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Abstract. This paper simulates and analyzes noise of multimedia transmission in 

a flexible optical code division multiple access (OCDMA) computer network 

with different quality of service (QoS) requirements. To achieve multimedia 

transmission in OCDMA, we have proposed strict variable-weight optical 

orthogonal codes (VW-OOCs), which can guarantee the smallest correlation 

value of one by the optimal design. In developing multimedia transmission for 

computer network, a simulation tool is essential in analyzing the effectiveness of 

various transmissions of services. In this paper, implementation models are 

proposed to analyze the multimedia transmission in the representative of 

OCDMA computer networks by using MATLAB simulink tools. Simulation 

results of the models are discussed including spectrums outputs of transmitted 

signals, superimposed signals, received signals, and eye diagrams with and 

without noise. Using the proposed models, multimedia OCDMA computer 

network using the strict VW-OOC is practically evaluated. Furthermore, system 

performance is also evaluated by considering avalanche photodiode (APD) noise 

and thermal noise. The results show that the system performance depends on 

code weight, received laser power, APD noise, and thermal noise which should 

be considered as important parameters to design and implement multimedia 

transmission in OCDMA computer networks.  

Keywords: computer networks; multimedia transmission; Optical CDMA. 

1 Introduction 

In the future, computer networks have a demand for transmitting large amounts 

of data between many computers, which are all connected in the same network. 

They should be able to accommodate the growing numbers of users and to 

deliver multimedia services (e.g., Internet telephony, real-time image sharing, 

data transfer, video, and voice) at the same time. One of the solutions is optical 

fiber, which has distinct advantages over other transmission media because it 

has extremely large bandwidth. With forecasts of Internet traffic increasing 

rapidly, optical fiber is the most appropriate multimedia transmission medium 

to carry the bulk of future network traffic. In general, there are three possible 

ways to share bandwidth for a number of connections, namely optical time-
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division multiple-access (OTDMA) [1], wavelength division multiplexing 

(WDM) [2], and Optical code-division multiple-access (OCDMA) [3].  

 

In the OTDMA technique, each user is allocated a specific time slot, where it 

requires short-pulsed diode lasers and provides only moderate improvements in 

bandwidth utilization. No partial network upgrade is possible; this makes 

OTDMA systems less flexible than that is desirable. While the WDM technique 

divides the available optical bandwidth into distinct wavelength channels that 

are used concurrently by different users. To increase the number of channels in 

the system, narrower bandwidth slots could be required, which would put 

further restrictions on the performance of the laser sources and other optical 

components. Furthermore, both OTDMA and WDM techniques require 

deterministic wavelength assignment and strict synchronous time-slot control, 

respectively. On the other hand, the OCDMA is a technique in which each user 

is assigned a specific code rather than a specific time slot or wavelength. This 

allows the same available bandwidth to be shared among the users, and the code 

assignments can be flexible and re-configurable. Recently, the OCDMA has 

received much attention as a flexible multiple access technique for computer 

networks due to its potential for re-configurability of multi-user (codes), privacy 

and security in transmission, asynchronous access, simplified and decentralized 

network control, and the ability to support multimedia transmission with 

different data rates and quality-of-service (QoS) [3]. This characteristic of 

OCDMA makes it well-suited technology with increased capacity and large 

number of users of burst networks (i.e., local area network (LAN) [4] and 

possibly metro area network (MAN) applications [5]).  

 

In OCDMA systems, each user (node) is assigned to a specific codeword as 

his/her code address. Therefore, coding scheme is a prerequisite for designing 

the OCDMA system. In most incoherent OCDMA systems, only unipolar (0, 1) 

codes can be used. A class of unipolar codes called optical orthogonal code 

(OOC) has been applied for OCDMA [6]–[9].  However, most conventional 

OOCs were considered with respect to identical code length and weight to 

satisfy code correlation properties; that is to guarantee a certain number of 

active equal data rates and equal error performance among users. When these 

OOCs are used for multimedia transmission, their correlation properties can be 

changed. To meet multimedia transmission requirements, therefore, we have 

designed strict variable-weight OOCs (VW-OOCs) [10].  However, simulation 

analysis and implementation models for computer networks were not 

demonstrated in the paper. On the other hand, implementation model, noise 

analysis, and the feasibility of employing strict VW-OOCs are also crucial 

towards practical multimedia transmission in flexible OCDMA computer 

networks.    
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This paper proposes the feasible simulation models for multimedia transmission 

in OCDMA computer networks based on MATLAB Simulink tools. One crucial 

part of the design of multimedia transmission models for OCDMA networks is 

the efficient modelling by using strict VW-OOCs which support multimedia 

transmission in flexible OCDMA computer networks. This paper will 

demonstrate the developed multimedia transmission models through extensive 

simulations on the representative multimedia transmission in OCDMA based 

computer network. Simulation results of the implementation models are 

demonstrated and those include spectrum outputs of transmitted signals, 

superimposed signals, received signals, and eye-diagram. Moreover, this paper 

also considers theoretically performance analysis with avalanche photodiode 

(APD) noise and thermal noise. For convenience, the performance with and 

without hard-limiter are considered. The strict VW-OOCs show that a user with 

large code weigh performs better than a user with small code weight. This can 

fulfill the requirements of multimedia transmission that support different quality 

of service (QoS) in OCDMA computer networks.  

 

The rest of the paper is organized as follows. Optical CDMA computer network 

architecture is presented in Section II. In Section III, optical CDMA coding for 

multimedia transmission is reviewed. Simulation models and noise analysis for 

multimedia transmission in OCDMA computer networks are presented in 

Section IV. Simulation results, analytical results and discussions are discussed 

in Section V. Finally, we conclude with a brief summary of results. 

2 Optical CDMA Computer Networks 

A typical OCDMA architecture for computer network (i.e., OCDMA-based 

LAN) is shown in Figure 1 [11]. At the physical layer, it represents a passive 

local network (PON) with a star topology. However, at the configuration layer, 

it is a broadcast and select network. Computer network needs to connect a large 

number of users within its area with a high speed transmission. The network 

offers the advantage of a random access from the user to the network. By using 

OCDMA technology in a computer network, it makes efficient the use of 

channel by providing asynchronous access to each user. Each user will be 

assigned to a codeword of a strict VW-OOC. The star coupler superimposes the 

optical signals from all nodes. Each node is connected to one input port and one 

output port by an optical fiber. Then, the nodes and the star coupler form a 

shared medium network. The input and output ports of the nodes are called 

transmitter and receiver, respectively. A node that is transmitting data to the 

other nodes on the network encodes the individual “1” bits into “chips” 

according to the strict VW-OOC. Every node in the network is assigned to a 

specific codeword. Transmitted signals on the inputs enter the coupler on 

several transmitters, where the optical power from all transmitters is merged. 



92 Nasaruddin & Tetsuo Tsujioka 

The power is then split equally among receivers. The same signal emerges on 

all the receivers of the coupler and is transmitted to all nodes. Furthermore, 

OCDMA technology enables an access platform, which provides 

interconnections between end-nodes and the wide area Internet through routers. 
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Figure 1 OCDMA-based computer network architecture. 

Such network should be able to support multimedia applications with different 

performance levels and various QoS. By employing the strict VW-OOCs in the 

networks, such requirements can be met because the performance of a user 

depends on his code weight. The highest priority user should be assigned to the 

largest weight to guarantee the lowest bit error probability in the network. 

While the user which can tolerate some transmission errors is then assigned to 

the smallest weight. Therefore, by employing the strict VW-OOCs in computer 

network, it may allow differentiated QoS at the physical layer for multimedia 

transmission.   

3 Optical CDMA Coding for Multimedia Transmission 

It has been shown that multiple-length variable-weight optical orthogonal codes 

[12, 13] or strict VW-OOCs [10] can support multimedia transmission in 

OCDMA networks. In this paper, we will focus only on the implementation of 

the strict VW-OOCs for OCDMA computer network through the MATLAB 

simulink tools. So we here present a brief review on the strict VW-OOCs. A 

strict VW-OOC is a class of OOCs where all codewords are the same code 

length but may have different code weights. The main purpose of the strict VW-
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OOCs is that the code weight has a direct effect on the performance of an 

OCDMA system. A codeword with a large weight is less sensitive to 

interference than that with a smaller code weight.  

 

A strict VW-OOC, C, is generally denoted by (n, W, λ, Q) where n, W, λ, and Q 

are the code length, a set of code weights W = {w1, …, wL}, a maximum value 

of auto- and cross-correlation, and a set of fraction of codewords Q = {q1, …, 

qL}, respectively, where L is the number of different weights in a code set. The 

(0, 1) sequences of a VW-OOC are called its codewords. The total number of 

“1s” in each codeword defines the code weight wl, where wl is lth code weight 

and l = 1, …, L. A strict VW-OOC can also be viewed as a family of wl-set of 

integer modulo n, in which each wl-set corresponds to a codeword and the 

integers within each wl-set specify the „„1s” positions in the codeword. The 

cardinality of a VW-OOC, denoted by |C|, is the number of codewords in a code 

set C. 

 

The strict VW-OOCs can be constructed by distinct set approach and random 

method.  The algorithms for both methods can be found in [10]. Let us construct 

a (141, {5,4}, 1, {1/2,1/2}) strict VW-OOC based on the distinct set approach in 

[10]. The codewords of the code are listed in Table 1. These codewords are used 

in our simulation for six-user in multi-media transmission computer network.  

Using this code, two different services can be supported in the network; three 

users of weight 5 for the first service (i.e., video) and three users of weight 4 for 

the second service (i.e., voice). 

Table 1 (141,{5,4},1,{1/2,1/2}) strict VW-OOC codewords. 

No “1s” Positions for w=5 No “1s” Positions for w=4 

1. (0,1,8,25,56) 4. (0,4,16,38) 

2. (0,2,11,29,52) 5. (0,5,19,45) 

3. (0,3,13,33,70) 6. (0,6,21,49) 

  

To ensure that the correlation of (141, {5,4}, 1, {1/2,1/2}) strict VW-OOC is 

exactly bounded by one for overall codewords, the number of used delay 

elements of a codeword and among codewords is evaluated by a computer 

simulation. The simulated result is shown in Figure 2, where the maximum 

correlation value is definitely bounded by one because there is no repeated used 

of the delay elements in the code. Therefore, this code can guarantee the least 

multiple access interference (MAI) for incoherent multimedia transmission in 

OCDMA computer network.   
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Figure 2 Relative delay elements used in a (141, {5, 4}, 1, {1/2, 1/2}) strict 

VW-OOC in Table 1. 

4 Simulation Model and Noise Analysis 

In this Section, we present simulation models of multimedia transmission in 

flexible OCDMA computer network, which is similar to but simpler than the 

system it represents. In the network, we consider two different weights of 

coding to accommodate two different services in multimedia OCDMA system. 

One of purposes of a MATLAB/simulink model for multimedia transmission in 

OCDMA computer network is to enable the engineer to implement the optical 

coding and the visualization of the physical principal working of the multimedia 

network. Since MATLAB/simulink has no function to simulate optical noise 

sources, we present theoretical analysis for optical noise sources. However, 

noise channel model is presented in our simulation model to see the effect of 

noise in the network. 

4.1 Simulation Set Up 

Simulation parameters are listed in Table 2. Here, 1 Gb/s pulse laser diodes and 

APD receivers are assumed in the simulink model. In Figure 3, there are six-

pair of users requiring six different (0, 1) codewords from the code set of 

(141,{5,4},1,{1/2,1/2}) strict VW-OOC as their addresses. However, in 

large capacity networks, other users can easily be accommodated by 

using the large number of strict VW-OOC codewords. Every user is 

assigned to the (0,1) codeword from a strict VW-OOC. The large weight 

codewords with w1=5 are assigned to the first three users (user 1-3) for 

high priority service (e.g., video), while the small weight codewords with 

w2=4 are assigned to the remaining users (user 4-6) for less priority 

service (e.g., voice). At transmitter side, information data for every user 

is generated by Bernoulli binary generator. Data at active transmitters are 
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encoded with the desired codeword using an ON-OFF keying (OOK) 

modulation. The OOK modulation is performed by sum function of 

information data and user‟s codeword in the simulink. After encoding 

and modulating processes, the active transmitters superimpose their 

outputs over optical fiber using a star coupler (sum function in the 

simulink) and are then distributed to each receiver.  At receiver side, 

decoding is matched to the desired codeword by using XCORR function. 

If any pair of transmitter and receiver codeword matches exactly, the 

output of correlator has an auto-correlation peak which recognizes that 

the transmitter has transmitted a “1” data bit. Otherwise, the correlator 

output has no peak but sum of cross-correlation between other codeword 

users.  

 

Figure 3 A simulink model for multimedia transmission in OCDMA computer 

network. 

Figure 4 shows a noise model for multimedia transmission in OCDMA 

computer network. The principle working of the network is the same as in 
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Figure 3 but we consider that the channel is corrupted by additive white 

Gaussian noise (AWGN). We placed it after star coupler to represent AWGN 

noise channel, because a transmission power controlled OCDMA computer 

network was assumed.   

Table 2 Simulation Parameters. 

Parameter Constraint 

Coding Scheme 
(141,{5,4},1,{1/2,1/2}) strict 

VW-OOC in Table 1 

Number of Services 2 

Number pairs of users 6 

Discrete step 100 ps 

Chip duration 1 ns 

Bit duration 141 ns 

Data rate 7.1 Mbps 

 

Figure 4 A simulink noise model for multimedia transmission in OCDMA 

computer network. 
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4.2 Noise Analysis 

The bit error probability of constant weight OOC system when using an APD 

and taking into account the effect of thermal noise can be found in [14]-[16]. In 

this paper, we analyze the bit error probability of the strict VW-OOC system by 

considering the effect of APD noise and thermal noise.  

 

We assume Yl as correlator output in photon count for binary data‟s decision at 

the APD receiver with the lth code weight wl. First, we derive the variance 
2

,lb  

of Yl when binary data bit of b{0, 1} is transmitted. 
2

,lb  can be expressed as 

 
2

n,

2

,   lblb FG , (1) 

where F is the APD excess noise factor, G is the average APD gain, µb,l, is the 

mean value of Y,l, and
2

n  is the variance of the thermal noise within a chip 

interval. These parameters are given by 
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where keff is the APD effective ionization ratio, KB is Boltzmann‟s constant of 

1.379 × 10
-23

 J/K, T
o
 is the receiver noise temperature, RL is the receiver load 

resistance, and e is the electron charge of 1.601 × 10
-19

 C. The photon count rd 

due to the APD dark current within a chip interval, the average number of 

absorbed photons rl per received single-user chip for wl are given by 
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where Id is the APD dark current, η is the APD efficiency, λ0 is the laser 

wavelength, Pav is the average received laser power (of a single-user), Tc is chip 

duration, h is Plank‟s constant of 6.624 × 10
-34

 J, and c is the light speed of 3 × 

10
8
 m/s. 
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If the collected photon count in any bit interval is greater than threshold Th, “1” 

is decided, and decided “0” otherwise. Denoting the photon count collected in 

one bit interval by Y, the bit error probability, PE, is given by 

 })0|{}1|{(min
2

1
,,  bTYPbTYPP lhrlhr

T
E

h

, (7) 

where b denotes the transmitted data bit and ½ denotes equiprobable (1,0) data 

bit transmission. The APD output has been well modelled as Gaussian process 

using the central limit theorem [19] although the total number of absorbed 

photons is Poisson random variable [15]. Assuming continuous Gaussian 

approximation for the photon count Y, we have the expression given by 
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where the random variable },...,2,1{ lwZ  denotes the number of interfered 

chip positions in the interval of the desired user. In the (n, W, λ, Q) strict VW-

OOC, each interfering user may contribute only to one chip overlap (hit) with 

the intended receiver. Then, the probability that one of nonzero positions of a 

user codeword with weight wl overlaps with one of nonzero positions of the 

desired codeword with weight wl’ is given by 
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in the network, where Ml is the users with code weight wl. Therefore, there are 

M-1 users that could interfere with the desired user. For the case without hard-

limiter at the receiver, it can be evaluated as [17] 

 

,)1(.

)1(
1

}{

'''

,21

,

''

'

'

'
1'

1
1

lll

L

lhTLIII

lhl

lll

IM

l

I

l

l

l
L

ll
l

M

TI

IM

l

I

l

l

l

lr

pp
I

M

pp
I

M
wZP































 
 

   (11) 



 Multimedia Trans. in Optical CDMA Computer Networks 99 
 

where Il is the number of the interferers with codewords wl, and   


L

l lII
1

, I ≠ 

0. For the receiver with double hard-limiter (DHL), the signal of the desired 

user is immediately after the first optical hard-limiter. The bit error probability 

of the strict VW-OOC with DHL can be evaluated as 
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The remaining probabilities in (9) are calculated as  
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The function Q(x) is the normalized Gaussian tail probability and can be 

expressed as 
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5 Results and Discussions 

5.1 Simulink Results 

We have investigated the multimedia transmission in OCDMA computer 

network using the simulink models and simulation parameters as described in 

the previous section. The simulated results of the multimedia transmission in 

OCDMA computer network without any noise (AWGN channel) are as follows. 

 
The spectrum can be monitored using FFT Spectrum Scope2 through Zero 

Order Hold with sample time of 9.5×10
-13

 and FIR Decimation filter at sampling 

length of 8192 in Figure 5. Signal spectrum of user 1 after encoding process is 
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shown in Figure 5, which is monitored after modulation process of user 1‟s 

codeword with generated data output of OOK-Modulator1. It can be used to 

evaluate system performance by observing its optical spectrum.  

 

 

Figure 5 Signal spectrum of user 1 after encoding process. 

The spectrum can also be monitored similarly for Figure 6. The figure shows 

signal spectrum of user 1,  which is monitored before decoding process or after 

transmission through star coupler input of Correlation 1 in Figure 3.  The 

spectrum increases and it is different from the encoded spectrum due to the 

effect of interference from the other users. 

  

 

Figure 6 Signal spectrum of user 1 before decoding process. 
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Figure 7 shows the transmitted signals of the six-user in the network in the time 

domain for two different code weights users to accommodate two different 

services. These output signals are passed through a star coupler. Then, active 

users superimpose their information signals through the star coupler. The 

superimposed signals of the six-user are shown in Figure 8. They are then 

distributed to each receiver. To properly decoding the data, decoder is matched 

to the desired codeword. 

The decoded signals finally arrive at optical receivers. The received signals for 

the six-user are shown in Figure 9. In the figure, the received signals are 

different from the transmitted signal because of different frame of the signals. A 

comparison between the transmitted and received signals has been evaluated for 

user 1, where the transmitted and received signals are the same as shown in 

Figure 10. So the proposed model is a straightforward simulation model to 

simulate multimedia transmission for OCDMA computer network. 

 

 

Figure 7 Transmitted signals of six-user in the network. 
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Figure 8 Superimposed signals of six-user in the network. 

 

 

Figure 9 Received signals of six-user in the network. 
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Figure 10 Comparison of transmitted signal and received signal for user 1. 

Figure 11 shows binary eye diagrams of the received signal for user 1 and 

corresponding binary detected signals. Eye diagram is a very successful way of 

assessing the quality of a digital signal [18].  Therefore, as shown in the eye 

diagram, we can confirm that it has successfully transmitted the data with OOK 

modulation in the condition of four-pair users and the (141,{5,4},1,{1/2,1/2}) 

strict VW-OOC. As indicated by the simulation results, the proposed model 

without any noise is capable for implementation OCDMA multimedia computer 

networks. 

 

 

Figure 11 Received eye-diagram for user 1. 
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Figure 12 Superimposed signals of six-user in the network with AWGN 

channel. 

The results of simulation model in Figure 4 are almost similar to the results of 

the simulation model in Figure 3. However, the superimposed signals using 

AWGN channel are different from the superimposed signal without any noise as 

shown in Figure 12. Therefore, the effect of noise in practical multimedia 

transmission of OCDMA computer network should be taken into consideration. 

We theoretically show the results of effect of noise in OCDMA computer in the 

next sub section due to no optical noise function in MATLAB/simulink.      

5.2 Noise Analysis Results 

A (1601,(5,4),1,(1/2,1/2)) strict VW-OOC has been considered in our numerical 

simulation. In this code set, 50 users with small weight codewords and 50 users 

with large weight codewords can be gained. The bit error probability in Eqs. 

(11) and (12) with APD and thermal noise have been evaluated by using the 

code and network parameters listed in Table 3.    

Table 3 Typical network parameters. 

Name Symbol Value 

Light wavelength λo 1.3 µm 

APD gain G 100 

APD eff. ionization ratio  keff 0.02 

APD quantum efficiency Η 0.6 

APD dark current Id 1 nA 

Received load resistor RL 50 Ω 

Data bit rate RT 20 Mb/s 

Laser chip width Tc 0.03 ns 

Receiver noise temperature To 300, 6000 oK 
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The bit error probability versus the average received laser power for the systems 

with and without optical DHL are shown in Figures 13 and 14, for M1 = M2 = 

50, and for low and high thermal noise, with noise temperature 300 and 6000
o
 

K, respectively. From Figures 13 and 14, we can see that the bit error 

probability decreases as the average received laser power increases. This is 

simply because the effect of noise is not negligible at small received laser 

power. Since the code contains variable weights, users with large code weight 

w1 = 5 perform better than those with small code weight w2 = 4. Furthermore, 

the bit error probability of the receiver with DHL can be better than the receiver 

without DHL with high received laser power, Pav ≥ -67.5 dBm in the low 

thermal noise and Pav ≥ -60 dBm in the high thermal noise. It may be true 

because the non-ideal link with high received power would behave as the ideal 

link. This characteristic is also similar to the performance of system with APD 

noise and thermal noise by using OOC with constant weight [15]. We also can 

observe that thermal noise degrades the performance as the noise temperature 

increases. 

 

Figure 13  Bit error probability versus the average laser power for 

(1601,(5,4),1,(1/2,1/2)) strict VW-OOC, with APD noise and low thermal noise. 
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Figure 14 Bit error probability versus the average laser power for 

(1601,(5,4),1,(1/2,1/2)) strict VW-OOC, with APD noise and high thermal noise. 

6 Conclusion 

In this paper, we have proposed simulation and noise analysis of multimedia 

transmission in flexible OCDMA computer networks. OCDMA computer 

network architecture and optical coding for multimedia transmission have been 

reviewed. Two simulation models; with and without AWGN channel, of 

multimedia transmission in OCDMA computer network have been presented. 

Moreover, APD and thermal noise have been theoretically analyzed in this 

paper. We have demonstrated various output of spectrum signals and eye 

diagrams of the proposed models for OCDMA computer networks. The results 

show that the proposed models are straightforward and easy to implement 

OCDMA computer networks by using the OCDMA technique as MATLAB 

simulink model. Therefore, OCDMA computer networks are practically 

investigated as a future candidate technology to a faster communication and a 

more efficient use of channel. In addition, the bit error probability for OCDMA 

computer networks that employs strict VW-OOC with APD noise and thermal 

noise considerations shows that the system performance depended on the value 

of code weights, the received laser power, APD noise and thermal noise. 

Therefore, a careful analysis and design are required towards practical OCDMA 

computer networks. Future works include evaluating with more suitable 

simulation parameters to actual OCDMA systems 
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