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Abstract. In this article, we prove the existence of entropy solutions for the Dirichlet prob-
lem

(P )

{
−div[ω(x)|∇u|p−2∇u] = f(x)− div(G(x)) in Ω,

u(x) = 0 in ∂Ω,

where Ω is a bounded open set of RN (N ≥ 2), f ∈ L1(Ω) and G/ω ∈ [Lp′(Ω, ω)]N .
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1. INTRODUCTION

The main purpose of this paper (see Theorem 4.2) is to establish the existence of
entropy solutions for the Dirichlet problem

(P )

{
−div[ω(x)|∇u|p−2∇u = f(x)− div(G(x)) in Ω,

u(x) = 0 in ∂Ω,

where Ω ⊂ RN is a bounded open set, f∈L1(Ω), G/ω ∈ [Lp
′
(Ω, ω)]N , ω is a weight

function (i.e., a locally integrable function on RN such that 0 < ω(x) <∞ a.e. x∈RN )
and 1 < p <∞, p 6= 2.

The notion of an entropy solution was introduced in [1], where the authors studied
the nondegenerate elliptic equation −div(a(x,Du)) = f(x), with f ∈ L1(Ω). In [3] the
author studied the degenerate elliptic equation Lu = f , where L is a degenerate elliptic
operator in divergence form (i.e., Lu = −

∑n
i,j=1Dj(aij(x)Diu)) and f ∈ L1(Ω). Note

that, in the proof of our main result, many ideas have been adapted from [1] and [3].
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For degenerate partial differential equations, i.e., equations with various types of
singularities in the coefficients, it is natural to look for solutions in weighted Sobolev
spaces (see [4–7,9] and [12]).

A class of weights, which is particularly well understood, is the class of Ap weights
that was introduced by B. Muckenhoupt in the early 1970’s (see [9]).

We propose to solve the problem (P ) by approximation with variational solutions:
we take fn ∈ C∞0 (Ω) such that fn→f in L1(Ω), Gn/ω ∈ [Lp

′
(Ω, ω)]N such that

Gn/ω → G/ω in [Lp
′
(Ω, ω)]N , we find a solution un ∈ W 1,p

0 (Ω, ω) for the problem
with right-hand side fn and Gn and we will try to pass to the limit as n→∞.

The paper is organized as follows. In Section 2 we present the definitions and
basic results. In Section 3 we prove the existence and uniqueness of solutions when
f/ω ∈ Lp′(Ω, ω), G/ω ∈ [Lp

′
(Ω, ω)]N and in Section 4 we state and prove our main

result about existence of entropy solutions for problem (P ) (when f ∈ L1(Ω) and
G/ω ∈ [Lp

′
(Ω, ω)]N ).

2. DEFINITIONS AND BASIC RESULTS

By weight we mean a locally integrable function ω on RN such that 0 < ω(x) <∞ for
a.e. x ∈ RN . Every weight ω gives rise to a measure on the measurable subsets of RN
through integration. This measure will be denoted by µ. Thus, µ(E) =

∫
E
ω(x) dx for

measurable sets E ⊂ RN .

Definition 2.1. Let 1 ≤ p <∞. A weight ω is said to be an Ap-weight, if there is a
positive constant C = C(p, ω) such that, for every ball B ⊂ RN(

1

|B|

∫
B

ω(x) dx

)(
1

|B|

∫
B

ω1/(1−p)(x) dx

)p−1

≤ C if p > 1,

(
1

|B|

∫
B

ω(x) dx

)(
ess sup

x∈B

1

ω(x)

)
≤ C if p = 1,

where | · | denotes the N -dimensional Lebesgue measure in RN .

If 1 < q ≤ p, then Aq ⊂ Ap (see [6, 7] or [12] for more information about
Ap-weights). As an example of an Ap-weight, the function ω(x) = |x|α, x ∈ RN ,
is in Ap if and only if −N < α < N(p − 1) (see [11, Chapter IX, Corollary 4.4]). If
ϕ ∈ BMO(RN ), then ω(x) = eαϕ(x) ∈ A2 for some α > 0 (see [10]).

Remark 2.2. If ω ∈ Ap, 1 < p <∞, then(
|E|
|B|

)p
≤C µ(E)

µ(B)

for all measurable subsets E of B (see 15.5 strong doubling property in [7]). Therefore,
if µ(E) = 0, then |E| = 0. Thus, if {un} is a sequence of functions defined in B and
un→u µ-a.e., then un→u a.e.
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Definition 2.3. Let ω be a weight. We shall denote by Lp(Ω, ω) (1 ≤ p < ∞) the
Banach space of all measurable functions f defined in Ω for which

‖f‖Lp(Ω,ω) =

(∫
Ω

|f(x)|pω(x) dx

)1/p

<∞.

We denote [Lp
′
(Ω, ω)]N = Lp

′
(Ω, ω)× . . .×Lp′(Ω, ω).

Remark 2.4. If ω ∈ Ap, 1 < p < ∞, then since ω−1/(p−1) is locally integrable, we
have Lp(Ω, ω) ⊂ L1

loc(Ω) (see [12, Remark 1.2.4]). It thus makes sense to talk about
weak derivatives of functions in Lp(Ω, ω).

Definition 2.5. Let Ω ⊂ RN be a bounded open set, 1 < p < ∞, k a nonnegative
integer and ω ∈ Ap. We shall denote by W k,p(Ω, ω), the weighted Sobolev spaces, the
set of all functions u ∈ Lp(Ω, ω) with weak derivatives Dαu ∈ Lp(Ω, ω), 1 ≤ |α| ≤ k.
The norm in the space W k,p(Ω, ω) is defined by

‖u‖Wk,p(Ω,ω) =

(∫
Ω

|u(x)|pω(x) dx+
∑

1≤|α|≤k

∫
Ω

|Dαu(x)|pω(x) dx

)1/p

. (2.1)

We also define the space W k,p
0 (Ω, ω) as the closure of C∞0 (Ω) with respect to the

norm

‖u‖Wk,p
0 (Ω,ω) =

( ∑
1≤|α|≤k

∫
Ω

|Dαu(x)|pω(x) dx

)1/p

.

The dual space of W 1,p
0 (Ω, ω) is the space [W 1,p

0 (Ω, ω)]∗ = W−1,p′(Ω, ω),

W−1,p′(Ω, ω) =
{
T = f − div(G) : G = (g1, . . . , gN ),

f

ω
,
gj
ω
∈ Lp

′
(Ω, ω)

}
.

It is evident that a weight function ω which satisfies 0 < C1 ≤ ω(x) ≤ C2, for a.e.
x ∈ Ω, gives nothing new (the space Wk,p(Ω, ω) is then identical with the classical
Sobolev space Wk,p(Ω)). Consequently, we shall be interested in all above such weight
functions ω which either vanish somewhere in Ω∪∂Ω or increase to infinity (or both).

We need the following basic result.

Theorem 2.6 (The weighted Sobolev inequality). Let Ω ⊂ RN be a bounded open
set and let ω be an Ap-weight, 1 < p < ∞. Then there exists positive constants CΩ

and δ such that for all f ∈ C∞0 (Ω) and 1 ≤ η ≤ N/(N − 1) + δ

‖f‖Lηp(Ω,ω) ≤ CΩ‖|∇f |‖Lp(Ω,ω). (2.2)

Proof. See [5, Theorem 1.3].

Definition 2.7. We say that u ∈ T 1,p
0 (Ω, ω) if Tk(u) ∈ W 1,p

0 (Ω, ω) for all k > 0,
where the function Tk : R→ R is defined by

Tk(s) =

{
s, if |s| ≤ k,
k sign(s), if |s| > k.
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Remark 2.8. (i) Note that for given h > 0 and k > 0 we have

Th(u− Tk(u)) =


0 if |u| ≤ k,
(|u| − k) sign(u) if k < |u| ≤ k + h,

hsign(u), if |u| > k + h.

Moreover, if α ∈ R, α 6= 0, we have Tk(αu) = αTk/|α|(u).
(ii) If u ∈W 1,1

loc (Ω, ω), then we have

∇Tk(u) = χ{|u|<k}∇u,

where χE denotes the characteristic function of a measurable set E ⊂ RN .

Definition 2.9. Let f ∈ L1(Ω), G/ω ∈ [Lp
′
(Ω, ω)]N and u ∈ T 1,p

0 (Ω, ω). We say that
u is an entropy solution to problem (P ) if∫

Ω

ω(x) |∇u|p−2〈∇u,∇Tk(u−ϕ)〉 dx =

∫
Ω

f Tk(u−ϕ) dx+

∫
Ω

〈G,∇Tk(u−ϕ)〉 dx (2.3)

for all k > 0 and all ϕ ∈ W 1,p
0 (Ω, ω) ∩ L∞(Ω), where 〈·, ·〉 denotes the usual inner

product in RN .

We recall that the gradient of u which appears in (2.3) is defined as in
Remark 2.8 of [3], that is to say that ∇u = ∇Tk(u) on the set where |u| < k.

Remark 2.10. Note that if u1, u2 ∈W 1,p
0 (Ω, ω), then ϕ = Tk(u1+u2) ∈W 1,p

0 (Ω, ω)∩
L∞(Ω) and we have

∇ϕ = ∇Tk(u1 + u2) = ∇(u1 + u2)χ{|u1+u2|≤k}.

Definition 2.11. Let 0 < p < ∞ and let ω be a weight function. We define the
weighted Marcinkiewicz spaceMp(Ω, ω) as the set of measurable functions f : Ω→ R
such that the function

Γk(f) = µ({x ∈ Ω: |f(x)| > k}), k > 0,

satisfies an estimate of the form Γf (k) ≤ Ck−p, 0 < C <∞.

Remark 2.12. If 1 ≤ q < p and Ω ⊂ RN is a bounded set, we have that

Lp(Ω, ω) ⊂Mp(Ω, ω) andMp(Ω, ω) ⊂ Lq(Ω, ω).

(the proof follows the lines of Theorem 2.18.8 in [8]).

Lemma 2.13. Let u ∈ T 1,p
0 (Ω, ω) and ω ∈ Ap, 1 < p <∞, be such that

1

k

∫
{|u|<k}

|∇u|pω dx ≤M, (2.4)

for every k > 0. Then:
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(i) u ∈ Mp1(Ω, ω), where p1 = η(p − 1) (where η is the constant in Theorem 2.6).
More precisely, there exists C > 0 such that Γk(u) ≤ CMηk−p1 .

(ii) |∇u|∈Mp2(Ω, ω), where p2 = p p1/(p1 + 1) and p1 = η(p − 1). More precisely,
there exists C > 0 such that Γk(|∇u|) ≤ CM (p1+η)/(p1+1)k−p2 .

Proof. See Lemma 3.3 and Lemma 3.4 in [3].

3. WEAK SOLUTIONS

In this section we prove the existence and uniqueness of weak solutions u ∈W 1,p
0 (Ω, ω)

to the Dirichlet problem

(P1)

{
−div[ω(x)|∇u|p−2∇u = f(x)− div(G(x)) in Ω,

u(x) = 0 in ∂Ω,

where Ω is a bounded open set of RN (N ≥ 2), f/ω ∈ Lp′(Ω, ω) and G/ω [Lp
′
(Ω, ω)]N .

Definition 3.1. We say that u ∈W 1,p
0 (Ω, ω) is a weak solution for problem (P1) if

∫
Ω

ω(x) |∇u|p−2〈∇u,∇ϕ〉 dx =

∫
Ω

f ϕ dx+

∫
Ω

〈G,∇ϕ〉 dx, (3.1)

for all ϕ ∈W 1,p
0 (Ω, ω), with f/ω ∈ Lp′(Ω, ω) and G/ω ∈ [Lp

′
(Ω, ω)]N .

Theorem 3.2. Let ω ∈ Ap, 1 < p < ∞, f/ω ∈ Lp′(Ω, ω) and G/ω ∈ [Lp
′
(Ω, ω)]N .

Then the problem (P1) has a unique solution u ∈W 1,p
0 (Ω, ω).

Proof. (I) Existence. By Theorem 2.6, we have that

∣∣∣∣ ∫
Ω

f ϕ dx

∣∣∣∣ ≤ (∫
Ω

∣∣∣∣ fω
∣∣∣∣p′ ω dx)1/p′(∫

Ω

|ϕ|p ω dx
)1/p

≤

≤ CΩ ‖f/ω‖Lp′ (Ω,ω)‖∇ϕ‖Lp(Ω,ω).

(3.2)

Define the functional Jp : W 1,p
0 (Ω, ω)→R by

Jp(ϕ) =
1

p

∫
Ω

|∇ϕ|p ω dx−
∫
Ω

f ϕ dx−
∫
Ω

〈G,∇ϕ〉 dx.
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Using (3.2) and Young’s inequality, we have that

Jp(ϕ) ≥ 1

p

∫
Ω

|∇ϕ|p ω dx− (CΩ ‖f/ω‖Lp′ (Ω,ω) + ‖G/ω‖Lp′ (Ω,ω) ) ‖∇ϕ‖Lp(Ω,ω) ≥

≥ 1

p

∫
Ω

|∇ϕ|p ω dx− 1

p
‖∇ϕ‖pLp(Ω,ω)−

− 1

p′
[CΩ ‖f/ω‖Lp′ (Ω,ω) + ‖G/ω‖Lp′ (Ω,ω)]

p′ =

= − 1

p′
[CΩ ‖f/ω‖Lp′ (Ω,ω) + ‖G/ω‖Lp′ (Ω,ω) ]p

′
,

that is, Jp is bounded from below.
Let {un} be a minimizing sequence, that is, a sequence such that

Jp(un) → inf
ϕ∈W 1,p

0 (Ω,ω)
Jp(ϕ).

Then for n large enough, we obtain

0 ≥ Jp(un) =
1

p

∫
Ω

|∇un|p ω dx−
∫
Ω

f un dx−
∫
Ω

〈G,∇un〉 dx,

and we get

‖∇un‖pLp(Ω,ω) ≤ p
(∫

Ω

f un dx+

∫
Ω

〈G,∇un〉 dx
)
≤

≤ p(‖f/ω‖Lp′ (Ω,ω) ‖un‖Lp(Ω,ω) + ‖G/ω‖Lp′ (Ω,ω)‖∇un‖Lp(Ω,ω)) ≤

≤ p(CΩ ‖f/ω‖Lp′ (Ω,ω) + ‖G/ω‖Lp′ (Ω,ω))‖∇un‖Lp(Ω,ω).

Hence ‖∇un‖Lp(Ω,ω) ≤ [p(CΩ ‖f/ω‖Lp′ (Ω,ω) + ‖G/ω‖Lp′ (Ω,ω))]
1/(p−1). Therefore {un}

is bounded in W 1,p
0 (Ω, ω). Since W 1,p

0 (Ω, ω) is reflexive, there exists u∈W 1,p
0 (Ω, ω)

such that un⇀ in W 1,p
0 (Ω, ω). Since W 1,p

0 (Ω, ω) 3 ϕ 7→
∫

Ω
fϕ dx+

∫
Ω
〈G,∇ϕ〉 dx, and

ϕ 7→ ‖∇ϕ‖Lp(Ω,ω) are continuous then Jp is continuous. Moreover since 1 < p < ∞
we have that Jp is convex and thus lower semi-continuous for the weak convergence.
It follows that

Jp(u) ≤ lim inf
n

Jp(un) = inf
ϕ∈W 1,p

0 (Ω,ω)
Jp(ϕ),

and thus u is a minimizer of Jp on W 1,p
0 (Ω, ω). For any ϕ ∈W 1,p

0 (Ω, ω) the function

λ 7→ 1

p

∫
Ω

|∇(u+ λϕ)|p ω dx−
∫
Ω

(u+ λϕ) f dx−
∫
Ω

〈G,∇(u+ λϕ)〉 dx

has a minimum at λ = 0. Hence

d

dλ

(
Jp(u+ λϕ)

)∣∣∣∣
λ=0

= 0, ∀ϕ ∈W 1,p
0 (Ω, ω).
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We have
d

d λ

(
| ∇(u+ λϕ|p ω

)
= p {|∇(u+ λϕ)|p−2(〈∇u,∇ϕ〉+ λ |∇ϕ|2)}ω,

and we obtain

0 =
d

dλ

(
Jp(u+ λϕ)

)∣∣∣∣
λ=0

=

=

[
1

p

(
p

∫
Ω

|∇(u+ λϕ)|p−2(〈∇u,∇ϕ〉+ λ |∇ϕ|2)ω dx

)
−

−
∫
Ω

ϕf dx−
∫
Ω

〈G,∇ϕ〉 dx
]∣∣∣∣
λ=0

=

=

∫
Ω

|∇u|p−2 〈∇u,∇ϕ〉ω dx−
∫
Ω

f ϕ dx−
∫
Ω

〈G,∇ϕ〉 dx.

Therefore
∫

Ω
|∇u|p−2 〈∇u,∇ϕ〉ω dx =

∫
Ω
f ϕ dx +

∫
Ω
〈G,∇ϕ〉 dx, that is, u ∈

W 1,p
0 (Ω, ω) is a solution of problem (P1).
(II) Uniqueness. If u1, u2 ∈ W 1,p

0 (Ω, ω) are two weak solutions of problem (P1),
we have ∫

Ω

|∇ui|p−2 〈∇ui,∇ϕ〉ω dx =

∫
Ω

f ϕ dx+

∫
Ω

〈G,∇ϕ〉 dx, i = 1, 2,

for all ϕ ∈W 1,p
0 (Ω, ω). Hence∫

Ω

(
|∇u1|p−2〈∇u1,∇ϕ〉 − |∇u2|p−2〈∇u2,∇ϕ〉

)
ω dx = 0.

Taking ϕ = u1 − u2, and using that for every x, y ∈ RN there exist two positive
constants αp and βp such that

αp (|x|+ |y|)p−2|x− y| ≤ 〈 |x|p−2
x− |y|p−2

y, x− y〉 ≤ βp (|x|+ |y|)p−2|x− y|,

we obtain

0 =

∫
Ω

(
|∇u1|p−2〈∇u1,∇u1 −∇u2〉 − |∇u2|p−2〈∇u2,∇u1 −∇u2〉

)
ω dx =

=

∫
Ω

〈|∇u1|p−2∇u1 − |∇u2|p−2∇u2,∇u1 −∇u2〉ω dx ≥

≥ αp
∫
Ω

(
|∇u1|+ |∇u2|

)p−2

|∇u1 −∇u2|2 ω dx.

Therefore ∇u1 = ∇u2 µ-a.e. and since u1, u2 ∈ W 1,p
0 (Ω, ω), then u1 = u2 a.e. (by

Remark 2.2).
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4. MAIN RESULT

In this section, we prove the main result of this paper. We need the following results.

Lemma 4.1. Let ω ∈ Ap, 1 < p <∞ and a sequence {un}, un ∈W 1,p
0 (Ω, ω) satisfies:

(1) un⇀u in W 1,p
0 (Ω, ω) and µ-a.e. in Ω.

(2)
∫
Ω

〈 |∇un|p−2∇un − |∇u|p−2∇u , ∇(un − u)〉ω dx→ 0 with n→∞.

Then un → u in W 1,p
0 (Ω, ω).

Proof. The proof of this lemma follows the lines of Lemma 5 in [2].

Theorem 4.2. Let ω ∈ Ap, 1 < p < ∞, f ∈ L1(Ω) and G/ω ∈ [Lp
′
(Ω, ω)]N .

There exists an entropy solution u of problem (P ). Moreover, u ∈ Mp1(Ω, ω) and
|∇u| ∈ Mp2(Ω, ω), with p1 = η (p−1) and p2 = p1 p/(p1 + 1) (where η is the constant
in Theorem 2.6).

Proof. Considering a sequence {fn}, fn ∈ C∞0 (Ω), where

fn→f in L1(Ω) and ‖fn‖L1(Ω) ≤ ‖f‖L1(Ω),

and a sequence {Gn}, with Gn/ω ∈ [Lp
′
(Ω, ω)]N such that Gn

ω →
G
ω in [Lp

′
(Ω, ω)]N

and ‖ |Gn| /ω‖Lp′ (Ω,ω) ≤ ‖ |G| /ω‖Lp′ (Ω,ω). For each n, by Theorem 3.2, there exists
a solution un ∈W 1,p

0 (Ω, ω) of the Dirichlet problem

(Pn)

{
−div[ω(x)|∇un|p−2∇un)] = fn(x)− div(Gn(x)) in Ω,

un(x) = 0 in ∂Ω,

that is, ∫
Ω

ω |∇un|p−2 〈∇un,∇ϕ〉 dx =

∫
Ω

fnϕdx+

∫
Ω

〈G,∇ϕ〉 dx (4.1)

for all ϕ ∈W 1,p
0 (Ω, ω). For ϕ = Tk(un) we obtain in (4.1) that∫

Ω

ω |∇un|p−2 〈∇un),∇Tk(un)〉 dx =

∫
Ω

fn Tk(un) dx+

∫
Ω

〈Gn,∇Tk(un)〉 dx. (4.2)

We have ∣∣∣∣ ∫
Ω

fn Tk(un) dx

∣∣∣∣ ≤ ∫
Ω

|fn||Tk(un)| dx ≤ k‖fn‖L1(Ω) ≤ k‖f‖L1(Ω), (4.3)

and since ∇Tk(un) = χ{|un|<k}∇un, we obtain∫
Ω

ω |∇un|p−2 〈∇un,∇Tk(un)〉 dx =

∫
Ω

ω |∇Tk(un)|p−2 〈∇Tk(un),∇Tk(un)〉 dx =

=

∫
Ω

|∇Tk(un)|pω dx.

(4.4)



Existence results for Dirichlet problems with degenerated p-Laplacian 447

We also have, using Young’s inequality, that there exists a constant C1 > 0 (depending
only on p) such that∣∣∣∣ ∫

Ω

〈Gn,∇Tk(un)〉 dx
∣∣∣∣ ≤ ∫

Ω

∣∣Gn
ω

∣∣|∇Tk(un)|ω dx ≤

≤
(∫

Ω

|Gn/ω|p
′
ω dx

)1/p′(∫
Ω

|∇Tk(un)|pω dx
)1/p

≤

≤ 1

2

∫
Ω

|∇Tk(un)|pω dx+ C1

∫
Ω

|Gn/ω|p
′
ω dx ≤

≤ 1

2

∫
Ω

|∇Tk(un)|pω dx+ C1

∫
Ω

|G/ω|p
′
ω dx.

(4.5)

Hence, using (4.3), (4.4) and (4.5), we obtain∫
Ω

|∇Tk(un)|pω dx ≤ 2 k ‖f‖L1(Ω) + 2C1 ‖G/ω‖p
′

Lp′ (Ω,ω)
≤ C2 k, (4.6)

where C2 = 2 ‖f‖L1(Ω) + 2C1 ‖G/ω‖p
′

Lp′ (Ω,ω)
. By Lemma 2.13, the sequence {un} is

bounded in Mp1(Ω, ω) (with p1 = η (p − 1)), and {|∇un|} is bounded in Mp2(Ω, ω)
(with p2 = p1 p/(p1 + 1)). Moreover, {un} is a Cauchy sequence in the µ-measure.
Consequently, there exists a function u and a subsequence, that we will still denote
by {un}, such that

un → u µ− a.e. in Ω, (4.7)

and un → u a.e. in Ω (by Remark 2.2). Using (4.6) and (4.7), we have

Tk(un)⇀Tk(u) weakly in W 1,p
0 (Ω, ω),

Tk(un)→Tk(u) strongly in Lp(Ω, ω) and µ− a.e. in Ω,
(4.8)

for all k > 0. Hence Tk(u) ∈W 1,p
0 (Ω, ω).

Furthermore, by the weak lower semicontinuity of the norm W 1,p
0 (Ω, ω), we have

that (4.6) still holds for u, that is,∫
Ω

|∇Tk(u)|pω dx ≤ k C2.

Applying Lemma 2.13, we deduce that u ∈ Mp1(Ω, ω) (with p1 = η (p − 1)) and
|∇u| ∈ Mp2(Ω, ω) (with p2 = p1 p/(p1 + 1)).

We need to show that Tk(un)→Tk(u) strongly in W 1,p
0 (Ω, ω) for all k > 0.

Let h > k and applying (4.1) with function ϕn = T2k(un−Th(un)+Tk(un)−Tk(u)),
we get ∫

Ω

ω |∇un|p−2〈∇un,∇ϕn〉 dx =

∫
Ω

fn ϕn dx+

∫
Ω

〈G,∇ϕn〉 dx. (4.9)
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If we set M = 4k + h, we have ∇ϕn = 0 for |un| > M . We can write∫
Ω

ω |∇TM (un)|p−2 〈∇TM (un),∇ϕn〉 dx =

∫
Ω

fnϕn dx+

∫
Ω

〈G,∇ϕn〉 dx. (4.10)

In the left-hand side of (4.10), we have∫
Ω

ω |∇TM (un)|p−2 〈∇TM (un),∇T2k(un − Th(un) + Tk(un)− Tk(u))〉 dx =

=

∫
{|un|≤k}

ω |∇TM (un)|p−2 〈∇TM (un)),∇T2k(un − Th(un) + Tk(un)− Tk(u))〉 dx+

+

∫
{|un|>k}

ω |∇TM (un)|p−2 〈∇TM (un),∇T2k(un − Th(un) + Tk(un)− Tk(u))〉dx

(4.11)

(a) If |un| ≤ k.
Since h > k, if |un| ≤ k < h, then Th(un) = Tk(un) = un. Hence, un − Th(un) +
Tk(un) − Tk(u) = un − Tk(u). We also have that |un − u| ≤ 2k. Then, since
∇TM (un) = ∇Tk(un) (because |un| ≤ k < M),∫
{|un|≤k}

ω |∇TM (un)|p−2〈∇TM (un),∇T2k(un − Th(un) + Tk(un)− Tk(u))〉 dx =

=

∫
{|un|≤k}

ω|∇Tk(un)|p−2〈∇Tk(un),∇(Tk(un)− Tk(u)) dx =

=

∫
Ω

ω |∇Tk(un)|p−2〈∇Tk(un),∇(Tk(un)− Tk(u))〉 dx.

(b) If |un| > k.
Since un, Tk(un) and Tk(u) are inW 1,p

0 (Ω, ω), if |un − Th(un) + Tk(un)− Tk(u)| ≤
2k, we obtain

∇T2k(un − Th(un) + Tk(un)− Tk(u)) = ∇(un − Th(un) + Tk(un)− Tk(u)) =

= ∇un −∇Th(un) +∇Tk(un)−∇Tk(u) =

= ∇un −∇Th(un)−∇Tk(u)

(because ∇Tk(un) = 0 if |un| > k). There are two possible cases:
(i) If k < |un| < h, we have ∇Th(un) = ∇un. Then

∇T2k(un − Th(un) + Tk(un)− Tk(u)) = −∇Tk(u).

(ii) If h < |un| ≤M , we have ∇Th(un) = 0. Then

∇T2k(un−Th(un)+Tk(un)−Tk(u)) = ∇un−∇Tk(u) = ∇TM (un)−∇Tk(u).
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In both cases we obtain

|∇TM (un)|p−2〈∇TM (un),∇T2k(un − Th(un) + Tk(un)− Tk(u))〉 ≥
≥ −|∇TM (un)|p−2〈∇TM (un),∇Tk(u)〉 ≥
≥ −|∇TM (un)|p−2 |∇TM (un)| |∇Tk(u)|.

Therefore, we obtain in (4.11)∫
Ω

ω |∇TM (un)|p−2〈∇TM (un),∇T2k(un − Th(un) + Tk(un)− Tk(u))〉 dx =

=

∫
{|un|≤k}

ω |∇TM (un)|p−2〈∇TM (un),∇T2k(un − Th(un) + Tk(un)− Tk(u))〉 dx+

+

∫
{|un|>k}

ω |∇TM (un)|p−2〈∇TM (un),∇T2k(un − Th(un) + Tk(un)− Tk(u))〉 dx ≥

≥
∫
Ω

ω|∇TM (un)|p−2〈∇Tk(un),∇(Tk(un)− Tk(u)) dx−

−
∫

{|un|>k}

ω|∇TM (un)|p−2|∇TM (un)| |∇Tk(u)| dx.

Hence, in (4.10) we obtain∫
Ω

ω〈|∇Tk(un)|p−2∇Tk(un)− |∇Tk(u)|p−2∇Tk(u),∇(Tk(un)− Tk(u))〉 dx ≤

≤
∫

{|un|>k}

ω |∇TM (un)| |∇Tk(u)| dx+

+

∫
Ω

fnT2k(un − Th(un) + Tk(un)− Tk(u)) dx+

+

∫
Ω

〈Gn,∇T2k(un − Th(un) + Tk(un)− Tk(u))〉 dx−

−
∫
Ω

ω |∇Tk(u)|p−2〈∇Tk(u),∇(Tk(un)− Tk(u))〉 dx.

(4.12)

Considering the test function ψn = T2k(un − Th(un)) in (4.1), we have∫
Ω

ω |∇un|p−2 〈∇un,∇ψn〉 dx =

∫
Ω

fn ψn dx+

∫
Ω

〈Gn,∇ψn〉 dx,
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and using that∣∣∣∣ ∫
Ω

fnψn dx

∣∣∣∣ ≤ ∫
Ω

|fn||ψn| dx ≤ (2k + 1)‖fn‖L1(Ω) ≤ (2k + 1)‖f‖L1(Ω),

and∫
Ω

ω |∇un|p−2〈∇un,∇ψn〉 dx =

∫
Ω

ω |∇ψn|p−2〈∇ψn,∇ψn〉 dx =

=

∫
Ω

|∇ψn|pω dx =

∫
Ω

|∇T2k(un − Th(un))|pω dx,

we obtain ∫
Ω

|∇T2k(un − Th(un))|pω dx ≤ (2k + 1)C2.

Now using that T2k(un − Th(un)) ⇀ T2k(u − Th(u)) weakly in W 1,p
0 (Ω, ω) (by (4.8)

and Remark 2.8 (i)), we have∫
Ω

|∇T2k(u− Th(u))|pω dx ≤ (2k + 1)C2. (4.13)

We have (by Remark 2.8 (i) and (ii) and (4.13))∫
Ω

|G||∇T2k(u−Th(u))| dx =

∫
{h<|u|<2k+h}

|G||∇u|dx ≤

≤
( ∫
{|u|≥h}

|G/ω|p
′
ωdx

)1/p′( ∫
{h<|u|<2k+h}

|∇u|pωdx
)1/p

=

=

( ∫
{|u|≥h}

|G/ω|p
′
ωdx

)1/p′(∫
Ω

|∇T2k(u− Th(u))|pωdx
)1/p

≤

≤ C3

( ∫
{|u|≥h}

|G/ω|p
′
ωdx

)1/p′

,

where C3 depends on k but not on h. Therefore, we have

lim
h→∞

∫
Ω

〈G,∇T2k(u− Th(u))〉 dx = 0.

We also have (by Theorem 2.6 and (4.13))∫
Ω

|T2k(u− Th(u))|pω dx ≤ CΩ

∫
Ω

|∇T2k(u− Th(u))|pω dx ≤ CΩ C2 (2k + 1).
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Moreover, by Lebesgue’s theorem, we obtain

lim
h→∞

∫
Ω

f T2k(u− Th(u)) dx = 0.

We can fix a positive real number hε sufficiently large to have∫
Ω

f T2k(u− Thε) dx+

∫
Ω

〈G,∇T2k(u− Thε(u))〉 dx ≤ ε. (4.14)

Considering h = hε in (4.12) (and M = Mε = 4k + hε), by (4.6), we have∫
Ω

|∇TM (un)|p−2∇TM (un)|p
′
ω dx =

∫
Ω

|∇TM (un)|(p−2) p′ |∇TM (un)|p
′
ω dx =

=

∫
Ω

|∇TM (un)|p ω dx ≤ M C2,

that is, |∇TM (un)|p−2∇TM (un)| is bounded in Lp
′
(Ω, ω). Moreover,

χ{|un|>k}|∇Tk(u)| → 0

in Lp(Ω, ω) as n→∞. Therefore,

lim
n→∞

∫
{|un|>k}

|∇TM (un)|p−2∇TM (un)||∇Tk(u)|ω dx = 0. (4.15)

Futhermore, we have that T2k(un−Th(un)+Tk(un)−Tk(u))⇀T2k(u−Th(u)), weakly
in W 1,p

0 (Ω, ω), as n→∞.
Hence, by (4.8), (4.14) and (4.15), passing to the limit in (4.12), we have

lim
n→∞

∫
Ω

〈 |∇Tk(un)|p−2∇Tk(un)− |∇Tk(u)|p−2∇Tk(u),∇(Tk(un)− Tk(u))〉ω dx ≤

≤
∫
Ω

f T2k(u− Thε) dx+

∫
Ω

〈G,∇T2k(u− Thε(u))〉 dx ≤ ε

for all ε > 0, that is,

lim
n→∞

∫
Ω

〈 |∇Tk(un)|p−2∇Tk(un)− |∇Tk(u)|p−2∇Tk(u),∇(Tk(un)− Tk(u))〉ω dx = 0.

Applying Lemma 4.1 we get
Tk(un)→ Tk(u) (4.16)

strongly in W 1,p
0 (Ω, ω) for every k > 0.
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This convergence implies that for every fixed k > 0

|∇Tk(un)|p−2∇Tk(un))→|∇Tk(u)|p−2∇Tk(u)) (4.17)

in (Lp
′
(Ω, ω))N = Lp

′
(Ω, ω)× . . .×Lp′(Ω, ω).

Finally, we need to show that u is an entropy solution to the Dirichlet problem (P ).
Let us take ψn = Tk(un −ϕ) as test function in (4.1), with ϕ ∈W 1,p

0 (Ω, ω)∩L∞(Ω).
We obtain∫

Ω

ω |∇un|p−2〈∇un,∇ψn〉 dx =

∫
Ω

fnψn dx+

∫
Ω

〈Gn,∇ψn〉 dx. (4.18)

If M = k + ‖ϕ‖L∞(Ω) and n > M , we have∫
Ω

ω|∇un|p−2〈∇un,∇Tk(un−ϕ)〉dx =

∫
Ω

ω|∇TM (un)|p−2〈∇TM (un),∇Tk(un−ϕ)〉dx.

Hence, in (4.18) we obtain∫
Ω

ω |∇TM (un)|p−2〈∇TM (un),∇Tk(un − ϕ)〉 dx =

=

∫
Ω

fn Tk(un − ϕ) dx+

∫
Ω

〈G,∇Tk(u− ϕ)〉 dx.
(4.19)

Therefore, by (4.8) and (4.17), passing to the limit as n→∞ in (4.19), we obtain∫
Ω

ω |∇u|p−2〈∇u,∇Tk(u− ϕ)〉 dx =

∫
Ω

f Tk(u− ϕ) dx

for all ϕ ∈W 1,p
0 (Ω, ω) ∩ L∞(Ω) and for each k > 0.

Therefore u is an entropy solution of problem (P ).

Example 4.3. Let Ω = {(x, y) ∈ R2 : x2 + y2 < 1}, ω(x, y) = (x2 + y2)−1/6

(ω ∈ A3, p = 3), f(x, y) = sin(xy)
(x2+y2)1/3

(f ∈ L1(Ω)), G(x, y) = ((x2 + y2) sin(x y),

(x2 + y2)−1/3cos(x y)). By Theorem 4.2, the problem

(P )

{
−div[(x2 + y2)−1/6|∇u|∇u] = sin(xy)

(x2+y2)1/3
− div(G(x, y)) in Ω,

u(x, y) = 0 in ∂Ω

has an entropy solution.
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