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Abstract. In this paper a novel approach for independent 
component analysis (ICA) model order estimation of 
movement electroencephalogram (EEG) signals is de-
scribed. The application is targeted to the brain-computer 
interface (BCI) EEG preprocessing. The previous work has 
shown that it is possible to decompose EEG into move-
ment-related and non-movement-related independent com-
ponents (ICs). The selection of only movement related ICs 
might lead to BCI EEG classification score increasing. The 
real number of the independent sources in the brain is an 
important parameter of the preprocessing step. Previously, 
we used principal component analysis (PCA) for estima-
tion of the number of the independent sources. However, 
PCA estimates only the number of uncorrelated and not 
independent components ignoring the higher-order signal 
statistics. In this work, we use another approach – selec-
tion of highly correlated ICs from several ICA runs. The 
ICA model order estimation is done at significance level 
α = 0.05 and the model order is less or more dependent on 
ICA algorithm and its parameters. 
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1. Introduction 
Our previous works ([1] and [2] among others) were 

targeted on the movement classification from electroen-
cephalogram (EEG) signals. The aim was to develop a 
simple movement classification method of EEG signal 
based on hidden Markov models (HMM) classifier. The 
developed method has been further improved; one of the 
improvements we are working on is the amendment of the 
EEG preprocessing. Our work is focused on the imple-
mentation of a technique allowing getting a better signal-
to-noise ratio (SNR) than the commonly used Laplacian 
filtering. Independent component analysis (ICA) represents 
one possible approach to reach this goal. Although the 
application of the ICA has been a fast expanding research 
area and many scientific teams have been engaged in in-
vestigation of its contribution to biosignal processing, the 
important question of the ICA model order selection is still 
open [3]. 

A widely used approach to estimate the number of in-
dependent sources is based on the usage of principal com-
ponent analysis (PCA). However, PCA estimates only the 
number of uncorrelated and not independent components 
ignoring the higher-order signal statistics. Despite this fact, 
PCA is commonly used in many works. For example, in 
work [4], PCA is used for dimension reduction of original 
122-channel magnetoencephalography (MEG) data to the 
dataset containing only the first 20 principal components 
(PCs). Work [5], which describes EEG data decomposi-
tion, uses PCA in order to estimate ICA model order. The 
ICA model order of 59-channel EEG is estimated at 95% 
confidence interval and the ICA model order varies in the 
range of 33-37 depending on EEG data type. Work [6] uses 
PCA as a preprocessing tool for ICA, and in this way PCA 
reduces 52-channel EEG to 15 PCs. On the other hand, 
work [7] describes PCA and ICA methods and evaluates 
the PCA method as an unsuitable one for ICA model order 
estimation. 

The authors of work [8] perform ICA decomposition 
several times with different initialization and each com-
puted independent component (IC) is represented by a 
single equivalent current dipole (ECD). Further, they sup-
pose that only ICs which are independent of algorithm 
initialization are task-relevant ones. 

In the previous works [9], [10] we described a slightly 
different method for estimation of the number of ICs which 
is based on selection of highly correlated ICs from several 
ICA runs. In this work, we describe an improved version 
based on the previous one which also exploits the results of 
several ICA runs, and these results are proceeded by a 
clustering method. 

2. Blind Source Separation 
Blind source separation (BSS) is a method which 

aims at recovering unobserved source signals from their 
mixture or transformation. The observations are typically 
obtained by means of a set of sensors, where each sensor 
receives a different mixture of the source signals. It is as-
sumed that no information is available about the mixing 
transformation and the source signals are not observed. The 
formulation of such a problem cannot be completely 
general since it would not be solvable. Therefore, there are 
several models of the mixing transformation which some-
how restrict the generality of the task. There are three basic 
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models used in the field of BSS: an instantaneous linear 
mixing model, a convolutional mixing model, and a noisy 
model. Each of these models is used for a specific applica-
tion [11]. 

A direct application of the linear BSS model can be 
found in biomedical engineering [4], [12] since the meas-
ured EEG or MEG signals fit the linear model [13], [14]. 
Thus, we will deal with the linear model which can be 
described as follows: 

X = AS  (1) 

where X ∈ m × N is an observation matrix containing ob-
served signals in rows, matrix S ∈ n × N contains unknown 
source signals (hidden components), unknown matrix 
A ∈ m × n is called mixing matrix, N is the number of 
available samples, n is the number of sources and m is the 
number of sensors. The goal of BSS is to estimate both 
unknowns from the observations X and in principle it is 
done by inverting a mixing process: 

$Y = S = WX  (2) 

where W ≈ A−1 is called separating or demixing matrix and 
matrix Y contains estimated ICs in rows. The general BSS 
problem requires A to be an m × n matrix, with m ≥ n (i.e. 
there are at least as many mixtures as original sources). 
From the theoretical point of view, an equal number of 
sources and sensors (n = m) is of the greatest importance. 

2.1 Independent Component Analysis 
A powerful method to perform BSS is independent 

component analysis (ICA) whose fundamental assumption 
is that the sources are mutually independent. ICA algo-
rithm formulations are based on a wide variety of princi-
ples, including mutual information, maximum likelihood, 
higher-order statistics (HOS), and others [11].  

Despite such a wide variety, all ICA algorithms are 
very similar. Most of ICA methods try to estimate the 
mixing matrix A, or its inverse W, by optimizing an appro-
priate cost-function which measures the degree of statisti-
cal independence among the estimated ICs, or the deviation 
from a Gaussian distribution (using the central limit theo-
rem, a mixture of independent non-Gaussian sources be-
comes more Gaussian). As a consequence, this highlights a 
potential limitation of ICA when it is used for biomedical 
signal processing. ICA using this technique can only re-
solve independent sources which have non-Gaussian dis-
tributions (or at most only one source having a Gaussian 
distribution). 

It is difficult to imagine that we are estimating the 
original source signals without knowing the parameters of 
the mixing process. In fact, it is not possible to uniquely 
estimate the original source signals without any a priori 
knowledge. However, one can estimate them up to certain 
indeterminacies (sign, scaling, and permutation) [11]. 

3. ICA Model Order Estimation 
There is a lot of existing ICA algorithms; we chose a 

well known algorithm FastICA [15] for the processing 
owing to its good properties: fast convergence and numeric 
robustness. The second one which we used for our research 
is EFICA algorithm [16] which is an improved version of 
FastICA. 

Before ICA application, EEG signals were centered 
(mean value suppression) and whitened by PCA without 
any dimension reduction for the reasons mentioned in 
section 1. Let us assume that we have EEG recorded from 
m scalp electrodes and after PCA we still have m channels 
but whitened ones. 

The proposed algorithm for the estimation of ICA 
model order is based on repeated EEG decomposition by 
the given ICA algorithm with random ICA initial condi-
tions (measure of ICA stability) and processing of ICA 
results by a clustering method. We exploit the fact that the 
obtained ICs can be divided into two classes: those inde-
pendent of the initial conditions of the ICA algorithm 
(macroscopic brain sources) and those dependent on the 
initial conditions of the ICA algorithm (microscopic brain 
sources, noise). From this point of view, only ICs repre-
senting macroscopic brain sources can be relevant and task 
related. 

3.1 EEG Database Properties 
At first we summarize basic properties of the used 

EEG database which are needed for an evaluation of the 
proposed algorithm for ICA model order estimation. 

The research was done with the database originally 
recorded for physiology study [17]. Database contains 
EEG recordings of 7 subjects performing two kinds of 
movements: distal right index finger flexion and proximal 
right shoulder elevation [1], [17]. EEG was recorded using 
59 scalp electrodes. Recorded raw EEG was examined 
visually later on. Artifacts were suppressed and EEG was 
segmented into 10sec length epochs with the movement 
localized in the 5th second. The EEG used by our study 
(ICA processed) was not filtered by any surface filter 
(Laplacian among others) prior to ICA decomposition in 
order not to negatively influence the numerical stability of 
the IC estimation. The data contains 27 realizations of 
movement, each of them with 5,000 samples. 

3.2 Measure of ICA Stability 
Since each ICA algorithm is an iterative one it needs 

an initialization (the first estimation of demixing matrix) 
for its run and the results of the given ICA algorithm are 
less or more dependent on its initialization. From this point 
of view, it is necessary to determine how much the given 
algorithm is dependent on its initialization or how stable 
results it provides. 
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For this analysis the EEG decomposition is repeated 
NR times with the demixing matrix randomly initialized 
prior to IC decomposition in order to determine whether 
the used ICA algorithm converges to the same results for 
various initialization. 

To determine whether the estimated ICs are stable for 
all different initializations the correlation of ICs can be 
used. Each estimated IC is computed as follows: 

1

m

k ki i
i

w
=

= ∑y x  (3) 

where yk is the k-th estimated IC (the k-th row of matrix 
Y), wki is the ki-th element of matrix W and xi is the i-th 
observed signal    (the i-th row of matrix X); thus each IC 
is described by a corresponding row wk of matrix W. Since 
we need to know only whether the given IC is estimated 
equally for all initializations the correlation distance of 
rows of matrix W is used for measuring the similarity 
between ICs. 

Let us assume that the number of sources is equal to 
the number of sensors (m = n); thus matrix W ∈ n × n. 
Further, let us assume that W(k) denotes the demixing ma-
trix for the k-th initialization matrix and wi denotes the i-th 
row of matrix W. Now, we can imagine each row of matrix 
W as a point in the n-dimensional space. Rows of matrices 
W(k) describing the same IC are similar and they create 
clusters in this n-dimensional space. Thus the estimation of 
ICA model order and selection of well estimated ICs is 
based on ICA result clustering. The fact that rows of matri-
ces W(k) create clusters in n-dimensional space will be 
proved as follows: we compute correlation distances 
among rows of one matrix W(k) (let us assume k = 1). The 
correlation distance between the r-th and s-th row of one 
given matrix W is computed as follows: 
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where wri and wsi are the ri-th and si-th elements of matrix 
W,  rw and sw  are mean values of wr and ws computed as 
follows: 

1

1 n

k ki
i

w w
n =

= ∑ . (5) 

For our analyzed EEG database containing 59 channels 
(n = 59) min(drs) = 0.34 and max(drs) = 1.53 which proves 
the abundant dissimilarity of rows of demixing matrix W(k) 
and possibility to cluster rows in n-dimensional space. The 
correlation distance between the rows is depicted in Fig. 1. 

Because of the ICA indeterminacies we cannot re-
solve the sign of IC; thus we can obtain the same or very 
similar IC differing in its sign in repeated ICA decomposi-
tion. To avoid this problem we use original ICs and the 
same ones multiplied by −1 as an input data for clustering. 

For NR times repeated ICA we obtain a dataset containing 
each IC NR times with sign + and NR times with sign −. 
According to (6) we form one final matrix M containing all 
matrices ( )kW  multiplied by +1 and −1. 

( )( ) ( )(1) (1),R R
TN NT T T T= − −M W W W WK K . (6) 

The next step is computation of the correlation dis-
tance according to (4) between rows mr and ms of matrix 
M (mi denotes the i-th row of matrix M) for these indexes: 
r = 1…Mr − 1, s = r + 1…Mr, where Mr denotes the num-
ber of rows of matrix M. The histogram of correlation 
distances between rows mr and ms is depicted in Fig. 2 for 
subject 4, distal movement, algorithm FastICA. The 
highest frequency of drs is in range 〈0.5; 1.5〉 but here are 
also two local maxims around drs = 0 and drs = 2. These 
areas (drs < 0.1 and drs > 1.9) represent ICs which are esti-
mated independently of initialization. On the basis of Fig. 2 
we suppose that the rows of matrix M can be easily clus-
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tered in n-dimensional space. If we take any criteria for 
cluster size we can also estimate the ICA model order. 
Moreover, with the help of clustering we can eliminate one 
of ICA indeterminacies – order of ICs. 

3.3 Clustering Method 
An input data which are used for clustering are cor-

relation distances drs among rows of matrix M. There are a 
lot of clustering algorithms and methods, for example k-
means algorithm, hierarchical clustering, self organizing 
maps, or self organizing trees. Since we do not know how 
many clusters are needed we cannot use k-means algorithm 
(it requires a number of clusters). We use hierarchical 
clustering with an input condition for forming clusters – 
cluster size or more precisely correlation distance among 
elements in a cluster. Clusters are formed according to link 
criteria (link method). Basic link methods are: single, com-
plete, and average. We chose average method which can be 
described as follows: 

1 1

1( , ) dist( , )
sr nn

ri sj
i jr s

d r s x x
n n = =

= ∑∑  (7) 

where function dist() denotes computation according to (4), 
xri is the i-th element of cluster r and similarly xsj is the j-th 
element of cluster s, nr and ns are numbers of elements in 
cluster r and s. For selected link method we determined 
threshold value davr = 0.1 which ensures high correlation 
(similarity among rows mi· higher than 90%). With this 
constrains for forming clusters data obtained form NR runs 
of ICA were clustered. 

There are 254 clusters for subject 4 and distal move-
ment, each of these clusters contains a different number of 
elements. The sizes of clusters are depicted in Fig. 3. The 
clusters containing only a small number of elements (less 
than 10) were created in consequence of ICA instability; 
they do not represent relevant ICs. On the other hand, there 

are many clusters containing NR elements (NR = 100) in 
Fig. 3; these clusters represent ICs found in each runs. 
There are 68 clusters for subject 4 and distal movement. 
Since a half of clusters contains the same elements with 
opposite sign, the real number of IC is 34. With this ap-
proach we assume occurrence of these ICs in all analyzed 
matrices (100% occurrence). We put this criterion aside 
and in the following text we will concern ourselves with 
clusters containing ICs estimated at significance level 
α = 0.05. In other words, we looked for clusters containing 
at least 95 elements (this holds for NR = 100). There are 90 
clusters including at least 95 elements for subject 4 and 
distal movement, and 98 clusters for subject 4 and proxi-
mal movement – 45 and 49 stable ICs. These partial results 
are summarized in Tab. 1. 
 

 dist prox 

NR = 100 68 86 

NR = 99 14 4 

NR = 98 2 2 

NR = 97 2 6 

NR = 96 2 0 

NR = 95 2 0 
100

95RN =∑  
90 98 

Tab. 1. Number of clusters which contain NR elements, subject 4, 
distal and proximal movements. 

The next step after clustering is elimination of duplicate 
clusters which contain rows of matrix M multiplied by −1. 
At first we compute average element (centroid) in n-di-
mensional space for each cluster according to the following 
term: 
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where ( )c
ix  is the i-th element in cluster c, Nc is the number 

of elements in cluster c, and ( )c
ix  is average element (cen-

troid) in cluster c. Among elements ( )c
ix  we again computed 

correlation distance according to (3); this is shown in Fig. 4 
and it is obvious that there are duplicate elements. For 
elimination of duplicate elements, we can use the fact that 
correlation distance between two elements differing in sign 
is 2. Thus from each pair of clusters we choose only one 
and among residual clusters we again compute correlation 
distance to prove that we discarded the correct ones. The 
number of residual clusters is equal to the number of stable 
ICs found in all analyzed matrices; this number is 45 for 
subject 4 and distal movement and 49 for proximal move-
ment. The correlation distance of residual centroids is in 
interval 〈0.6, 1.4〉 which also proves sufficient dissimilarity 
of rows mi forming different ICs. 

4. Results 
The basic properties of the used EEG database have 

been already summarized above and the results obtained by 
described method will be given in this chapter. 

4.1 EEG Decomposition Results 
The proposed algorithm for estimation ICA model or-

der was tested mainly with algorithm FastICA. We also 
used another algorithm, EFICA which is an improved 
version of the FastICA algorithm (it contains a test of sad-
dle points and improves convergence). The FastICA algo-
rithm was used in both approaches – deflation and symmet-
ric [15]. The FastICA algorithm was also tested with all 
available nonlinearities: gauss, tanh, pow3, and skew [15]. 
The EFICA algorithm [16] was tested only in symmetric 
approach (it does not contain deflation approach). Non-

linearities of the EFICA algorithm which we used are the 
following: gauss, rati, pow3, and skew [16]. The results for 
the mentioned algorithms and their nonlinearities are sum-
marized in Tab. 2. 

The FastICA algorithm with deflation approach pro-
vided the worst results – we can see how the number of 
stable ICs is varying across subjects. This statement holds 
for all nonlinearities in this approach and we can see that 
the maximum number of stable ICs is twice or even three 
times higher than minimum number of stable ICs for given 
nonlinearity. The similar results are provided in work [5]. 
From this point of view, the FastICA algorithm with defla-
tion approach is not suitable for decomposition (results are 
very dependent on algorithm initialization). 

The number of ICs independent of initialization is 
higher for the FastICA algorithm with symmetric approach. 
We can see that the number of stable ICs is very similar for 
each subject and nonlinearity. Nonlinearity tanh seems to 
be the best one and only slightly better than the other ones. 

Further improvement can be achieved by using the 
EFICA algorithm. The number of stable ICs is higher by 1 
to 3 for all nonlinearities which are common for the 
FastICA and EFICA and almost all subjects. These results 
prove the fact that the EFICA is improved version of the 
FastICA. 

For comparison there are also results obtained by 
PCA in Tab. 2. The ICA model order of 59-channel EEG is 
estimated at 95% confidence interval [5]. However, PCA 
estimates only the number of uncorrelated and not inde-
pendent components ignoring the higher-order signal 
statistics. 

Finally, we tried to estimate the accuracy of 
estimation of ICs. For this task we computed the 
correlation distance between centroid and all elements in 
the given cluster. From these distances the mean value and 

Subject  
algorithm 

 
nonlinearity 1d 1p 2d 2p 3d 3p 4d 4p 5d 5p 6d 6p 7d 7p 

gauss 9 7 7 10 9 4 6 13 8 8 12 8 8 5 

pow3 6 13 14 6 16 15 5 23 17 15 22 7 13 8 

skew 28 25 26 21 29 27 17 32 28 24 34 20 23 20 

 
FastICA 
deflation 

tanh 22 17 16 15 26 20 16 23 11 21 27 24 17 14 

gauss 33 33 41 45 36 37 40 42 42 39 38 34 30 35 

pow3 39 35 48 44 47 43 44 44 39 49 44 45 48 43 

skew 40 37 51 44 44 38 39 41 38 39 44 43 48 44 

 
FastICA 
symmetric 

tanh 46 34 45 49 44 43 45 49 41 39 49 42 42 40 

gauss 37 42 41 45 41 38 41 47 45 40 38 39 33 38 

pow3 45 41 50 44 46 44 45 45 40 48 44 46 48 45 

rati 39 35 44 45 44 40 48 49 45 41 43 41 34 35 

 
EFICA 
symmetric 

tanh 44 40 46 50 45 42 51 50 44 38 52 43 39 40 

PCA – 95% confident int. 34 35 31 31 28 31 35 37 29 29 29 28 35 33 

Tab. 2. ICA model order estimation for various ICA algorithms – FastICA and EFICA. For comparison there is model order estimation by PCA 
for 95% confident interval in table. Subject #d stands for distal movement and #p stands for proximal movement. 
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variance were computed and these statistics are depicted in 
Fig. 5. 

In Fig. 5 it may be seen that the mean value and vari-
ance of the correlation distance is smaller than 0.01 in most 
cases (correlation distance is normalized which means that 
it is in 〈0; 1〉). Moreover, for proximal movement we ob-
tained a smaller mean value and variance of the correlation 
distance, and also the number of stable ICs is slightly 
higher for proximal movement than for distal movement. 
This finding probably originates in the fact that larger part 
of the sensorimotor area is activated during proximal 
movement than during distal movement [17] and ICA can 
utilize it. 

5. Conclusion 
We estimated ICA model order by means of the sta-

bility test of the ICA algorithm (FastICA and EFICA) from 
movement EEG. According to the previous works we ex-
pected a symmetric approach to provide more stable re-
sults. Our test was based on repeated EEG decomposition 
and subsequent correlation and clustering of estimated ICs. 

The number of stable ICs (ICA model order) was de-
termined with the help of correlation distance and cluster-
ing method. It was shown that the rows of a demixing 
matrix W are sufficiently different and similar rows in 
demixing matrices create clusters in n-dimensional space. 
We used hierarchical clustering and link method average 
for cluster forming with different size. EEG decomposition 
was repeated 100 times and we looked for the cluster with 
at least 95 elements and average correlation distance 
drs = 0.1. For these parameters we found the numbers of 
stable ICs, which are summarized in Tab. 2. 

We proved that the symmetric approach provides 
more stable results than the deflation one. The most stable 
results were obtained with the EFICA algorithm and tanh 
or pow3 nonlinearity, see Tab. 2. 

At this time we cannot determine which ICs are 
movement-related and which are not (the found stable ICs 
involve both). For further analysis it is necessary to deter-
mine which ICs are movement-related. 

Acknowledgments 
This work has been supported by the research 

program Transdisciplinary Research in Biomedical 
Engineering No. MSM6840770012 of the Czech Technical 
University in Prague, and the Grant GACR 102/03/H085: 
Biological and Speech Signal Modeling. 

References 
[1] ŠŤASTNÝ, J. Analysis of States in EEG Signals. Ph.D. thesis, CTU 

FEE Prague, Department of Circuit Theory, 2005. (In Czech). 

[2] ZEJBRDLICH, J., ŠŤASTNÝ, J., SOVKA, P. Optimal 
parameterization selection for the brain computer interface. In The 
4th WSEAS International Conference on Applications of Electrical 
Engineering. 2005, p. 300 - 304. 

[3] JAMES, C. J., HESSE, C. W. ICA and BSS applied to biomedical 
signals: An overview of their use in biomedicine. In The 3rd 
European Medical and Biological Engineering Conference (EMBEC 
2005). 2005, p. 1500 - 1504. 

[4] MÜLLER, K.-R., VIGÁRIO, R., MEINECKE, F., ZIEHE, A. Blind 
source separation techniques for decomposing event-related brain 
signals. International Journal of Bifurcation and Chaos, 2004, 
vol. 14, no. 2, p. 773 - 791. 

[5] KONOPKA, O., ŠŤASTNÝ, J., SOVKA, P. Movement-related EEG 
separation using independent component analysis. In The 3rd 
European Medical and Biological Engineering Conference (EMBEC 
2005), 2005, p. 1471 - 1475. 

[6] HUNG, C.-I., LEE, P.-L., WU, Y.-T., CHEN, H.-Y., CHEN, L.-F., 
YEH, T.-C., HSIEH, J.-C. Recognition of motor imagery 
electroencephalography using independent component analysis and 
machine classifiers. In The 12-th International Conference in Central 
Europe on Computer Graphics, Visualization and Computer 
Vision’2004, (WSCG 2004). 2004, p. 101 - 108. 

[7] VIGÁRIO, R., SÄRELÄ, J., JOUSMÄKI, V., HÄMÄLÄINEN, M., 
OJA, E. Independent component approach to the analysis of EEG 
and MEG recordings. IEEE Transaction on Biomedical Engineering, 
2000, vol. 47, no. 5, p. 589 - 593. 

[8] WENTRUP, M. G., GRAMANN, K., WASCHER, E., BUSS, M., 
EEG source localization for brain-computer-interfaces. In 
Proceedings of the 2nd International IEEE EMBS, Conference of 
Neural Engineering. 2005, p. 128 - 131. 

[9] RUČKAY, L., ŠŤASTNÝ, J., SOVKA, P. Movement-related EEG 
decomposition using independent component analysis. In Analysis of 
Biomedical Signals and Images - Proceedings of Biosignal 2006. 
2006, p. 78 - 80. 

[10] RUČKAY, L. ICA model order estimation – selection of independent 
components. Unpublished research report Z06-5, CTU FEE Prague, 
Dept. of Circuit Theory, Biological Signal Lab., 2006. (In Czech). 

[11] CHOI, S., CICHOCKI, A., PARK, H.-M., LEE, S.-Y. Blind source 
separation and independent component analysis: A review. Neural 
Information Processing - Letters and Reviews, 2005, vol. 6, no. 1, 
p. 1 - 57. 

[12] JUNG, T.-P., MAKEIG, S., HUMPHRIES, C., LEE, T.-W., 
MCKEOWN, M. J., IRAGUI, V., SEJNOWSKI, T. J. Removing 

0 5 10 15 20 25 30 35 40 45 50
−0.01

0

0.01

0.02

0.03

0.04

0.05

Cluster number

M
ea

n 
an

d 
va

ria
nc

e 
of

 c
or

re
la

tio
n 

di
st

an
ce

Mean and variance of correlation distances of ICs in single cluster

Fig. 5. Estimation accuracy of each IC in the given cluster. 
Algorithm FastICA (symmetric, tanh), subject 4 and 
distal movement. 



RADIOENGINEERING, VOL. 16, NO. 4, DECEMBER 2007 57 

electroencephalographic artifacts by blind source separation. 
Psychophysiology, 2000, vol. 37, p. 163 - 178. 

[13] JUNG, T.-P., MAKEIG, S., LEE, T.-W., MCKEOWN, M. J., 
BROWN, G., BELL, A. J., SEJNOWSKI, T. J. Independent 
component analysis of biomedical signals. In The 2nd International 
Workshop on Independent Component Analysis and Signal 
Separation. 2000, p. 633 - 644. 

[14] NICOLAOU, N., NASUTO, S. J. Comparison of temporal and 
standard independent component analysis (ICA) algorithms for EEG 
analysis. In Proceedings of ICANN/ICONIP’03, Joint 13th 
International Conference on Artificial Neural Networks and 10th 
International Conference on Neural Information Processing. 2003, 
p. 157 - 160. 

[15] HYVÄRINEN, A., OJA, E. Independent component analysis - 
Algorithm and application. Neural Networks, 2000, vol. 13, no. 4-5, 
p. 411 - 430. 

[16] KOLDOVSKÝ, Z. Fast and Accurate Methods for Independent 
Component Analysis. Ph.D. thesis, CTU Prague, Faculty of Nuclear 
Sciences and Physical Engineering, Dept. of Mathematics, 2005. 

[17] STANČÁK, A., FEIGEB, B., LÜCKING, C. H., KRISTEVA-
FEIGE, R. Oscillatory cortical activity and movement-related 
potentials in proximal and distal movements. Clinical 
Neurophysiology, 2000, vol. 111, no. 4, p. 636 - 650. 

About Authors... 
Lukáš RUČKAY was born in Liberec, the Czech Republic 
in 1981. He received M.S. degree in electrical engineering 
from the Faculty of Electrical Engineering of the Czech 
Technical University (FEE CTU) in Prague in 2005. He is 
a Ph.D. student at the Department of Circuit Theory, FEE 
CTU. His current research interests include blind source 
separation, biosignal processing and classification tech-
niques, DSP architectures, and others. 

Jakub ŠŤASTNÝ was born in Prague, the Czech Republic 
in 1978. He received M.S. degree in electrical engineering 
from the Faculty of Electrical Engineering of the Czech 
Technical University (FEE CTU), Prague in 2002; in 2001, 
he was awarded Hlávka's Prize and received Ph.D. degree 
in 2006. His current research interests include biosignal 
processing, signal classification techniques, blind source 
separation, silicon DSP architectures, and others. 

Pavel SOVKA – see Radioengineering, vol. 7, no. 4, De-
cember 1998. 

New web pages of the journal will appear in January 6, 2007 

 

http://www.radioeng.cz 

Abstracts • Full-text papers • References • Searching Engine • Etc. 


