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EXISTENCE RESULTS FOR DIRICHLET PROBLEMS
WITH DEGENERATED p-LAPLACIAN

Albo Carlos Cavalheiro
Communicated by P.A. Cojuhari

Abstract. In this article, we prove the existence of entropy solutions for the Dirichlet prob-
lem

") {div[w(:v)|Vu|p_ Vu] = f(z) — div(G(z)) in 0,
u(z) =0 in 09,

where Q is a bounded open set of RY (N > 2), f € L'() and G/w € [L¥ (Q,w)]V .
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1. INTRODUCTION

The main purpose of this paper (see Theorem 4.2) is to establish the existence of
entropy solutions for the Dirichlet problem

P) {;f;)v[bv(oﬂ?)lw_Vu=f(x)—diV(G(x)) ;zs,)

where Q@ € RY is a bounded open set, feL(Q), G/w € [L¥ (Q,w)]V, w is a weight
function (i.e., a locally integrable function on R such that 0 < w(x) < co a.e. z€RY)
and 1 < p < oo, pF#2.

The notion of an entropy solution was introduced in [1], where the authors studied
the nondegenerate elliptic equation —div(a(x, Du)) = f(x), with f € L'(Q). In [3] the
author studied the degenerate elliptic equation Lu = f, where L is a degenerate elliptic
operator in divergence form (i.e., Lu = — > 1", Dj(a;;(x)Dyu)) and f € L'(Q). Note
that, in the proof of our main result, many ideas have been adapted from [1] and [3].
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For degenerate partial differential equations, i.e., equations with various types of
singularities in the coeflicients, it is natural to look for solutions in weighted Sobolev
spaces (see [4-7,9] and [12]).

A class of weights, which is particularly well understood, is the class of A, weights
that was introduced by B. Muckenhoupt in the early 1970’s (see [9]).

We propose to solve the problem (P) by approximation with variational solutions:
we take f, € C$°(Q) such that f,—f in L'(Q), G, /w € [LP (2,w)]N such that
Gn/w — GJw in [LP (Q,w)]N, we find a solution u, € Wy (,w) for the problem
with right-hand side f,, and G,, and we will try to pass to the limit as n — oo.

The paper is organized as follows. In Section 2 we present the definitions and
basic results. In Section 3 we prove the existence and uniqueness of solutions when
flw e LY (Q,w), G/w € [LP (2,w)]N and in Section 4 we state and prove our main
result about existence of entropy solutions for problem (P) (when f € L'(Q) and
Glw e [LP (2, w)]N).

2. DEFINITIONS AND BASIC RESULTS

By weight we mean a locally integrable function w on RY such that 0 < w(z) < oo for
a.e. x € RV, Every weight w gives rise to a measure on the measurable subsets of R
through integration. This measure will be denoted by p. Thus, u(E) = [, w(x) dx for
measurable sets £ C RY.

Definition 2.1. Let 1 < p < co. A weight w is said to be an Ap,-weight, if there is a
positive constant C' = C(p,w) such that, for every ball B ¢ RY

-1

(;l/w(x) dm) (|;|/wl/(1_p)(x) dm)p <C if p>1,

B B
<1 /w(x) dac) (ess sup 1) <C if p=1
‘BI zeB UJ(JJ) N ’
B
where | - | denotes the N-dimensional Lebesgue measure in RY.

If1 < ¢qg < p, then A, C A, (see [6,7] or [12] for more information about
Ap-weights). As an example of an A,-weight, the function w(z) = |z|*, = € RY,
isin A, if and only if —N < o < N(p — 1) (see [11, Chapter IX, Corollary 4.4]). If
¢ € BMO(RY), then w(z) = e*¥® € Ay for some a > 0 (see [10]).

Remark 2.2. If w € 4;,, 1 < p < o0, then
P
(2 <o
|B| n(B)

for all measurable subsets E of B (see 15.5 strong doubling property in [7]). Therefore,
if u(E) = 0, then |E| = 0. Thus, if {u,} is a sequence of functions defined in B and
Up—u p-a.e., then u,—u a.e.
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Definition 2.3. Let w be a weight. We shall denote by LP(2,w) (1 < p < o0) the
Banach space of all measurable functions f defined in €2 for which

lsror = ([P0 dx)l/p <o
Q

We denote [L?' (€, w)]N = LP' (Q,w)x ... XL (Q,w).

Remark 2.4. If w € 4,, 1 < p < oo, then since w= /=1 is locally integrable, we
have LP(Q,w) C LL _(Q) (see [12, Remark 1.2.4]). It thus makes sense to talk about

loc
weak derivatives of functions in LP(Q, w).

Definition 2.5. Let Q C RY be a bounded open set, 1 < p < 0o, k a nonnegative
integer and w € A,,. We shall denote by W*P(Q,w), the weighted Sobolev spaces, the
set of all functions u € LP(Q,w) with weak derivatives D%u € LP(Q,w), 1 < |o| < k.
The norm in the space W*P(Q,w) is defined by

s = ( [Tu@Po@asr 3 |Dau<x>|”w<x>dx)l/p. (2.1)
Q

1<]a|<k g

We also define the space WP (€, w) as the closure of C§°(Q) with respect to the

norm y
P
il = ( 5 [IDu@Puta) i)
1<]al<k g
The dual space of W, (Q,w) is the space [W, ?(Q,w)]* = W1 (Q,w),

W (Qw) = {T = f = div(G) : G = (g1, 9n), £ Ler@u).
It is evident that a weight function w which satisfies 0 < C7 < w(z) < Cy, for a.e.
x € ), gives nothing new (the space W*?(Q,w) is then identical with the classical
Sobolev space WP (12)). Consequently, we shall be interested in all above such weight
functions w which either vanish somewhere in QU9 or increase to infinity (or both).
We need the following basic result.

Theorem 2.6 (The weighted Sobolev inequality). Let Q@ C RY be a bounded open

set and let w be an Ap-weight, 1 < p < co. Then there exists positive constants Cq
and § such that for all f € C§°(Q) and 1 <n < N/(N —-1)+6

Hf”an(Q,w) = CQ'HVfMLP(Q,w)‘ (22)
Proof. See [5, Theorem 1.3]. O

Definition 2.7. We say that u € TP (Q,w) if Th(u) € WyP(Q,w) for all k > 0,
where the function T : R — R is defined by

|s| <k,
|s| > &
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Remark 2.8. (i) Note that for given h > 0 and k& > 0 we have

0 if |u| <k,
Th(u— Ti(uw) = < (Ju] — k)sign(u) if k<|ul <k+h,
hsign(u), if |ul >k+h.

Moreover, if a € R, a # 0, we have Ty (ou) = oI} o (w).
(i) If u € WL (Q,w), then we have
VTk(u) = X{‘u|<k}vu,
where y g denotes the characteristic function of a measurable set £ C RY.

Definition 2.9. Let f € L'(Q), G/w € [LP (Q,w)]N and u € T, (9, w). We say that
u is an entropy solution to problem (P) if

/w(az) Va2 (Vu, Vi (u—)) dz = /ka(u—go) dx+/<G,VTk(u—<p)>da: (2.3)
Q Q Q

for all k > 0 and all ¢ € Wy (Q,w) N L®(Q), where (-,-) denotes the usual inner
product in RV,

We recall that the gradient of w which appears in (2.3) is defined as in
Remark 2.8 of [3], that is to say that Vu = VT (u) on the set where |u| < k.

Remark 2.10. Note that if uy,us € Wol’p(Q,w)7 then ¢ = Ty (u1 +uz) € Wol’p(Q,w)ﬂ
L>(Q) and we have

V(p = VT;C(ul + UQ) = V(u1 + u2) X{uy+us|<k}-

Definition 2.11. Let 0 < p < oo and let w be a weight function. We define the
weighted Marcinkiewicz space MP(Q), w) as the set of measurable functions f: 2 — R
such that the function

Iw(f) = p{z € Q: |f(2)| > k}), k>0,
satisfies an estimate of the form I'¢(k) < Ck™?, 0 < C' < 0.
Remark 2.12. If 1 < ¢ < p and Q C R” is a bounded set, we have that
LP(Q,w) C MP(Q,w) and MP(Q,w) C LI(Q,w).
(the proof follows the lines of Theorem 2.18.8 in [8]).
Lemma 2.13. Let u € %l’p(Q,w) and w € A,, 1 < p < o0, be such that

% / |VulPwdz < M, (2.4)
{lul<k}

for every k > 0. Then:
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(i) u € MP(Q,w), where p1 = n(p — 1) (where n is the constant in Theorem 2.6).
More precisely, there exists C > 0 such that T'y(u) < CM"k™Pr,

(i) |VuleMP2(Q,w), where p; = pp1/(p1 + 1) and p1 = n(p — 1). More precisely,
there exists C > 0 such that Ty,(|Vu|) < CMPrHm/(er+1) =pz,

Proof. See Lemma 3.3 and Lemma 3.4 in [3]. O

3. WEAK SOLUTIONS

In this section we prove the existence and uniqueness of weak solutions u € VVO1 P(Q,w)
to the Dirichlet problem

(P1) {_div[w@)lww2Vu=f<x>—diV<G(x” i
u(z) =0 in 09,

where 2 is a bounded open set of RN (N > 2), f/w € LP (Q,w) and G/w [LP (€, w)]N.

Definition 3.1. We say that u € W, (Q,w) is a weak solution for problem (P1) if

/w(x)|vuv’*2<w,w> dm—g/fgodx+/<G, V) di, (3.1)

) Q
for all p € W, P(Q,w), with f/w € L (Q,w) and G/w € [L¥' (Q,w)].

Theorem 3.2. Letw € Ay, 1 < p < o0, f/w € LV (Q,w) and Gjw € [LP (Q,w)]N.
Then the problem (P1) has a unique solution u € Wy (Q,w).

Proof. (I) Existence. By Theorem 2.6, we have that

! 1/p’ 1/
‘/f(pdx S(/’fpwdo:) p</|gapwdx) p§
Q Q “ Q (32)

< Callf /@l @ IVell Lo 0.

Define the functional .J, : Wy (Q,w) — R by

)= [IVePwds = [ fedo- [(6.v0) da,
Q Q

Q
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Using (3.2) and Young’s inequality, we have that

1
Ip(p) = ? /|V<P|de$ - (Ca ”f/wHLP’(Q,w) + ”G/WHLP’(Q,W) JIVellrr@w =
Q

1 1
> / Vol o de =~ [Vl
Q
1 o
- 17[09 Hf/WHLP’(Q,w) + HG/w”Li"/(fl,w)] =
1 ,
= = S (Ca /ol )+ 1G lr y

that is, J, is bounded from below.
Let {u,} be a minimizing sequence, that is, a sequence such that

Ip(up) — inf JIp(p).
PEWS P (Q,w)

Then for n large enough, we obtain

1
0> Jp(up) = - /\Vun|pwdx—/fundx—/<G,Vun>dx,
p
Q Q Q

and we get
||vun||1£”(9,w) Sp(/fu” d$+/<G,Vun) d$> <
Q Q

< p(”f/wHLP/(Q,w) ”unHLP(Q,w) + HG/WHLP’(Q,W)Hvu”HLP(Q,w)) <
< p(Callf/wll L (uw) + I1G/wllLe (@) IVunllLr(@.w)-

Hence [[Vunlzr(0.w) < [P(Callf /w0l Ly 9w + 1G/wll Lo ()] . Therefore {un}
is bounded in W, ?(Q,w). Since Wy"*(,w) is reflexive, there exists ueW, (2, w)
such that u,,— in Wol’p(Q,w). Since Wol’p(Q,w) >~ [, fede+ [ (G, V) dz, and
@ = IVl Lr(uw) are continuous then .J, is continuous. Moreover since 1 < p < oo
we have that J, is convex and thus lower semi-continuous for the weak convergence.
It follows that
JIp(u) < liminf Jp(uy,) = inf JIp(p)
n PEW P (Q,w)

and thus v is a minimizer of J, on WP (€, w). For any ¢ € Wy (Q,w) the function

)\.—>;Q/|V(u+)\<p)|pwdx—ﬂ/(u+)\s0)fdx—Q/<G,V(U+>\Sﬁ)>dx

has a minimum at A = 0. Hence

d
H(par0)| =0 veewraw),

A=0
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We have
d _
15 (1904 AeP ) = p T4 AP 270, V) + AV,

and we obtain
d
= a <Jp(u + Ag@)) o =

Q

—([gpfdx—ﬂ/(G,V(p)dx]

= [ |VulP2 (Vu,Vo)wdr — [ feodr— | (G, V) dz.
/ [ree]

Q

0

L—
"N

A=0

Therefore [, |VulP~2 (Vu,Vo)wdz = [, fede + [, (G,Vy)dz, that is, u €
WP (€2, w) is a solution of problem (P1).

(I1) Uniqueness. If uy,us € Wy (Q,w) are two weak solutions of problem (P1),
we have

/|Vui|p_2 (Vul-,Vapﬂudnc:/f(palas—k/(GﬁVgo)da:7 1=1,2,
Q Q Q

for all p € W, ?(Q,w). Hence

/ <|Vu1\p72<Vu1,V<p> - |Vu2\p72(VuQ,V<p>)w dx = 0.
Q

Taking ¢ = u; — us, and using that for every x,y € RY there exist two positive
constants oy, and §, such that

— —2 —2 —
ap (Je| + [y)P 2|z =yl < (" 2 — y" "y e —y) < By (J2] + [y)P |z — yl,

we obtain

0= / <Vu1|p2<Vu1,Vu1 — Vug) — |Vug|P~3(Vug, Vuy — Vuz>> wdx =
= / (IVu1|P~2Vuy — |Vug|P~2Vuy, Vuy — Vus) wdr >
Q

p—2
> ap / (|V’LL1| + |VUQ> |Vu1 — Vu2‘2wdx,
Q

Therefore Vu; = Vug p-a.e. and since uy,us € Wol’p(Q,w), then u; = us a.e. (by
Remark 2.2). O
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4. MAIN RESULT

In this section, we prove the main result of this paper. We need the following results.
Lemma 4.1. Letw € Ay, 1 < p < 00 and a sequence {u,}, u, € Wol’p(Q,w) satisfies:

(1) wp —u in Wy P(Q,w) and p-a.e. in Q.
(2) [« VP >V, — [VulP">Vu, V(up —u))wdz — 0 with n — oo.
)

Then u, — u in Wy P(Q,w).
Proof. The proof of this lemma follows the lines of Lemma 5 in [2]. O

Theorem 4.2. Let w € Ay, 1 < p < oo, f € L'(Q) and Gjw € [LP (Q,w)]N.
There exists an entropy solution u of problem (P). Moreover, u € MP*(Q,w) and
[Vu| € MP2(Q,w), withp; =n(p—1) and pa = p1p/(p1+1) (where n is the constant
in Theorem 2.6).

Proof. Considering a sequence {f,,}, fn € C§°(2), where
fo=f i LHQ) and [ fall 1y < 1f1 L1y
and a sequence {G,}, with G,,/w € [L? (Q,w)]" such that % — % in [LP'(Q,w)]Y
and ||| Gul /w1 (00 < 1 Gl /Wl 1w ) For each n, by Theorem 3.2, there exists
a solution wu,, € WO1 P(Q,w) of the Dirichlet problem
(P) —div]w(x)|Vu, [P72Vuy,)] = folz) — div(Ga(z)) in €,
" Up(x) =0 in 09,

that is,

/w |V, |[P~2 (Vu,, Vo) dz = /fncp dz + / (G, V) dzx (4.1)

Q Q Q
for all o € W (Q,w). For ¢ = Tj(u,) we obtain in (4.1) that

/w|Vun|p*2(Vun),VTk(un)> dx:/fnTk(un)dac—l—/(Gn,VTk(un»dx. (4.2)
Q Q Q
We have

' !fn Tis(up) dx

< / Fal Tk () [ d < Bl full gy < RIfllr gy (43)
Q

and since VT (un) = X{ju,|<k} VUn, We obtain

/w |V P72 ( Vi, VT (uy)) do = /w VT (un) P72 (VT (un), V() dz =
Q Q

= / IV Tk (un)[Pw dz.
Q
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We also have, using Young’s inequality, that there exists a constant Cy > 0 (depending
only on p) such that

w

u«:n, VT (up)) da

< /|G”||VTk(un)\wda: <
Q

, 1/p' 1/p
< (/|Gn/wpwdac> (/VTk(un)|pwdm> <
. Q @ (4.5)
< 5 / VT (un)|"w dz + Cy / |Gn/w|p/w dx <
Q Q
1 /
< 5/|VTk(un)|pwd:c+C’1/|G/w|pwdm.
Q Q
Hence, using (4.3), (4.4) and (4.5), we obtain
/ ‘VTk(unﬂpw de <2k Hf”Ll(Q) +2C, ||G/w||’£p,(ﬂ7w) < Cyk, (46)

Q

where Cy = 2| f[| 1 (q) + 2C1 ||G/w||1£/p,(ﬂ )’ By Lemma 2.13, the sequence {u,} is
bounded in MP*(Q,w) (with p; =n(p — 1)), and {|Vu,|} is bounded in MP2(Q,w)
(with p2 = p1p/(p1 + 1)). Moreover, {u,} is a Cauchy sequence in the u-measure.
Consequently, there exists a function u and a subsequence, that we will still denote
by {uy}, such that

Up = U p—a.e. in Q, (4.7)
and u, — v a.e. in ) (by Remark 2.2). Using (4.6) and (4.7), we have

Tho () =Ty (1) weakly in Wy P(9,w),

4.8
Tk (ty) =Ty (u) strongly in LP(Q,w) and p — a.e. in €, (4.8)

for all k > 0. Hence T}, (u) € WoP (2, w).
Furthermore, by the weak lower semicontinuity of the norm VVO1 P(Q,w), we have
that (4.6) still holds for w, that is,

/|VTk(u)|pw dz < k Cs.
Q

Applying Lemma 2.13, we deduce that v € MP'(Q,w) (with py = n(p — 1)) and
|Vu| € MP2(Q,w) (with p2 = p1 p/(p1 + 1))

We need to show that Ty, (u,)— Tj(u) strongly in W, * (€, w) for all k > 0.

Let h > k and applying (4.1) with function ¢, = Tak (tn—Th (un)+ Tk (un) =Tk (u)),
we get

/w|Vun|p_2(Vun,V<pn>dx:/fn @ndx—i—/(G,Vgon)dac. (4.9)
Q Q Q



448 Albo Carlos Cavalheiro

If we set M = 4k + h, we have V¢, = 0 for |u,| > M. We can write

/w|VTM(un)|p_2(VTM(un),chn>da::/fnapndx+/<G,Vapn>dx. (4.10)
Q

Q Q

In the left-hand side of (4.10), we have

/ w VT (un) [P~ (VTas (), VTok (U — Th (un) 4 Ti(un) — Tio(u))) do =
Q

W VT (un)|P~2 (Vs (), Vg (tn, — Th(un) + Ti(un) — Ti(uw))) de+

+ W VT ()P~ 2V Tas (), VTok (tn — Th(un) + Th(un) — Ti(u)))dz
{lun|>k}
(4.11)
(a) If |u,| < k.

Since h > k, if |u,| < k < h, then Ty (u,) = Tx(un) = up,. Hence, u, — Th(uy) +
Ti(un) — Ti(u) = up — Ti(u). We also have that |u, —u| < 2k. Then, since
VT (un) = VT (uy,) (because |uy| < k < M),

W VT (un) P2V Tas (), VIok(wn — T () + Ti(un) — Ti(w)) da
{lunl <k}

; / WV T (un) [P~ (VT (un), V(Th (un) — Ti(u)) do =
{lun|<k}

_ / W [V T (un) P2V Tk (), V(T (1) — Ti () da.
Q

(b) If |un| > k.

Since w,, Ty (un) and Ty, (u) are in Wy P (Q, w), if [uy, — Th(wn) + Te(un) — Th(u)] <
2k, we obtain

VTgk(un — Th(un) + Tk(un) - Tk(u)) = V(un - Th(un) + Tk(un) - Tk(u)) =
= Vu,, — VT} (Un) + VT (un) — VT (u) =
= Vu, — VT (uy) — VT (u)
(because VT (uy,) = 0 if |up| > k). There are two possible cases:
(i) If k < |up| < h, we have VI, (u,) = Vuy,. Then
(i) If h < |u,| < M, we have VT}(u,) = 0. Then

Vs (un =Ty (Un) + Tk(un) — Tk (u)) = Vu, — VT (u) =VTy (un) — VT (u)
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In both cases we obtain

IV T (wn ) [P~ (V s (un), VTok (i — Ty () + Tio(un) — Ti())) >
> — | VT (un) P2V Tar (un), Vg (1)) >
> —|VTar (un) P2 [V Tar (un)| [V T (w))-

Therefore, we obtain in (4.11)

Q

/w IV Tt (1) [P~V Tt (), VT (s — T () + T (1) — T (1)) d

W VT (un) P2V Tas (un), Vg (tn — Th () + T () — Ti(u))) dz+
{lun| <k}

+ W VT (un) P2V Tas (un), VTok (U — Th(tn) 4+ Ti () — Ti(u))) do >
{lun|>k}

> / WV Tg (1) P2V T (1), ¥ (T (1) — T (w)) dav—
Q

WV T (un) [P |V Tag (1) [V Tk (w)] dt.
{un|>k}

Hence, in (4.10) we obtain

/w<|VTk(un)|p*2VTk(un) = VT (u) [P~V Tio(u), V(Tio(un) — Ti(w))) do <
Q

< w VT (un)| VT (w)] dz+

{lun|>k}

+ / faTon(un — Tn(un) + Ty (up) — Ty (u)) do+ (4.12)
Q

+ / (G VTt — T (1) + Ti (1) — Ti(u))) e~
Q

- / w0 [V T () [P~ (V T (1), V (Ti (1) — T () d.
Q

Considering the test function ), = Tax(u, — Th(uy,)) in (4.1), we have

/w|vun\P*2<vun,vwn>dx= /fn Un dm+/<Gn,an>da:,
Q

Q Q
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and using that

‘/fn¢n dx
Q
and

/w |V, P2V, Vib,) de = /w |V |P~2(V by, Vb ) d =

Q Q

_ /|V¢n\pwd1‘:/\VTgk(un—Th(un)ﬂpwdx,
Q Q

< [1allenldo < 26+ D fallire) < 2+ DIfLoxy
Q

we obtain
/ IVTok (un — Th(un))|Pwde < (2k 4+ 1) Cs.
Q

Now using that Toy(u, — Th(upn)) = Tog(u — Th(u)) weakly in Wol’p(Q,w) (by (4.8)
and Remark 2.8 (1)), we have

/ VT (u — T (w))[Pwdz < (2Kk + 1) Co. (4.13)
Q

We have (by Remark 2.8 (i) and (ii) and (4.13))

/|G||VT2k(u—Th(u))\ de = / G||Vuldz <
Q {h<|u|<2k+h}

, 1/p' 1/p
< ( /|G/w\p wdm) ( / |Vu|pwdx> =

{lu|>h} {h<|u|<2k+h}

, 1/p' 1/p
= ( /\G/w|p wd:c) </|VT2k(u—Th(u))|pwdx) <
{lulzh} Q
, 1/p'
< C’3< / |G /w|? wdm) ,
{lul=h}

where C3 depends on k but not on h. Therefore, we have

hlim (G, VTs(u— Tr(w)))dx = 0.
—o0
Q

We also have (by Theorem 2.6 and (4.13))

/|T2k(u — Th(u)|Pwdz < Cq / IVTok(u — Th(uw))|Pwde < Cq Co (2k + 1).
Q Q
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Moreover, by Lebesgue’s theorem, we obtain
lim /ngk(u — Th(u)) dz = 0.
h—o0
Q

We can fix a positive real number h. sufficiently large to have

/ F To(u — Ty, ) da + / (G, V Ton (1 — T () da: < e. (4.14)
Q Q

Considering h = he in (4.12) (and M = M, = 4k + h.), by (4.6), we have

/ 7ot (1) |72 VT (1) P e = / 901 ()] P27 [V T (1) [P 0 iy =
Q Q

:/|VTM(un)|pwdx < M Cy,
Q

that is, [VTar (un)|P~2 VT ()] is bounded in L (€2, w). Moreover,

X{un| >k} VTE(w)| =0

in LP(Q,w) as n — oo. Therefore,

lim / IV T () [P~2 VT (un)|| VT (w)| w dz = 0. (4.15)

n—oo

{|un|>k}

Futhermore, we have that Tox (u, — T (un) + Tk (wn) — Tk (u))— Tog (u—Th (u)), weakly
in Wy*(Q,w), as n — co.
Hence, by (4.8), (4.14) and (4.15), passing to the limit in (4.12), we have

lim | (|VTh(un) P2 VT (un) — VT (W) |[P2 VTi(uw), V(Tk(u,) — Th(w))) wdr <

n—00
Q

g/fT2k(u—Ths)da:—s—/(G,VTgk(u—Thg(u)))dxgs
Q Q

for all € > 0, that is,

lim [ (|VTk(un)|P~2 VTk(un) — | VT (u) P2 VTi(u), V(T (un) — Ti(u))) wdz = 0.

n—00
Q

Applying Lemma 4.1 we get
Ti(up) = Ti(u) (4.16)

strongly in Wi (Q,w) for every k > 0.
0
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This convergence implies that for every fixed £ > 0
|V Tk (un) P2 Vg (un)) — | VT (w)|P~2 Vg (u)) (4.17)

n (L2 (Q,w)N = LP' (Q,w)x ... xLP (Q,w).

Finally, we need to show that u is an entropy solution to the Dirichlet problem (P).
Let us take ¢, = Ty (un — @) as test function in (4.1), with ¢ € I/Vol’p(Q7 w)NL>(Q).
We obtain

/w\vun|p—2<vun,v¢n> dx:/fnwn dx+/<Gn,Vz/)n>dx. (4.18)

Q Q Q

It M =Fk+ ¢l @ and n > M, we have

/w|Vun\p_2<Vun,VTk(un—ga»dx = /w|VTM(un)|p_2<VTM(un),VTk(un—ga»dx.
Q Q

Hence, in (4.18) we obtain

/ @ [V Ty ()P (VT (u), VT (i, — ) dr =

(4.19)
/fn T (un — @) da + / (G, VTi(u— ) da.

Q

Therefore, by (4.8) and (4.17), passing to the limit as n — oo in (4.19), we obtain

/w|Vu|p_2<Vu,VTk(u—go))da::/ka(u—ap)dx
Q )

for all p € W, P(Q,w) N L>®(2) and for each k > 0.

Therefore u is an entropy solution of problem (P). O
Example 4.3. Let Q = {(z,y) € R? : 22+ y? < 1}, w(z,y) = (22 + y?)~ /6
(€ As, p = 3), flo,y) = Frsls (f € LYQ), Glx,y) = (@2 + y?)sin(xy),
(22 +y?)~'/3cos(zy)). By Theorem 4.2, the problem

(@2 Fy2)173

P) { div[(«? —|—y) V6| Wu|Vu] = —S2Wv) - div(G(x, y)) ?n Q,
(z,y) = in 0Q

has an entropy solution.
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