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Abstract.  This paper presents a recurrent neural circuit
for solving linear programming problems. The objective is to
minimize a linear cost function subject to linear constraints.
The proposed circuit employs non-linear feedback, in the
form of unipolar comparators, to introduce transcendental
terms in the energy function ensuring fast convergence to
the solution. The proof of validity of the energy function
is also provided. The hardware complexity of the proposed
circuit compares favorably with other proposed circuits for
the same task. PSPICE simulation results are presented for
a chosen optimization problem and are found to agree with
the algebraic solution. Hardware test results for a 2-variable
problem further serve to strengthen the proposed theory.
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1. Introduction

Mathematical programming, in general, is concerned
with the determination of a minimum or a maximum of
a function of several variables, which are required to satisfy
a number of constraints. Such solutions are sought in di-
verse fields including engineering, operations research, man-
agement science, computer science, numerical analysis, and
economics [1], [2].

A general mathematical programming problem can be
stated as [2]:

Minimize f(x) (1
subject to
g(x)>0(i=12,....m), 2)
hj(x)=0 (j=1,2,...,p), 3)
x€ES “)

where X = (x1,X2,...,%,)7 is the vector of unknown decision
variables, and f, gi(i = 1,2,...,m), h;(j =1,2,...,p) are
the real-valued functions of the n real variables x1,x3,...,x;,.

In this formulation, the function f is called the ob-
Jective function, and inequalities (2), equations (3) and the

set restrictions (4) are referred to as the constraints. It may
be mentioned that although the mathematical programming
problem (MPP) has been stated as a minimization problem
in the description above, the same may readily be converted
into a maximization problem without any loss of generality,
by using the identity given in (5)

max f(x) = —min [—f(x)]. (5)

As a special case, if all the functions appearing in the
MPP are linear in the decision variables X, the problem is re-
ferred to as a linear programming problem (LPP). Such LPPs
have been investigated extensively over the past decades,
in view of their fundamental roles arising in a wide vari-
ety of engineering and scientific applications, such as pat-
tern recognition [3], signal processing [4], human move-
ment analysis [5], robotic control [6], and data regression
[7]. Other real life applications include portfolio optimiza-
tion [8], crew scheduling [9], manufacturing and transporta-
tion [10], telecommunications [11], and the Traveling Sales-
man Problem (TSP) [12].

Traditional methods for solving linear programming
problems typically involve an iterative process, but long
computational time limits their usage. An alternative ap-
proach to solution of this problem is to exploit the artifi-
cial neural networks (ANN’s) which can be considered as
an analog computer relying on a highly simplified model of
neurons [13]. ANN’s have been applied to several classes of
constrained optimization problems and have shown promise
for solving such problems more effectively. For example, the
Hopfield neural network has proven to be a powerful tool
for solving some of the optimization problems. Tank and
Hopfield first proposed a neural network for solving math-
ematical programming problems, where a linear program-
ming problem (LPP) was mapped into a closed-loop network
[14]. A brief overview of the various neural network based
approaches which have been proposed over the past is pre-
sented in the next section.

In this paper, a hardware solution to the linear pro-
gramming problem is presented. The proposed architecture
uses non-linear feedback which leads to a new energy func-
tion that involves transcendental terms. This transcenden-
tal energy function is fundamentally different from the stan-
dard quadratic form associated with Hopfield network and its
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variants. To solve a LPP in n variables with m constraints,
the circuit requires n opamps, m unipolar comparators and
(m+-n) resistors thereby causing the hardware complexity of
the proposed network to compare favorably with the existing
hardware implementations. It may be mentioned that a sim-
ilar approach of using non-linear synaptic interconnections
between neurons has also been employed to solve systems of
simultaneous linear equations [15] and quadratic program-
ming [16]. An initial result on the solution of a linear pro-
gramming problem in two variables using this approach ap-
pears in [17].

The remainder of this paper is arranged as follows.
A brief review of relevant technical literature on the solution
of LPP using neural network based methods is presented in
Section 2. Section 3 outlines the mathematical formulation
of the basic problem and details of the proposed network.
Section 4 contains explanation of the energy function and
the proof of its validity. Section 5 contains the circuit im-
plementation of the proposed network for a set of sample
problem in four variables. PSPICE simulation results of the
proposed circuit are also presented. Results of breadboard
implementation of the proposed circuit for a 2-variable prob-
lem are contained in Section 6. Issues that are expected to
arise in actual monolithic implementations are discussed in
Section 7. Concluding remarks are presented in Section 8.

2. Existing Neural Networks for LPP

LPP has received considerable research attention from
the neural networks community. The first solution of the
linear programming problem was proposed by Tank and
Hopfield wherein they used the continuous-time Hopfield
network [14]. From the computational aspect, the opera-
tion of Hopfield network for an optimization problem, like
the LPP, manages a dynamic system characterized by an
energy function, which is the combination of the objec-
tive function and the constraints of the original problem
[18]. Over the years, the penalty function approach has
become a popular technique for solving optimization prob-
lems. Kennedy & Chua proposed an improved version of
Tank & Hopfield’s network for LPP in which an inexact
penalty function was considered [19]. The requirement of
setting a large number of parameters was a major drawback
of Kennedy & Chua’s LPP network [4]. Rodriguez-Vazquez
et al. used a different penalty method to transform the given
LPP into an unconstrained optimization problem [20]. Al-
though Rodriguez-Vazquez et al. later pointed out that their
network had no equilibrium point in the classical sense [21],
investigations by Lan et al. proved that the network can
indeed converge to an optimal solution of the given problem
from any arbitrary initial condition [22]. Maa & Shanblatt
employed a two-phase neural network architecture for solv-
ing LPPs [23]. Chong et al. analyzed a class of neural
network models for the solution of LPPs by dynamic gra-
dient approaches based on exact non-differentiable penalty
functions [24]. They also developed an analytical tool aimed

at helping the system converge to a solution within a finite
time. In an approach different from the penalty function
methods, Zhu, Zhang and Constantinides proposed a La-
grange method for solving LPPs through Hopfield networks
[25]. Xia and Wang used bounded variables to construct
a new neural network approach to solve LPP with no penalty
parameters. They suggested that the equilibrium point is the
same as the exact solution when the primal and dual prob-
lems are solved simultaneously [26]. More recently, Malek
& Yari proposed two new methods for solving the LPP
and presented optimal solutions with efficient convergence
within a finite time [27]. Lastly, Ghasabi-Oskoei, Malek and
Ahmadi have presented a recurrent neural network model
for solving LPP based on a dynamical system using arbi-
trary initial conditions. The method does not require analog
multipliers thereby reducing the system complexity [28].

3. Proposed Circuit

Let the first-order function to be minimized be

Vi
%)

F:[cl c ... cn} : (6)
Va

subject to the following linear constraints

aln aln ... QAlp V1 bl
a ax» ... ay Vs by
<l . (7
aml dm2 ... dmn Va b
where Vi,V2,...,V,, are the variables, and a;;, ¢; and b;

(i=12,...,m;j=1,2,...,n) are constants. The proposed
neural-network based circuit to minimize the function given
in (6) in accordance with the constraints of (7) is presented
in Fig. 1. As can be seen from Fig. 1, individual inequal-
ities from the set of constraints are passed through non-
linear synapses which are realized using unipolar compara-
tors. The outputs of the comparators are fed to neurons
having weighted inputs. The neurons are realized by using
opamps and the weights are implemented using resistances.
Ry and Cp; are the input resistance and capacitance of the
opamp that is used to emulate the functionality of a neuron.
These parasitic components are included to model the dy-
namic nature of the opamp.

If the unipolar comparator is operated with a single
+V,» supply, while the opamp realizing the neuronal func-
tionality being biased with + V,,,, the obtained transfer char-
acteristics of the unipolar voltage comparator are presented
in Fig. 2 and can be mathematically modelled by (8). As ex-
plained in the next section, such unipolar comparator charac-
teristics are utilized to obtain an energy function which acts
to bring the neuronal states to the feasible region.
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Fig. 1. i—th neuron of the proposed feedback neural network cir-
cuit to solve a linear programming problem in n variables
with m linear constraints.
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Fig. 2. Transfer characteristics of the unipolar comparator.

x:%Vm[tanhB Vi—V))+1]. ®)

Using (8), the output of the i-th unipolar comparator in
Fig. 1 can be given by (9) where B is the open-loop gain of
the comparator (practically very high), + V), are the output
voltage levels of the comparator and Vi, V,, ..., V, are the
neuron outputs.

1
X = 3 Vi [tanh B (a; Vi +anpVa+...+aimVy —b;i) +1].
€))
Applying node equations for node ‘A’ in Fig. 1, the equation
of motion of the i-th neuron can be given as
du; O oxg Ci u;
pi — = [ / :| + =
dt chi Ri Rieqv

(10)
j=1

where Ry, is the parallel equivalent of all resistances con-
nected at node ‘A’ in Fig. 1 and is given by (11)
m
zeqv Z |:

1 1
bt — (1n
c ji :| Rl R pi

where u; is the internal state of the i-th neuron, R.1;, Re2is - . .,
R i are the weight resistances connecting the outputs of the

unipolar comparators to the input of the i-th neuron. As it is
shown later in this section, the values of these resistances are
governed by the entries in the coefficient matrix of (7). Re-
sistance R; causes terms corresponding to the linear function
to be minimized, to appear in the energy function.

It may be mentioned that the concept of a Lyapunov
or energy function being associated with gradient-type neu-
ral networks was first employed by Hopfield in the stability
analysis of the so-called Hopfield Neural Network (HNN)
[14]. The computational energy for dynamical systems like
the HNN and the Non-Linear Synapse Neual Network pre-
sented in this paper, decreases continuously in time with the
network converging to a minimum in state space. The evo-
lution of the system is in the general direction of the nega-
tive gradient of the energy function. Typically, the network
energy function is made equivalent to a certain objective
function that needs to be minimized. The search for an en-
ergy minimum performed by the network correspond to the
search for the solution of an optimization problem.

As explained in Section 4, the energy function asso-
ciated with the non-linear feedback neural circuit of Fig. 1,
for minimizing a linear objective function subject to linear
constraints, is given by

n Vm m n
:;Ct‘Vi + 5 Y Y av;

i=1j=1

m
+ == Y In cosh B
% L

i (aijVi—b;) ] (12)

This expression of the energy function can be written in
a slightly different (but more illuminating) form as

n
E=Y cVi+(Pi+Po+...+Py) (13)

i=1

where the first term is the same as the first-order function
to be minimized, as given in (6), and Py, P», ..., P, are the
penalty terms. The i-th penalty term can be given as

P = V? i ln cosh P li(aijVj—bi)] . (14)

Jj=1

Obtaining a partial differential of the combined penalty term,
P(=P+P,+...+ P,) with respect to V; we have

o _ Y i + i tanh B Z Vi—b)| (15)
= = = aji +— aji a;
BV, 2 st Ji 2 ~ Ji ~ ij

which may be simplified to
P &
72 Zaﬁxj. (16)
i j=1

Using the above relations to find the derivative of the energy
function E with respect to V; we have
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a n
17
W =3 ; v a7
which in turn yields
——cl Zaj,xj (18)

Also, if E is the energy function, it must satisfy the following
condition [29]:
8£ =KC i (19)
v, P
where K is a constant of proportionality and has the dimen-
sions of resistance. Using (9), (10) and (18) in (19) results
in (for the i—th neuron)

RC}IZK/ajl’ (‘]:]727,171) (20)

A similar comparison of the remaining partial fractions for
the remaining neurons yields the following:

ch,':K/clji; (]:1,2,.. ,m),
i=1,2,...,n), @D
Ri=K; (i=1,2,...,n). (22)

4. Energy Function

This section deals with the explanation of individual
terms in the energy function expression given in (12). The
last term is transcendental in nature and an indicative plot
showing the combined effect of the last two terms is pre-
sented in Fig. 3. As can be seen, one ‘side’ of the energy
landscape is flat whilst the other has a slope directed to bring
the system state towards the side of the flat slope. During
the actual operation of the proposed LPP solving circuit, the
comparators remain effective only when the neuronal out-
put states remain outside the feasible region and during this
condition, these unipolar comparators work to bring (and re-
strict) the neuron output voltages to the feasible region. Once
that is achieved, first term in (12) takes over and works to
minimize the given function.

E

(Last two terms)

As would have been
obtained if a bipolar
comparator was =\
loyed S
employe: N
N
N 7

A

Vi -Vj

Fig. 3. Combined effect of last two terms in (12).

The validity of the energy function of (12) can be proved as
follows. The time derivative of the energy function is given
by

dE " OFE dV; <

dr 7ZBV dt Z

Using (19) in (23) we get

dE du; \* dv;

— =Y KCpi| — | —. 24

dt ; 1”( dt) du; 24)
The transfer characteristics of the output opamp used to

implement the neurons in Fig. 1 implements the activation
function of the neuron and can be written as

Vi = f(u) (25)

oE dV; du;
aV; du; dr

(23)

where V; denotes the output of the opamp and u; corresponds
to the internal state at the inverting terminal. The function f
is typically a saturating, monotonically decreasing one, as
shown in Fig. 4, and therefore [15],

Vi

Fig. 4. Transfer characteristics of the opamp used to realize the
neurons.

av;
du; <0 (26)
thereby resulting in JE
dr
with the equality being valid for
du,-
dr

Equation (27) shows that the energy function can never
increase with time which is one of the conditions for a valid
energy function. The second criterion i.e. the energy func-
tion must have a lower bound is also satisfied for the circuit
of Fig. 1 wherein it may be seen that Vi, V>, ..., V,, are all
bounded (as they are the outputs of opamps, as given in (25))
amounting to E, as given in (12), having a finite lower bound.

<0 Q7

=0. 28)

5. Simulation Results

This section deals with the application of the proposed
network to the task of minimizing the objective function

Vi+2Vo —V3+3Vy 29)

subject to

Vi—Va+V3 <4,
Vi+Va+2V4 <6,
Vo=2V3+Vy <2,
“Vi+2V, +Vv3 <2,
Vi >0,

V4 > 0. (30)
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%2 Vi [tanh B(V; - V;)+1]
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Fig. 5. Obtaining unipolar comparator characteristics using an
opamp and a diode.
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Fig. 6. Transfer characteristics for opamp based unipolar and
bipolar comparators as obtained from PSPICE simula-
tions.

The values of resistances acting as the weights on the neu-
rons are obtained from (21), (22). For the purpose of simula-
tion, the value of K was chosen to be 1 kQ. Using K = 1 kQ
in (21), (22) gives

Rein Rez Ras Res 1K —1K 1K oo
Ro1 Rz Rz Ren 1K 1K oo 0.5K
Re3i Re2 Rz Resa | _ oo IK —-05K 1K
Reai Reaz Rea3 Reas n —1K  0.5K 1K Rl
Resi Resa Ress Ress —1K oo o
Re1 Rz Rees  Reea oo oo oo —1K
(€29)]
Ry =Ry =R3; =Ry = IK. (32)

For the purpose of PSPICE simulations, the unipo-
lar voltage comparator was realized using a diode with an
opamp based comparator as shown in Fig. 5. The transfer
characteristics obtained during the PSPICE simulations for
opamp based bipolar and unipolar comparators are presented
in Fig. 6 from where it can be observed that the obtained
unipolar characterisitics are in agreement with the ideal char-
acteristics of Fig. 2. For the purpose of this simulation, the
LMC7101A CMOS opamp model from the Orcad library in
PSPICE was utilised. The value of B for this opamp was
measured to be 1.1 x 10* using PSPICE simulation. For
the negative values arising in (31), inverted outputs would
be required from the unipolar voltage comparators. For the
present simulation, inverting amplifiers were employed at
the outputs of the comparators which need negative weights.

Routine mathematical analysis of (29) yields: V; =0,
Vo, = —10, V3 = —6 and V4 = 0. The resultant plots of
the neuron output voltages as obtained after PSPICE sim-
ulation are presented in Fig. 7 from where it can be seen
that V(1) = 110 4V, V(2) = —10.28 V, V(3) = —6.17 V and
V(4) = 110 uV which are very near to the algebraic solution
thereby confirming the validity of the approach. For em-
ulating a more realistic ’power-up’ scenario, random initial
values in the milli-volt range were assigned to node voltages.

5V
—- V(1 V(4)
(1]
e
=
o
s
o 5V \ v(3)
[
[=]
S
v V(2
Z 10v 2
AV os 50us 100us
Time

Fig. 7. Simulation results for the proposed circuit applied to
minimize (29) subject to (30).

One set of initial node voltage was: V(1) =2 mV, V(2) =
7mV, V(3)=-5mV and V(4) = 10 mV.

6. Hardware Test Results

Breadboad implementation of the proposed circuit was
also carried out. Apart from verification of the working of
the proposed circuit, the actual circuit realization also served
the purpose of testing the convergence of the circuit to the
solution starting from different initial conditions. The noise
present in any electronic circuit acts as a random initial con-
dition for the convergence of the neural circuit. Standard lab-
oratory components i.e. the uA741 opamp and resistances
were used for the purpose. A 2-variable problem for the
minimization of the objective function

2V + 6V, (33)
subject to
Vl > 17
Vo >1 (34)

was chosen for the hardware tests. The values of resistances
acting as the weights on the neurons are obtained from (21),
(22). The value of K was chosen to be 1 kQ. Using K = 1 kQ
in (21), (22) gives R| =R, = 1 kQ, R.11 = Rp2 = 1 kQ and
R.12 = R = oo. The voltages applied were by = b, =1V,
c1 =2 V and ¢ = 6 V. The obtained values of the neuronal
voltages were V) = 1.06 V and V, = 1.02 V which are in close
agreement with the exact mathematical solution which is V;
=1and V, = 1. a snapshot of the obtained results is presented
in Fig. 8.

7. Issues in Actual Implementation

This section deals with the monolithic implementation
issues of the proposed circuit. The PSPICE simulations as-
sumed that all operational amplifiers (and diodes) are identi-
cal, and therefore, it is required to determine how deviations
from this assumption affect the performance of the network.
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Fig. 8. Hardware test result for the proposed circuit applied to
minimize (33) subject to (34).

A 10 % tolerance with Gaussian deviation profile was put on
the resistances used in the circuit to solve (29). The anal-
ysis was carried out for 200 runs and the Mean Deviation
was found out to be -21.23x107% and Mean Sigma (Stan-
dard Deviation) was 0.013. Offset analysis was also carried
out by incorporating random offset voltages (in the range of
1 mV to 10 mV) to the opamps. The Mean Deviation in
this case was measured to be -20.19x107% and the Mean
Sigma (Standard Deviation) was 0.007. As can be seen, the
effects of mismatches and offsets on the overall precision of
the final results are in an acceptable range.

Effects of non-idealities in various components were
further investigated in PSPICE by testing the circuit with all
resistances having the same percentage deviation from their
assigned values. The resulting assessment of the quality of
solution is presented in Tab. 1 from where it is evident that
the solution point does not change much even for high devi-
ations in the resistance values.

Next, the effect of offset voltages in the opamp-based
unipolar comparators was explored. Offset voltages were
applied at the inverting terminals of the comparators and the
results of PSPICE simulations for the chosen LPP are given
in Tab. 2. As can be seen, the offset voltages of the com-
parators do not affect the obtained solutions to any appre-
ciable extent. However, the error does tend to increase with
increasing offset voltages.

Finally, offset voltages for the opamps emulating the
neurons were also considered. Offset voltages were applied
at the non-inverting inputs of the opamps and the results of
PSPICE simulations were compared with the algebraic so-
lution as given in Tab. 3. As can be seen, the offset voltages
of the opamps have little effect on the obtained solutions.

In fact, the realization of unipolar comparators by the
use of opamps and diodes in the proposed circuit tends to
increase the circuit complexity. The transistor count can
be further reduced by utilising voltage-mode unipolar com-
parators instead of the opamp-diode combination. This also
suggests that a real, large scale implementation for solv-
ing linear programming problems with high variable counts

Variation in

" | +2% +5% +10% -2% -5% -10%
Resistances
PSPICE 100 pv 113 uv 214 pv 98 uv 105 uv 126 pv
Simulation -10.29V -10.35V -10.77V —10.28V -9.72V -9.89V
—-6.17V —-6.23V —6.33V —6.17V -5.91V -5.69V
Results 115 uv 267 uV 332 pu¥V 129 uv 512 uv 875 uv

Tab. 1. Effect of variation in resistances on the obtained results.

Offset voltage

_ appliedat. -5 -10 -15 +5 +10 +15
inverting terminal
of comparator mV mV mV mV mV mV
opamps
103 pv 100 pv 89 uv 127 pv 105 uv 105 uv
PSPICE Simulation | (-10.22V —10.04V -9.92V —10.28V —10.34V —10.84V
Results —6.17V -6.11V| |-6.03v| |-6.18V| | -6.29V —6.33V
112 pv 98 uv 77 uv 314 pv 623 uv 746 pv

Tab. 2. Effect of offset voltages of the opamp-based unipolar
comparators on the solution quality.

Offset voltage

 applied at non- -5 -10 -15 +5 +10 +15
inverting terminal
of neuronal mV mV mV mV mV mV
opamps
111 pV 119 pv 189 uv 127 pv 69 vV 10 uv
PSPICE Simulation | [-10.28v| [-10.29v| |-10.32V| [-10.12V| |-9.98V -9.89V
Results -6.17V -6.18V -6.20V | [ -6.13V —-6.09V —6.04V
123 pv 221V 323 v 114 pV 223 v 246 pv

Tab. 3. Effect of offset voltages of the opamp-based neurons on
the solution quality.

might be quite different. Alternative realizations based on
the differential equations (10) governing the system of neu-
rons are being investigated. Other approaches to obtain the
tanh(.) non-linearity include the use of a MOSFET operated
in the sub-threshold region [30] and the use of Current Dif-
ferencing Transconductance Amplifier (CDTA) to provide
the same nonlinearity in the current-mode regime [31].

8. Conclusion

In this paper, a CMOS compatible approach to solve
a linear programming problem in n variables subject to m
linear constraints, which uses n-neurons and m-synapses
is presented. Each neuron requires one opamp and each
synapse is implemented using a unipolar voltage-mode com-
parator. This results in significant reduction in hardware over
the existing schemes. The proposed network was tested on
a sample problem of minimizing a linear function in 4 vari-
ables and the simulation results confirm the validity of the
approach. Hardware verification for a 2—variable problem
further validated the theory proposed.
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