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Abstract 

The pathophysiology, prevention, and treatment of acute graft-versus-host disease (GVHD) occurring, mainly,
after allogeneic hematopoietic stem cell transplantation (allo-HSCT), should be understood, in order to exploit
its potential benefits while avoiding certain clinical risks. Many studies have shown haematopoietic cells to be
primary targets, as well as skin, gut, and liver containing macrophage-derived cells. The latters produce pro-
inflammatory cytokines that stimulate donor T cells and induce HLA class II antigens in host tissue. Dendritic
cells (DCs) boost CD 8 cells to react against HLA class I peptides. Hence, GVH reactions of the graft are
directed against histocompatibility antigens of the recipient that are foreign to the donor. Polymorphic non-HLA
proteins may also cause severe GVH reactions. The reactions against minor histocompatibility antigens require a
longer phase of activation than reactions against MHC antigens. 

The preconditions of acute GVHD (aGVHD) are given before transplantation (the s.c. “cytokine storm” liberated
by intensive conditioning treatment and probable infections). However, in human patients, donor lymphocyte
transfusion may produce GVHD without conditioning treatment. In general, the host’s immune system is
continuously suppressed by the graft and; the graft becomes tolerant towards the host. The mechanism of
tolerance has been related to the occurrence of non-specific and specific suppressor cells followed by clonal
deletion, being also mediated by mesenchymal stromal cells, NK-T cells, and regulatory T cells. Selecting an
HLA-identical sibling as donor was the major step towards successful HSCT (generally, definition of 10 HLA-loci
is required to prevent severe GVHD). Several TNF-a and TNF-a receptor alleles are associated with an increased
risk of GVHD. The well-known clinical features of aGVHD are also described, including skin, liver, and gut lesions.
The issues of chronic GVHD are also described. Its clinical and pathological signs resemble autoimmune diseases
in many aspects. 

GVHD prophylaxis is well established, and should be used in any clinical setting. Special attention is given to T
cell depletion and modern immunosuppressive therapies post-transplant. Current schedules of GVHD treatment
are described including calcineurin inhibitors, and some novel suppressive drugs. The role of various treatment
regimens is considered in view of regulatory T cell (Treg), mesenchymal stem cells and UV-A irradiation as
possible means of GVHD management. 

Special attention is drawn to induction of a graft-versus-host tolerance in clinical HSCT. In the majority of
patients, the peripheral (thymus-independent) form of tolerance prevails. Specific selective effects of Rapamycin
upon T cells are discussed.

Keywords: graft-versus-host disease, prophylaxis, treatment, conditioning therapy, dendritic cells, Т-
lymphocytes, immune suppression, immune therapy
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Introduction

Allogeneic hematopoietic stem cell transplantation has become one of the most frequent forms of
transplantation, with currently more than 6000 transplants being performed annually. Its use is still increasing
in the treatment of hematological and other malignancies. In addition there are a large number of patients with
debilitating and life threatening hematological dis-eases, thalassemia, sickle cell anemia, and other non-
malignant diseases that may benefit from transplantation. However, the major obstacle to the wider use of
transplantation is graft-versus-host disease (GVHD); still a serious threat to these patients. However, at the
same time graft-versus-host reactions directed at leukemia, lymphoma, myeloma, and other tumors of the host
may be beneficial. Therefore it is necessary to understand GVHD in order to ex-ploit the potential advantages
without incurring the risks. Allogeneic stem cell transplantation conveys tolerance toward organs of the donor.
As a rule, immunosuppressive therapy can be discontinued after several months without the risk of rejection
and GVHD. This tolerance with chimerism allows the transplantation of cells and organs of the same donor
without life-long immune suppression. The success of immunotherapy with donor cells and of transplantation of
solid organs from the stem cell donor depends on whether or not GVHD can be controlled.

Early observations

Mice protected from hematopoietic failure following total body irradiation by bone marrow transplantation
succumbed to a “secondary disease” if the bone marrow was taken from a different strain [1]. This disease was
related to an immune reaction of donor cells against the host rather than a delayed radiation syndrome: cells of
diseased mice induced hepato-splenomegaly when transferred to non-irradiated newborn mice [2]. Further
proof was the oc-currence of this secondary disease in F1-hybrid mice transplanted with parental marrow, but
not in parental mice transplanted with F1-hybrid marrow [3]. Finally, organs containing more immunologically
competent cells such as those from the spleen produced more secondary disease than bone marrow [4].
Eventually, the principle requirements for GVHD were defined by Billingham [5]: 1. the graft must contain
immune reactive cells, 2. the recipient must be im-munogenetically different, and 3. the recipient cannot reject
the graft. The first patients with acute GVHD were described by Mathé and colleagues [6]. A major step
towards successful transplantation was the selection of marrow donors within the family according to major his-
tocompatibility antigens (HLA) [7]. HLA had been previously detected in humans with pre-formed antibodies
[8,9]. Most preconditions for allogeneic transplantation in humans have been elaborated in animal experiments,
particularly in dogs [10]. 

Therefore the principles for prevention of GVHD are 1. selection of a histocompatible donor, 2. adequate
immune suppression for the patient before and after transplantation, and 3. ma-nipulation of the graft. In more
recent years much has been learned about the regulation of the T cell response and mechanisms of tolerance,
which may guide the way for immune suppression [11].

Animal models

The manifestation of GVHD in every species investigated so far involves skin, gut, and liver; primarily however
hematopoietic tissue (Fig.1). Acute GVHD is a syndrome with similar fea-tures in mice, rats, monkeys, and
humans; without prevention or treatment it can be rapidly fatal. Therefore pathophysiology, prevention, and
treatment of acute GVHD can be studied in animal models. Chronic GVHD cannot be readily studied in animal
models; it is not known why certain organs are involved and others are spared. Obviously hematopoietic cells
are the primary targets, and the skin, gut, and liver may contain cells of hematopoietic origin such as dendritic
cells and macrophages. These cells produce pro-inflammatory cytokines including interferon-gamma (IFN-g),
tumor necrosis factor-alpha (TNF-a), interleukin 6 (IL-6), and others that stimulate donor T cells and induce
expression of HLA class II antigens in host tissue (Fig.2). Dendritic cells activated by CD4 cells may stimulate
CD8 cells to react against HLA class I presented peptides (Fig.3). Recent studies, however, showed that
deficient production of IFN-g can increase GVHD in the skin, and failure of IFN-g induction of B7-H1 enhanced
TH2 cells can produce idiopathic pneumonia [12]. TH2 cells and TH17 cells were guided to lungs and skin by the
expression of chemokine receptors.

Figure 1. Host target tissues affected in the course of graft-versus-host disease
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figure3

Figure 2. A proposed role of cytokine network and specific receptors of immune cells at initiation of GvHD
(for details see text)

Figure 3. Dendritic cells boost CD8+ cells to react against host target tissues

GVH reactions of the graft are directed against histocompatibility antigens of the recipient that are foreign to
the donor. These antigens can be defined by the major histocompatibility complex, a highly polymorphic genetic
region determining class I and class II antigens. Class I antigens are present in all cells of the organism, and
class II normally only in hematopoietic cells. They may be expressed in other cells if these are affected by
inflammation or injury. CD4-positive T cells exert GVH reactions against cells expressing class II antigens, and
CD8-positive T cells act against class I antigens [13]. Differences in both antigen classes can induce severe and
rapidly fatal GVHD. Polymorphic proteins not encoded by the major histo-compatibility complex may also cause
severe GVH reactions. Peptides of these proteins can be presented by MHC class I and class II antigens. In
general, MHC class I presents peptides of endogenous proteins of the cell, whereas class II antigens present
peptides of exogenously acquired proteins [14,15]. Here, minor histocompatibility (mHA) directed CD8 T cells
require help from CD4 T cells for expansion and generation of memory T cells [16]. Therefore, reactions against
mHA require a longer phase of immune recognition and activation than reactions against MHC antigens. Class II
antigens are mainly expressed in hematopoietic progenitor cells, and in the case of injury and inflammation they
may be expressed in non-hematopoietic cells as well. Reactions directed against class II antigens may induce
severe marrow aplasia [17]. 

The mechanism of initiation of acute GVHD is not entirely clear; the preconditions are given before
transplantation [18]. Much has been explained and published on cytokines and the cyto-kine storm liberated by
intensive conditioning treatment, including high dose radiation and chemotherapy [19]. The role of cytokine
release is confirmed by the suppression of acute GVHD using TNF-a antibodies [20]. There is some evidence
that the systemic release of IFN-g leads to the secretion of chemokines in organs affected by GVHD and
attracts activated T cells. In transgenic mice carrying the T cell receptor for ovalbumin the distribution of T cells
was dependent on whether the antigen was given alone or together with lipopolysaccharide (LPS). Intravenous
injection of antigens alone homes the T cells to secondary lymphoid tissue where they produce IL2, whereas
injection of a combination of antigens and LPS homes the T cells to the lung, liver, gut, and skin where they
produce IFN-g [21]. Systematically activated T cells produce interferons and induce chemokines in GVHD target
organs [22]. However, the “danger signal” brought about by LPS may not be necessary, since in human
patients donor lymphocyte transfusion may produce GVHD without conditioning treatment and infection [23].

The host's antigen presenting cells survive the conditioning treatment for various periods of time, with the
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most efficient cells being dendritic cells, but B cells, macrophages and other cells present antigens as well.
Whereas dendritic cells in the blood of the host are rapidly re-placed by those of the donor, data on chimerism
of dendritic cells in tissues are controversial [24]. Cytokine release by the host's activated dendritic cells and the
graft's T cells is part of the initiation of GVH reactions (Fig. 2), and may be powerful enough to induce fatal
GVHD even in the absence of histoincompatibility [25]. In general however, histocompatibility differences are
necessary to induce and maintain GVH reactions. These histocompatibility differences may be of the major
histocompatibility complex (MHC) class I or class II involving CD4- or CD8-positive T cells of the graft, and
minor histocompatibility differences requiring profes-sional antigen presentation by dendritic cells of the host.
GVHD occurring in the skin, liver, and gut requires dendritic cells expressing class I [26]. There is a possibility of
cross presenta-tion of host antigens by donor dendritic cells, but their effects are inferior to direct presentation
[27].

In contrast to cases involving the transplantation of solid organs, immunosuppressive therapy can be
discontinued 3–6 months after transplantation in most patients receiving hematopoietic stem cell transplants,
although patients who develop chronic GVHD may require therapy for several years. The host’s immune system
is continuously suppressed by the graft, and the graft becomes tolerant towards the host. The mechanism of
tolerance has been related to the occurrence of non-specific and specific suppressor cells followed by clonal
deletion [28-30]. In DLA-identical canine chimeras tolerance could not be abrogated by the transfusion of donor
lymphocytes unless the donors were immunized against the recipient [31]. Refractoriness to donor lymphocytes
inducing GVHD develops at about two months after T cell depleted transplantation [32]. It may occur earlier in
dogs transplanted with marrow depleted of T cells by CD6-antibody sparing NK cells [33]. NK cells can inactivate
host dendritic cells and thereby prevent GVHD in mice [34]. Besides depletion of T cells and dendritic cells in the
graft and the host, responder cells to antigen stimulation may respectively be eliminated by subsequent
chemotherapy with methotrexate or cyclophosphamide. Cyclophosphamide can be given in rather high doses
after transplantation without jeopardizing engraftment [35]. Modulation and suppression of GVH reactions has
been shown for fractions of marrow cells such as mesenchymal stromal cells [36], NK-T cells (NKT1.1) [37], and
regulatory T cells [11]. 

The results of animal models are highly informative with respect to the principles and me-chanisms of GVHD,
but they also have their limitations. Apart from species-specific regulato-ry mechanisms of hematopoiesis and
the immune system, animals are mostly young, have grown up in a protected environment, and are free of
disease for which clinical transplantation is undertaken. In contrast, human patients are commonly older, have a
history of infections and most likely a number of latent viral infections, and are possibly allo-immunized by
previous transfusions and pregnancies, as are their donors. Moreover the primary disease and its treatment
have a major impact on the transplant course.

The role of the immune repertoire of donor and host is still poorly defined. Female donors produce more GVHD
and GVL in male recipients; most likely due to immunization during pregnancies by antigens derived from the
fetuses' father [38]. Conversely, central memory T cells produce less GVHD than naïve T cells, indicating that
the GVH reaction in most cases is a primary reaction [39]. Presumably central memory T cells cannot be
involved in new primary reactions; there is also a risk that central memory T cells may produce vigorous GVHD
when they recognize the antigen against which they developed. Alternatively they could be regulated by
regulatory T cells.

Genetics

Selecting an HLA-identical sibling as donor was the major step towards successful stem cell transplantation.
Selecting the donor within a family by typing for HLA-A, -B and DR-antigens is sufficient for successful
transplantation, since antigen typing defines the haplotypes inhe-rited from the parents. Unlike identity by
inheritance, selection of an unrelated donor relies on the most accurate typing of as many loci as possible. In
general genetic definition of alleles of 10 HLA-loci is required to select a matched donor [40]. Severe GVHD can
occur with any form of mismatch, but graft failure is less serious with mismatches for HLA-alleles than for the
broader HLA-antigens [41]. In multiple mismatches the impact of various HLA-loci (A, B, C, DR) was similar,
with the possible exception of HLA-DQ, which was less important. Notewor-thy is a possible racial difference in
the role of HLA-C; in Japanese populations HLA-C has a lesser effect on GVHD than other HLA-loci [42]. In
Caucasian populations HLA-C is as impor-tant for GVHD as other HLA-antigens [43]. The linkage disequilibrium,
i.e. the occurrence of two antigens together, is more frequent than expected by the antigen frequency, is high
for HLA-B and -C as well as for HLA-DRB1 and DQB1; therefore isolated mismatches are infre-quent. The
linkage disequilibrium of HLA-DP with HLA-DRB1 is rather low, and differences of HLA-DP do not carry an
additional risk for GVHD. They may, however, have an effect on the graft-versus-leukemia activity [44].

Presently little is known about permissible HLA-mismatches that allow for the development of tolerance. There
may be racial differences as shown for HLA-C in Japanese as compared to Caucasian populations. In general
HLA-mismatches are more permissible in patients with advanced disease than in patients with early disease. An
allele mismatch may produce se-vere GVHD in a patient in chronic phase CML, but it may not have an effect in a
patient with relapse of leukemia [43]. Cytokine levels and cytokine receptors are coded for by genes of the
major histocompatibility complex. Sequence polymorphisms of genes for tumor necrosis fac-tor alpha (TNF-a),
IL-6 and interferon-gamma (IFN-g) are different in persons with different racial backgrounds, i.e. Caucasians,
Africans, and Cubans [45]. There have been several al-leles defined for both the TNF-a locus and the TNF-a
receptor II locus that are associated with an increased risk of GVHD. Contrary to the pro-inflammatory cytokine
TNF-a, IL-10 has anti-inflammatory effects. Polymorphisms of the promoter of IL-10 had an impact on GVHD.
High levels of IL-10 correlated with a lower risk of GVHD.

Genetic factors outside of the HLA-complex may also be involved in the pathogenesis of GVHD. In the analysis
of the gene expression profiles of donor cells, a particular role of transforming growth factor beta for chronic
GVHD has been found [45]. In patients transplanted for chronic myelogenous leukemia [46] polymorphic alleles
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GVHD has been found [45]. In patients transplanted for chronic myelogenous leukemia [46] polymorphic alleles
of TNF-receptor in the patient and certain alleles in IL10 and IL1 receptor in donor lymphocytes were associated
with an in-creased risk of GVHD and decreased survival. A genetic factor associated with inflammatory bowel
disease had an impact on GVHD (NOD/Card1) [47]. However, the effect could be dimi-nished if the gut was
microbiologically well decontaminated. Antimicrobial prophylaxis de-creases the risk of GVHD without the GVL
effect deteriorating. 

There is good evidence that minor histocompatibility antigens play a role in GVHD and GVL reactivity [48,49].
However, a recent analysis of the role of minor antigens in HLA-matched unrelated transplants by the NMDP did
not find an impact of minor HA differences on the out-come of allogeneic stem cell transplantation [50].

Clinical features

Acute GVHD

GVHD was described and classified in the '70s [51,52], when most patients were conditioned with total body
irradiation. Skin is the organ most frequently affected; a maculopapular rash is common. This rash starts
frequently in the upper thorax, arms, and face, but it can occur elsewhere and spread over the whole body.
Features range from a maculopapular rash to general dermatitis with blisters and epidermal necrolysis.
Histological findings are degenera-tion and apoptosis of the basal cells, dyskeratosis and lymphocytic infiltration.
Involvement of the gastrointestinal tract is clinically characterized by diarrhea, malaise and vomitus; diarrhea
may be severe with several liters of liquid and bloody stools. Histological findings are flatten-ing of the mucosa
with debris in crypts (crypt abscesses); the most frequently affected part is the ileum. GVHD of the liver is
characterized by jaundice and increases of liver enzymes. Histologically the Glisson triads are infiltrated, and the
bile ducts are destroyed by infiltrating lymphocytes. Unfortunately none of the histological signs are diagnostic
— viral infections and drug reactions may present similar features. Nevertheless biopsies may be indicated in
order to exclude other diagnoses with characteristic signs and to obtain material for microbio-logical studies.

Despite prophylactic treatment with immunosuppressive drugs the prevalence of acute GVHD of all grades of
severity is high, with a rate of 40–60% in patients with an HLA-identical sibling donor and 60–90% with a
matched unrelated donor. Only at a severity of grade 2 and higher is additional immunosuppressive treatment
required: this equates to 40–70% of patients. Another grading system was designed by the International Bone
Marrow Transplant Registry IBMTR and validated in two studies [53,54]. This grading system does not take into
account the clinical performance as does the system of H. Glucksberg [51]. No advantage of one system over
the other has been shown [54]. In both grading systems microangiopathy has not been scored as a form of
acute GVHD; microangiopathy is characterized by red cell fragmentation, high levels of serum lactate
dehydrogenase and thrombocytopenia. It is more frequent in patients treated with calcineurin inhibitors [18] or
sirolimus, and resembles thrombotic thrombocytopenic purpura, but polymers of von Willebrand factor have not
been found [55].

Table I. Acute GVHD. Diagnostic criteria according to H. Glucksberg

Stage Skin maculopapular rash Liver bilirubin Gut diarrhea

+  < 25% body surface area 2 - 3 mg/dl > 500 ml

++ 25 - 505 BSA 3,1 - 6 mg/dl > 1000 ml

+++ Generalized erythroderma 6,1 - 15 mg/dl > 1500 ml

++++ General erythroderma with bulla formation and desquamation > 15 mg/dl Severe abdominal pain w/wo ileus

Cell Ther Transplant. 2012;2:e.000089.01. doi:10.3205/ctt-2012-en-000089.01-table1

 

Table II. Acute GVHD. Diagnostic criteria according to H. Glucksberg

Cell Ther Transplant. 2012;2:e.000089.01. doi:10.3205/ctt-2012-en-000089.01-table2

Grade of aGVHD Skin Liver: Gut: Clinical performance

I + - ++ bilirubin < 2,0 mg/dl No diarrhea Ok

II + - +++ 3,1 - 6 mg/dl Diarrhea > 500 ml Mild decrease

III ++ - +++ 6,1 - 15 mg/dl > 1000 ml Marked decrease

IV ++ - ++++ > 6,1 mg/dl > 1000 ml Severe decrease

Cell Ther Transplant. 2012;2:e.000089.01. doi:10.3205/ctt-2012-en-000089.01-table2

Chronic GVHD

Acute GVHD may resolve completely with immunosuppressive treatment or it may lead to chronic GVHD.
Chronic GVHD may also develop de novo without prior acute GVHD within a year from transplantation. Chronic
GVHD involves most frequently the skin with lichenoid and sclerotic changes, the nails with dystrophy, the eyes
with keratoconjunctivitis, the mouth with dryness and paradontosis, the vagina with dryness and sclerosis, liver
and lungs. The clinical features of chronic GVHD resemble autoimmune diseases like lupus erythematodes,
Sjögren syndrome, and biliary cirrhosis in many aspects. Characteristically there is hypogammaglo-bulinemia
with loss of IgA, and lymphopenia, but there may also be hypergammaglobulinemia and eosinophilia.
Thrombocytopenia is a sign of poor prognosis; another factor of poor prognosis is involvement of the lungs,
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Thrombocytopenia is a sign of poor prognosis; another factor of poor prognosis is involvement of the lungs,
which may be in the form of late interstitial pneumonitis and fibrosis or obliterating bronchiolitis. As a rule lung
involvement is progressive and carries the risk of severe infections. The skeletal system may be involved in form
of fasciitis, muscle dystrophy, tendinitis, and contractures. Transplant vasculopathy is a problem of solid organ
transplants: in stem cell transplanted patients vasculitic changes in the CNS have been observed and vascular
events can be seen in young patients [56] without other risk factors.

Overlapping GVHD

Besides the clinical features, acute and chronic GVHD have been defined by the time of oc-currence: acute
GVHD in the first weeks and months, and chronic GVHD after day 100. This definition has been challenged by
the introduction of cyclosporine A for immune suppression and conditioning with reduced intensity. Following
discontinuation of cyclosporine A, a flare of acute GVHD may occur, and following reduced intensity
conditioning, acute GVHD may occur late. Similarly, late onset of acute GVHD has been observed after
prophylactic treat-ment with TNF-antibody during conditioning [20]. Obviously the activation of T cells is
delayed by reduced intensity conditioning and prophylactic treatment, with TNF-antibodies leading to late acute
GVHD.

Prophylaxis of GVHD

Some form of prophylaxis of GVHD is absolutely necessary even in HLA-identical sibling transplants, as
hyperacute GVHD was seen in every patient with engraftment [57]. T cells are responsible for GVHD and
depletion of T cells from the transplant was very successful in an-imal models [58,59]. In the clinical setting
GVHD could be prevented or suppressed [60,61] effec-tively. Antithymocyte globulin (ATG) has a broad
specificity, recognizing not only T cells, but other mononuclear cells as well. The monoclonal antibody
alemtuzumab recognizes CD52, an antigen that is present in many leukocytes including lymphocytes,
monocytes, and den-dritic cells; alemtuzumab has broad activities despite its specificity. In humans [62] as in
dogs [63] the number of clonable T cells should be below 105/ kg body weight for effective prevention of GVHD.
So far more selective depletion of T cells has not improved the overall results of transplantation [64], and
depletion of CD8 has been insufficient in preventing GVHD [65]. CD6 has the advantage of sparing most of the
NK cells in the transplant [64]. In dogs CD6-depleted marrow suppresses alloresponses [66] and recipients of
CD6-depleted marrow tolerate donor lymphocyte transfusions earlier than recipients of marrow treated with
absorbed ATG [33].

However, the advantage of ex vivo T cell depletion was offset by a high rate of graft rejection, relapse,
infections, and EBV-associated post transplant lymphoproliferative disease (PTLD) [67,68]. Treatment of the
patient prior to transplantation with ATG prevents rejection; T cell anti-bodies persist in the patient for 4–5
weeks and deplete T cells of the graft in vivo. A rando-mized study comparing standard post-grafting immune
suppressive treatment with and with-out ATG prior to transplantation showed lower rates of acute and chronic
GVHD in the group treated with ATG [69]. A beneficial effect of ATG in the conditioning treatment for chronic
GVHD has also been observed in Italian studies [70] and in retrospective analyses of non-randomized studies
(own unpublished observations). 

Alemtuzumab also persists in the patient for a prolonged period of time, and reconstitution of T cells is delayed
for 6–9 months [71]. Severity of GVHD is low in patients treated with alemtu-zumab, but graft failures have
been observed [72]. There is also an increased risk of viral infec-tions, particularly cytomegalovirus, and
insufficient response of the malignant disease. These deficiencies can be compensated at least partially by the
transfusion of donor lymphocytes [73].

In the last decade G-CSF mobilized peripheral blood stem cells (PBSC) have replaced mar-row in most
instances. PBSC contain enormous amounts of T cells and depletion of T cells has been largely unsuccessful.
Surprisingly, transplantation of PBSC is not associated with an increased risk of acute GVHD, but is instead
associated with a more rapid engraftment and an increased risk of chronic GVHD [74]. PBSC may be preferable
for patients with advanced disease and elderly patients. Conversely, T cell depletion and marrow transplantation
may be the preferred treatment for patients with early disease, non-malignant disease, and patients who are
younger.

Other approaches to prevent GVHD use specific conditioning regimens [37] or specific cells to induce
transplantation tolerance. Low dose total lymphoid irradiation in combination with ATG may spare natural killer T
cells in the marrow and regulatory T cells suppressing GVHD, but allow graft-versus-leukemia/lymphoma
effects. The addition of regulatory T cells to the graft has suppressed GVHD without inhibiting GVL effects in
mice [75] and recently in humans (Martelli F, Plenary session ASH 2009). Another immunosuppressive cell
product are me-senchymal stromal cells, which have been successful in the treatment of severe GVHD [76]. Co-
transplantation of mesenchymal stromal cells prevented rejection in HLA-haploidentical transplants [77] and
GVHD was less severe, but the difference did not reach significance be-cause of low numbers. We have used
CD6-depleted PBSC transfused 6 days after trans-plantation of unmodified marrow from HLA-haploidentical
donors with a low rate of acute GVHD [78].

Post-graft immunosuppressive treatment with either methotrexate or cyclophosphamide has been used since
the early days of stem cell transplantation. Both agents preferably kill proli-ferating cells and should be started
early after grafting. These drugs suppress donor cells proliferating in response to host antigens as well as
residual host cells responding to the graft. They sustain engraftment and suppress GVHD at the same time.
They induce transplantation tolerance by killing the responsive cells, and therefore patients with incomplete
responses usually take a disastrous course. A recent application of this principle is the use of large doses of
cyclophosphamide 3 and 4 days after HLA-haploidentical transplantation [35,79]. 



The introduction of the calcineurin inhibitors cyclosporine A and tacrolimus has also changed the outlook for
these patients. Both drugs inhibit the activation and proliferation of T cells by inhibiting dephosphorylation and
translocation of the nuclear factor of activated T cells (NFAT). The continuous inhibition is effective in
suppressing GVHD and rejection, but the effect is not necessarily maintained after discontinuation of treatment;
calcineurin inhibitors are less potent in the induction of transplantation tolerance [80]. Treatment should be
started prior to transplantation in order to avoid antigen recognition and T cell activation. Tacrolimus is a
somewhat stronger immunosuppressive than cyclosporine A and possibly less neurotoxic. However, in
controlled studies comparing tacrolimus and cyclosporine A less severe GVHD was not associated with improved
survival [81].

The combination of cyclosporine A and methotrexate is better than either drug alone [82]. It has become the
gold standard of GVHD prophylaxis. In recent years mycophenolate mofetil (MMF) has been introduced to
replace methotrexate [83]. MMF inhibits the purine synthesis and the de novo pathway of guanosine nucleotide
synthesis; it kills not only proliferating T cells, but also T cells in the interphase. MMF produces less mucositis
and less marrow toxicity than methotrexate. However the best regimen and timing (2–3 times per day) remains
unknown. 

Sirolimus binds to the tacrolimus binding protein FKBP12 and forms a complex with mTOR (target of rapamycin)
that inhibits several signal transduction pathways including PTEN, PI3kinase and AKT as well as the JANUS
kinase pathway. Thereby it produces several ef-fects including immunosuppression of T cells, anti-angiogenesis
and inhibition of tumor growth [84]. Its immunosuppressive activity is presumably linked to the suppression of
the second signal of T cell activation. This way T cell apoptosis and specific peripheral non-responsiveness may
be induced [85]. Th1 cells and their cytokines are more affected by siroli-mus than Th2 cells and regulatory T
cells [86,87]. The sirolimus/mTOR complex inhibits the ac-tivation signals of CD28 and CD40L stimulation and
thereby the second signal essential for T cell activation [88], a situation that may lead to transplantation
tolerance. The combination of sirolimus and tacrolimus is synergistic and has shown little toxicity [89], but
veno-occlusive dis-ease of the liver and thrombotic microangiopathy have been observed [90]. The combination
of sirolimus and MMF was promising in a smaller group of patients, where VOD and TMA were not observed
[91].

The goal of preventing GVHD is the induction of tolerance in both directions, the host-versus-graft and graft-
versus-host direction. Contrary to transplantation of solid organs, stem cell transplantation induces self-
sustained tolerance without life-long immunosuppressive therapy. As a rule, a period of 4–6 months of
immunosuppressive therapy is sufficient for tolerance to become established. In clinical terms tolerance is
evident by persistent chimerism without GVHD and without severe infections more than 30 days after
discontinuation of immunosuppression.  

Treatment

Glucocorticoids

Despite prophylactic treatment with immunosuppressive agents, acute GVHD requiring addi-tional treatment
occurs in 40–80% of patients within 3–4 weeks of transplantation [92]. Corti-costeroid therapy is the standard
of treatment for acute GVHD, but the regimen and the do-sage is still under discussion. Originally, treatment
with large doses was favored [93], but there are no controlled studies to support this treatment. Similarly, in
organ transplantation, rejection crises are treated with bolus methylprednisolone without prospective
randomized trials supporting this. Despite this general use there are only a few studies on the schedule and the
dosage rates. A randomized Italian trial comparing 2mg/kg per day with 10mg/kg per day showed no advantage
for the higher dose [94], however 50% of patients were switched to a high dose because of insufficient
response. Recently, a retrospective study from Seattle indi-cated that even lower doses of corticosteroids
(1mg/kg instead of the standard 2 mg/kg) can be given without disadvantage [95]. However the patients of the
low dose group had more fa-vorable risk factors and less severe GVHD; in addition oral non-absorbable
corticosteroids were given more frequently.

The mechanisms of the actions of glucocorticoids are still not fully understood, lymphopenia is mainly due to
sequestration of lymphocytes, and less to lympholysis. However, glucocorti-coids exhibit strong anti-
inflammatory effects in several ways including genomic and non-genomic pathways [96]. Glucocorticoids are
bound to a receptor from which heat shock protein 70 is released. The glucocorticoid complex activates anti-
inflammatory proteins directly and their production genomically. Inhibition of nuclear factor kB is highly sensitive
to glucocortico-ids preventing the production of inflammatory proteins. Sensitivity to the treatment with glu-
cocorticoids may be determined by the relative levels of glucocorticoid receptor α and ß. This may explain
interpatient variation of sensitivity [97]; memory T cells [98] as well as mature den-dritic cells are less sensitive
to glucocorticoids. In macrophages low doses of glucocorticoids stimulate the production of proinflammatory
cytokines, whereas high doses suppress it [99]. High dose glucocorticoid therapy given for few days has shown
little immune suppression in vivo [100]. 

Commonly treatment is started in patients with clinical grade II–IV severity of GVHD. About 40–50% of patients
respond with resolution or improvement of clinical symptoms [92]. The re-mainder are classified as “steroid-
refractory”. The time until refractoriness to glucocorticoids is stated may vary from 5 to 14 days [101]. Many
centers increase the dose of steroids in re-fractory patients prior to the addition of other agents. We prefer to
start with rather high doses of glucocorticoids (1–2mg/kg every 8 hours) and score the response after three
days of treatment for refractoriness. This way we initiate secondary treatment early in refractory pa-tients. The
decision to start the treatment is made by two physicians. In the case of a pro-gressive and characteristic skin
rash the diagnosis is not difficult, but in cases of isolated ga-strointestinal GVHD with diarrhea and nausea or



rash the diagnosis is not difficult, but in cases of isolated ga-strointestinal GVHD with diarrhea and nausea or
isolated hepatic GVHD the diagnosis may be more difficult. Persistent toxicity of the conditioning treatment,
veno-occlusive disease of the liver, drug-induced changes and viral infections are considered as differential
diagnosis. In our centre skin biopsies are regularly performed, biopsies of gut and liver are only made in
patients that do not respond to the treatment. This way we obtain not only histological con-firmation of the
clinical suspicion, but also information about viral infection. Concomitant vi-rostatic treatment is given to
patients with biopsies positive for viral infection as well as those that are seropositive for cytomegalovirus.
Another option is the use of high doses of iv immu-noglobulins that may inhibit the deleterious effects of FAS
by their blockade of FAS-L [102]. Al-though their immune modulating effects are far from understood [103],
20–30% of patients with skin GVHD do respond to the treatment with iv immunoglobulins. In any case early
treatment is important as delay of the start of treatment until the results of laboratory investigations are
available may jeopardize the response to glucocorticoids.

The effect of systemic glucocorticoids on gastrointestinal GVHD can be improved by local treatment with
beclomethasone [104] and budesonide [105].

Antibodies

In many instances the first choice in patients with steroid refractory GVHD has been immu-nosuppressive
antibodies. Antithymocyte globulin (ATG) has been used in several uncon-trolled studies with some success
[106], but in controlled studies a beneficial effect could not be demonstrated [107]. Similarly, OKT3 is a
monoclonal antibody against CD3 on T cells: it dep-letes T cells and stimulates proliferation by its mitogenic
activity. Even though many patients have responded to the treatment with OKT3 with complete remission of
GVHD, better surviv-al could not be demonstrated in controlled clinical trials [108]. Alemtuzumab has been used
mainly for prophylaxis of acute GVHD by treating the patient in vivo or the graft prior to transplantation ex
vivo: recently beneficial outcomes of treatment of established GVHD have been reported in two uncontrolled
studies [109,110]. Viral infections may complicate treatment with alemtuzumab; therefore regular control and
pre-emptive treatment is necessary. ATG and OKT3 both stimulate proliferation of lymphocytes that are not
killed by cytolysis; there-fore the combination of antibody treatment with chemotherapy (methotrexate,
Cyclophos-phamide, mycophenolate mofetil, etc.) may be beneficial. A humanized CD3-antibody (visili-zumab)
produced good first results [111] which unfortunately were not confirmed in multicenter trials [112]. In those
patients the reactivation of EBV and the incidence of post transplant lym-phoproliferative disease (PTLD)
increased. 

Encouraging results were also reported with ABXCBL, an antibody against CD147 that is ex-pressed in
activated T cells [113]. However in a comparative study ABXCBL was not better than ATG, where survival was
even inferior [114]. 

Antibodies against tumor necrosis factor α (TNF-a) and soluble receptors of TNF-a (etaner-cept) have been
studied in the prophylaxis of GVHD [20] and the treatment of steroid refractory GVHD [115]. There has been a
high rate of complete response to infliximab even in gastrointes-tinal GVHD, but this is complicated by an
increased risk of fungal infections [116,117]. Contrary to infliximab etanercept neutralizes soluble TNF-a without
affecting TNF-a in phagocytic cells. Etanercept is associated with a lower risk of fungal infections. The
combination of etanercept with an anti-IL2-receptor antibody showed high response rates to acute GVHD, but
the long-term survival was rather poor [118]. In comparison, a pilot trial of etanercept in combination with
tacrolimus and steroids gave a 75% complete response and a 50% survival rate [119]. When comparing
etanercept combined with steroids to steroids alone a significantly better response to the combination was
observed [120]. The combination of etanercept with ATG and tacrolimus was compared to ATG and tacrolimus
alone [121]; considering the limited number of patients the response and the survival of patients given
etanercept was better. Neutralization of TNF-a released by the ATG treatment by etanercept may have been
contributing to the better outcome. 

Antibodies against IL-2 receptor have been studied early [122] with some transient success. The importance of
an early treatment start was stressed. Several studies with humanized anti-IL2-receptor antibodies were
encouraging [123,124], but a randomized study was stopped prematurely because of inferior survival of the
antibody (daclizumab) group [125]. There is little doubt that the IL2- receptor antibody is effective in
suppressing GVHD of the skin and the gut when started early, but it may have an adverse effect on the
generation of regulatory T cells expressing high levels of the IL-2 receptor.

Alefacept is a fusion protein of the CD2-binding domain of LFA-3 and the Fc portion of IgG with specific
activities against memory T cells [126]. Promising results in steroid refractory acute GVHD and in chronic GVHD
have been reported, but there may be an increased risk of viral and fungal infections [127].

Recently, the role of B cells has been discussed more frequently, although the role of T cells in GVHD is not
disputed. However, cytotoxic antibodies may be produced in HLA-mismatched chimeras, and depletion of B cells
may prevent EBV-induced B cell lymphoma. Single patients have been reported to show a response to steroid
refractory GVHD to the treatment with rituximab [128].

Drugs

As a rule the treatment given for prophylaxis is continued during the treatment of established GVHD, and
includes glucocorticoids at a low level. Depending on the prophylactic regimen, cyclosporine A may be
substituted by tacrolimus and new drugs may be added. In most Eu-ropean centers a calcineurin inhibitor is
combined with methotrexate or mycophenolate mofe-til. In patients not treated prophylactically a trial with
mycophenolate mofetil may be justified; a response rate of 47–48% has been reported in steroid refractory
GVHD, but the survival at 6 and 12 months was not improved [129]. Methotrexate on a weekly basis in low



GVHD, but the survival at 6 and 12 months was not improved [129]. Methotrexate on a weekly basis in low
doses has been helpful in single cases. Mucositis and myelosuppression are limiting factors. 

Similarly, sirolimus can be used for patients not treated prophylactically, as response rates of 77% overall and
44–72% complete response have been reported [130,131]. Again microangiopa-thy has been a problem, but
could be controlled by discontinuation of the calcineurin inhibitor (CNH) or both sirolimus and CNH. A small
study suggests a good response of acute GVHD to sirolimus without prior treatment with glucocorticoids [132].
Due to its anti-tumor activity siro-limus is preferred to calcineurin inhibitors and glucocorticoids by many
investigators [133], par-ticularly in patients with lymphoma [134]. 

Pentostatin is an inhibitor of the salvage pathway of thymidine kinase that is specific for T cells. Phase I studies
have shown efficacy in the treatment of steroid-refractory GVHD [135]. A retrospective analysis has shown
activity comparable to other immunosuppressive regimens [136]. However, pentostatin has shown activity in
the treatment of chronic GVHD [137,138]. Pentostatin may have better effects in patients with chronic GVHD. 

Thalidomide [139,140] and more recently lenalidomide [141] have been studied in the treatment of GVHD. The
initially positive results of treatment with thalidomide in chronic GVHD [139] were not confirmed in a randomized
study [140]. The treatment of recurrent myeloma with lenalido-mide suggested an immune modulatory effect of
lenalidomide in producing regulatory T cells [141].

Bortezomib has been tested in mice [142] and patients with HLA-mismatched unrelated donors [143]. The
immunomodulatory effect has been related to the suppression of monocyte-derived dendritic cells and modified
antigen presentation and release of TNF-a from CD4-positive T cells [142]. It has shown promising activity in
the prophylaxis of GVHD [143]. 

After the description of activating antibodies against the receptor of platelet derived growth factor (PDGF) [144]
in patients with systemic sclerosis similar antibodies were found in patients with sclerodermatous chronic GVHD
[145] and several groups have treated sclerodermatous chronic GVHD [146,147], as well as obliterating
bronchiolitis with imatinib [148,145]. In one study more than 70% of patients with sclerotic chronic GVHD
responded with partial and complete remissions [147].

Cells

Many treatment regimens of GVHD favor the development of regulatory T cells characterized by the expression
of CD 4 and CD25 in high density [149]. The suppressive activity is limited to cells of the CD4/CD25 immune
phenotype that are positive for FoxP3 mRNA. Typically regulatory T cells should be negative for the IL7 receptor
(CD127). Immunomagnetically selected regulatory T cells have been tested in vitro for immunosuppressive
effects [149,150], and preliminary applications for the treatment of refractory GVHD have been promising (M.
Edinger, pers. comm.). The first results of preventive application have been reported (Di Ianni et al. ASH 2009);
17 of 20 evaluable patients did not produce GVHD after HLA-haploidentical stem cell transplantation despite
admixture of a limited amount of conventional T cells to the CD34-selected graft. 

More information is available on the treatment of refractory GVHD with mesenchymal stromal cells [76]. The
results were confirmed in a multicenter study of the EBMT involving [151] 55 patients with steroid-refractory
GVHD. Twenty-seven patients received one dose, 22 two doses and 6 three doses and more from HLA-
mismatched or HLA-matched donors for treatment; 30 patients had a complete response, and an improvement
was seen in 9 patients. Responders had a better chance of survival than non-responders. Mesenchymal stem
cells have multiple properties including differentiation into bone, cartilage, tendon and muscle cells, repair of
damaged tissue and modulation of immune responses [36].

UV light

Ultraviolet light has immunosuppressive properties [152]. UV-A in combination with 8-methoxypsoralen (PUVA)
has been used to treat chronic GVHD [153]. UVA may be applied to the skin in combination with oral psoralen
or with a bath in psoralen containing water. PUVA treatment was studied in 103 patients with steroid-resistant
acute GVHD [154] with good res-ponses in GVHD of the skin and sparing of glucocorticoid doses. The
treatment was well to-lerated, but it may induce a flare before lichenoid skin changes respond to the treatment.
In chronic GVHD 31 of 40 patients had an improvement following PUVA treatment, but partial and complete
responses were limited to the skin [155]. Best responses were seen in the liche-noid phases of chronic GVHD,
and less in the sclerodermatous phases.  However, the com-bination of PUVA bath with oral isotretinoin has
been effective in a small study of scleroder-matous chronic GVHD: 11 of 14 patients responded, four of these
with complete remission [156]. 

Alternatively PUVA may be applied directly to the blood resp. leukocytes separated by a dis-continuous blood
cell separator (extracorporeal photopheresis, ECP). Responses to ECP have been reported for steroid-
refractory, acute GVHD [157-159] and chronic GVHD [160]. Complete resolution of acute GVHD of the skin in
82%, liver in 61% and gut in 61% of pa-tients has been reported [158]. Response was associated with better
survival. In our own study of 30 patients with acute GVHD, 20 patients responded with CR and PR defined as
steroid discontinuation and reduction to 10 mg or less per day respectively (unpublished). Eleven of 20
responders survived as compared to only one non-responder. Steroid treatment was a major risk factor in the
treatment of acute GVHD of pediatric patients [161]. In a single centre study on steroid refractory chronic
GVHD 22% of patients could discontinue steroid therapy after one year, with response to ECP and absence of
thrombocytopenia being the favorable factors for survival [160]. A randomized prospective multicentre study
[162] comparing standard treatment with standard treatment plus ECP showed improvement of the skin score
and sig-nificant steroid sparing. ECP is a good treatment option in patients with steroid-refractory acute and
chronic GVHD with little side effects. The mechanism of the immunosuppression by ECP is not completely



chronic GVHD with little side effects. The mechanism of the immunosuppression by ECP is not completely
understood as only 5–10% of all T cells may be reached by extra-corporeal irradiation. However, a shift of
dendritic cells from activating DC1 to down-regulating DC2 and from Th1 to Th2 has been described in the
course of ECP [163]. Ex vivo a decrease of T cells producing pro-inflammatory cytokines was described [164].
In a murine model ECP-treated T cells induced regulatory T cells in recipients with established GVHD [165]. An
increase in the proportion of regulatory T cells was observed in patients that responded to ECP [166]. 
Therefore ECP may be one method to induce GVH-tolerance without too many side effects.

Induction of graft-versus-host tolerance

Unlike transplantation of solid organs, transplantation of hematopoietic stem cells induces transplantation
tolerance, enabling immunosuppressive therapy to be discontinued. In the form of central tolerance, lymphoid
progenitor cells derived from transplanted stem cells tra-vel to the thymus where T cells tolerant to the host’s
tissue are produced [167-169]. However, the thymus shows progressive involution in adulthood; central
tolerance may be the major form of tolerance in children and young adults. The majority of patients subjected
to stem cell transplantation are older, and the thymus has shrunk to a small remnant. Therefore in the majority
of our patients a peripheral form of tolerance prevails, but function of the thymus can be recovered even in
elderly individuals [170]. Several studies have been performed to speed up recovery of the thymus, mostly
without convincing success [171], but new agents may give better results [172,173,169]. However, GVHD may
affect the thymus [174] and thereby may inhibit the induction of central tolerance in both young and adult
patients. Peripheral tolerance is a first step and may be replaced by central tolerance with time. The mechanisms
of tolerance may be similar, clonal deletion, clonal anergy, and suppression. 

Clonal deletion is a mechanism of self tolerance occurring in the thymus [175]; in the case of allogeneic stem cell
transplantation T cells of donor origin derived from lymphoid progenitors may be eliminated by the same
mechanism and primed towards host MHC antigens in se-miallogeneic hosts [176]. Deletion in the periphery
may be accomplished by the treatment with antimetabolite drugs such as methotrexate, or cycle active drugs
like cyclophosphamide; both of which have been shown to induce tolerance in stem cell transplanted patients
[177,178]. The principle of selective depletion of responsive lymphocytes has been applied more recently in
HLA-haploidentical transplantation [179]. Unlike these cytotoxic agents calcineurin inhibitors do not kill the
responsive cells, but inhibit cytokine production and thereby the progress of the immune response. However
they may not favor the induction of tolerance; flares of GVHD have been observed after discontinuation of
cyclosporin A, and late rejection of marrow grafts have been reported in single patients with aplastic anemia.
Activation induced cell death (AICD) is a natural decrease of the clone size by IFN-g secretion of mature Th1 T
cells and death of immature T cells, which may be achieved by the external pathway.   

Clonal anergy may be the result of competitive inhibition by anergic T cells or active sup-pression by a variety of
suppressor cells. Formerly, CD8-positive T cells were considered “cytotoxic/suppressor” cells, but the evidence
for specific suppression was weak. Instead, several mechanisms of suppression have been described including
“veto” cells suppressing the immune reaction against themselves [180]. The veto mechanism, described as the
effector cells inhibiting or killing themselves has been primarily ascribed to CD8-positive T cells, but later also to
other cells including stem cells. CD8-positive suppressor cells may not only func-tion as veto cells, but they may
also suppress third party reactions by the secretion of FAS [181]. Other cells with suppressor function are
myeloid derived suppressor cells [182], NKT cells in the marrow [183], NK cells [184], dendritic cells type 2
[185] and mesenchymal stromal cells [76]; all of them suppress activated T cells more or less specifically. Some
of these have already shown clinical effectiveness [183,76], others are still in a developmental state. In recent
years the detection of FoxP3 (forkhead transcription factors) showed suppressive function of CD4, CD25
positive T cells and even CD8 T cells [186]. Naïve CD4, CD25-positive regulatory T cells are able to down
regulate allogeneic immune responses without inhibiting graft-versus-leukemia responses [75]. These may be
naïve and non-specifically down regulating dendritic cells or adaptive and directed against specific antigen.
Recently the Perugia group has reported the use of naïve regulatory T cells suppressing GVHD in patients given
HLA-haploidentical transplants including small amounts of conventional T cells (ASH 2009, New Orleans).

Rapamycin exerts differential effects on T cells, inhibiting CD8 positive cells more than CD4 positive cells [86];
CD4 T cells spared by Rapamycin may become regulatory T cells without compromising GVL reactions [133].
Long-term observations of patients treated with Rapamycin and tacrolimus are encouraging with regard to
control of acute GVHD and GVL [89]. Chronic GVHD still remains a problem despite tolerogenic effects of
Rapamycin. Recently, the Milan group [187] (EBMT 2010) has reported generation of regulatory T cells in
patients with HLA-haploidentical transplants. After conditioning with treosulfan, fludarabine, ATG and rituximab,
and GVH prophylaxis with Rapamycin and mycophenolate mofetil, immune reconstitution was better than after
transplantation of CD34-selected transplants, and regulatory T cells were detected early after transplantation.

Tolerogenic effects have also been described for the treatment with extracorporeal photo-pheresis (ECP) [188].
In acute GVHD ECP was applied with good results [158]. In most patients the effects of ECP are not immediate,
but occur after some weeks. ECP has also beneficial effects against chronic GVHD [162] and may be preferable
to other treatments for GVHD.

The main goal of prophylactic and therapeutic treatment of GVHD should be the induction of transplantation
tolerance. Therefore treatment protocols interfering with tolerance should be avoided in protracted periods in
favor of regimens allowing the development of tolerance. Glucocorticoids and calcineurin inhibitors are effective
in controlling the acute disease, but they do not support the development of tolerance. Similarly, IL2-R
antibodies may be effec-tive in the acute control of GVHD, but may not support the development of tolerance.
Toler-ance may be achieved by depletion of mature T cells from the graft, killing of antigen respon-sive T cells
with cell cycle active chemotherapy as Cyclophosphamide, methotrexate, or my-cophenolate mofetil, activating
CTLA4 receptors by CTLA4-Ig or using drugs like Rapamycin that block the co-stimulatory pathway or ECP
producing apoptotic cells that induce tolerance.



Future prospects

The time point to initiate treatment of acute and chronic GVHD is of paramount importance. Therefore, early
diagnosis tests, before clinical diagnosis is possible, may improve the out-come significantly. Several proteins
have been found in the urine of patients that developed GVHD [189]; a prospective study will help to
demonstrate the value of early treatment. Similarly, elafin has been identified as a prognostic marker in the
plasma of patients developing skin GVHD [190]. Early diagnosis will allow early treatment and thereby avoid the
development of memory T cells or T stem cells with memory that are extremely difficult to suppress.
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