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Abstract. The capacity of CDMA (Code Division Multiple 
Access) systems is interference limited. Therefore radio 
resources management (RRM) functions are used. They are 
responsible for supplying optimum coverage, ensuring 
efficient use of physical resources, and providing the 
maximum planned capacity. This paper deals with admis-
sion control techniques for UMTS (Universal Mobile Tele-
communication System). A UMTS system model and four 
fuzzy logic based admission control algorithms are pre-
sented in this paper. Two new versions of fuzzy logic based 
admission control algorithms are presented there. All al-
gorithms are mutually compared via simulations. Simula-
tions show that the novel advanced fuzzy algorithm out-
performs the other simulated algorithms (in terms of 
blocking probability, dropping probability and the number 
of active UEs in cell). 
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1. Introduction 
Mobile systems, like GSM (Global System for Mobile 

communications) or UMTS (Universal Mobile Telecom-
munication System), have to deal with mobility of users, 
unpredictable traffic and also with varying radio channel 
conditions. These 2G (2nd Generation) and 3G (3rd Genera-
tion) systems are already installed and used at present. 
Their upgrades (like Evolved High Speed Packet Access, 
HSPA+) are able to partly cope with novel systems like 
LTE (Long Term Evolution) and thus these systems sur-
vive so far. UMTS is used below as a representative of 
CDMA (Code Division Multiple Access) systems. CDMA 
systems do not have a fixed capacity. Their capacity de-
pends on the interference level in the system. A suitable 
version of an admission control (AC) algorithm therefore 
has to be implemented.  

Admission control algorithm decides whether a new 
session request will be accepted, or rejected. It also decides 
(it partly overlaps with handover control) if an existing 

session will be kept or dropped. The main aims of AC are: 
to maximize the number of sessions in a cell (in the sys-
tem), to minimize the number of blocked and dropped 
sessions, and to guarantee QoS (Quality of Service) and 
QoE (Quality of user Experience) of all existing sessions. 
The admission procedures have not been standardized, so 
the evolution and optimization of AC is still in progress. 

A number of AC algorithms and approaches can be 
found in the literature. Note that some approaches overlap, 
so the classification of algorithms is not unique. An algo-
rithms survey can be found in [1] or [2]. Some algorithms 
are number (capacity) based; an example can be found in 
[1]. There is another group of algorithms which try 
to predict movement trajectories of users, [3], [4], for 
example. Examples of interference based algorithms can be 
found in [5], [6]. There are also some novel approaches, 
which use fuzzy logic. They use this technique in order to 
deal with traffic uncertainty and user mobility. An example 
of fuzzy AC can be found in [7]. A fuzzy logic AC for 
multiclass traffic is presented here. A novel neural fuzzy 
based AC algorithm providing multirate services is pre-
sented in [8]. This algorithm outperforms the other algo-
rithms (see [8]) by tens of percent. However, its 
complexity and computational demands are quite high. 
Other fuzzy logic based AC approaches can be found in the 
literature. 

This paper presents new fuzzy logic based AC algo-
rithms and compares them with another two fuzzy logic 
based algorithms. It would be useful to compare the above 
mentioned algorithms with other algorithms (already pub-
lished). However, it is not a simple task. Chapter 2 is based 
on [7] and [8]. These publications present own proposed 
algorithms. However, some essential parameters are not 
specified in those papers (for example: threshold values of 
membership functions, session length, etc.). Therefore, 
these algorithms cannot be reproduced and compared with 
the algorithms that are introduced below.  

The rest of the paper is organized as follows. Sec-
tion 2 describes fuzzy logic based AC algorithms. Section 
3 describes the proposed simulation program (model). 
Simulation results are presented in Section 4. Finally, Sec-
tion 5 provides conclusions. 
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2. Fuzzy Logic Based Algorithms 
Four versions of fuzzy logic based AC algorithms are 

described and simulated in this paper. These algorithms are 
based (in general) on [7] and [8]. Input variables are fuzzi-
ficated (processed with triangular membership functions, 
see Fig. 1 and Fig. 2). Fuzzy rules are then applied. Fuzzy 
rules express the “expert knowledge” of the problem. They 
correspond to the following form: IF „conditions (in the 
cell, session parameters)” THEN „control action (reject, for 
example)”. At the end, there is a backward transformation 
which yields the final decision. Details (for example: 
a five-layer fuzzy controller structure and a description of 
individual layers) can be found in [9].  
 

 

Fig. 1. Membership function for SP and UL. 
 

 
Fig. 2. Membership function for Nn-I, Nn-P and vf. 

 

2.1 Simple Algorithm (AC-F1) 

This algorithm (further denoted as AC-F1) uses three 
input variables: activity factor vf, which enables distin-
guishing between voice and data sessions, speed of user 
SP, and total uplink load factor UL. The corresponding 
linguistic term sets are: {low – L, medium – M, high – H} 
for SP and UL, and {low – L, high – H} for vf. The thresh-
old levels of membership functions (see Fig. 1 and Fig. 2): 
ASP = 15 km/h, BSP = 35 km/h, CSP = 50 km/h, Aul = 0.3, 
Bul = 0.4, Cul = 0.5, Avf = Bvf = 0.75. This algorithm has 
18 fuzzy rules as defined in Tab. 1 (except the Nn-I and Nn-P 
columns). The corresponding linguistic term set for deci-
sion: {strongly accepted – SA, accepted – A, weakly 
accepted – WA, weakly rejected – WR, rejected – R}. This 
algorithm was presented in [9] and partly in [10]. It is 
assumed that speeds of UEs are known (estimated) by 
Node Bs (there are papers that deal with methods for 
estimation of speeds and positions of UEs).  
 

Rule Nn-I Nn-P vf SP UL Decision

1 L L L L L SA 
2 L L L L M A 

3 L L L L H WA 

4 L L L M L SA 

5 L L L M M WA 

6 L L L M H WA 

7 L L L H L A 

8 L L L H M WA 

9 L L L H H WR 

10 L L H L L SA 

11 L L H L M A 

12 L L H L H WR 

13 L L H M L A 

14 L L H M M WA 

15 L L H M H WR 

16 L L H H L WA 

17 L L H H M WA 

18 L L H H H R 

Tab. 1. Fuzzy rules, part 1. 
 

Rule Nn-I Nn-P vf SP UL Decision

19 L H L L L A 
20 L H L L M WA 

21 L H L L H WR 

22 L H L M L A 

23 L H L M M WR 

24 L H L M H WR 

25 L H L H L WA 

26 L H L H M WR 

27 L H L H H R 

28 L H H L L A 

29 L H H L M WA 

30 L H  H L H R 

31 L H  H M L WA 

32 L H  H M M WR 

33 L H  H M H R 

34 L H  H H L WR 

35 L H H H M WR 

36 L H H H H R 

Tab. 2. Fuzzy rules, part 2. 

2.2 Algorithm with Simple Prediction of UEs 
Positions (AC-F2) 

This algorithm (further denoted as AC-F2) uses four 
input variables: activity factor vf, which enables distin-
guishing between voice and data sessions, speed of user 
SP, total uplink load factor UL, and predicted number 
of UEs (User Equipments), Nn-P, that will enter the cell of 
interest in 20 seconds (this value was found optimal during 
several simulations). The threshold levels of membership 
functions: ASP = 15 km/h, BSP = 35 km/h, CSP = 50 km/h, 
Aul = 0.3, Bul = 0.4, Cul = 0.5, Avf = Bvf = 0.75, ANn-P = 2, 
BNn-P = 20. The movement prediction uses (according 
to UMTS system model movement possibilities) a simple 
linear method (the predicted position is calculated using 
present and past positions).  
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This simple method was used in order to show that 
even a simple low complexity prediction method is able to 
achieve improvement. The corresponding linguistic term 
sets are: {low – L, medium – M, high – H} for SP and UL, 
and {low – L, high – H} for the rest of input variables. 
This algorithm has 36 fuzzy rules as defined in Tab. 1 and 
Tab. 2 (except the Nn-I column). This algorithm was 
presented in [11]. 

2.3 Algorithm with Capacity Reservation 
(AC-F3) 

This new algorithm (further denoted as AC-F3) uses 
four input variables: activity factor vf, which enables dis-
tinguishing between voice and data sessions, speed of user 
SP, total uplink load factor UL, and the number of new 
sessions in the current cell for the last 20 seconds, Nn-I. The 
corresponding linguistic term sets are: {low – L, medium – 
M, high – H} for SP and UL, and {low – L, high – H} for 
the rest of input variables. The threshold levels of member-
ship functions: ASP= 15 km/h, BSP= 35 km/h, CSP= 50 km/h, 
Aul = 0.3, Bul = 0.4, Cul = 0.5, Avf = Bvf = 0.75, ANn-I = 2, 
BNn-I = 20. This algorithm has 36 fuzzy rules as defined in 
Tab. 1 and Tab. 2 (except the Nn-I column; Nn-P column is 
used for Nn-I in this case).  

2.4 Advanced Algorithm (AC-F4) 

This new proposed algorithm (further denoted as 
AC-F4) uses five input variables: activity factor vf, which 
enables distinguishing between voice and data sessions, 
speed of user SP, total uplink load factor UL, the number 
of new sessions in the current cell for the last 20 seconds 
Nn-I, and predicted number of new UEs that will enter the 
cell of interest in 20 seconds (these values were found 
optimal during several simulations), Nn-P. It is a combi-
nation of three above mentioned algorithms.  
 

Rule Nn-I Nn-P vf SP UL Decision

37 H L L L L A 
38 H L L L M A 

39 H L L L H WA 

40 H L L M L A 

41 H L L M M WA 

42 H L L M H WA 

43 H L L H L A 

44 H L L H M WA 

45 H L L H H R 

46 H L H L L A 

47 H L H L M A 

48 H L H L H R 

49 H L H M L A 

50 H L H M M WA 

51 H L H M H R 

52 H L H H L WA 

53 H L H H M WA 

54 H L H H H R 

Tab. 3. Fuzzy rules, part 3. 

The corresponding linguistic term sets are: {low – L, 
medium – M, high – H} for SP and UL, and {low – L, 
high – H} for the rest of input variables. The threshold 
levels of membership functions: ASP = 15 km/h, BSP = 
35 km/h, CSP = 50 km/h, Aul = 0.3, Bul = 0.4, Cul = 0.5, 
Avf = Bvf = 0.75, ANn-I = 2, BNn-I = 20, ANn-P = 2, BNn-P = 20. 
This algorithm has 72 fuzzy rules as defined in Tab. 1 up to 
Tab. 4.  
  

Rule Nn-I Nn-P vf SP UL Decision

55 H H L L L A 
56 H H L L M WA 

57 H H L L H WR 

58 H H L M L A 

59 H H L M M R 

60 H H L M H R 

61 H H L H L WA 

62 H H L H M R 

63 H H L H H R 

64 H H H L L A 

65 H H H L M WA 

66 H H H L H R 

67 H H H M L WA 

68 H H H M M R 

69 H H H M H R 

70 H H H H L R 

71 H H H H M R 

72 H H H H H R 

Tab. 4. Fuzzy rules, part 4. 

3. System Model 
There are already some simulation programs for 

CDMA systems. An example can be found in [12] or [13]. 
However, these programs are often not free of charge, they 
are focused on the physical layer simulations, or they are 
simply unavailable. A UMTS system model has therefore 
been created in MATLAB. The system model consists of 
19 hexagonal cells of equal size. Each cell contains a cen-
trally located Node B with omni-directional antenna. The 
diameter of each cell is 1 km. Each UE (User Equipment) 
communicates with the closest Node B. Ses-sion requests 
are generated according to the Poisson process distribution 
with an arrival frequency of 150 to 1200 session requests 
per hour (for each cell separately). Two session types 
(voice and data) are distinguished. The UE positions and 
trajectories are generated randomly within the area. Users 
change their positions with speeds up to 50 km/h. Trajecto-
ries of UEs are linear with random change of direction 
every 20 seconds. Suburban scenario is considered. Wal-
fish-Ikegami channel model is used. The UMTS model is 
shown in Fig. 3. The movement trajectories of several 
users are also shown there. The 7 cells in the centre are 
used for the evaluation of algorithms. The other 12 cells 
(1st tier) simulate border conditions. All users (sessions) 
have the same energy demands: Eb/N0 = 7.5 dB. Two traf-
fic classes, voice and data, with activity factors 0.5 or 1, 
and bit rates Rbit = 12.2 kbit/s (for both session types) were 
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considered in all simulations. These two classes assume the 
same input data. Duration of sessions varies between 60 
and 180 seconds. These values were set according to [7] 
and [14]. In addition, only few UEs would be in cell for 
higher bit rates. Simulation results would be more fluctu-
ating. 

 
Fig. 3. System model. 

4. Simulation Results 
The algorithms introduced above were simulated and 

mutually compared in the system model that was intro-
duced in the previous section. All simulations take 
60 minutes (from the UMTS point of view). The length of 
simulation step is 200 ms (radio resource indication period 
(RRI), which is the time needed to receive in the RNC 
power measurements from the base stations, [14]).  
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Fig. 4. Comparison of fuzzy AC algorithms for voice 
sessions.  

The presented results are averages from 10 simula-
tions and correspond to the 7 cells in the centre. The fol-
lowing figures show the relationship between the blocking 
probability pB (ratio of the number of rejected sessions to 
the number of session requests), the dropping probability 
pD (ratio of the number of dropped sessions to the number 

of session requests) and the arrival frequency of sessions 
(number of users). Arrival frequency is considered for each 
cell separately. 

Fig. 4 shows the comparison of several algorithms for 
voice sessions. It can be observed that increasing arrival 
frequency of sessions increases both probabilities (the 
number of UEs in the system and the number of session 
requests are increasing). The dropping probabilities for all 
algorithms are almost equal to zero. This is quite important, 
because dropping out of an existing session is (from the 
user’s perspective) much more disturbing than rejection of 
a new session request. The blocking probabilities are quite 
low (in comparison with Fig. 5). Algorithm AC-F1 reaches 
the lowest values of pB. Algorithm AC-F3 reaches the 
highest values of pB. 
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Fig. 5. Comparison of fuzzy AC algorithms for data sessions. 

Fig. 5 shows the comparison of several algorithms for 
data sessions. Note that voice sessions have a higher prior-
ity, so pB and pD of voice sessions reach lower values 
(Fig. 4). The dropping probabilities (for data sessions) for 
all algorithms are kept low. Algorithm AC-F4 reaches the 
lowest values of pD. The blocking probabilities are higher 
in this case (in comparison with Fig. 4). All algorithms 
reach similar values of pB. 
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Fig. 6. Comparison of uplink load factors. 
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Fig. 6 shows the average (calculated from 7 cells in 
the centre) uplink load factor values in one cell. This figure 
shows how the cell occupancy develops according to the 
number of session requests. All algorithms reach similar 
values. This means that cell occupancies are similar for all 
algorithms (algorithms are compared under similar condi-
tions). 

Fig. 7 shows the development of average number of 
sessions in one cell according to the number of session 
requests. All algorithms reach similar values (algorithms 
are compared under similar conditions).  

200 400 600 800 1000
0

5

10

15

20

25

Arrival frequency (sessions/hour)

A
ve

ra
ge

 n
um

be
r 

of
 s

es
si

on
s 

in
 c

el
l (

-)

 

 

AC-F1
AC-F2
AC-F3
AC-F4

 
Fig. 7. Average number of sessions in cell. 
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Fig. 8. Average number of successfully finished sessions. 

Fig. 8 shows the average number of successfully 
finished sessions in one cell for the whole simulation 
(60 minutes). Algorithm AC-F4 reaches the highest 
numbers of finished sessions. Algorithm AC-F3 reaches 
the lowest numbers of finished sessions. AC-F1 and AC-F2 
algorithms reach similar results. 

Fig. 9 shows the average number of successfully 
finished voice sessions in one cell for the whole simulation 
(60 minutes). Algorithm AC-F3 reaches the lowest num-
bers of finished sessions. The other algorithms reach simi-
lar numbers of voice sessions. 

Fig. 10 shows the average number of successfully 
finished data sessions in one cell for the whole simulation 
(60 minutes). Algorithm AC-F4 reaches the highest num-
bers of finished data sessions. The other algorithms reach 
similar numbers of sessions. Note that the number of suc-
cessfully finished data sessions decreases for the high arri-
val frequency of sessions. This is because of the different 
session priorities. Data sessions are blocked (for high arri-
val frequency of sessions) more often in order to ensure 
low pB and pD for voice sessions. 

200 400 600 800 1000
50

100

150

200

250

300

350

400

450

500

550

Arrival frequency (sessions/hour)

A
ve

ra
ge

 n
um

be
r 

of
 s

uc
ce

ss
fu

lly
 f

in
is

he
d

vo
ic

e 
se

ss
io

ns
 in

 c
el

l (
-)

 

 

AC-F1
AC-F2
AC-F3
AC-F4

 
Fig. 9. Average number of successfully finished voice 

sessions. 
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Fig. 10. Average number of successfully finished data sessions. 

5. Conclusion 
Admission control algorithms for CDMA systems are 

presented in this paper. Fuzzy logic based algorithms are 
simulated in the UMTS simulation program, which was 
designed for this purpose. 

The proposed AC-F3 and AC-F4 algorithms are com-
pared with AC-F1 and AC-F2 algorithms that were already 
published in [9], [10] and [11]. 
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The proposed fuzzy based algorithm AC-F4 appears 
to have a better performance than the other algorithms. 
Algorithm AC-F4 is able to reach low values of pD and 
comparable values of pB at the same time. It is also able to 
reach slightly higher or comparable numbers of success-
fully finished sessions in a cell. 

The proposed fuzzy based algorithm AC-F3 has com-
parable (or slightly worse) performance than the other 
algorithms.  

Future work will consider more complex versions of 
fuzzy logic based algorithms. It would be also convenient 
to investigate the impact of inaccurate estimate of some 
parameters (for example: speed of UEs, cell load, etc.).  
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