
t1 ta tn

or G a bipartite graph with V.=V, UVa, Vi ={1,2,...,s} and Vo = {s+ 1,5+
2,...,n} such that

Mo Np Ne o New New M
tl t2 ts ts+1 ts+2 tn

Proof. By Cauchy-Schwartz inequality, we have

($02) (507) = (Spn) = (B = (5 2)

n 2 2
=(n, 20 =(, 2 )
i=1 w(k,i)=2 w(i,5)=2
n 2
= ( SYdit? + Y fitj)
i=1 w(i,f)=2,i#j
n 2\2 n 9 2
—(E(z0)) = (w2
i=1\ ji i=1
The equality holds if and only if
My My M,
Ny, N, N,
Hence
M? Y N?
i=1 S =1
n — n
DRI DL 2
i=1 i=1

Therefore it follows from Theorem 1 that the result holds. O
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A graph is called pseudo-semireqular if its vertices have the same average
degree. A bipartite graph is called pseudo-semiregular if all vertices in the same
part of a bipartition have the same average degree.

Corollary 4 (YU et al. [8]). Let G be a simple connected graph of order n. Then

(4) p(G) = \/ (2t2)/(xa?).

with equality if and only if G is either a pseudo-regular graph or a pseudo-semireqular
graph.

Proof. This corollary follows from Corollary 3 (See [3]). O

Corollary 5 (HOFMEISTER [5]). Let G be a simple connected graph with degree
sequence dy,dsa,...,d,. Then

1 n
5) o)=L $5a2
i=1
Proof. This corollary follows from Corollary 4 (See [6]. O

The lower bound (1) is complicated though it is better than (3). But if G is
a tree, then the N; and the M; have a simple expression

No=St=Y(Td)=d?+ ¥ 4
jri ji S kg d(j,i)=2

and

M= YN =Y (4 + ¥ d)=Yd2+ (- d+ ¥ d;.

G jri d(k,j)=2 jri Jrvi d(j,i)=3
Hence we have

Corollary 6. Let T be a tree of order n and p(T) be the spectral radius of T. Then

i=1 N jroi jri d(j,i)=3

n
(a2 +
=1 d

) (Zdﬁ+(di—1)2dj+ > dj>2
(6) p(T) > 2 :
> dj)

(4,1)=2

7

The equality holds if and only if
My Mo M,

NN, TN,

or for the bipartite graph T with V.= V1 UVa, Vi = {1,2,...,s} and Vo = {s +
1,s+2,...,n} such that

% o % Ms Merl Ms+2

N1 N N, Ney1 Neyo

Sl
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where
M;=Yd+(d—1)Ydj+ ¥ d
ji jri d(j,i)=3
and
N, =d?+ Y d;.
d(j,0)=2
Proof. This corollary follows from Theorem 2. (]

Acknowledgements. The author wish to thanks the referee for the comments,
corrections and suggestions. This work was supported by NNSF of China (No.
10861009).

REFERENCES

1. A. BERMAN, R. J. PLEMMONS: Nonnegative Matrices in the Mathematical Sciences.
Academic Press, New York, 1979. SIAM, Philadelphia, PA, 1994.

2. N. Bicas: Algebraic Graph Theory, second ed. Cambridge University Prees, Cam-
bridge, 1995.

3. D. CvETKOVIC, M. DooB, H. SACHS: Spectra of Graphs - Theory and Application.
Academic Press, New York, 1980.

4. D. CVETKOVIC, P. ROWLINSON: The largest eigenvalue of a graph: A survey. Linear
and Multilinear Algebra, 28 (1990), 3-33.

5. M. HOFMEISTER: Spectral radius and degree sequence. Math. Nachr., 139 (1988),
37-44.

6. YUAN HONG, XIAO-DONG ZHANG: Sharp upper and lower bounds for the Laplacian
matrices of trees. Discrete Mathematics, 296 (2005), 187-197.

7. V. NIKIFOROV: Some inequalities for the largest eigenvalue of a graph. Combinatorics,
Probability and Computing, 11 (2002), 179-189.

8. A. M. Yu, M. Lu, F. TiAN: On the spectral radius of graphs. Linear Algebra Appl.,
387 (2004), 41-49.

Department of Mathematics, (Received February 15, 2009)
Qinghai Nationalities University, (Revised May 28, 2009)
Xining, Qinghai 810007,

P. R. China

FE-—mail: shengbiaohu@yahoo.com.cn



