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Abstract. Flow modeling in a compound channel is a complex matter. Indeed, 
due to the smaller velocities in the floodplains than in the main channel, shear 
layers develop at the interfaces between two stage channels, and a momentum 
transfer corresponding to this shear layer affects the channel conveyance. 
Since a compound channel is characterized by a deep main channel flanked by 
relatively shallow flood plains, the interaction between the faster fluid velocities 
in the main channel and the slower moving flow on the floodplains causes shear 
stresses at their interface which significantly distort flow and boundary shear 
stress patterns. The distortion implies that flow field in rivers is highly non 
homogeneous turbulent, which lateral transport of fluid momentum and 
suspended sediment are influenced by the characteristics of flow in rivers. The 
nature of mechanism of lateral transport needs to be understood for the design of 
river engineering schemes that rely upon realistic flow. 
Furthermore, the flows in river are also almost turbulent. This means that the 
fluid motion is highly random, unsteady, and three-dimensional. Due to these 
complexities, the flow cannot be properly predicted by using approximate 
analytical solutions to the governing equations of motion. With the complexity 
of the problems, the solution of turbulent is simplified with mathematics 
equation. 
The momentum transfer due to turbulent exchanges is then studied 
experimentally and numerically. Experimental data is obtained by using Electro 
Magnetic Velocimetry and Wave Height Gauge.  
The Large Eddy Simulation Sub Depth Scale (LES SDS)-2 Dimensional 
Horizontal (2DH) Model is used to solve the turbulent problem. Successive Over 
Relaxation (SOR) method is employed to solve the numerical computation based 
ob finite difference discretization. The model has been applied to the compound 
channel with smooth roughness. Some organized large eddies were found in the 
boundary between main channel and flood channel. At this boundary the 
transverse velocity profile exhibits a steep gradient, which induces significant 
mass and momentum exchange, acts as a source of vorticity, and generates high 
Reynolds stresses. 
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The Large Eddy Simulation SDS-2DH model enables to predict quite 
successfully the wavelength of some observed vortices. The estimated vortex 
wavelengths agree again with the measurements and the theoretical predictions. 
The present model is proven to be a useful tool for engineering applications, as it 
can simulate the dynamic development of large eddies. 
 

Keywords: compound channel; LES model; SOR; SDS-2DH; turbulent; two 
dimensions flow. 

1 2Introduction 
The flow in channel or a conduit having a free surface is called free surface 
flow or open channel flow.  Flow in rivers, streams, irrigation or power canals, 
flumes, chutes, aqueducts, spillways and drainage ditches are typical examples 
of free surface flow. For many problems encountered by hydraulic engineers, 
the analysis of free surface flow is required, e.g., heat and mass transport, 
dispersion and dilution of pollutants, flood forecasting, erosion and siltation of 
rivers and man-made canals. 

A compound channel is a naturally occurring feature of any river or stream. 
Many rivers consist of a channel with adjacent floodplains. The bottom of the 
floodplain is generally higher and rougher than the bottom of the main channel, 
so that during flood the river consists of a relatively deep channel and shallow 
floodplains, a so-called compound channel. The word compound refers to the 
channel's ability to handle two stages of flow: normal flow and flood flow. 
Some of the main hydraulic features of compound channel flow are shown in 
Figure 1 for a symmetric two-stage channel with a trapezoidal cross-section. 

Since a compound channel is characterized by a deep main channel flanked by 
relatively shallow flood plains, the interaction between the faster fluid velocities 
in the main channel and the slower moving flow on the floodplains causes shear 
stresses at their interface which significantly distort flow and boundary shear 
stress patterns. The distortion implies that flow field in rivers is highly non 
homogeneous turbulent, which lateral transport of fluid momentum and 
suspended sediment are influenced by the characteristics of flow in rivers. The 
nature of mechanism of lateral transport needs to be understood for the design 
of river engineering schemes that rely upon realistic flow or sediment routing 
models. This mechanism of real flow at river can be seen in Figure 2. 

Furthermore, flows in river are mainly categorized as shallow water flows in 
which the horizontal scale of flow geometry is much larger than the vertical 
scale. Also the flows in river are almost turbulent. This means that the fluid 
motion is highly random, unsteady, and three-dimensional. Due to these 
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complexities, the flow cannot be properly predicted by using approximate 
analytical solutions to the governing equations of motion. With the complexity 
of the problems, the solution of turbulent is simplified with mathematics 
equation. 

Turbulent fluctuations are then approximated by a suitable averaging of the 
governing equations. These averaged equations describe the complete effect of 
turbulence on the average motion. This representation is usually referred to as 
turbulence modeling. 

 
Figure 1 Hydraulic parameters associated with floodplain flow in a compound 
channel (Shiono, K. & Knight, D.W., [1]). 

 

Direction of flow 

Figure 2 Vortices at the interface between the main channel and floodplain 
flow, Medicine Hat, Alberta (Tuitoek, D.K., [2]). 
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2 3Methodology  

2.1 6Experimental Set Up 
In order to support the experimental part of this work, the tilting laboratory 
flume is used. This flume is 40 cm wide, and its overall length equals 1400 cm. 
The longitudinal slope of the bed is 0.001. The major hydraulic variables are 
summarized in Table 1. Sketch and picture of the laboratory flume cross section 
are shown in Figure 3 and Figure 4.  

Tabel 1 Major hydraulic variables of experiments. 

Channel length (L) 
Channel width (B) 
Main channel width (Bm) 
Flood channel width (Bf) 
Main channel depth (Hm) 
Flood channel depth (Hf) 
Longitudinal Bed Slope (I) 

1400 cm 
40 cm 
24 cm 
16 cm 
6.2 cm 
1.2 cm 
1.0 x 10-3 

 

 

24 cm

Bm 

16 cm

Bf 

Flow direction 

Figure 3 Laboratory flume cross section. 

The performed measurements include: (1) water level and (2) velocity. The 
water levels were measured using an automatic wave height gauge (WHG) 
mounted on the measurement trolley. The electromagnetic velocimetry (EMV) 
is used for measuring velocity in the edge boundary of flood channel and main 
channel. 

The frequency for obtaining the data is put to 100 Hz with 30 second time 
recording. Velocity measurements are conducted in transverse direction of the 
channel for 2 cm interval while height measurement is done for one point near 
the boundary of main and flood channel. The location of both measurements 
can be seen in Figure 4. 
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Figure 4 Channel sketch, plan view, cross section (A-A) and location of 
measurement. 

2.2 7Numerical Method (LES SDS – 2DH) 

2.2.1 1 2Large Eddy Simulation (LES) Method 
LES is a compromise between DNS and RANS. The main idea behind LES is to 
filter out the fine or high frequency scales of motion and leave the large scales 
to be solved directly, while the effects of the small eddies on the large eddies 
are modeled (by using model such as Smagorinsky model, buoyancy-modified 
Smagorinsky model, structure function model, etc). This approach is motivated 
by one of the most important features of turbulent flows, irregularity. Indeed, 
homogenous, isotropic turbulence (when sufficiently far away from the walls) is 
believed to have a random nature. The fact that it is random suggests that it has 
a universal character and the effects of the smaller scales should be capable of 
being represented by a model and thus predictable. On the other hand, the larger 
eddies in a turbulent flow are widely believed to be deterministic, hence 
predictable once the effects of the smaller eddies on them is known. 
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Furthermore, these larger eddies are often the most important flow structures 
and carry the most energy.  

The LES method consist the following steps: 

1. decompose flow variables into large and small scale parts, with the large 
scale part purportedly defined by a filtering process; 

2. filter the governing equations, and substitute the decomposition from part 1 
into the nonlinear terms to construct the unclosed terms to be modeled; 

3. model these unresolved stresses; 
4. solve for the large-scale contribution (while essentially ignoring the small-

scale part). 

2.2.1.1 1 6LES Decomposition 
The LES decomposition was introduced by Deardorf [3] and was first analyzed 
in detail or the incompressible Navier Stokes equations by Leonard [4]. It is 
constructed by applying a local spatial filter (or in the simplest case, spatial 
average) to all appropriate variables. The LES is written decomposition as 

 ( ) ( ) ( ), ,u x t u x t u x t′= + ,  (1) 

In this decomposition, u  is usually termed the large or resolved scale part of 
the solution, and  is called the small-scale, or subgrid-scale (SGS), or 
unresolved part. It is important to note that both resolved and unresolved scales 
depend on both space and time, and this is a major distinction and advantage 
compared with the Reynolds decomposition.  

'u

2.2.1.2 1 7Filter 
In LES a low-pass, local, spatial filter is applied to the Navier-Stokes equations, 
instead of an ensemble or temporal average. The main idea is similar to that of 
Reynolds-averaging in which the equations governing the mean components of 
the flow are derived. The mean components can be thought of as the largest of 
the scales in the turbulence. With spatial filtering, the equations governing the 
larger components of the turbulent scales are derived.  A Filtered variable 
results from the convolution of a resolved variable with a filter kernel as shown 
in (2):  

 ( ) ( ) ( ),u x G x x u x dx
∞

−∞

′ ′= − Δ∫ ′  (2) 
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The filter kernel, , is a weighting function whose support varies 
depending on the filter type. The most commonly used filters in LES are the 
Tophat, Gaussian, and Sharp Spectral filters (Ikeda, [5]).  

( ,G r Δ)

)

The effect of filtering can be seen in the sketch shown in Figure 5, which the 
filtered component of a function and the original function are depicted. The 
filtering operation serves to damp scales on the order of the filter width denoted 
as . The width is a certain characteristic length of the filter. The filter kernel 

 is scaled such that if the function to be filtered is a constant, the 
resulting filtered function is that same constant. 

Δ
G x( , y

≈ Δ 
 
 
 
 
 
 

( )f x

( )f x

 Τ

Figure 5 Sketch of function ( )f x and its filtered component ( )f x . 

In equation (1) u  is formally the filtered solution corresponding to equation (2). 

It is easily shown that, in general, u u≠  and 0u′ ≠ . The filtering method 
described above is applied to the Navier-Stokes equations, which now describe 
only the motion of the large scales. 

Continuity Equation 
The continuity equation for incompressible fluid is written as:  

 0u v w
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (3) 

Because the continuity equation is linear, filtering does not change it 
significantly: 

 0u v w
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
 or 0i

i

u
x

∂
=

∂
 (4) 

Momentum Equation 
The momentum equation is filtered in the same manner. The obtained equations 
may be written as: 
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 (
2

2

1i i i )j i ji j
j i j j

u u p uu
t x x x x

υ
ρ

∂ ∂ ∂ ∂ ∂
+ = − + − −

∂ ∂ ∂ ∂ ∂
u u u u  (5) 

where: 

 ( i jij i ju u u uτ = − )  (6) 

 
0 0ij ijij

i j i j i jij j i i j

L RC

u u u u u u u u u uτ
≈ ≈

′ ′ ′= − + + + ′  (7) 

The last term in equation (5) appears additional term, which called subgrid 
scale (SGS). This additional terms need to be modeled.  

2.2.1.3 1 8Subgrid Scale (SGS) 
As described above, Lij , Cij , Rij are the subgrid scale (SGS) Leonard, Cross 
and Reynolds stresses, respectively. The Leonard stresses represent the 
interaction among the resolved scales and can be computed directly. The Cross 
terms represent the interaction among the resolved and unresolved scales while 
the Reynolds stresses describe the interaction among the unresolved ones. In 
RANS modeling, the Leonard and Cross terms go to zero (equation 7). This is 
in general the case for LES, although using the cutoff filter in spectral space 
results in only the Reynolds term. The decomposition affects the derivation of 
the turbulent kinetic energy equations. Many modeling approaches guided by 
RANS modeling is based on only the Reynolds terms.  

The Leonard term and Cross term are approximately equal (Salvetti, M. V., & 
Banerjee, S., [6]). They were typically dropped from consideration because their 
order of magnitude was the same as the order of magnitude of the discretisation 
error (Worthy, J., [7]). The last, Reynolds- stresses need to be modeled. 

Smagorinsky model is used to solve the remaining term. This model is based on 
Eddy viscosity concept as written as: 

 2
3

i j
Gi j e ij

j i

u uu u K
x x

υ δ
⎛ ⎞∂ ∂′ ′ = + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 (8) 

 Ge vc Kυ = Δ       (9)        

 
3

2
Gc Kεε =

Δ
 (10) 
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By applying the Smagorinsky model and only Reynolds stress affected, 
equation (5) becomes:  

 (
2

2

1i i i
j i j

j i j j

u u p uu
t x x x x

υ
ρ

∂ ∂ ∂ ∂ ∂ )u u′ ′+ = − + −
∂ ∂ ∂ ∂ ∂

 (11) 

2.2.2 1 3SDS-2DH Equation 
As the phenomenon to be investigated is mainly two-dimensional, a depth-
averaged model will be preferred to a complete three-dimensional model 
solving the Navier-Stokes equations, in order to limit the programming 
complexity and the computational cost. The model that will be used is the so-
called SDS-2DH model, originally proposed by Nadaoka and Yagi [8]. This 
model, whose principle will be described below, produces indeed satisfactory 
results when modeling horizontal vortices due to transverse shearing in partly-
vegetation-covered channels.  

According to Nadaoka and Yagi [8], the turbulence structure of a shallow-water 
flow is characterized by the coexistence of 3D turbulence, having length scales 
less than the water depth, and horizontal two-dimensional eddies with much 
larger length scales. As a result, the spectral structure of such a flow can be 
depicted as on Figure 6 a first peak corresponds to the horizontal 2D vortices 
generated by the transverse shearing. In this area, an inverse cascade of spectral 
energy can be observed, due to processes like vortex pairing; while a direct 
attenuation also exists, due to dissipation by bottom friction. A part of this 
dissipated energy may be supplied to 3D turbulence, at higher wave-number α; 
while bottom friction may also directly provide 3D turbulent energy. 

 
Figure 6 Turbulent energy spectrum in a depth-averaged flow with a shear 
layer, according to Nadaoka and Yagi [8]. 
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This proposed SDS-2DH model, in principle, is similar to LES, according to the 
length scales to be modeled. Indeed, similarly to the SDS-2DH model, LES 
models solve explicitly the large turbulence scales, while the smaller scales are 
modeled implicitly, using a so-called subgrid model. However, when the grid 
size reduces, LES results tend towards the results obtained from a DNS 
simulation, in which all turbulence scales are modeled, from the larger one to 
the smaller one, which corresponds to molecular dissipation. This means that, 
when decreasing the grid size, an LES subgrid model will converge towards 
molecular viscosity.  

Based on equation (4) and (11) the SDS-2DH equations will be derived. 
Rewrite these equations as written as:  

 0u v w
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (12) 

2 2 2

2 2 2
0

1 ' ' ' ' ' 'u u u u p u u u u u u v u wu v w
t x y z x x y z x y z

υ
ρ

⎛ ⎞ ⎛∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − + + + − + +⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝

⎞
⎟
⎠
 

  (13) 
2 2 2

2 2 2
0

1 ' ' ' ' ' 'v v v v p v v v v u v v v wu v w
t x y z y x y z x y z

υ
ρ

⎛ ⎞ ⎛∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − + + + − + +⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝

⎞
⎟
⎠
 

  (14) 

Reynolds stresses is defined as: 

 1
3

ji
i j t ij

j ih

uuu u dz k
H x x

η 2υ δ
−

⎛ ⎞∂∂′ ′− − = + −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
∫  (15) 

where υt is the eddy viscosity; δij is the Kronecker symbol (δij = 1 for i = j; and 
δij = 0 for i j); and k is the kinetic turbulent energy. ≠

 22
3xx t

u k
x

τ υ ∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠
, 22

3yy t
v k
y

τ υ
⎛ ∂

= −⎜ ∂⎝ ⎠

⎞
⎟  (16) 

 xy yx t
u v
y x

τ τ υ
⎛ ⎞∂ ∂

= = +⎜ ∂ ∂⎝ ⎠
⎟  (17) 

 
2

2
fb

bx

CaC u u v
h

2τ
η

⎛ ⎞= + +⎜ ⎟+⎝ ⎠

 (18) 
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Where 
bx

τ is defined as bottom stresses due to bottom friction and vegetation 

drag,  is defined as vegetation density parameter, is defined as drag 
coefficient of vegetation and 

a bC

fC  is defined as bottom friction coefficient ( fC = 
0.00622, Ikeda [9]). Since this model is for smooth roughness, the vegetation 
density and drag coefficient are equal to zero. As a result, the SDS-2DH 
equations can be summarized as: 
 
(I) Large Scale (LS) 
a. Depth Averaged Continuity Equations 

 
( ) ( )

0
h U d h V

t x dy
η ηη ⎡ ⎤ ⎡ ⎤∂ + +∂ ⎣ ⎦ ⎣ ⎦+ +

∂ ∂
=  (19) 

b. Depth Integrated Momentum Equations 
 

 2 2

0 2

2                             2
3

fd

t t

Cacu u uu v g gS u u v
t x y x h

u vk u
x x y x

η
η

υ υ

∂ ∂ ∂ ∂ ⎛ ⎞+ + = − + − + +⎜ ⎟∂ ∂ ∂ ∂ +⎝ ⎠

y
⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞+ − + +⎜ ⎟ ⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

 (20) 

 2 2( )
2

2                            2
3

fb

t t

Cacv v vu v g v u v
t x y y h

v vk
y y x x y

u

η
η

υ υ

∂ ∂ ∂ ∂
+ + = − − + +

∂ ∂ ∂ ∂ +

⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛
+ − + +

⎞
⎢ ⎥⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝

⎟
⎠⎣ ⎦

 (21) 

 
(II) Subgrid Scale = Sub Depth Scale (SDS) 
c. SDS Turbulence 
The depth-averaged kinetic energy of SDS turbulence, k is evaluated with the 
following energy-transport equations (k-equation model): 

 t t
kh kv

k k

Dk k k P P
Dt x x y y

υ υ ε
σ σ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

−  (22) 

The eddy viscosity tυ  and the energy dissipation rateε  are evaluated by k and l 
according to the usual k-equation model. 

 
2

t
kCμυ
ε

=  (23) 
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3

2

d
kC
l

ε =  (24) 

For the model parameters, Cμ ,  and dC kσ , the standard values , 

 and 

0.09Cμ =

0.17dC = 1.0kσ =  are adopted here. 

The turbulence length-scale l is expressed as 

 l hα= , which 0.1α =   

On the assumption that the horizontal and vertical length scales of the SDS 
turbulence are nearly the same and the SDS turbulence is generated only by 
bottom friction, α  may be estimated to be 0.067 as the value corresponding to 
that for the usual log-profile of velocity. For more general cases in which other 
sources of the SDS turbulence like horizontal shear exist, α  may be different 
from 0.067. The detailed consideration of α  for these general cases requires 
knowledge of the shallow-water turbulence structure itself. For this reason in 
the present study α  is assumed to be 0.1 as a tentative simple evaluation. 
Although more general ways to evaluate l  should be developed in future 
studies, it should be noted here that the direct dependence of  l  on the local 
water depth h, as expressed above, is one of the most important conceptual 
points for the modeling of the SDS turbulence. 

Pkh and Pkv are calculated with the following relations from Rastogi and Rodi 
[10] with additional term in Pkv due to vegetation drag by Ikeda [5]: 

 
2 22

2 2 2kh t
u v u vP
x y y x

υ
⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞= + + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (25) 

 ( )
1.5

2 2

2
d

kv f

ac hP c u v⎡⎛ ⎞= + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
l⎤  (26) 

The Pkh term corresponds to the turbulent kinetic energy production, due to the 
interaction between the turbulent shear stress and the depth-averaged velocity 
gradient.  

The terms Pkv is source term, who absorb all the secondary terms originating 
from non-uniformity of vertical profiles. The main contribution to this term 
arises from significant vertical velocity gradients near the bed. It expresses 
therefore the turbulent kinetic energy production due to bed friction and 
vegetation drag. 
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2.2.3 1 4Numerical Solution 
The SDS-2DH equation is solved with finite difference method which 
successive over relaxation (SOR) is applied to numerical computation.  There 
exist a number of approaches for the discretization of those equations. A sTable 
finite difference method is based on using a so called staggered grid (type 
Arakawa C, McKibben , J. F. [11]), when the unknown variables u, v and η  lie 
at different grids shifted with respect to each other. Figure 7 shows the 
staggered grid scheme. That simple model of staggered grid gives possibility to 
use simple discretization and prevent numerical instabilities forming within the 
model. 

The first spatial discretisation makes use of a staggered "marker-and-cell" 
(MAC) mesh (Bousmar, D. [12]), slightly adapted for shallow-water flow 
modeling. In such a mesh, the velocities u and v are defined for positions 
situated at a middle distance between the points where the water level η  are 
defined (Figure 7). This location enables an easy estimation of the water level 
η   value at any point of interest (η , U, V) using a linear interpolation. Such a 
staggered mesh provides a good coupling between the velocities and the water 
depth, insuring a very good mass and momentum conservation during the 
resolution, this condition is indeed required for the uniform-flow modeling with 
cyclic boundary condition.  

 
Figure 7 Staggered Grid MAC (Marker And Cell). 

Additionally, the values of the viscosity υt, and of the turbulent kinetic energy k 
are defined at the same locations as the water level η . Each equation from (19), 
(20) and (21) are then discretized with a computational molecule centered on 
the location where the value varying with the time is defined : on the water-
level η  definition point for the continuity equation (19) and for the turbulent 
kinetic energy transport equation (22); on the longitudinal-velocity U definition 
point for the x momentum equation (20); and on the transverse-velocity V 
definition point for the y momentum equation (21).  
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Momentum equations are written using upwind scheme while the first order 
derivative in the continuity equation is written using centered difference 
operator. When the value of a variable is needed on a point different of its 
definition point, this value is interpolated from adjacent values. 

2.2.3.1 1 9Continuity Equation Discretization 
The continuity equation discretized on staggered grid can be written as follows: 
 

( )[ ] ( )[ ] 0dh u h v
t x dy
η η η∂ ∂

+ + + +
∂ ∂

=
 

 
( ) ( )

( ) ( )

1
, ,

1, 2, 1, ,
1, 1, 1, 1,

, 1 , 2 , 1 ,
, 1 , 1 , 1 , 1

2 2

2

2 2
0

2

n n
i j i j

n n n n
i j i j i j i jn n n n

i j i j i j i j

n n n n
i j i j i j i jn n n n

i j i j i j i j

t
u u u u

h h

x
v v v v

h h

y

η η

η η

η η

+

+ + −
+ + − −

+ + −
+ + − −

⎡ ⎤−⎣ ⎦
Δ

⎡ ⎤⎛ ⎞ ⎛+ +
+ − +⎢ ⎥⎜ ⎟ ⎜⎜ ⎟ ⎜⎢ ⎥⎝ ⎠ ⎝⎣ ⎦+

Δ
⎡ ⎤⎛ ⎞ ⎛ ⎞+ +

+ − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦+ =
Δ

⎞
⎟⎟
⎠  (27) 

 
Figure 8 Points on a grid used for continuity equation solving. 
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2.2.3.2 
d grid can be written as 

on 

2 0Momentum Equation Discretization 
The momentum equations discretized on staggere
follows: 

X- directi

 
2 2

0
( )

2

2                             2
3

fb

t t

cacu u uu v g gs u u v
t x y x h

u v uk h
x x y x y

η
η

υ υ

∂ ∂ ∂⎛ ⎞
− + − + − + +⎜ ⎟∂ ∂ ∂ ∂ +⎝ ⎠
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Similar for y direction: 
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In this computation 3α =  is been used. The scheme is called K-K (Kawamura-
Kuwahara) scheme. 

Second term in RHS 

 ,
n

i jg APη
x

∂
=

∂
, ( )1, , 1, 2,

,

2 2 1 1
2 3

n n n n
i j i j i j i jn

i jAP g
x

η η η η+ − −+ − −
=

Δ
 (38) 

 ,
n

i jg BPη
y

∂
=

∂
, ( ), 1 , , 1 , 2

,

2 2 1 1
2 3

n n n n
i j i j i j i jn

i jBP g
y

η η η η+ − −+ − −
=

Δ
 (39) 



 Comparison Study of Flow in a Compound Channel 83 
 

Third term in RHS 
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Fifth term in RHS 
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2.2.3.3 2 1Turbulent Kinetic-Energy Transport (k) Equation 
Discretization 

The turbulent kinetic-energy transport equations discretized on staggered grid is 
written as follows: 
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Second term in RHS 
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Third term in RHS 
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Fourth term in RHS 
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Fifth term in RHS 
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2.2.4 1 5Computational Condition 
To specify the initial flow condition for the numerical simulation, preliminary 
one-dimensional (1D) computations have been made in which the eddy 
viscosity is evaluated only with the SDS turbulence. A white noise, the 
magnitude of which is 1% of the velocity of flow in the main channel, is 
imposed at the boundary to stimulate the development of horizontal vortices. 
The present computation is performed under the stream wise uniform condition 
on the time-averaged velocity and the water depth. On the velocity and water 
surface fluctuations due to the horizontal large scale eddies, a cyclic boundary 
condition at the upstream and downstream boundaries may be applied like LES 
computation of free shear layer. Therefore u, v and η at y on the upstream 
boundary are assumed to be the same as those at y on the downstream boundary. 
At the sidewalls, on the other hand, the slip condition (63) was imposed because 
the influence of boundary layers is limited to the region close to the sidewalls 
and, hence, may be negligible in the mixing process around the boundary 
between flood channel and free stream.  

 0, 0t
u v
y

υ ∂
= =

∂
, at the sidewalls (63)  

The initial turbulent kinetic energy field is set to zero. 
Simulation is done with the following condition: 

Tabel 2 Computational domain and grid size and time step. 

Channel Width (B) 
Slope (I) 
Main channel depth (Hm) 
Roughness (n) 
Longitudinal domain size 
Longitudinal grid size ( xΔ ) 
Transverse domain size 
Transverse grid size ( yΔ ) 
Time step ( ) tΔ

40 cm 
1.0 x 10-3 
6.0 cm 
0.0103 
15 m 
1.0 cm 
40 cm 
0.5 cm 
0.01 
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3 4Results and Discussions 

3.1 8Temporal Development of Horizontal Vortices 
The development of horizontal vortices can be described by using numerical 
computation as follow:  

a. The longitudinal wavelength ( λ ) of vortices varies between 42 cm and 136 
cm in statistical equilibrium. The result of this calculation is depicted on 
Figure 9 and 10.  

b. The value of the wavelength ( λ ) both experiment and simulation are shown 
in Table 3. The mean value of the wavelength of the vortices predicted 
(simulation) at the observation point (at x=6400 cm, y=17 cm, as depicted 
on Figure 4) is 73.3 cm. The corresponding length was 76.9 cm, which 
agrees with the prediction. The calculation for finding the time period (T) of 
the wavelength (measurement) is done with Fast Fourier Transform (FFT). 
The result of spectrum graph is depicted in Figure 11. 

c. Vorciticy field as shown in Figure 12, at several times, 10 st = , 30 st = , 
60 st = , 90 st = , 120 s  and 150 st = t = , indicating that small scale 

horizontal vortices appear first and they grow by merging with each other. 
In the beginning flow, appears weak flow with the corresponding 
accumulation of vortices in five regions. After t = 90 s, the spatial pattern of 
vorticity has been found to reach an equilibrium state which the two large 
vortices formed.  
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Figure 9 Variation of water surface elevation at measurement point, x=6400 cm 
and y=17 cm (numerical calculation). 
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Tabel 3 Comparison value of wavelength ( λ ). 

 u (m/s) Re Froude T (s) λ  (m) 
Simulation 0.265 15887 0.345 2.77 0.733 
Measured 0.297 17826 0.387 2.59 0.769 
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Figure 10 Variation of wave length ( λ ) at measurement point, x=6400 cm and 
y=17 cm (numerical calculation). 

f=0.39 s-1f=0.39 s-1

 
Figure 11 Result of FFT at measurement point, x=6400 cm and y=17 cm (from 
experiment data). 
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Figure 12 Temporal development of horizontal vortices; Spatial distribution 
vorticity at  t=10 sec,30 sec, 60 sec, 90 sec, 120 sec and 150 sec. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13 Temporal development of horizontal vortices; Spatial distribution 
water surface η  at  t=10 sec, 30 sec, 60 sec, 90 sec, 120 sec and 150 sec. 
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Figure 14 Transverse profiles of mean velocity at x=6400 cm. 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

00.050.10.150.20.250.30.350.4 y (m)

st
re

ss
 (g

/c
m

/s
2)

Reynolds Stress(Measurement)
Large Scale (LS)
SDS from subgrid scale
Total Reynolds stress (LS+SDS)

main channel (Bm) = 0.24 m flood channel (Bf) = 0.16 m

 
Figure 15 Reynolds stress profiles at x = 6400 cm. 
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Figure 16 Temporal variation of free surface at x=6400 cm and y=17 cm 
(measured). 
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Figure 17 Calculated variation of free surface at x=6400 cm and y=17 cm. 

 

 
Figure 18 Experiment result of horizontal vortices. 
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Figure 19 Velocity with water surface contour. 

 
 
 
 
 
 
 
 
 

Figure 20 Velocity with vorticity contour. 

eta: -0.00016m -0.00012m -8E-05m -4E-05m -8.13152E-20m

3.2 9Instantaneous Flow Field 
The instantaneous 2D velocity with water surface contour and vorticity field are 
depicted in Figure 19 and 20, respectively, in which the velocity field is seen in 
the frame moving with the temporally averaged velocity at the boundary of the 
main channel and the flood channel (y = 16 cm). The maximum vorticity 
locates upstream of the geometrical center of the vortex. The vortices are 
inclined toward the longitudinal direction, which is important in producing the 
Reynolds stress. 

The instantaneous free surface elevation calculated is shown in Figure 19, in 
which it is clear that the elevation is low near the center of the vortices. Figure 
19 and 20 give comparison, which it is found that the regions with water surface 
depression nearly coincide with the central parts of horizontal vortices.  

The variations of free surface elevation at y = 16 cm are depicted in Figure 16 
and 17 for the measurement and prediction, respectively. The range of time is 
chosen for the 30 second in the end of calculation (It means from t=120 sec to 
150 sec), with assumption that both of calculation and measurement are stable. 
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In the measurement graph, the range of the variation of height water surface and 
time period are similar. The calculation of time period gives the same result. 
Figure 18 and 20 give comparison the vorcity, it is found similar 

3.3 1 0Temporally-Averaged Flow Field 
The lateral velocity distribution is shown in Figure 14. The agreement is 
reasonable. However, the measured values near y = 16 cm are a little smaller 
than the prediction, the reason for which is the existence of secondary flow 
which is fairly large near the boundary of the main channel and the flood plain. 
It transports near-bottom small fluid momentum toward the free surface, 
inducing small longitudinal flow velocity at around y = 20 cm. The present 
model cannot include the effect of secondary flow.  

3.4 1 1Reynolds Stress 
The contribution of horizontal vortices shows the major part of the Reynolds 
stress as shown in Figure 14. Figure 14 shows the transverse distribution of the 
Reynolds stress (RS), there is a small difference between the computed 
maximum stress and the measured one, the profile of stress and the location of 
the maximum stress are similar. The Reynolds stress (Rs) is obtained from the 
sum of the stress from large-scale (LS) term and that from the subgrid scale 
(SDS). The large-scale is computed with the result of the computation while the 
subgrid scale is evaluated by the eddy-viscosity model with the SDS turbulent 
viscosity given by equation (22). The contribution of Reynolds stress from the 
explicitly computed large-scale (LS) eddies is larger than that from the modeled 
subgrid scale (SDS) eddies. The maximum of the Reynolds Stress occurs at the 
interface where the velocity gradient is the greatest. 

4 5Conclusion 
A Large Eddy Simulation SDS-2DH model has been applied to study the lateral 
momentum transfer in compound channel which instantaneous structure of 
horizontal vortices and temporally-averaged velocity distribution have 
significant effect. 

The results show the horizontal vortice occurs at the boundary between main 
channel and the flood channel where significant momentum exchange occurs. 

The present model is proven to be a useful tool for engineering applications. 
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Notations 
The following symbols are used in this paper: 
a  = vegetation density parameter 
B  = channel width 
Bf  = flood channel width 
Bm  = main channel width 

bC  = drag coefficient of vegetation 

fC  = bottom friction coefficient 

Cμ  = turbulence model parameter, a numerical constant 

dC  = turbulence model parameter, a numerical constant 
g  = gravitational acceleration 
h  = mean water depth 
H  = total water column height (total depth)  
Hf  = flood channel depth 
Hm  = main channel depth 
,i j  = 1,2,3 and repeated indices show summation 
I  = longitudinal channel bed slope 
l  = length scale of SDS turbulence 
n  = manning’s coefficient 
p  = pressure 

ap  = pressure at the free surface 

khp  = energy production rate of turbulence due to horizontal shear 

kvp  = energy production rate of turbulence due to vertical shear/bottom 
friction 

0S  = longitudinal channel bed slope (x direction) 
t  = time 
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u  = depth averaged velocity in x direction 
u  = mean or large scale velocity in x direction  
u′  = fluctuation or small scale/subgrid-scale velocity in x direction  
U  = depth averaged velocity in x direction 
v  = depth averaged velocity in y direction 

v  = mean or large scale velocity in y direction 
v′  = fluctuation or small scale/subgrid-scale velocity in y direction 
V  = depth averaged velocity in x direction 
w  = depth averaged velocity in direction z
w  = mean or large scale velocity in z direction 
w′  = fluctuation or small scale/subgrid-scale velocity in z direction 
,  ,  x y z = longitudinal, transverse and vertical coordinate, respectively 

ix  = Cartesian coordinates, ,  x y and  z
α  = a numerical constant 
β  = Boussinesq coefficient 
δij = Kronecker 
ε  = dissipation rate of kinetic energy 
η  = water surface displacement 
λ  = wave length 
μ  = dynamic viscosity 
ρ  = water density 

kσ  = a numerical constant 

tυ  = eddy viscosity 

bxτ  = bottom shear stress in x direction 

byτ  = bottom shear stress in y direction 
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