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Abstract. In many industrial plants, some key variables cannot always be 

measured on-line and for the purpose of control, an alternative of sensing system 

is required. This paper is concerned with a development of an alternative 

intelligent control strategy, which is an integration between the neuro-fuzzy 

based controller and virtual sensing system. This allows an immeasurable 

variable to be inferred and used for control. The virtual sensor is composed of 

the Diagonal Recurrent Neural Network (DRNN) for plant modeling and the 

Extended Kalman Filter (EKF) as the estimator with inputs from DRNN. The 

integration between virtual sensor and the controller enables a development of an 

on-line control scheme involving the immeasurable variable. The real-time 

implementation demonstrates the applicability and the performance of the 

proposed intelligent control scheme, especially in dealing with nonlinear 

processes.  

Keywords: Diagonal Recurrent Neural Network; extended Kalman Filter; neuro-fuzzy 

controller; virtual sensor; nonlinear process; real-time environment. 

1 Introduction 

In many industrial control plants, some key variables are not always available 

for control purposes. These variables, in general, can not always be measured 

on-line, because it is difficult to measure, more expensive or due to the 

unavailability of the reliable sensors. Examples of such variable are viscosity, 

concentration, composition of substances, and flow index, which are measured 

quite often off-line, e.g. in laboratory environment. Another problem appears if 

the sensor performance declines, undetected disturbance occurs or even 

equipments degrades. These will cause the decreasing of the overall system 

performance. In such a case, a virtual sensing system could be used as an 

alternative strategy replacing the direct measurement method using sensors. 

Virtual sensing system or virtual sensor is an instrumentation system, which 

infers values of complex process variables by integrating information from 

easily made measurements.  
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In recent years many attempts have been made to combine neural network and 

fuzzy system methodologies in intelligent control system design. The primary 

concern is the integration of the strength of both methodologies in order to 

achieve learning and adaptation capability, and knowledge representation via 

fuzzy if-then rules, producing the so-called neuro-fuzzy systems. The main 

advantage of the neural network is that its learning and adaptation capabilities 

from numerical input-output data obtained from the measurement, and hence no 

mathematical model of the plant to be controlled is required. This advantage is 

combined with the ability of fuzzy system to describe a system with linguistics 

variable which is easier to be understood by human. This integration is very 

advantageous for nonlinear plants where its mathematical model is very difficult 

to derive and creates a powerful tool for identification process as well as for 

control system designs [1-6].       

In this paper, an intelligent control strategy which is an integration between 

virtual sensing scheme and a neuro-fuzzy based control scheme is proposed. 

The virtual sensor consists of Diagonal Recurrent Neural Network (DRNN) for 

plant modeling and Extended Kalman Filter (EKF) as the estimator with inputs 

from DRNN. The integration between virtual sensor and a controller enables a 

development of an on-line control scheme involving the immeasurable variable. 

The selected controller is a neuro-fuzzy based controller, namely Adaptive 

Neuro-Fuzzy Inference Systems (ANFIS) controller with on-line learning 

[1,4,5,7]. ANFIS has the ability to deal with complex, nonlinear, and time 

varying systems with least numerical information. Thus, it is capable to handle 

a system which numerical model is difficult to be obtained.  

The overall neuro-fuzzy controller algorithm with virtual sensing scheme has 

been implemented as a real-time control software developed using graphical-

based programming language LabVIEW [8] and then it was tested in real-time 

environment to control the water level in tanks of a process mini-plant which is 

assumed to have a strongly inherent mechanical nonlinearities. The experiments 

will demonstrate the real application of the integration of the strength of neuro-

fuzzy control scheme with virtual sensing in real-time environment. 

2 Virtual Sensing System 

The objective of using virtual sensing system in this investigation is to estimate 

the input variable which can not be measured on-line. In such a case, an 

artificial neural network technique can be applied to model the relation which is 

difficult to derive analyticaly. By deriving the inverse model of the process, the 

artificial neural network can be used to model the immeasurable variable, which 

is called the primary variable, from the easier to measure variable or measurable 

variable, which is called secondary variable. The scheme of virtual sensing 
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system employs an artificial neural network with Diagonal Recurrent Neural 

Network (DRNN) structure [9,10] as model of the system and extended Kalman 

Filter (EKF) as estimator [11], as shown in Figure 1. The first step to be done is 

to identify the plant which its immeasurable variable will be estimated off-line.  

In this process, the immeasurable variable should be included in the process. 

After the model is obtained, the next step is to design an estimator based-on the 

Extended Kalman Filter [12,13] without inserting the immeasurable variable in 

the model input.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Virtual sensor with EKF as estimator 

In developing the plant model using DRNN, during the learning phase, as input 

variables are the measurable input uM (secondary variable) and immeasurable 

input uI (primary variable), and as the output variable of the plant is y. The 

learning phase will be performed using the back-propagation method with 

adaptive learning rate. After the modeling process and validation, the weighting 

coefficients of DRNN will not be changed or in the on-line phase, the weighting 

should not be adaptive. The architecture of the DRNN can be seen in Figure 2 

and its mathematical representation can be written as 
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where at the n-th step, Ik(n) is measurable input to k
th
 neuron in input layer, Z(n) 

is immeasurable input to neuron in input layer, Sj(n) is input to j
th
 neuron in 

hidden layer, Xj(n) is j
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and  f is activation function, with 0 ≤ k ≤ N, N is the number of neuron in input 

layer, and 0 ≤ j ≤ M, M is the number of neuron in hidden layer. 

From the above equations (1-3), the next step is to find the weighting of the 

network, conducted using the back-propagation algorithm. For this purposes, a 

cost function in the form of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Structure of Diagonal Recurrent Neural Network (DRNN). 
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is used, where yk is the actual output , ŷk is the output of the neural network and 

M is the number of output. The weight value of the neural network will be 

updated to minimize the error, and the correction of the weights will be 

performed by the partial derivation of E to the weights, or  
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From equation (4), the following equation can be derived  
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where a denotes the end layer and b the beginning of layer, so that using 

equations (6 -10), the following expressions are obtained  
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Furthermore, a parametric model of plant/process identifications is favorable to 

be used in industrial practice. Since most of the process models in industrial 

control show a strongly nonlinear behavior, a Nonlinear Auto-Regressive with 

eXogenous Variable (NARX) parametric model structure is widely used to 

represent nonlinear process. In this model, the output is a nonlinear function of 

previous outputs and inputs of the process, or in general it can be written as  

   )()(,),1(),(,),1()( tendtudtuntytyFty    (17) 

where y(t) and u(t) are the sampled plant/process output and input at time 

instant t respectively, e(t) is the equation error, n denotes the order of the 

process, d represents the process dead time as an integer number of samples and 

F(.) is an unknown nonlinear function to be identified. For the case in this 

investigation, the NARX model can be represented in the form as illustrated in 

Figure 3. 
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Figure 3 NARX model. 

where y(t) is the sampled plant/process output, I(t) and Z(t) is the measureable 

and immeasureable input, at time instant t, respectively, ŷ(t) is output of DRNN, 

n the number of input to DRNN coming from system output, d is a delay time of 

input to DRNN coming from system input, and m is the number of input to 

DRNN coming from system input.  

3 EKF as Estimator 

Kalman Filter is well-known as an optimal estimator [12,13] which basically 

will give the best possible prediction of the state variables of an arbitrary system 

based on past observation. It will perform as an estimator of the state variables 

in a linear model. If the obtained model is nonlinear, then a linearization 

procedure should be carried out using e.g. Taylor Approximation [11]. The 

Kalman Filter so obtained is referred as extended Kalman Filter (EKF). In the 

scheme, the EKF will perform as an estimator of the state variables 

))(),(( 21 txtx and the immeasurable input whereas the plant model is obtained 

based on the modeling using DRNN. Furthermore, the plant model of equations 

(1-3) can be written in time-domain form as 
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where in every discrete-time t, Ik(t) is measureable input to k
th
 neuron in input 

layer, Z(t) is immeasureable input to neuron in input layer, Sj(t) is input to j
th
 

neuron in hidden layer, Xj(t) is j
th
 output neuron in hidden layer, Y(t) is network 

output and f1 and f2 is activation function of hidden and output layer, 

respectively, with 0 ≤ k ≤ N, N is the number of neuron in input layer, and 0 ≤ j 

≤ M, M is the number of neuron in hidden layer. 

From the above 3 equations, 1f  and 2f  is a function of states (X1, I, and Z), and 

the weights (W
10

, W
11

, W
1Z

, W
1b

, W
21

). Assuming θ represents all parameters 

which can be changed during learning (such as weight and bias), then equations 

(18-20) can be rewritten in the following form  
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where the weight and bias in the hidden layer and output layer denoted as θ1 and 

θ2. Note that both vectors still have constant value during on-line process. 

{ξ1(t)}and {ξ2(t)} is Gaussian white noise with zero mean and uncorrelated with 

{v(t)}, and positive definite variance, var[ζ(t)] = S(t). Assuming 

 TtZtxtxtx )()()()( 21  then the objective of learning is to determine 
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so that the equations (21-24) become  
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The EKF equations for this problem becomes  
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for t = 1, 2 ,…. 

In equation (31), the calculation taking place is the calculation in DRNN, where 

)(ˆ)(ˆ2 tytx  . The results obtained in equation (35),  TtZtxtxx )(ˆ)(ˆ)(ˆˆ 21 , is 

used as input to equation (31). This will be continued until the value of 

 TtZtxtxx )(ˆ)(ˆ)(ˆˆ 21 converges to a certain value. At the time that the error, 

which is the different between output of system and the output of virtual sensor, 

less than the specified maximum error, the value of )(ˆ tZ  is assumed to be 

similar with the immeasurable input values. 

4 Neuro-fuzzy Based Control Scheme 

As already mentioned above, an alternative technique which is successfully 

used for nonlinear plant control is based on neuro-fuzzy approach. An 

architecture called Adaptive Neuro-Fuzzy Inference System (ANFIS), which is 

an integration between neural network and fuzzy inference system has been 

implemented. Fuzzy inference system that is used in this paper is a first order 

model of Takagi-Sugeno-Kang (TSK) fuzzy system [1]. The rules of first order 

TSK fuzzy system with two inputs and one output can be described as  

 Rule i-th : If x is Ai and y is Bi then fi = pi x + qi y + ri   for i = 1,2,...,m 

where m denotes the number of rules, A and B denotes the fuzzy sets and f 

denotes the crisp function, whereas p, q and r symbolize its consequent 

parameters. The architecture of neuro-fuzzy consists of five layers with 

different functions in every layer. Each layer is built by nodes that are 

connected to other nodes from different layer. The neuro-fuzzy structure which 

is equivalent with first order TSK fuzzy system with two rules, two inputs and 

one output is described in Figure 4. 
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Figure 4 Adaptive Neuro-Fuzzy Inference System architecture 

The network consists of two types of nodes, i.e. fixed and adaptive node. 

Adaptive node has a set of parameters that can be changed to minimize the error 

between neuro-fuzzy output and actual output. The description of each layer is 

described below whereas its function in every layer can be summarized as 

shown in Table 1: 
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Each node in this layer is adaptive node. A and B are linguistic labels (large, 

small, etc). Output of this layer is degree of membership which value depends 

on its membership function and premise parameters used. 

Layer 2 

Each node in this layer is fixed node and labeled  which represents the “and” 

word. Output of this layer is firing strength of fuzzy sets. 

Layer 3 

Each node in this layer is fixed node and labeled N which mean normalization. 

Output of this layer is normalized firing strength. 

Layer 4 

Each node in this layer is adaptive node. This layer calculates the weighted 

function which its value depends on the consequent parameters used. 
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of layer 4 outputs. 
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Table 1 The description of each layer and its function. 

Layer Function 

1 adaptive node with node function:  

)(,1 xO
iAi   and )(,1 yO

iBi   

2 fixed node with firing strength of a rule:  

)()(,2 yxwO
ii BAii   , i =1,2 

3 fixed node with normalized firing strength:  

21
,3

ww

w
wO i

ii


 , i =1,2 

4 adaptive node with node function:  

)(,4 iiiiiii ryqxpwfwO   

5 fixed node which computes the summation of 

signals: 2211,5 fwfwO i   

 
As can be seen, adaptive node is only represented in layer 1 and 4. In the 1

st
 

layer, the adaptive parameter is the parameter of membership function of input 

fuzzy set, which is a nonlinear function. The parameters in 4
th
 layer are the 

linear function of system output. Parameters in 1
st
 layer usually called premise 

parameter, while parameter in 4
th
 layer even so called consequent parameter. In 

general, the structure has nonlinear premise parameter and linear consequent 

parameters. Nodes in 2
nd

 layer show the number of rules that are used in neuro-

fuzzy system. This layer represents the “and” word which is used in rules of 

TSK fuzzy system described above. In the 3
rd

 layer, the firing strength is 

normalized. It is done by dividing each of firing strength by summation of all 

firing strengths. Moreover, the output of this network is compared to the actual 

output. The errors that occur are minimized by changing the premise and 

consequent parameter based on the learning rule. Since the consequent 

parameter has linear characteristic, the suitable learning method for this 

parameter is least-square estimator (LSE). Premise parameter has nonlinear 

characteristics, so the steepest descent method can be applied in the learning 

process. The hybrid learning rule is a combination of both least-square estimator 

and steepest descent learning. Using hybrid learning rule, the output of neuro-

fuzzy network will converge faster and the possibillity to be trapped in local 

minima that usually happened in conventional back-propagation learning rule 

can be avoided.  

4.1 Learning Process for Consequent Parameter 

The output of 5
th
 layer can be written as 
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 2211 fwfwf   

                 222222111111 )()()()()()( rwqywpxwrwqywpxw             (36) 

From the above equation, it can be seen that the consequent parameters are 

linear parameters with respect to the systems output. If P learning data is 

applied to the equation (36), it can be shown that it can be represented by 

A y  , where   is an unknown vector whose elements are the consequent 

parameters and y is the output vector whose elements are P learning data, where  

 
 

 Tn
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
                                         (37) 

and A is a matrix in the form of 
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           (38) 

Using the least-square estimator, the best solution of this equation can be 

obtained using 
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                                     (39) 

with 1ia  is i+1
th
 row vector of matrix A, yi+1 is the i+1

th
 element of vector y, and 

Pi is the covariance matrix. The initial conditions of 00  and mIP 0 , where I 

is identity matrix and m is a large number. 

4.2 Learning Process for Premise Parameters 

The premise parameter is an adaptive nonlinear parameter in the first layer. This 

parameter consists of parameters (a,b,c) which exist in the generalized bell 

function. The learning process employs the gradient descent method with back-

propagation error. The ANFIS structure in Figure 4. consists of 5 layers with p 

number of data pair for learning process. The error measurement at the p-th 

training data (1 ≤ p ≤ P) can be written as 



30 Yul Y. Nazaruddin & Puji Astuti 

 2
5 )(
p

pp xdE                                                    (40) 

with pd is the desired p-th output data  and 
px5 is the output of ANFIS (layer 5) 

for p-th data.  The error signal εl,i is the first derivative of the error measurement 

to the output of the i-th node at the 1
st
 layer, or  

 
il

p
il

x

E

,
,




                                                     (41) 

with xl,i is the output of 1
st 

layer of i-th node. Then the error measurement for 

the output of ANFIS (layer 5) is  

 )(2 55
pp xd                                               (42) 

For the interior node, the error signal can be obtained using the chain rule 

 







  


















)1(

1 ,

,1
,

,

,1
)1(

1 ,1,
,

lN

m il

ml
il

il

ml
lN

m ml

p

il

p
il

x

f

x

f

x

E

x

E
                       (43) 

The notation l,i denotes the l-th layer of i-th node. N(l+1) represents the number 

of node at the l+1-th layer, whereas fl+1,m symbolizes a function at the l+1-th 

layer of m-th node.  The error signal at the l-th layer can be stated as a linear 

combination of the error of l+1-th node. To calculate the error signal at the 

desired node and layer, the error signal is first determined at the node and 5-th 

layer using the equation  (42), and then using equation (43), the error signal is 

propagated toward the desired node and layer. The 1
st
 layer of ANFIS structure 

has the adaptive premise parameter. The measurement of error signal to the 

change of parameter is done using the following relation  
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 














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pp ff

x
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                                       (44) 

with α is a set of premise parameter. The error signal il , is calculated from the 

error signal of the next layer according to equation (42) and (43).  fl,i is a 

function of the first layer which is the membership function of the generalized 

bell so that 


 ilf ,
is the derivative of the membership function of the generalized 

bell to the parameters a, b, and c. 
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The measurement of the error signal with respect to the change of parameter for 

the whole data is obtained using equation  

 









 P

p

pEE

1


                                              (45) 

The improvement of the premise parameter is calculated iteratively using sinple 

gradient steepest descent method which can be formulated as follows  

αi+1 = αi + Δα ; 








E
                    (46) 

with the error signal E is the different between predicted output of neuro-fuzzy 

system and actual output,  is the learning rate where  
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2
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                                           (47) 

and   is the step-size which can be change to speed-up the convergence. 

The overall structure of the proposed intelligent control strategy using ANFIS 

as controller and virtual sensing scheme can be seen in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 The overall control scheme 
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5 Experimental Results and Evaluation 

The overall neuro-fuzzy controller algorithm with virtual sensing scheme has 

been implemented as a real-time control software developed using graphical-

based programming language LabVIEW and runs on a personal computer. To 

see the capability and performance of the proposed intelligent control strategy, 

the scheme was tested in real-time environment to control the level of a process 

mini-plant which is considered to have strongly inherent mechanical 

nonlinearities due to its mechanical components. 

5.1 Process Mini-plant Description 
 

The process mini-plant basically consists of two tanks containing fluid which its 

level will be controlled, and real industrial-scaled components, such as 

differential pressure transmitter, control valve, I/P converter, so that it 

resembles almost real-plant characteristics. View of the process mini-plant is 

shown in Figure 6 and the control scheme configuration in Figure 7. The 

software was connected on-line to the process mini-plant through an AD/DA 

card and a signal conditioner circuit.  

 
 

Figure 6 View of the process mini-plant. 
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Figure 7 Control scheme configuration. 

In this investigation, y1(t) is assumed as immeasurable variable, which can be 

measured off-line and affects to the controlled variable y2(t). Virtual sensor was 

used to predict y1(t) based on variables which presumably affect it. Further, the 

output of virtual sensor is used as input to the ANFIS based controller with on-

line learning, as can be seen in Figure 5. The control variable u(t) (output of 

ANFIS) is the manipulated variable (MV), or the percentage opening of the 

valve LCV1. 

5.2 Results of On-line Control 

Figure 8 shows the results of on-line control of process mini-plant using the 

proposed intelligent control scheme with virtual sensing. It can be seen that 

satisfactory performance is obtained although the set-point was changed 

frequently. Acceptable result is also shown from the response of virtual sensing 

scheme, as demonstrated in Figure 9.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Response of tank 2 using the proposed intelligent control scheme with 

virtual sensing scheme 
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Figure 9 Results of virtual sensing scheme. 

The immeasurable variable, y1(t), could be predicted sufficiently well by the  

virtual sensing scheme, where it is then used for input to the ANFIS controller. 

Slightly decreased performance occurs in sampling instant about 200 sec. where 

in this time the level of tank 1, as observed during implementation, reached its 

highest level, i.e. 50 cm, during learning period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10   Response of tank 2 due to plant disturbances. 

To investigate whether the learning system as well as the sensing scheme is 

adaptive to the disturbances and dynamics changes, the valve HCV3 was 

opened 35% at t = 110 sec. The results of on-line control can be seen from 

Figure 10. 
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Figure 11   Results of virtual sensing scheme due to plant disturbance. 

As can be observed, there is no significant response change due to disturbance. 

The ANFIS controller responsed to the change satisfactorily. This is due to the 

on-line learning scheme implemented in the control scheme. The result because 

of this disturbance can be observed better in Figure11, where there was a 

decrease of water level in tank 1 after the disturbance. Poor response of virtual 

sensing scheme was also demonstrated. The reason for this is that during 

learning phase in virtual sensing scheme, off-line method was implemented. 

Inadequate response of tank 2 is also shown to the set-point change 

subsequently. 

6 Conclusions 

An alternative intelligent control strategy, which is an integration between the 

neuro-fuzzy based controller and virtual sensing scheme has been proposed and 

tested on a real-time environment for on-line control of a process mini-plant. 

The virtual sensing scheme predicts the immeasurable variable satisfactorily 

based on the information from measurable or secondary variable. The 

experimental results also show the effectiveness and the performance of the 

method in controlling nonlinear systems.  
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