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Abstract. The determination of Cramer-Rao lower bound 
(CRLB) as an optimality criterion for the problem of chan-
nel estimation in wireless communication is a very impor-
tant issue. Several CRLBs on channel estimation have been 
derived for Gaussian noise. However, a practical channel 
is affected by not only Gaussian background noise but also 
non-Gaussian noise such as impulsive interference. This 
paper derives the deterministic and stochastic CRLBs for 
Gaussian and non-Gaussian mixed noise. Due to the use of 
the non-parametric kernel method to build the PDF of non-
Gaussian noise, the proposed CRLBs are suitable for 
practical channel environments with various noise 
distributions. 
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1. Introduction 
To overcome multipath fading in wireless communi-

cation, the orthogonal frequency-division multiplexing 
(OFDM) method was proposed for high-bit-rate communi-
cations [1]. Channel state information (CSI) is very impor-
tant for the OFDM to achieve optimal diversity combina-
tion and coherent detection at the receiving end. In the 
absence of CSI, pilot-assisted channel estimators can be 
used to estimate CSI [1]-[5].  

Although many channel estimators have been pro-
posed, their performances were seldom studied. The papers 
[6], [7] designed the optimal pilot pattern for the OFDM 
system. The methods in [8], [9] were proposed for analyz-
ing the channel estimation techniques in OFDM system. 
These methods [8], [9] based on variance analysis cannot 
determine the best achievable accuracy for the channel 
estimators. Cramer-Rao lower bound (CRLB) sets a lower 
limit for the covariance matrix of any unbiased estimate of 
parameters and determines the physical impossibility of the  

variance of an unbiased estimator being less than the bound 
[10], [11]. The deterministic and stochastic CRLBs are 
defined for deterministic unknown process and random 
Gaussian process, respectively. The deterministic CRLB on 
channel estimation was derived for the uniform Gaussian 
noise case [12]. The CRLB for Multi-inputs Multi-outputs 
channel estimation was reported in [13]. It should be noted 
that the performance analyses in [8-9, 12-13] were based 
on Gaussian noise assumption. However, a practical chan-
nel is affected by not only Gaussian background noise but 
also non-Gaussian noise such as impulsive interference [3] 
which is a Gaussian and non-Gaussian mixed noise. Sev-
eral CRLBs for non-Gaussian noise have been proposed 
for array processing problem [14], [15]. The CRLB derived 
for Direction-of-arrival (DOA) estimation in [14] is based 
on a special noise distribution known as Class A distribu-
tion. Since kernel density estimators asymptotically con-
verge to any probability density function (PDF), the non-
parametric kernel method is an attractive and powerful tool 
to estimate PDF of a non-Gaussian noise from survey data 
and has been successfully applied in the performance 
analysis of array processing problem in non-Gaussian noise 
environment [15]. Despite the previous works [14], [15], 
the determination of CRLB as an optimality criterion for 
the problem of channel estimation in non-Gaussian noise 
environment is still an opening issue. Since the actual dis-
tribution of non-Gaussian noise changes with the channel 
environment, it is desired to develop a CRLB on channel 
estimation for non-Gaussian noise with arbitrary distribu-
tions. Inspired by [14] and [15], this paper derives the 
deterministic and stochastic CRLBs on channel estimation 
in OFDM system for Gaussian and non-Gaussian mixed 
noise which have not been studied. Due to the use of the 
non-parametric kernel method to build the PDF of non-
Gaussian noise, the proposed CRLBs are suitable for vari-
ous noise distributions. 

The following notational conventions are used in this 
paper:AT is the transpose of matrix A; AH is the conjugate 
transpose of matrix A; A-1 is the inverse matrix of A; A is 
the real part of matrix A ; A  is the imaginary part of 
matrix A; tr{A} is the trace of matrix A ; Aij is the i , j  
element of matrix A . 
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2. System Description 
Consider an OFDM system with N  subcarriers. 

Without loss of generality in eliminating inter-symbol 
interference, the length of cyclic prefix is assumed to be 
longer than the maximum delay spread of wireless channel. 

For pilot-assisted channel estimation, the total of Np 
pilot symbols is inserted into the N  subcarriers at the 
given locations. The vector of the received frequency-do-

main signals 
1( ) ( )

p

T

NY i Y i   Y   at the pilot locations 

 ;1k pi k N 
 
is: 

       Y XH v Dh v XFh n b    (1) 

where  1 pNdiag X X   X   represents the transmitted 

signals at the pilot locations,
 

 1

T

Lh hh  is the chan-

nel impulse response (CIR) with L  multipath components, 

D XF , 
1 p

T

Nn n   n   represents the Gaussian back-

ground noises, 
1 p

T

Nb b   b   represents the non-Gaus-

sian noise, and 
1 p

T

Nv v     v b n  . Non-Gaussian 

noise b  is a major factor affecting the accuracy of channel 
estimation and is assumed to 0 in most studies to simplify 
the analysis. Both n  and b  are considered in this paper. 
F  is a pN L  matrix with entries: 

 
.10,1,/2   LnNkeF p

Nnij
kn

k    (2) 

The objective of the channel estimation is to estimate 
h  from the observation of Y.  

CRLB is very important for parameter estimation be-
cause it provides a benchmark to evaluate the performance 
of any unbiased estimator.  

For a complex vector
1 1

T

L Lh jh h jh    h   , 

the unknown parameters can be written as 

1 1

T

L Lh h h h   θ    .  

CRLB is defined as [10], [11]: 

 
   1CRLB tr  θθ J

     
(3) 

Fisher information matrix (FIM) θJ   is [10], [11]: 

 
   ln ; ln ;

T
f f

E
   
   

    
θ

Y θ Y θ
J

θ θ
   (4) 

where  ;f Y θ  is the PDF.  

3. CRLB for Gaussian and Non-Gaus-
sian Mixed Noise 
The CRLBs based on the assumption of zero mean 

Gaussian noise are not suitable for a practical environment 
where b  is subject to different distributions. The determi-
nistic and stochastic CRLBs considering both Gaussian and 
non-Gaussian cases for practical channel have to be de-
rived. 

For a complex vector b,  f(b) can be written as:  

       f f f b b b
    

(5) 

Equation (5) assumes that the real and imaginary parts 
of b  are independent. This assumption is widely used in 
the literature [16], [17]. There are parametric and non-
parametric methods for evaluating f(b). The parametric 
method can only be used for specific noise distribution 
such as Gaussian distribution. The non-parametric method 
is an attractive tool for density estimation of non-Gaussian 
noise and has been widely used for many applications in 
color image processing, mobile location, and regression 
problems [18].  

The non-parametric method is developed here to 
derive the CRLB on channel estimation for practical 
channel environments because it can be applicable for any 
noise distribution. The basic procedure of the non-
parametric estimation is to create an approximated PDF 
from a given set of survey measurements. Assume that the 
survey sets are available for bi in each pilot channel. For 
the i th pilot channel, the survey set with size M is 

 1 1i i iM iMb jb b jb   . The estimated PDF of ib  can be 

obtained using non-parametric Gaussian kernel method 
[18]: 

 
 2

2
1

1
( ) exp

22i

M
i ij

ib
j ii

b b
f b

dMd 

   
 
 

   (6) 

where the smoothing constant id  is the width of the kernel 

function which is determined using the method in [18]. 
Many non-parametric estimators such as histogram 
method, orthogonal series, and other kernel methods can 
effectively estimate the PDF and have the similar perform-
ance. Gaussian kernel method was chosen due to its simi-
larity with the Euclidean distance and also because it gives 
better smoothing and continuous properties even with a 
small number of samples [19]. Another reason is that it is 
easy to integrate and differentiate and can lead to mathe-
matically tractable solution. 

Since in  is a zero-mean Gaussian random variable  
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with variance 2
i , the PDF of  in  is given by: 
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The PDF of i i iv b n   is: 
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Similarly, the PDF of iv  is: 
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The joint PDF of iv  is: 

( ) ( ) ( )
i ii v i v if v f v f v  
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where 
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For the vector of unknown parameters θ , the PDF of 

 ( ) |if Y i θ  can be obtained by substituting (1) into (10):  
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where L is the number of multipath components. 

The deterministic CRLB assumes h to be a determi-
nistic unknown process and the received signal of each 
subcarrier is independent. Thus the joint PDF  ;f Y θ  

becomes: 
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Substituting (12) into (4), gives: 
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where 
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Substituting (11) into  ( ) | /i kf Y i  θ  ( k kh   or 

k kh   ), gives: 
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Substituting (14) into ktJ , gives: 
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Substituting (16) into (13), gives: 
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where 
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Many numerical methods such as Matlab function 
“dblquad” can be used to calculate ikA . 

Since  ( ) ( ) /i i i i ig v s v f v  is an odd function, 

3 4 0i iA A    and the deterministic CRLB is given by: 
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Generally, the real part and imaginary part of b  have 
the same distribution. In this case, 1 2i iA A . 

Substituting 1 2i iA A  into (19), gives: 
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where 
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Remark 1: Note that the CRLB in (20) is similar to the 
deterministic CRLB in Gaussian noise environment [12]. 

The only difference is  2 2
1 pNdiag     B   for the 

Gaussian case. Thus, B  can be rewritten as: 
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                       (21) 

where i Gaussian  is for Gaussian noise channel, other-
wise Gaussian and non-Gaussian mixed noise channel. 
Equations (20) and (21) give the unified CRLB representa-
tion for the cases of Gaussian and mixed channel environ-
ments. 

Remark 2: It should be pointed out that there are two 
assumptions for the non-parametric method: survey meas-
urements of the non-Gaussian noise must be provided and 
non-Gaussian noise is a stationary process. Without these 
assumptions, the problem of the determination of CRLB in 
non-Gaussian environment will become unsolvable be-
cause it is impossible to obtain the PDF of the non-Gaus-
sian noise. Although non-Gaussian noise may be a non-
stationary process during a short time in some cases, the 
proposed CRLBs can still be applied if this noise is a sta-
tionary process for a long time. 

Remark 3: There are virtually no simple parametric 
models for non-Gaussian noise in all channel environments 
because its PDF changes with channel environments. This 
implies that it is impossible to propose a parametric CRLB 
for practical wireless channel. Thus, the proposed CRLBs 
based on survey measurements and non-parametric 
methods, which are applicable for all noise distributions, 
are necessary.  

Remark 4: Note that the derived CRLB can also be used 
for the case that non-Gaussian noise cannot be isolated 
from Gaussian noise by substituting 2 0i   into ikA . In 

this case, survey measurements ijb  and ijb  consist of both 

Gaussian and non-Gaussian noises. 

The stochastic CRLB is based on the assumption that 
h is a Gaussian random vector with the covariance matrix 
Ch. Using a similar process as the deterministic CRLB, the 
stochastic CRLB for Gaussian and non-Gaussian mixed 
noise can be derived as: 

     1
1 1_

H
CRLB s tr


   hθ XF B XF C  .         (22)

 
The following proposition is provided to give a robust 

check for the proposed CRLBs.  

Proposition 1: The proposed CRLB for the mixed noise 
will become the CRLB for the Gaussian case when the 
non-Gaussian noise goes to 0. 
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Proof: Consider the case when all non-Gaussian noise goes 

to 0 ( 0, ,ijb i j  ) i.e. 0ijb  , 0ijb  , 0id   and 

0id  , then: 
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The limit of ( )i ig v :  
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Substituting (23) and (24) into (18) gives the limit of 

1iA : 
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Substituting (25) into (21) gives the limit of B : 
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Substituting (26) into (20) and (22) shows that both of 
the deterministic and stochastic CRLBs in the mixed noise 
environments will become the CRLBs of the Gaussian case 
when non-Gaussian noise attains 0.  

4. Simulation Results 
In the simulation, the CIR is modeled as deterministic 

unknown process and random Gaussian process for the 
deterministic and stochastic CRLBs respectively. The 
covariance matrix of random Gaussian process is: 

 

  1 /100 /100.1 Ldiag e e     hC 
.   (27) 

(27) is based on multipath fading model with an exponen-
tial power delay profile. The same model for hC  has been 

used in [12] to describe the random Gaussian channel. In 
fact, (27) is used to describe the channel environment and 
will not affect the accuracy of the proposed stochastic 
CRLB because it is a basic assumption that the stochastic 
CRLB has the prior hC . 

This OFDM system consists of 256N   subcarriers 
and NP = 64 pilot channels. The number of multipath 
components L is 4.The SNR and signal-to-bias ratio (SBR) 
are defined as: 
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where 2
s , 2

back  and 2
b  are the variances of the signals, 

Gaussian noise and
 
non-Gaussian noise, respectively. For 

convenience, every pilot channel has the same SNR and 
SBR and the pilot channels are uniformly distributed 
among all the channels. The number of samples M is deter-
mined using the method in the following subsection. The 
performance of channel estimation is evaluated through 
comparing its average CRLB, which is given by: 

   / pCRLB Nθ .   (29) 

The proposed CRLB derived in this paper for Gaussian and 
non-Gaussian mixed noise will compare with the CRLB 
[12] for Gaussian noise. Researches show that the impul-
sive nature can be well described by the heavy trail 
distribution, such as Laplace and Cauchy distributions 
[20]-[21]. To simulate the non-Gaussian noise, Laplace 
distribution is selected in the simulation. The PDF of 
Laplace distribution is: 
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where  x  b  or x  b . 
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Fig. 1. The determination of the minimum number of samples. 

4.1 Case 1: Determining the Minimum 
Number of Samples 

The minimum number of samples M for achieving 
relatively accurate results using the derived CRLB is a very 
important issue. It can be seen from [19] that non-paramet-
ric kernel method can asymptotically converge to any den-
sity function with sufficient samples. This implies that the 
derived CRLB will converge to its stable value as the num-
ber of samples M increases. The minimum M can be deter-
mined when the derived CRLBs reach their stable values. 
Fig. 1 shows the average CRLB versus M for Laplace dis-
tribution when SNR=20dB and SBR=-10dB. It can be 
observed that the proposed CRLB converges when 
M ≥ 600. It should be noted that the problem of the deter-
mination of the CRLB in the practical environment with 
non-Gaussian noise will become unsolvable when the 
survey set of non-Gaussian noise with the minimum M is 
not available. 
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4.2 Case 2: Verifying the Proposed CRLBs in 
Gaussian Noise Environment 

This simulation is to compare the proposed CRLB 
with the Gaussian CRLB [12] in Gaussian noise environ-
ment. Since both n  and b  are subject to Gaussian distri-
bution and  v b n , v  is also Gaussian noise. Fig. 2 
shows the CRLB comparison with different SNRs. Com-
pared with the CRLB for Gaussian noise, the proposed 
CRLB can provide almost the same bound in Gaussian 
noise environment. This means that the proposed CRLB is 
effective. 
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Fig. 2. CRLBs comparison in Gaussian noise environment. 

4.3 Case 3: Modeling the PDF Using Non-
parametric Kernel Method 

This experiment is to evaluate the non-parametric ker-
nel method for estimating the PDF of non-Gaussian noise 
from survey data. The theoretical and estimated PDFs of 
the Laplace distributions for h = 1.58, 0.5, 0.16 using (30) 
and (6) are plotted in Fig. 3. Fig. 3 shows that the theoreti-
cal and estimated PDFs are basically the same with 
different h . 
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Fig. 3. The PDF comparison for Laplace distribution. 

4.4 Case 4: CRLB in Gaussian and Non-
Gaussian Mixed Noise Environment 

In this case, the performance of the deterministic and 
stochastic CRLBs ((20) and (22)) in Gaussian and non-

Gaussian noise environments are compared. Both n  and b  
are added in the channels. The non-Gaussian noise b

 
is 

subject to Laplace distribution. Fig. 4 shows the CRLBs 
versus SBRs with 64 pilot channels and SNR = 20 dB. The 
results show that the SBRs can reduce the CRLB.  

The CRLBs versus the number of the pilot channels 
with SBR = -10 dB and SNR = 20 dB are shown in Fig. 5. 
The results show that the stochastic CRLB has the better 
performance, and the proposed CRLBs will become the 
Gaussian CRLB when non-Gaussian noise is small, which 
matches the theoretical analysis in Proposition 1. 
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Fig. 4.  CRLB versus different SBRs in mixture noise 

environment. 
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Fig. 5. CRLB versus different Np in mixed noise environment 

5. Conclusions 
Determination of CRLB for channel estimation in 

OFDM system under Gaussian and non-Gaussian mixed 
noise has been conducted in this paper. The paper first 
builds the PDF of non-Gaussian noise using the non-para-
metric kernel method and then derives the CRLBs for 
channel estimation in Gaussian and non-Gaussian mixed 
noise environment based on the estimated PDF. The pro-
posed CRLBs consider both the cases that the CIR is 
a deterministic unknown process or a random Gaussian 
process. Since the stochastic CRLB has the prior covari-
ance matrix of CIR, the performance of the stochastic 
CRLB is better than that of the deterministic CRLB as 
shown in the simulation. This implies that it is useful for 
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a practical system to obtain the CIR information. Since ker-
nel density estimators asymptotically converge to any PDF, 
the proposed CRLBs based on the non-parametric kernel 
method are suitable for all noise distributions. This is very 
important for a practical system because various channel 
environments may lead to different noise distributions. To 
provide a deep understanding, the proposed CRLB pro-
vides a unified representation for the cases of Gaussian and 
mixed channel environments. Thus, the unified perform-
ance analysis of channel estimation for different channel 
environments can be achieved by using the proposed 
CRLB. Moreover, a sanity check is provided to show that 
the derived CRLB for Gaussian and non-Gaussian mixed 
noise become the CRLB for Gaussian noise when non-
Gaussian noise goes to 0. The paper also points out that 
there are two important assumptions for the performance 
analysis of channel estimation in non-Gaussian noise envi-
ronment: survey measurements of the non-Gaussian noise 
must be provided and non-Gaussian noise is a stationary 
process. Without these assumptions, the problem of the 
determination of CRLB in non-Gaussian environment will 
become unsolvable since it is impossible to obtain the PDF 
of the non-Gaussian noise. 
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