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  REGIME IDENTIFICATION OF SLURRY 
TRANSPORT IN PIPELINES - A NOVEL 
MODELING APPROACH USING ANN 
AND DIFFERENTIAL EVOLUTION 

Four distinct regimes were found existent (namely sliding bed, saltation, hetero-
geneous suspension and homogeneous suspension) in slurry flow in pipelines 
depending upon the average velocity of flow. In the literature, few correlations 
have been proposed for identification of these regimes in slurry pipelines. Re-
gime identification is important for slurry pipeline design as they are the prere-
quisite for applying different pressure drop correlations in different regimes. How-
ever, the available correlations fail to predict the regime over a wide range of 
conditions. Based on a databank of around 800 measurements collected from 
the open literature, a method has been proposed to identify the regime using ar-
tificial neural network (ANN) modeling. The method incorporates hybrid artificial 
neural network and differential evolution technique (ANN-DE) for efficient tuning 
of ANN Meta parameters. Statistical analysis showed that the proposed method 
has an average misclassification error of 0.03%. A comparison with selected cor-
relations in the literature showed that the developed ANN-DE method noticeably 
improved prediction of regime over a wide range of operating conditions, physi-
cal properties, and pipe diameters. 

Key words: artificial neural network; differential evolution; slurry flow re-
gime; slurry flow. 

 
 

Cut throat competition, minimization of energy 
requirement and optimization of production cost is the 
buzzword of today’s chemical process industry. Trans-
portation of slurries through pipeline is common in so-
lid handling, mineral and petrochemical industries and 
its huge power consumption is drawing attention in re-
cent years. The need and benefit of accurately pre-
dicting the pressure drop of slurry pipelines during the 
design phase is enormous as it gives better selection 
of slurry pumps and pipelines, better optimization of 
power consumption and helps to maximize economic 
benefit. 

Great attention is being paid to reduction of the 
hydraulic losses as power consumption constitutes a 
substantial portion of operational costs for the overall 
pipeline transport. Four distinct regimes were found 
existent (namely sliding bed, saltation, heterogeneous 
suspension and homogeneous suspension) in slurry 
flow in pipelines depending upon the average velocity 
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of flow. The pressure drop correlations available in li-
terature are applicable to a particular regime for which 
they were developed. The correlations show bad pre-
diction of pressure drop when they apply for other re-
gimes. Thus regime identification becomes important 
for slurry pipeline design as they are the prerequisite 
for applying different pressure drop correlations in dif-
ferent regimes. The understanding of different regime 
formation and accurate prediction of pressure drop of 
slurries in design phase makes it possible to optimize 
energy and water requirements. 

Experimental observations have shown that dif-
ferent correlations should be used in each of the iden-
tifiable flow regimes. Although this is a logical ap-
proach it is not straightforward to apply. The main dif-
ficulty arises because it is not easy to define the 
boundaries between the flow regimes. These bound-
aries are poorly defined because they are based on 
visual observations of particle motions in small labo-
ratory pipelines. Many researchers have attempted to 
establish correlations among the relevant experimen-
tal variables that can be used to define the bound-
aries of the flow regimes. These attempts have met 
with only limited success and an approach developed 
by Turian and Yuan [1] is most popular and promising. 
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Turian’s approach claims to provide a comple-
tely self-consistent definition of the flow regime boun-
daries that results directly from the head loss corre-
lations and no additional correlations are required to 
define the boundaries. The method claims that it is 
based on a large database of reliable experimental 
data and consequently the method can be used with 
confidence for practical engineering work. However a 
databank of around 800 measurements collected 
from the open literature is exposed to Turian and 
Yuan’s calculations and the result of prediction of flow 
regimes is found very poor. These poor results moti-
vated this work and an attempt has been made to de-
velop a method which can identify the flow regime at 
different velocity and particle size distributions. 

To facilitate the design and scale up of pipelines 
and slurry pumps, there is a need for a correlation 
that can predict flow regime over a wide range of ope-
rating conditions, physical properties and particle size 
distributions. The industry needs quick and easily im-
plementable solutions. The model derived from the 
first principle is no doubt the best solution. But in the 
scenario where the basic principles of regime identi-
fication model accounting all the interactions for slurry 
flow is absent, the numerical model may be promising 
to give some quick, easy solutions for slurry flow re-
gime prediction. 

In the last decade, artificial neural networks 
(ANNs) have emerged as attractive tools for nonlinear 
process modeling especially in situations where the 
development of phenomenological or conventional 
regression models becomes impractical or cumber-
some. ANN is a computer modeling approach that 
learns from examples through iterations without re-
quiring a prior knowledge of the relationships of pro-
cess parameters and, is consequently, capable of 
adapting to a changing environment. It is also capable 
of dealing with uncertainties, noisy data, and non- 
-linear relationships. ANN modeling has been known 
as “effortless computation” and readily used extensi-
vely due to their model-free approximation capabilities 
of complex decision-making processes. Owing to their 
several attractive characteristics, ANNs have been wi-
dely used in chemical engineering applications such 
as steady state and dynamic process modeling, pro-
cess identification, yield maximization, nonlinear con-
trol, and fault detection and diagnosis [2-10]. 

The most widely utilized ANN paradigm is the 
multi-layered perceptron (MLP) that approximates 
nonlinear relationships existing between an input set 
of data (causal process variables) and the corres-
ponding output (dependent variables) data set. A 
three-layered MLP with a single intermediate (hidden) 

layer housing a sufficiently large number of nodes 
(also termed neurons or processing elements) can 
approximate (map) any nonlinear computable function 
to an arbitrary degree of accuracy. It learns the ap-
proximation through a numerical procedure called “net-
work training” wherein network parameters (weights) 
are adjusted iteratively such that the network, in res-
ponse to the input patterns in an example set, ac-
curately produces the corresponding outputs. There 
exists a number of algorithms—each possessing cer-
tain positive characteristics—to train an MLP network, 
for example, the most popular error-back-propagation 
(EBP), quick prop and resilient back-propagation 
(RPROP) [11]. Training of an ANN involves minimi-
zing a nonlinear error function (e.g., root-mean-
squared-error, RMSE) that may possess several local 
minima. Thus, it becomes necessary to employ a heu-
ristic procedure involving multiple training runs to ob-
tain an optimal ANN model whose parameters (weights) 
correspond to the global or the deepest local mini-
mum of the error function. The building of a back-pro-
pagation network involved the specification of the 
number of hidden layers and the number of neurons 
in each hidden layer. In addition, several parameters 
including the learning rule, the transfer function, the 
learning coefficient ratio, the random number seed, 
the error minimization algorithm, and the number of 
learning cycles had to be specified. 

Existing software implementations of ANN reg-
ression usually treat these ANN meta-parameters as 
user-defined inputs. For non expert users it is a very 
difficult task to choose these parameters as they have 
no prior knowledge for these parameters for their 
data. In such a situation, users normally rely on a trial 
and error method. Such an approach apart from con-
suming enormous time may not really obtain the best 
possible performance. The present paper addresses 
this issue and develops a new hybrid procedure to 
find the optimum ANN architecture and tune the ANN 
parameters and thus relieve the “non-expert” users. 

Basically, the setting of optimum ANN architec-
ture and tuning of ANN meta-parameters can be view-
ed mathematically as an optimization problem where 
test set errors (generalization error) have to be mini-
mized. In the recent years, differential evolutions 
(DEs) that are members of the stochastic optimization 
formalisms have been used with great success in sol-
ving problems involving very large search spaces. 
DEs were originally developed as genetic engineering 
models mimicking population evolution in natural sys-
tems. Specifically, DEs like genetic algorithms (GA) 
enforce the “survival-of-the-fittest” and “genetic propa-
gation of characteristics” principles of biological evo-
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lution for searching for the solution space of an opti-
mization problem. DE has been used to design seve-
ral complex digital filters [12] and to design fuzzy logic 
controllers [13]. DE can also be used for parameter 
estimations, e.g. Babu and Sastry [14], used DE for 
the estimation of effective heat transfer parameters in 
trickle-bed reactors using radial temperature profile 
measurements. DE is also used to tune the ANN pa-
rameters and their application in slurry flow as re-
ported in literature [5-8]. It was concluded that DE 
takes less computational time to converge compared 
to the existing techniques without compromising with 
the accuracy of the parameter estimates. 

In this paper, we present a hybrid ANN-DE ap-
proach, which not only relieves the user from choos-
ing these meta-parameters but also finds the optimum 
values of these parameters to minimize the generali-
zation error. The strategy (henceforth referred to as 
“ANN-DE”) uses an ANN as the nonlinear process 
modeling paradigm, and the DE for optimizing the 
meta–parameters of the ANN model such that an im-
proved prediction performance is realized. In the pre-
sent work, we illustrate the ANN-DE approach by ap-
plying it for identification of different regimes of solid 
liquid flow. 

ARTIFICIAL NEURAL NETWORK (ANN) MODELING 

Neural networks are computer algorithms ins-
pired by the way information is processed in the ner-
vous system. 

Network architecture 

The MLP network [5-8] usually consists of three 
layers of nodes. The layers described as input, hid-
den and output layers, comprise N, L and K number 
of processing nodes, respectively. Each node in the 
input (hidden) layer is linked to all the nodes in the 
hidden (output) layer using weighted connections. In 
addition to the N and L number of input and hidden 
nodes, the MLP architecture also houses a bias node 
(with fixed output of +1) in its input and hidden layers; 
the bias nodes are also connected to all the nodes in 
the subsequent layer and they provide additional ad-
justable parameters (weights) for the model fitting. 
The number of nodes (N) in the MLP network’s input 
layer is equal to the number of inputs in the process 
whereas the number of output nodes (K) equals the 
number of process outputs. However, the number of 
hidden nodes (L) is an adjustable parameter whose 
magnitude is determined by issues, such as the de-
sired approximation and generalization capabilities of 
the network model. 

Back propagation algorithm (BPA) 

The back propagation algorithm modifies net-
work weights to minimize the mean squared error be-
tween the desired and the actual outputs of the net-
work. Back propagation uses supervised learning in 
which the network is trained using data for which in-
put as well as desired outputs are known. Once train-
ed, the network weights are frozen and can be used 
to compute output values for new input samples. 

A typical back propagation algorithm can be 
given as follows [5-8]. The MLP network is a nonlinear 
function-mapping device that determines the K di-
mensional nonlinear function vector f, where f: X → Y. 
Here, X is a set of N-dimensional input vectors (X = 
= {xp}; p = 1,2,…,P and x = (x1,x2,…,xn,…,xN)T), and Y is 
the set of corresponding K-dimensional output vectors 
(Y = {yp}; p = 1,2,…,P and y = (y1,y2,…,yk,…,yK)T). The 
precise form of f is determined by: i) network topo-
logy, ii) choice of the activation function used for com-
puting outputs of the hidden and output nodes, and iii) 
network weight matrices WH and WO (they refer to the 
weights between input and hidden nodes, and hidden 
and output nodes, respectively). Thus, the nonlinear 
mapping can be expressed as: 

y = y(x,W) (1) 

where W = {WH,WO}. This equation suggests that y is 
a function of x, which is parameterized by W (Bi-
shop21). It is now possible to write the closed-form 
expression of the input-output relationship approxi-
mated by the three-layered MLP as: 

O H
1 2

0 0

( ( ))
L N

k lk nl n
l n

y f f x
= =

=  W W  , k = 1,2,…,K (2) 

where yk refers to the kth network output; 1f  and 2f

denote the nonlinear activation functions; Wlk
O refers 

to the weight between lth hidden node and kth output 
node; Wnl

H is the weight between nth input and lth hid-
den node, and xn represents the nth network input. 

Note that in Eq. (2) the bias node is indexed as 
the zero node in the respective layer. In order that an 
MLP network approximates the nonlinear relationship 
existing between the process inputs and the outputs, 
it needs to be trained in a manner such that a prespe-
cified error function is minimized. Essentially, the 
MLP-training procedure aims at obtaining an optimal 
set (W) of the network weight matrices WH and WO, 
which minimize an error function. The commonly em-
ployed error function is the average absolute relative 
error (AARE) defined as: 

Predicted Experimental

Experimental1

1 N y y
AARE

N y
−=   (3) 
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The most widely used formalism for the AARE 
minimization is the error-back-propagation (EBP) al-
gorithm utilizing a gradient-descent technique known 
as the generalized delta rule (GDR). In the EBP me-
thodology, the weight matrix set, W, is initially rando-
mized. Thereafter, an input vector from the training 
set is applied to the network’s input nodes and the 
outputs of the hidden and output nodes are com-
puted. The outputs are computed as follows. First the 
weighted-sum of all the node-specific inputs is eva-
luated, which is then transformed using a nonlinear 
activation function, such as the logistic sigmoid. The 
outputs from the output nodes are then compared 
with their target values and the difference is used to 
compute the AARE defined in Eq. (3). Upon AARE 
computation, the weight matrices WH and WO are up-
dated using the GDR framework. This procedure, when 
repeated with the remaining input patterns in the 
training set, completes one network training iteration. 
For the AARE minimization, several training iterations 
are usually necessary. 

Tuning parameters of ANN 

It is well known that ANN generalization perfor-
mance (estimation accuracy) depends on a good set-
ting of meta-parameters listed below. 

1. Number of nodes in hidden layer: the number 
of nodes in hidden layer has a profound effect on 
ANN performance. Too few nodes could not learn the 
relationship in data properly and too large number of 
nodes increases the network complexity and exe-
cution time. From literature it is found that the optimal 
number of nodes in hidden layer normally calculated 
by trial and error method. Such an approach apart 
from consuming enormous time may not really obtain 
the best possible performance. 

2. The activation functions in input layer: each 
hidden node and output node applies the activation 
function to its net input. The five types of activation 
functions reported in literature and used in this work 
are shown in Table 1. 

 

There is no consensus in the literature on which 
type of activation function is to be used and it de-
pends on the type of input training data and the case 
under investigation. For new users it is difficult to 
choose the activation function for their data as they 
have no guidelines to choose. Multilayer networks 
typically use sigmoid transfer functions in the hidden 
layers. Sigmoid functions are characterized by the 
fact that their slope must approach zero, as the input 
gets large. This causes a problem when using the 
steepest descent to train a multilayer network with 
sigmoid functions, since the gradient can have a very 
small magnitude; and therefore, cause small changes 
in the weights and biases, even though the weights 
and biases are far from their optimal values. 

3. The activation function of output layer: the 
same remarks for input activation are applicable. 

4. The learning rate: the performance of the 
back propagation algorithm can be improved if we es-
timate the optimal learning rate. For a new user 
choosing the optimal learning rate is very difficult. The 
learning rate is multiplied with the negative of the 
gradient to determine the changes to the weights and 
biases. The larger the learning rate, the bigger the 
step. If the learning rate is made too large, the algo-
rithm becomes unstable. If the learning rate is set too 
small, the algorithm takes a long time to converge.  

Apart from the above 4 parameters, the ANN 
performance also depends upon the training algo-
rithm used for back propagation. Over the years dif-
ferent researchers have developed many ANN train-
ing algorithms to reduce execution time and computer 
storage requirements. There are several different back 
propagation training algorithms published in literature 
[7]. Figure 1 shows some of those algorithms used in 
the present study. They have a variety of different 
computation and storage requirements, and no one 
algorithm is best suited to all locations. The basic dif-
ferences between these algorithms are how they 
handle the weight up-gradation in Eqs. (1) and (2) to 
reduce error and how they modify learning rate (η) to 
reduce convergence time. 

Table 1. Different activation function 

Case Name of activation function Equationa 

1 Log sigmoid function (logsig) 1

1 i
i net

Y
e −=

+
 

2 Tan hyperbolic function (tansig) tanh( )i iY net=  

3 Linear function (purelin) i iY net=  

4 Radial basis function (radbas) 2
i iY net= −  

5 Triangular basis function (tribas) Yi= ൜ 1-abs(neti),  -1≤neti≤1                    0,  Otherwise
 

a
Yi is the output from node i, neti is the input to the node i, neti  = ∑ 𝑤௜𝑥௜ 
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Most of the available ANN software requires the 
above four parameters as user inputs or calculates 
the above parameters on trial and error basis. A long 
execution time is needed to explore all the combina-
tions of the above parameters to really find the best 
possible solutions. In the present paper we use the 
differential evolution technique to find out the opti-
mum solution. 

Differential evolution (DE): at a glance 

Having developed an ANN-based process mo-
del, a DE algorithm is used to optimize the N- dimen-
sional input space of the ANN model. Conventionally, 
various deterministic gradient-based methods are 
used for performing optimization of the phenomeno-
logical models. Most of these methods require that 
the objective function should simultaneously satisfy 
the smoothness, continuity, and differentiability crite-
ria. Although the nonlinear relationships approxima-
ted by an ANN model can be expressed in the form of 
generic closed-form expressions, the objective func-
tion(s) derived thereby cannot be guaranteed to satis-
fy the smoothness criteria. Thus, the gradient-based 
methods cannot be efficiently used for optimizing the 
input space of an ANN model and, therefore, it be-
comes necessary to explore alternative optimization 
formalisms, which are lenient towards the form of the 
objective function. 

In the recent years, differential evolutions that 
are members of the stochastic optimization forma-
lisms have been used with great success in solving 
problems involving very large search spaces [12,15- 
–17]. The DEs were originally developed as genetic 
engineering models mimicking population evolution in 
natural systems. Specifically, DE like genetic algo-
rithm (GA) enforces the “survival-of-the-fittest” and 
“genetic propagation of characteristics” principles of 

biological evolution for searching the solution space 
of an optimization problem. The principal features pos-
sessed by the DEs are: i) they require only scalar va-
lues and not the second- and/or first-order derivatives 
of the objective function, ii) the capability to handle 
nonlinear and noisy objective functions, iii) they per-
form global search and thus are more likely to arrive 
at or near the global optimum and iv) DEs do not im-
pose pre-conditions, such as smoothness, differen-
tiability and continuity, on the form of the objective 
function [12,14]. 

Differential evolution, an improved version of GA, 
is an exceptionally simple evolution strategy that is 
significantly faster and robust at numerical optimiza-
tion and is more likely to find a function’s true global 
optimum. Unlike simple GA that uses a binary coding 
for representing problem parameters, DE uses real 
coding of floating point numbers. The mutation ope-
rator here is addition instead of bit-wise flipping used 
in GA. And DE uses non-uniform crossover and tour-
nament selection operators to create new solution 
strings. Among the DEs advantages are its simple 
structure, ease of use, speed and robustness. It can 
be used for optimizing functions with real variables 
and many local optima. 

This paper demonstrates the successful appli-
cation of Differential Evolution to the practical optimi-
zation problem. As already stated, DE in principle is 
similar to GA. So, as in GA, we use a population of 
points in our search for the optimum. The population 
size is denoted by NP. The dimension of each vector 
is denoted by D. The main operation is the NP num-
ber of competitions that are to be carried out to decide 
the next generation. 

To start with, we have a population of NP vec-
tors within the range of the objective function. We 

 

Figure 1. Different ANN algorithms published in various literatures. 
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select one of these NP vectors as our target vector. 
We then randomly select two vectors from the popu-
lation and find the difference between them (vector 
subtraction). This difference is multiplied by a factor F 
(specified at the start) and added to third randomly 
selected vector. The result is called the noisy random 
vector. Subsequently, crossover is performed between 
the target vector and noisy random vector to produce 
the trial vector. Then, a competition between the trial 
vector and target vector is performed and the winner 
is replaced into the population. The same procedure 
is carried out NP times to decide the next generation 
of vectors. This sequence is continued until some 
convergence criterion is met. This summarizes the 
basic procedure carried out in differential evolution. 
The details of this procedure are described in Ap-
pendix 1. 

DE-Based optimization of ANN models 

There are different measures by which ANN per-
formance is assessed, validation and leave-one-out 
error estimates being the most commonly used ones. 
Here we divide the total available data as training 
data (75% of data) and test data (25% data chosen 
randomly). While ANN algorithm was trained on train-
ing data but the ANN performance is estimated on 
test data. 

The statistical analysis of ANN prediction is based 
on the following performance criteria: 

1. The average absolute relative error (AARE, 
Eq. (3)) on test set should be minimum. 

2. The standard deviation of error (σ) on test 
data should be minimum: 

2
Predicted, Experimental,

Experimental,

1

1
i i

i

y y
AARE

N y
σ

 −= −  −  
 

3. The cross-correlation co-efficient (R) between 
input and output should be around unity: 

ANN learning is considered successful only if 
the system can perform well on test data on which the 
system has not been trained. The above five para-
meters of ANN are optimized by DE algorithm stated 
below. 

The objective function and the optimal problem 
of ANN model of the present study are represented 
as: 

Minimize AARE(X) on test set 
X ∈ {x1, x2, x3, x4, x5} 
where 
x1 = Number of nodes in hidden layer {1,2,…,100} 
x2 = Input layer activation function {1,2,3,4,5, cor-
responds to five activation function in Table 1} 
x3 = Output layer activation function {1,2,3,4,5, cor-
responds to five activation function in Table 1} 
x4 = Learning rate {0 to 5} 
x5 = Training algorithm {1,2,...,8, corresponds to eight 
training algorithm as per Figure 1} 

The objective function is minimization of ave-
rage absolute relative error (AARE) on test set and X 
is a solution string representing a design configuration 
of ANN architecture. The design variable x1 takes any 
integer values for number of nodes in the range of 1 
to 100, x2 represents the input layer activation func-
tion taking any values in the range of 1 to 5 corres-
ponds to five activation function in Table 1. x3 Repre-
sents the output layer activation function taking any 
values in the range of 1 to 5 corresponds to five ac-
tivation function in table 1. x4 Represents learning 
rates and can take any value between 0 and 5. The 
variable x5 takes eight values of the training algorithm 
which corresponds to eight ANN training algorithm in 
Figure 1. 

The total number of design combinations with 
these variables is 100×5×5×5×8 = 100,000. This means 
that if an exhaustive search is to be performed it will 
take a maximum 1000,000 function evaluations be-
fore arriving at the global minimum AARE for the test 
set (assuming 5 trials for to arrive optimum learning 
rate). So the strategy which takes fewer function eva-
luations is the best one. Considering minimization of 

AARE as the objective function, differential evolution 
technique is applied to find the optimum design con-
figuration of ANN model. The methodology adopted is 
shown in Figure 2. 

Experimental, Experimental Predicted, Predicted
1

2 2
Experimental, Experimental Predicted, Predicted

1 1

( )( )

( ) ( )

N
i i

i
N N

i i
i i

y y y y
R

y y y y

=

= =

− −
=

− −


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CASE STUDY: IDENTIFICATION OF DIFFERENT 
REGIMES IN SOLID–LIQUID SLURRY FLOW 

The hybrid ANN-DE algorithm has been applied 
for prediction of different regimes of solid liquid slurry 
flow. The regime identification case study was chosen 
as phenomenological model is not available for it and 
it has a practical importance to reduce power con-
sumption in slurry transport in pipeline. 

Different regimes in slurry flow 

To understand the phenomena, it is very impor-
tant to know the different flow regimes of slurry flow. 

There are four main flow regimes in a horizontal pipe-
line flow (Figure 3) [18]. These are: 

1. Flow with a stationary bed; 
2. Flow with a moving bed and saltation (with or 

without suspension); 
3. Heterogeneous mixture with all solids in 

suspension; 
4. Pseudo homogeneous or homogeneous mix-

tures with all solids in suspension. 
The tendency that the solid particles have to set-

tle under the influence of gravity has a significant ef-
fect on the behavior of slurry that is transported in a 
horizontal pipeline. The settling tendency leads to a 

 

Figure 2. Schematic for hybrid ANN-DE algorithm implementation. 
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significant gradation in the concentration of solids in 
the slurry. The concentration of solids is higher in the 
lower sections of the horizontal pipe. The extent of 
the accumulation of solids in the lower section de-
pends strongly on the velocity of the slurry in the pipe-
line. The higher the velocity, the higher the turbulence 
level is and the greater the ability of the carrier fluid to 
keep the particles in suspension is. It is the upward 
motion of eddy currents transverse to the main direc-
tion of flow of the slurry that is responsible for main-
taining the particles in suspension. At very high turbu-
lence levels the suspension is almost homogeneous 
with very good dispersion of the solids while at low 
turbulence levels the particles settle towards the floor 
of the channel and can in fact remain in contact with 
the flow and are transported as a sliding bed under 
the influence of the pressure gradient in the fluid. Be-
tween these two extremes of behavior, two other 
more or less clearly defined flow regimes can be iden-
tified. When the turbulence level is not high to prevent 
any deposition of particles on the floor of the channel, 
the flow regime is described as being heterogeneous 
suspension. As the velocity of the slurry is reduced 
further a distinct mode of transport known as saltation 
develops. In the saltation regimes, there is a visible 
layer of particles on the floor of the channel and these 
are being continually picked up by turbulent eddies and 
dropped to the floor again further down the pipeline. 

 

Figure 3. Four regimes of flow of settling slurries 
in horizontal pipeline. 

The solids therefore spend some of their time on 
the floor and the rest in suspension in the flowing 
fluid. Under saltation conditions the concentration of 
solids is strongly non uniform. The four regimes of 
flow are illustrated in Figure 3. 

The four regimes of the flow described above 
can be represented by a plot of the pressure gradient 
versus the average speed of the mixture (Figure 4).  

The transitional velocities are defined as: 
– V1: velocity at or above which the bed in the 

lower half of the pipe is stationary. In the upper half of 
the pipe, some solids may move by saltation or sus-
pension; 

– V2: velocity at or above which the mixture flows 
as an asymmetric mixture with the coarser particles 
forming a moving bed; 

 

 

Figure 4. Plot of transitional mixture velocity with pressure drop. 
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– V3 or Vc: velocity at or above which all particles 
move as an asymmetric suspension and below which 
the solids start to settle and form a moving bed; 

– V4: velocity at or above which all solids move 
as a symmetric suspension. 

Head loss correlations for separate flow regimes 

The saltation and heterogeneous suspension re-
gimes have been studied most widely and the best 
known correlation for the excess pressure gradient 
due to the presence of solid particles in the slurry is 
due to Durand, Condolios and Worster [19] which is 
given by: 

f,sl fw 1 5
D

fw
( ) .p p

C C Fr
p

φ −Δ − Δ= = Ω
Δ

 (4) 

where Ω is a constant, C is the volumetric fraction of 
solids in the suspension, CD is the drag coefficient at 
terminal settling velocity and Fr is the Froude number. 
The value to be used for the constant Ω is uncertain 
and values between 65 and 150 are reported in the 
literature. Because this correlation does not apply to 
all regimes of flow, the experimental data cannot be 
used to fix the value more precisely. Errors of 100 
percent and more in the calculated value of φ can 
result [18]. 

While the Durand-Condolios-Worster correlation 
is useful in the heterogeneous suspension flow re-
gime, it deviates more and more from actual condi-
tions in the other regimes flow. Experimental obser-
vations have shown that different correlations should 
be used in each of the identifiable flow regimes. Using 
the experimental data, Turian and Yuan established 
that the excess pressure gradient in each flow regime 
can be correlated using an equation of the form: 

*
w Dsl wf f KC f C Frα β γ δ− =  (5) 

where the coefficients K, α, β, γ and δ have values 
that are specific to each flow regime and *

DC  is the 
drag coefficient at the terminal settling velocity of slur-
ry. Using experimental data gathered from experi-
ments in each flow regime, the best available values 
of these parameters in each flow regime are given for:  

– sliding bed (regime 0) 

0 7389 0 7717 * 0 4213 1 096
w D12 13 . . . .

sl wf f . C f C Fr− −− =  (6) 

– saltation (regime 1) 

1 018 1 046 * 0 4213 1 354
w D107 1 . . . .

sl wf f . C f C Fr− −− =  (7) 

– heterogeneous suspension (regime 2) 

0 868 1 2 * 0 1677 0 6938
w D30 11 . . . .

sl wf f . C f C Fr− −− =  (8) 

– homogeneous suspension (regime 3) 

0 5024 1 428 * 0 1516 0 3531
w D8 538 . . . .

sl wf f . C f C Fr− −− =  (9) 

A fairly consistent trend in the variation of the corre-
lating parameters is seen in the four correlations. 
Here, *

DC  is drag co-efficient at the terminal settling 
velocity of slurry. 

Flow regime boundaries (Turian and Yuan’s 
approach) 

The boundaries of the flow regimes are defined 
in a self-consistent manner by noting that any two re-
gimes are contiguous at their common boundary and 
therefore each of the two correlation equations must 
be satisfied simultaneously [18]. For example, the 
boundary between the sliding bed regime (Regime 0) 
and the saltation regime (regime 1) must lie along the 
solution locus of the equation: 

0 7389 0 7717 * 0 4213 1 096
w D

1 018 1 046 * 0 4213 1 354
w D

12 13

107 1

. . . .

. . . .

. C f C Fr

. C f C Fr

− −

− −

=

=
 (10) 

This is simplified to: 

2
1 083 1 064 * 0 0616

w D4679
( 1)

. . .V
Fr C f C

Dg s
−= =

−
 (11) 

The regime transition number for transitions be-
tween regime 0 and regime 1 is defined by: 

1 083 1 064 * 0 0616
w D

01
4679 . . .

Fr
R

C f C −=  (12) 

and this number must be unity on the boundary be-
tween these two regimes. 

The transition numbers for the other possible 
transitions are found in the same way and are given by: 

0 3255 1 065 * 0 5906
w D

02
0 1044 . . .

Fr
R

. C f C− − −=  (13) 

0 2263 0 2334 * 0 3840
w D

12
6 8359 . . .

Fr
R

. C f C− −=  (14) 

0 5153 0 3820 * 0 5724
w D

13
12 522 . . .

Fr
R

. C f C− −=  (15) 

1 075 0 6700 * 0 9375
w D

23
40 38 . . .

Fr
R

. C f C− −=  (16) 

0 3138 0 8837 * 0 7496
w D

03
1 6038 . . .

Fr
R

. C f C− −=  (17) 

These numbers define the boundaries between 
any two flow regimes a and b by the condition Rab = 1. 
It is possible to identify the regime that applies to a 
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particular set of physical conditions quite simply from 
knowledge of the transition numbers Rab. If a < b the 
value of Rab increase monotonically as the velocity 
increases. At low velocities, Rab < 1 and with increas-
ing velocity, the value of Rab will eventually pass 
through the value 1.0. This must signal a transition 
out of regime a. The following simple rules will fix the 
flow regime: 

If Rab < 1 the regime is not b. 
If Rab > 1 the regime is not a. 
This inequalities must be tested for the combi-

nations of a and b. No more than three of the tran-
sition numbers need to be calculated to fix the flow 
regime uniquely. Notice that these rules test the flow 
regimes negatively and a single test will never suffice 
to define the flow regime. It is always necessary to 
test at least three different combinations of a and b to 
get a definitive identification of the flow regime (Figure 
5). The applicable flow regime can be identified quick-
ly and easily using the figure and the appropriate 
equation can be selected from equations above to 
calculate the slurry friction factor. 

Performance check of Turian Yuan’s approach 

Data Collection. As mentioned earlier, over the 
years researchers have amply quantified the flow 
regime of slurry flow in pipeline. In this work, about 
800 experimental points have been collected from 20 
sources from open literature spanning the years 1950-  
-2002 (most of them compiled in PhD thesis report of 
Hsu (1987) [20]). The data were screened for incom-
pleteness, redundancies and evident inaccuracies. 

This wide range of database includes experimental 
information from mainly two regimes namely saltation 
regime (regime 1) and heterogeneous flow regime 
(regime 2). These two regimes were selected as they 
have great practical significance and all practical hyd-
rotransport carried out in heterogeneous suspension 
region because of lowest pressure drop and sub-
sequent less power requirement. Table 2 indicates 
the wide range of the collected databank for regime 
identification. Table 4 shows some of these data. 

Table 2. System and parameter studied 

Slurry system Coal-water, coal-brine, 
ash-water, copper ore-
-water, sand-water, gy-
psum-water, glass-wa-
ter, gravel-water, iron-
-water, iron-kerosene, 
high density material-

-water, iron tailings-wa-
ter, limestone-water, li-
monite-water, plastic-
-water, potash-brine, 
sand-ethylene glycol, 
nickel shot-water, iron 

powder-water, ore-water

Pipe diameter, m 

Particle diameter, m 

Liquid density, kg/m3 

Solids density, kg/m3 

Liquid viscosity, Pa s 

Solids concentration (volume fraction) 

Velocity, m/s 

0.0127 – 0.80 

(0.0017 – 0.868) x 10-2 

770 – 1350 

1150 – 8900 

0.008 –0.019 

0.005 – 0.561 

0.18 - 4.56 

 

Figure 5. Decision tree for identification of regimes. 
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Regime identification. Now Table 2 data was ex-
posed to Turian and Yuan’s calculation and regimes 
were identified as shown in Table 3. It is evident from 
the last two columns of the Table 3 that the Turian 
Yuan’s approach is not producing promising results 
and fails to correctly identify the regimes. These poor 
results motivated this work and an attempt has been 
made to explore the new ANN classification metho-
dology to identify the flow regime correctly. 

This paper presents a systematic approach using 
robust hybrid ANN-DE techniques to build a regime 
identification correlation from available experimental 
data. This correlation has been derived from a broad 
experimental data bank collected from the open lite-
rature (800 measurements covering a wide range of 
pipe dimensions, operating conditions and physical 
properties). 

Development of the artificial neural network (ANN) 
based correlation 

The development of the ANN-based correlation 
was started with the collection of a large databank. 
The next step was to perform an artificial neural net-
work, and to validate it statistically. 

After extensive literature survey all physical pa-
rameters that influence regimes identification are put 

in a so-called “wish-list”. Based on the extensive lite-
rature survey, the input variables such as pipe diame-
ter, particle diameter, solids concentration, solid and 
liquid density and viscosity and velocity of flowing me-
dium have been finalized to predict different regimes 
in slurry pipeline. Some portion of the input and output 
data used for ANN classification is shown in Table 4. 

RESULTS AND DISCUSSION 

Prediction performance of hybrid ANN-DE model 

The purpose of present study is to develop some 
simple methodology for flow regime classification so 
that users do not have to go through the rigorous cal-
culation of Turian and Yuan’s approach to detect the 
regime. The present study focuses only on classifica-
tion and identification of two major regimes namely 
heterogeneous suspension and saltation regime. These 
two regimes are chosen purposefully as pressure drop 
is minimal in the heterogeneous regime and thus the 
most important from a power consumption point of 
view. All commercial slurry transport is in the hetero-
geneous region as it contributes lowest power cost 
per ton of slurry transported. Another reason to choose 
these two regimes for this study is the availability of a 

Table 3. Performance of Turian Yuan’s correlation to identify different flow regime 

Sl. No. R01 R02 R03 R12 R13 R23 Regime identified by Turian approach Regime identified by experiments 

1 11.89 0.03 0.06 0.34 0.24 0.12 1 2 

2 0.66 1.75 0.55 1.19 0.58 0.14 2 2 

3 0.13 3.16 2.25 0.91 1.08 1.51 3 2 

4 0.75 9.82 7.38 3.60 4.09 5.25 3 2 

5 4.30 0.04 0.02 0.25 0.08 0.01 1 1 

6 1.30 0.01 0.01 0.09 0.04 0.01 1 1 

7 0.32 0.01 0.00 0.03 0.01 0.00 0 1 

8 8.05 0.01 0.01 0.11 0.07 0.03 1 1 

9 3.10 0.03 0.02 0.18 0.08 0.02 1 2 

10 4.07 0.01 0.02 0.07 0.07 0.06 1 2 

Table 4. Typical input and output data for ANN training 

Sl. No. 
Input to ANN 

Output regime Particle diameter 
cm 

Solid concen-
tration, vol. fraction 

Solid density
g/cm3 

Fluid density
g/cm3 

Fluid viscosity
Pa s 

Pipe diameter 
cm 

Fluid velocity 
cm/s 

1 0.013 0.028 1.834 0.998 0.00098 7.62 147.22 1 
2 0.010 0.300 2.820 0.982 0.00130 5.00 332.50 -1 
3 0.220 0.304 1.670 1.325 0.15200 7.62 85.98 -1 
4 0.220 0.304 1.670 1.325 0.15200 10.16 204.14 -1 
5 0.868 0.165 1.530 0.998 0.00098 20.80 254.85 1 
6 0.183 0.056 1.530 0.998 0.00098 4.00 52.55 -1 
7 0.030 0.170 3.360 0.998 0.00098 10.30 126.73 -1 
8 0.014 0.022 2.690 0.998 0.00098 20.70 210.62 -1 
9 0.009 0.125 3.000 0.998 0.00098 20.70 337.16 1 
10 0.006 0.014 3.100 0.998 0.00098 14.90 120.59 1 
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large number of commercial and experimental data 
for these two regimes compared to other regimes. 
The method developed here can also be extended to 
classification of other regimes. Initially all the data re-
lated to these two regimes were collected from open 
literature. Six parameters were identified as input 
(Table 4) to ANN and the +1 or -1 is put as target. The 
output was designated as +1 for heterogeneous sus-
pension flow regimes data and -1 for saltation regi-
mes data.  

As the magnitudes of inputs greatly differ from 
each other, they are normalized in -1 to +1 scale 
using following formula: 

min
Normal

max min

2( )
1

( )

x x
x

x x
−= −
−

 

75% Of total dataset was chosen randomly for 
training and the other 25% was selected for vali-
dation. These 25% validation set data were used to 
stop the iterations at appropriate time to avoid “over 
training” phenomena. 

These data were then exposed to the hybrid 
ANN-DE model described above. The main advan-
tage of the hybrid model is that no other user inputs 
are required to set the optimum training architecture.  
The ANN-DE model optimizes the five parameters of 
ANN architecture (namely the number of nodes in hid-
den layer, the activation functions in input and output 
layer, the learning rate and ANN training algorithm) 
and selects on its own the best architecture and train-
ing algorithm for the present data. The model output 
is shown in Figure 6 and prediction error is summary-

zed in Table 5. Figure 6 shows the hybrid system per-
formance to classify the regime on 200 test data. Other 
600 results of training data are not shown as they 
were used in training and expected to give accurate 
results. How accurately the hybrid system classified 
the test data is actually the real performance test. 

Table 5. Prediction error by hybrid ANN-DE based model 

Parameter Training Testing 

AARE 0.000315 0.000320 

Sigma 0.000833 0.000853 

R 0.9999 0.9999 

Optimum number of nodes 

Input activation function 

Output activation function 

Optimum learning rate 

Best training algorithm 

7 

Log sigmoid function  

Linear 

0.042 

BFGS 

– 

– 

– 

– 

– 

Out of all the possibilities, the BFGS algorithm 
with seven number of nodes in hidden layer and log 
sigmoid and linear function in input and output layer 
has emerged out as the best solution (with lowest 
AME) for the present case. The other performance 
parameters namely execution time and storage requi-
rement are neglected, as they are not important for 
this type of study. The low prediction error (AARE 
0.03%) may be considered as an excellent prediction 
performance considering the poor understanding of 
slurry flow phenomena and large databank for training 
comprising various systems. 

Recall that all the 800 experimental data col-
lected from open literature was exposed earlier to Tu-

 

Figure 6. Experimental vs. predicted flow regime. 



S.K. LAHIRI, K.C. GHANTA: REGIME IDENTIFICATION OF SLURRY TRANSPORT… CI&CEQ 16 (4) 329−343 (2010) 

 

 341

rian Yuan’s formulas for regime identification and 
AARE calculated was 25%. The present work has re-
duced the misclassification error from 25% to 0.03%. 
The advantage of the present method is that the user 
doesn’t have to calculate the CD, settling velocity, 
Froude number, R01, R02, R03, R12, R13, R23, etc. 
as in the case of Turian Yuan’s approach to evaluate 
the regime. In the present approach, the regime will 
be evaluated effortlessly and more accurately from 
the basic slurry flow data (pipe diameter, solid con-
centration, fluid velocity, etc.) and the user will be re-
lieved to calculate others parameters stated above. 
Once the regime has been evaluated correctly, appro-
priate pressure drop correlations (Eqs. (2)-(5)) can be 
used for the each regime. This will help to choose the 
appropriate correlations for pressure drop and to ac-
curately predict the pressure drop in the design phase. 

The weight, bias and final equations for calcu-
lating the regime for any solid-liquid slurry flow in pi-
pelines are summarized in Table 6. With the help of 
the equation at the bottom of Table 6, any user can 
easily identify whether their slurry flow regime is in 
heterogeneous or moving bed regime. If the user found 
their flow to be in a moving bed regime they can in-
crease the velocity of slurry flow to make it in a hete-
rogeneous regime. This will ensure the lowest pres-
sure drop and power consumption. 

Comparison of hybrid ANN-DE model 
with ANN model 

In a separate study, we exposed the same da-
taset to ANN algorithm only (without the DE algo-
rithm) and tried to optimize the different parameters 
based on exhaustive search. We found that it was not 
possible to reach the best solutions starting from ar-
bitrary initial conditions. The optimum choice of learn-
ing rate is especially very difficult to reach after start-
ing with some discrete value. Many times the solu-
tions got stuck up in sub-optimal local minima. These 
experiments justified the use of a hybrid technique for 

ANN parameter tuning. The best prediction after the 
exhaustive search along with ANN parameters was 
summarized in Table 7. From the Table 7, it is clear 
that even after 100,000 runs the ANN algorithm is un-
able to locate the global minima and the time of exe-
cution is 4 h with a Pentium 4 processor. On the other 
hand, the hybrid ANN-DE technique is able to locate 
the global minima with 2000 runs within 0.5 h. The 
prediction accuracy is also much better. Moreover it 
relieves the non expert users to choose the different 
parameters and find an optimum ANN meta-para-
meters with a good accuracy. 

Table 7. Comparison of performance of ANN-DE hybrid model 
vs. ANN model 

Parameter 
Prediction performance 

by hybrid ANN-DE model 

Prediction 
performance by 
ANN model only 

AARE 0.000320 0.00451 

Sigma 0.000853 0.0022 

R 0.9999 0.98 

Execution time, h 0.5 4.3 

CONCLUSION 

ANN regression methodology with a robust pa-
rameter tuning procedure has been described in this 
work which can be used effortlessly where phenolme-
nological model is difficult to develop. The method 
employs a hybrid ANN-DE approach for minimizing 
the generalization error. Superior prediction perfor-
mances were obtained for the case study of regime 
identification and a comparison with selected correla-
tions in the literature showed that the developed ANN 
correlation noticeably improved prediction of slurry flow 
regime over a wide range of operating conditions, 
physical properties, and pipe diameters. The propo-
sed hybrid technique (ANN-DE) also relieves the non-
expert users to choose the meta-parameters of ANN 
algorithm for his case study and find out optimum 

Table 6. Set of equations and fitting parameters for neural network correlations (i = 7, j = 7, k = 1); Hj = 1/(1 + e–Σwi,jUi), regime = Σwj,kHj, 
where Ui is input variable (Table 4), Hj is hidden layer input and U8 = 1, H8 = 1 (bias) 

w 1 2 3 4 5 6 7 8 

wi,j 43.47 -16.05 -31.47 -40.86 5.44 27.58 36.88 -14.62 

 14.55 -12.56 2.49 -2.19 12.83 2.87 -9.78 -15.26 

 1.29 2.33 5.83 0.69 3.74 1.37 -2.18 -9.24 

 51.46 10.79 -61.61 -53.89 -19.25 47.63 -9.63 -23.57 

 13.15 0.84 4.21 -18.66 14.74 3.10 -8.05 -14.23 

 6.02 4.06 4.66 -2.98 -1.97 8.30 -1.20 -13.60 

 -3.77 5.31 -5.08 0.63 -4.99 -2.04 2.13 10.77 

wj,k -0.0006 18.75 10.94 1.99 -11.17 15.72 10.19 -11.19 
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value of these meta-parameters on its own. The re-
sults indicate that the ANN based technique with the 
DE based parameters tuning approach described in 
this work can yield excellent generalization and can be 
advantageously employed for a large class of regres-
sion problems encountered in process engineering. 

Nomenclature 

C Volume fraction of solids in the suspension (-) 
CD* Drag coefficient at terminal settling velocity (-) 
D Pipe diameter (m) 
dp Particle diameter (m) 
Fr Froude number (-) 
fsl Friction factor for slurry (-) 
fw Friction factor for carrier fluid (-) 
K Constant (-) 
Rep Particle Reynolds number (-) 
VT Terminal settling velocity (m/s) 

Greek symbols 

Ω Constant used in Durand Condolios equation (-) 
α Constant (-) 
β Constant (-) 
γ Constant (-) 
δ Constant (-) 
μs Viscosity of slurry (Pa s) 
ρf Density of fluid (kg/m3) 
ρs Density of solid (kg/m3) 

Abbreviations 

ANN Artificial neural network 
DE Differential evolution 

Appendix 1 

Steps performed in DE 

Assume that the objective function is of D di-
mensions and that it has to be optimized. The weight-
ing constants F and the crossover constant CR is 
specified. 

Step 1. Generate NP random vectors as the ini-
tial population: generate (NP×D) random numbers and 
liberalize the range between 0 and 1 to cover the en-
tire range of the function. From these (NP×D) num-
bers, generate NP random vectors, each of dimension 
D, by mapping the random numbers over the range of 
the function. 

Step 2. Choose a target vector from the popula-
tion of size NP: first generate a random number bet-
ween 0 and 1. The value of the random number de-
cides which population member is to be selected as 
the target vector (Xi) (a linear mapping rule can be 
used). 

Step 3. Choose two vectors at random from the 
population and find the weighted difference: generate 

two random numbers. Decide which two population 
members are to be selected (Xa,Xb). Find the vector 
difference between the two vectors (Xa - Xb). Multiply 
this difference by F to obtain the weighted difference. 

Weighted difference = F(Xa - Xb) 

Step 4. Find the noisy random vector: generate 
a random number. Choose a third random vector from 
the population (Xc). Add this vector to the weighted 
difference to obtain the noisy random vector (X’c). 

Step 5. Perform crossover between Xi and X’c to 
find Xt, the trial vector: generate D random numbers. 
For each of the D dimensions, if the random number 
is greater than CR, copy the value from Xi into the trial 
vector; if the random number is less than CR, copy the 
value from X’c into the trial vector. 

Step 6. Calculate the cost of the trial vector and 
the target vector: for a minimization problem, calcu-
late the function value directly and this is the cost. For 
a maximization problem, transform the objective func-
tion f(x) using the rule F(x) = 1/(1 + f(x)) and calculate 
the value of the cost. Alternatively, directly calculate 
the value of f(x) and this yields the profit. In case cost 
is calculated, the vector that yields the lesser cost re-
places the population member in the initial population. 
In case profit is calculated, the vector with the greater 
profit replaces the population member in the initial 
population. 

Steps 1–6 are continued until some stopping cri-
terion is met. This criterion may be one of two kinds. 
One may be some convergence criterion that states 
that the error in the minimum or maximum between 
two previous generations should be less than some 
specified value. The other may be an upper bound on 
the number of generations. The stopping criterion 
may be a combination of the two. Either way, once 
the stopping criterion is met, the computations are ter-
minated. 

Choosing DE key parameters NP, F, and CR is 
seldom difficult and some general guidelines are avai-
lable. Normally, NP ought to be about 5 to 10 times 
the number of parameters in a vector. As for F, it lies 
in the range 0.4 to 1.0. Initially, F = 0.5 can be tried 
then F and/or NP is increased if the population conver-
ges prematurely. A good first choice for CR is 0.1, but 
in general CR should be as large a possible (Price and 
Storn, 1997). 
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NAUČNI RAD 

  IDENTIFIKACIJA REŽIMA PROTICANJA SUSPENZIJA U 
CEVOVODIMA – NOVI PRISTUP MODELOVANJU 
POMOĆU VEŠTAČKIH NEURONSKIH MREŽA I 
DIFERENCIJALNOG PRIRASTA 

U zavisnosti od prosečne brzine strujanja suspenzije utvrđeno je da se u cevovodima 
mogu ostvariti četiri različita režima proticanja (klizajući sloj, saltacija, heterogena sus-
penzija i homogena suspenzija). U literaturi je preporučeno nekoliko korelacija koje 
mogu poslužiti za identifikaciju ovih režima proticanja. Poznavanje režima proticanja je 
značajno za projektovanje cevovoda za suspenzije, jer oni određuju koja će korelacija za 
pad pritiska u cevovodu biti primenjena. Međutim, postojeće korelacije ne omogućavaju 
predviđanje režima proticanja u širokom opsegu operativnih uslova. U ovom radu je, na 
bazi oko 800 merenja iz literature, predložen metod identifikacije režima proticanja, ko-
rišćenjem modelovanja veštačkim neuronskim mrežama (ANN). Metod uključuje hibridnu 
veštačku neuronsku mrežu i tehniku diferncijalnog prirasta (ANN-DE), za efikasno pode-
šavanje ANN meta parametara. Statistička analiza je pokazala da predloženi metod ima 
prosečnu grešku identifikacije od 0,03%. Poređenje sa izabranim korelacijama iz litera-
ture pokazalo je da predloženi ANN-DE metod značajno unapređuje predviđanje režima 
proticanja u širokom opsegu operativnih uslova, fizičkih osobina i prečnika cevovoda. 

Ključne reči: neuronska mreža; diferencijalni prirast; režim toka guste suspen-
zije; tok guste suspenzije. 
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