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Abstract. In this paper, we establish the existence of at least three solutions of the
multi-point boundary value system−(φpi(u

′
i))

′ = λFui(x, u1, . . . , un), t ∈ (0, 1),

ui(0) =
∑m

j=1 ajui(xj), ui(1) =
∑m

j=1 bjui(xj),
i = 1, . . . , n.

The approaches used are based on variational methods and critical point theory.
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1. INTRODUCTION

In this paper, we study the existence of multiple solutions to the multi-point boundary
value system−(φpi(u

′
i))
′ = λFui(x, u1, . . . , un), t ∈ (0, 1),

ui(0) =
∑m
j=1 ajui(xj), ui(1) =

∑m
j=1 bjui(xj),

i = 1, . . . , n, (1.1)

where pi > 1 and φpi(t) = |t|pi−2t for i = 1, . . . , n, λ is a positive parameter, m, n ≥ 1
are integers, aj , bj ∈ R for j = 1, . . . ,m, and 0 < x1 < x2 < x3 < . . . < xm < 1.
Here, F : [0, 1] × Rn → R is a function such that the mapping (t1, t2, . . . , tn) →
F (x, t1, t2, . . . , tn) is in C1 in Rn for all x ∈ [0, 1], Fti is continuous in [0, 1]× Rn for
i = 1, . . . , n, where Fti denotes the partial derivative of F with respect to ti, and
F (x, 0, . . . , 0) = 0 for all x ∈ [0, 1].
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Throughout this paper, we let X be the Cartesian product of n spaces

Xi =

ξ ∈W 1,pi([0, 1]) : ξ(0) =

m∑
j=1

ajξ(xj), ξ(1) =

m∑
j=1

bjξ(xj)

 , i = 1, . . . , n,

i.e., X = X1 × . . .×Xn, endowed with the norm

‖(u1, . . . , un)‖ =

n∑
i=1

‖ui‖pi for u = (u1, . . . , un) ∈ X,

where

‖ui‖pi =

 1∫
0

|u′i(x)|pidx

1/pi

, i = 1, . . . , n.

Clearly, X is a reflexive Banach space. Here, X∗ denoted the dual space of X.
By a classical solution of the system (1.1), we mean a function u = (u1, . . . , un)

such that, for i = 1, . . . , n, ui ∈ C1[0, 1], φpi(u′i) ∈ C1[0, 1], and ui(x) satisfies (1.1).
We say that a function u = (u1, . . . , un) ∈ X is a weak solution of (1.1) if

1∫
0

n∑
i=1

φpi(u
′
i(x))v′i(x)dx− λ

1∫
0

n∑
i=1

Fui(x, u1(x), . . . , un(x))vi(x)dx = 0

for any v = (v1, . . . , vn) ∈ W 1,p1

0 ([0, 1]) ×W 1,p2

0 ([0, 1]) × . . . ×W 1,pn
0 ([0, 1]). We will

show that a weak solution of (1.1) is indeed a classical solution (see Lemma 1.3 below).
Multi-point boundary value problems appear in a number of applications and

have been studied by many researchers in recent years; see, for example, [4, 7–21] for
some recent results on this topic. Our goal in this paper is to obtain some sufficient
conditions for system (1.1) to have at least three classical solutions. Our analysis is
mainly based on two recent critical points theorems; see Lemmas 1.1 and 1.2 below.
Lemmas 1.1 and 1.2 are essential to the proofs of our main results, and while they
appeared in [2] and [1], respectively, we recall them as they are given in [6]. Other
contributions related to the method and results here can be found in [3, 5, 22,23].

Lemma 1.1 ([6, Theorem 3.2]). Let X be a reflexive real Banach space, Φ : X → R be
a coercive and continuously Gâteaux differentiable functional whose derivative admits
a continuous inverse on X∗, Ψ : X → R be a continuously Gâteaux differentiable
functional whose derivative is compact, and

inf
X

Φ = Φ(0) = Ψ(0) = 0.

Assume that there is a positive constant r and v ∈ X, with 2r < Φ(v), such that:

(C1)
supu∈Φ−1(−∞,r) Ψ(u)

r < 2
3

Ψ(v)
Φ(v) ,

(C2) for all λ ∈
(

3
2

Φ(v)
Ψ(v) ,

r
supu∈Φ−1(−∞,r) Ψ(u)

)
, the functional Φ− λΨ is coercive.
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Then, for each λ ∈
(

3
2

Φ(v)
Ψ(v) ,

r
supu∈Φ−1(−∞,r) Ψ(u)

)
, the functional Φ − λΨ has at least

three distinct critical points in X.

Lemma 1.2 ([6, Theorem 3.3]). Let X be a reflexive real Banach space, Φ : X → R be
a convex, coercive, and continuously Gâteaux differentiable functional whose derivative
admits a continuous inverse on X∗, Ψ : X → R be a continuously Gâteaux differen-
tiable functional whose derivative is compact,

(D1) infX Φ = Φ(0) = Ψ(0) = 0,
(D2) for each λ > 0 and for every u1, u2 that are local minima for the functional

Φ− λΨ and are such that Ψ(u1) ≥ 0 and Ψ(u2) ≥ 0, we have

inf
s∈[0,1]

Ψ(su1 + (1− s)u2) ≥ 0.

Assume further that there exist v ∈ X and positive constants r1 and r2,
with 2r1 < Φ(v) < r2

2 , such that:

(D3)
supu∈Φ−1(−∞,r1) Ψ(u)

r1
< 2

3
Ψ(v)
Φ(v) ,

(D4)
supu∈Φ−1(−∞,r2) Ψ(u)

r2
< 1

3
Ψ(v)
Φ(v) .

Then, for each

λ ∈

(
3

2

Φ(v)

Ψ(v)
, min

{
r1

supu∈Φ−1(−∞,r1) Ψ(u)
,

r2

2 supu∈Φ−1(−∞,r2) Ψ(u)

})
,

the functional Φ−λΨ has at least three distinct critical points that lie in Φ−1(−∞, r2).

Note that the coercivity of the functional Φ − λΨ is required in Lemma 1.1 and
a suitable sign hypothesis on Ψ is assumed in Lemma 1.2.

We also need the following lemma in this paper.

Lemma 1.3 ([11, Lemma 2.5]). A weak solution of (1.1) coincides with a classical
solution of (1.1).

In this paper, we assume throughout, and without further mention,
that the following condition holds:

(H1) Either p ≥ 2 or p < 2, where p = min{p1, . . . , pn} and p = max{p1, . . . , pn}.
(H2)

∑m
j=1 aj 6= 1 and

∑m
j=1 bj 6= 1.

In Section 2, we present our main results and their proofs.

2. MAIN RESULTS

Let

c = max

{
sup

ui∈Xi\{0}

maxx∈[0,1] |ui(x)|pi
‖ui‖pipi

: i = 1, . . . , n

}
. (2.1)
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Since pi > 1 for i = 1, . . . , n, the embedding X = X1 × . . . × Xn ↪→ (C0([0, 1]))n is
compact, and so c < +∞. In addition, if (H2) holds, then from [7, Lemma 3.1],

sup
v∈Xi\{0}

maxx∈[0,1] |v(x)|
‖v‖pi

≤ 1

2

(
1 +

∑m
j=1 |aj |

|1−
∑m
j=1 aj |

+

∑m
j=1 |bj |

|1−
∑m
j=1 bj |

)
for i = 1, . . . , n.

For any γ > 0, we define the set K(γ) by

K(γ) =

{
(t1, . . . , tn) ∈ Rn :

n∑
i=1

|ti|pi
pi
≤ γ

}
.

We will use this set in some of our hypotheses with appropriate choices of γ.
Here is our first existence result.

Theorem 2.1. Assume that there exist a function w = (w1, . . . , wn) ∈ X and a
positive constant r such that:

(A1)
∑n
i=1

‖wi‖
pi
pi

pi
> 2r,

(A2)
∫ 1
0

sup(t1,...,tn)∈K(cr) F (x,t1,...,tn)dx

r < 2
3

∫ 1
0
F (x,w1(x),...,wn(x))dx∑n

i=1

‖wi‖
pi
pi

pi

,

(A3) lim sup|t1|→∞,...,|tn|→∞
F (x,t1,...,tn)∑n

i=1
|ti|

pi

pi

<
∫ 1
0

sup(t1,...,tn)∈K(cr) F (x,t1,...,tn)dx

cr .

Then, for each

λ ∈

3

2

∑n
i=1

‖wi‖
pi
pi

pi
1∫
0

F (x,w1(x), . . . , wn(x))dx

,
r

1∫
0

sup(t1,...,tn)∈K(cr) F (x, t1, . . . , tn)dx

 ,

the system (1.1) has at least three classical solutions.

Proof. We wish to apply Lemma 1.1 to our problem. To this end, for each u =
(u1, . . . , un) ∈ X we introduce the functionals Φ, Ψ : X → R as follows:

Φ(u) =

n∑
i=1

‖ui‖pipi
pi

(2.2)

and

Ψ(u) =

1∫
0

F (x, u1(x), . . . , un(x))dx. (2.3)

It is well known that Φ and Ψ are well defined and continuously differentiable func-
tionals and their derivatives at the point u = (u1, . . . , un) ∈ X are the functionals
Φ′(u), Ψ′(u) ∈ X∗ given by

Φ′(u)(v) =

1∫
0

n∑
i=1

|u′i(x)|pi−2u′i(x)v′i(x)dx
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and

Ψ′(u)(v) =

1∫
0

n∑
i=1

Fui(x, u1(x), . . . , un(x))vi(x)dx

for every v = (v1, . . . , vn) ∈ X. Moreover, Φ is coercive, Φ′ admits a continuous inverse
on X∗ (see [11, Lemma 2.6]), and since Φ′ is monotone, Φ is sequentially weakly lower
semicontinuous (see [24, Proposition 25.20]). Furthermore, Ψ′ : X → X∗ is a compact
operator and

inf
X

Φ = Φ(0) = Ψ(0) = 0.

From (A1), we see that Φ(w) > 2r. For each (u1, . . . , un) ∈ X, note from (2.1) that

sup
x∈[0,1]

|ui(x)|pi ≤ c‖ui‖pipi for i = 1, . . . , n.

Then, we have

sup
x∈[0,1]

n∑
i=1

|ui(x)|pi
pi

≤ c
n∑
i=1

‖ui‖pipi
pi

, (2.4)

and so

Φ−1(−∞, r) = {u = (u1, u2, . . . , un) ∈ X : Φ(u) < r} =

=

{
u = (u1, u2, . . . , un) ∈ X :

n∑
i=1

‖ui‖pipi
pi

< r

}
⊆

⊆

{
u = (u1, u2, . . . , un) ∈ X :

n∑
i=1

|ui(x)|pi
pi

≤ cr for each x ∈ [0, 1]

}
.

Thus,

sup
(u1,...,un)∈Φ−1(−∞,r)

Ψ(u) = sup
(u1,...,un)∈Φ−1(−∞,r)

1∫
0

F (x, u1(x), . . . , un(x))dx ≤

≤
1∫

0

sup
(t1,...,tn)∈K(cr)

F (x, t1, . . . , tn)dx.
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Therefore, in view of (A2), it follows that

supu∈Φ−1(−∞,r) Ψ(u)

r
=

sup(u1,...,un)∈Φ−1(−∞,r)

1∫
0

F (x, u1(x), . . . , un(x))dx

r
≤

≤

1∫
0

sup(t1,...,tn)∈K(cr) F (x, t1, . . . , tn)dx

r
<

<
2

3

1∫
0

F (x,w1(x), . . . , wn(x))dx∑n
i=1

‖wi‖
pi
pi

pi

=
2

3

Ψ(w)

Φ(w)
,

i.e., (C1) of Lemma 1.1 holds with v = w.
From (A3), there exist two constants η, ϑ ∈ R with

η <

1∫
0

sup(t1,...,tn)∈K(cr) F (x, t1, . . . , tn)dx

r

such that

cF (x, t1, . . . , tn) ≤ η
n∑
i=1

|ti|pi
pi

+ ϑ for all x ∈ [0, 1] and (t1, . . . , tn) ∈ Rn.

Let (u1, . . . , un) ∈ X be fixed. Then

F (x, u1(x), . . . , un(x)) ≤ 1

c

(
η

n∑
i=1

|ui(x)|pi
pi

+ ϑ

)
for all x ∈ [0, 1]. (2.5)

Now, in order to prove the coercivity of the functional Φ− λΨ, first we assume that
η > 0. Then, for any fixed

λ ∈

3

2

∑n
i=1

‖wi‖
pi
pi

pi
1∫
0

F (x,w1(x), . . . , wn(x))dx

,
r

1∫
0

sup(t1,...,tn)∈K(cr) F (x, t1, . . . , tn)dx

 ,
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from (2.4) and (2.5), we have

Φ(u)− λΨ(u) =

n∑
i=1

‖ui‖pipi
pi

− λ
1∫

0

F (x, u1(x), . . . , un(x))dx ≥

≥
n∑
i=1

‖ui‖pipi
pi

− λη

c

 n∑
i=1

1

pi

1∫
0

|ui(x)|pidx

− λϑ

c
≥

≥
n∑
i=1

‖ui‖pipi
pi

− λη

c

(
c

n∑
i=1

‖ui‖pipi
pi

)
− λϑ

c
=

=

n∑
i=1

‖ui‖pipi
pi

− λη
n∑
i=1

‖ui‖pipi
pi

− λϑ

c
≥

≥

1− η r
1∫
0

sup(t1,...,tn)∈K(cr) F (x, t1, . . . , tn)dx


n∑
i=1

‖ui‖pipi
pi

− λϑ

c
.

Thus,
lim
‖u‖→∞

(Φ(u)− λΨ(u)) =∞.

On the other hand, if η ≤ 0, then it is clear that lim‖u‖→∞(Φ(u)−λΨ(u)) =∞. Then,
both cases lead to the coercivity of functional Φ− λΨ, i.e., (C2) of Lemma 1.1 holds
with v = w. Hence, by Lemma 1.1, Φ(u) − λΨ(u) has at least three distinct critical
points. Then, taking into account the fact that the weak solutions of the system (1.1)
are exactly critical points of Φ(u) − λΨ(u) and applying Lemma 1.3, we obtain the
conclusion of the theorem.

Our next result considers the existence of three nonnegative solutions of the sys-
tem (1.1).

Theorem 2.2. Assume that:

(B1) aj , bj ∈ [0, 1) for j = 1, . . . ,m with
∑m
j=1 aj ∈ [0, 1) and

∑m
j=1 bj ∈ [0, 1),

(B2) Fti(x, t1, . . . , tn) ≥ 0 for all (x, t1, . . . , tn) ∈ [0, 1]× [0,∞)n and i = 1, . . . , n,

and there exist a function w = (w1, . . . , wn) ∈ X and two positive constants r1 and r2

with 2r1 <
∑n
i=1

‖wi‖
pi
pi

pi
< r2

2 such that:

(B3)
∫ 1
0

sup(t1,...,tn)∈K(cr1) F (x,t1,...,tn)dx

r1
< 2

3

∫ 1
0
F (x,w1(x),...,wn(x))dx∑n

i=1

‖wi‖
pi
pi

pi

,

(B4)
∫ 1
0

sup(t1,...,tn)∈K(cr2) F (x,t1,...,tn)dx

r2
< 1

3

∫ 1
0
F (x,w1(x),...,wn(x))dx∑n

i=1

‖wi‖
pi
pi

pi

.
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Then, for each

λ ∈

(
3

2

∑n
i=1

‖wi‖
pi
pi

pi∫ 1

0
F (x,w1(x), . . . , wn(x))dx

, Θ1

)
,

where

Θ1 =min


r1

1∫
0

sup(t1,...,tn)∈K(cr1)
F (x, t1, . . . , tn)dx

,
r2

2
1∫
0

sup(t1,...,tn)∈K(cr2)
F (x, t1, . . . , tn)dx

,

the system (1.1) has at least three nonnegative classical solutions vj = (vj1, . . . , v
j
n),

j = 1, 2, 3 such that
n∑
i=1

|vji (x)|pi
pi

≤ cr2 for each x ∈ [0, 1] and j = 1, 2, 3.

We need the following comparison principle in the proof of Theorem 2.2.

Lemma 2.3 ([20, Lemma 2.1]). Let (B1) hold. Assume that y ∈ C1[0, 1] satisfies
φp(y

′) ∈ AC[0, 1] with p > 1 and−(φp(y
′))′ ≥ 0, t ∈ (0, 1),

y(0) =
∑m
j=1 ajy(xj), y(1) =

∑m
j=1 bjy(xj).

Then, y(t) ≥ 0 for t ∈ [0, 1].

Proof of Theorem 2.2. Our aim is to apply Lemma 1.2 to our problem. To this end,
let Φ and Ψ be defined by (2.2) and (2.3), respectively. Clearly, Φ and Ψ satisfy (D1)
of Lemma 1.2. To show that (D2) of Lemma 1.2 holds, let u∗ = (u?1, . . . , u

?
n) and u?? =

(u??1 , . . . , u
??
n ) be two local minima for Φ − λΨ. Then, u∗ and u?? are critical points

of Φ− λΨ, and so they are weak solutions for the system (1.1). Thus, by Lemma 1.3,
u∗ and u?? are classical solutions of (1.1). Note that the fact F (x, 0, . . . , 0) = 0 and
(B2) imply that F (x, t1, . . . , tn) ≥ 0 for all (x, t1, . . . , tn) ∈ [0, 1]× [0,∞)n. Then, for
i = 1, . . . , n, from (B1) and Lemma 2.3, we see that u?i (x) ≥ 0 and u??i (x) ≥ 0 on
[0, 1], which imply that su?i +(1−s)u??i ≥ 0 on [0, 1]. Thus, F (x, su?+(1−s)u??) ≥ 0,
and consequently, Ψ(su? + (1− s)u??) ≥ 0 for all s ∈ [0, 1], i.e., (D2) holds.

Now, from the condition 2r1 <
∑n
i=1

‖wi‖
pi
pi

pi
< r2

2 , we observe that
2r1 < Φ(w) < r2

2 . Next, note that (2.4) holds, so

Φ−1(−∞, r1) = {u = (u1, u2, . . . , un) ∈ X : Φ(u) < r1} =

=
{
u = (u1, u2, . . . , un) ∈ X :

n∑
i=1

‖ui‖pipi
pi

< r1

}
⊆

⊆
{
u = (u1, u2, . . . , un) ∈ X :

n∑
i=1

|ui(x)|pi
pi

≤ cr1 for each x ∈ [0, 1]
}
.
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Thus,

sup
(u1,...,un)∈Φ−1(−∞,r1)

Ψ(u) = sup
(u1,...,un)∈Φ−1(−∞,r1)

1∫
0

F (x, u1(x), . . . , un(x))dx ≤

≤
1∫

0

sup
(t1,...,tn)∈K(cr1)

F (x, t1, . . . , tn)dx.

Therefore, from (B3), it follows that

supu∈Φ−1(−∞,r1) Ψ(u)

r1
=

sup(u1,...,un)∈Φ−1(−∞,r1)

∫ 1

0
F (x, u1(x), . . . , un(x))dx

r1
≤

≤
∫ 1

0
sup(t1,...,tn)∈K(cr1) F (x, t1, . . . , tn)dx

r1
<

<
2

3

∫ 1

0
F (x,w1(x), . . . , wn(x))dx∑n

i=1

‖wi‖
pi
pi

pi

=
2

3

Ψ(w)

Φ(w)
,

i.e., (D3) of Lemma 1.2 holds with v = w.
Using (B4) and arguing as above, we have

supu∈Φ−1(−∞,r2) Ψ(u)

r2
=

sup(u1,...,un)∈Φ−1(−∞,r2)

∫ 1

0
F (x, u1(x), . . . , un(x))dx

r2
≤

≤
∫ 1

0
sup(t1,...,tn)∈K(cr2) F (x, t1, . . . , tn)dx

r2
<

<
1

3

∫ 1

0
F (x,w1(x), . . . , wn(x))dx∑n

i=1

‖wi‖
pi
pi

pi

=
1

3

Ψ(w)

Φ(w)
,

i.e., (D4) of Lemma 1.2 holds with v = w.
Therefore, by Lemma 1.2, Φ(u)− λΨ(u) has at least three distinct critical points,

which are all nonnegative by Lemma 2.3. Then, taking into account the fact that
the weak solutions of (1.1) are exactly critical points of Φ(u) − λΨ(u) and applying
Lemma 1.3 and (2.4), we finish the proof of the theorem.

Now, we present some fairly easily verifiable consequences of the main results
where the test function w is specified. Let

σn =

2pn−1

(
x1−pn

1

∣∣∣1− m∑
j=1

aj

∣∣∣pn + (1− xm)1−pn
∣∣∣1− m∑

j=1

bj

∣∣∣pn)
1/pn

.

Define

B1,n(x) =

[x
∑m
j=1 aj , x]n, if

∑m
j=1 aj < 1,

[x, x
∑m
j=1 aj ]

n, if
∑m
j=1 aj > 1,
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and

B2,n(x) =

[x
∑m
j=1 bj , x]n, if

∑m
j=1 bj < 1,

[x, x
∑m
j=1 bj ]

n, if
∑m
j=1 bj > 1,

where [·, ·]n = [·, ·]× . . .× [·, ·].

Corollary 2.4. Assume that there exist two positive constants θ and τ such that

(E1) (σnτ)pn > 2θpn

c
∏n−1
i=1 pi

,
(E2) F (x, t1, . . . , tn) ≥ 0 for each x ∈ [0, x1/2] ∪ [(1 + xm)/2, 1] and (t1, . . . , tn) ∈

B1,n(τ) ∪B2,n(τ),

(E3)

1∫
0

sup

(t1,...,tn)∈K
(

θpn∏n
i=1

pi

)F (x,t1,...,tn)dx

θpn < 2
3c(σnτ)pn

∏n−1
i=1 pi

1+xm
2∫
x1
2

F (x, 0, . . . , 0, τ)dx,

(E4) lim sup
|t1|→∞,...,|tn|→∞

F (x,t1,...,tn)∑n
i=1

|ti|
pi

pi

<
∏n
i=1 pi
θpn

1∫
0

sup
(t1,...,tn)∈K( θpn∏n

i=1
pi

)

F (x, t1, . . . , tn)dx.

Then, for each

λ ∈


3

2

(σnτ)pn

pn

1+xm
2∫
x1
2

F (x, 0, . . . , 0, τ)dx

,
θpn

c
n∏
i=1

pi
1∫
0

sup

(t1,...,tn)∈K
(

θpn
n∏
i=1

pi

)F (x, t1, . . . , tn)dx


,

the system (1.1) has at least three classical solutions.

Proof. Under the conditions (E1)–(E4), the assumptions (A1)–(A3) of Theorem 2.1
are satisfied by choosing w = (0, . . . , 0, wn(x)) with

wn(x) =


τ
(∑m

j=1 aj +
2(1−

∑m
j=1 aj)

x1
x
)
, if x ∈ [0, x1

2 ),

τ, if x ∈ [x1

2 ,
1+xm

2 ],

τ
(

2−
∑m
j=1 bj−xm

∑m
j=1 bj

1−xm − 2(1−
∑m
j=1 bj)

1−xm x
)
, if x ∈ ( 1+xm

2 , 1],

(2.6)

and r = θpn

c
∏n
i=1 pi

. It is easy to see that w = (0, . . . , 0, wn) ∈ X and, in particular, that

‖wn‖pnpn = (σnτ)pn .

Thus,

Φ(w) =

n∑
i=1

‖wi‖pipi
pi

=
(σnτ)pn

pn
.



Multiple solutions for systems of multi-point boundary value problems 303

Then, (E1) implies (A1). On the other hand, since

τ

m∑
j=1

aj ≤ wn(x) ≤ τ for each x ∈ [0, x1/2] if
m∑
j=1

aj < 1,

τ ≤ wn(x) ≤ τ
m∑
j=1

aj for each x ∈ [0, x1/2] if
m∑
j=1

aj > 1,

τ

m∑
j=1

bj ≤ wn(x) ≤ τ for each x ∈ [(1 + xm)/2, 1] if
m∑
j=1

bj < 1,

and

τ ≤ wn(x) ≤ τ
m∑
j=1

bj for each x ∈ [(1 + xm)/2, 1] if
m∑
j=1

bj > 1,

condition (E2) ensures that

x1
2∫

0

F (x,w1(x), . . . , wn(x))dx+

1∫
1+xm

2

F (x,w1(x), . . . , wn(x))dx ≥ 0,

and so,
1∫

0

F (x,w1(x), . . . , wn(x))dx ≥

1+xm
2∫

x1
2

F (x, 0, . . . , 0, τ)dx.

Now, from this inequality and (E3), it is easy to see that (A2) holds. Finally, note
that (E4) implies (A3). The conclusion then follows from Theorem 2.1.

Corollary 2.5. Assume that (B1) and (B2) hold and there exist three positive
constants θ1, θ2, and τ with

2θpn1 < (σnτ)pnc

n−1∏
i=1

pi <
θpn2

2

such that:

(F1)

1∫
0

sup

(t1,...,tn)∈K
(

θ
pn
1∏n
i=1

pi

)F (x,t1,...,tn)dx

θpn1
< 2

3c(σnτ)pn
∏n−1
i=1 pi

1+xm
2∫
x1
2

F (x, 0, . . . , 0, τ)dx,

(F2)

1∫
0

sup

(t1,...,tn)∈K
(

θ
pn
2∏n
i=1

pi

)F (x,t1,...,tn)dx

θpn2
< 1

3c(σnτ)pn
∏n−1
i=1 pi

1+xm
2∫
x1
2

F (x, 0, . . . , 0, τ)dx.
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Then, for each

λ ∈

3

2

(σnτ)pn

pn
∫ 1+xm

2
x1
2

F (x, 0, . . . , 0, τ)dx
, Θ2

 ,

where

Θ2 = min

{
θpn1

c
∏n
i=1 pi

∫ 1

0
sup

(t1,...,tn)∈K
(

θ
pn
1∏n
i=1

pi

) F (x, t1, . . . , tn)dx
,

θpn2

c
∏n
i=1 pi

∫ 1

0
sup

(t1,...,tn)∈K
(

θ
pn
2∏n
i=1

pi

) F (x, t1, . . . , tn)dx

}
,

the system (1.1) has at least three nonnegative classical solutions vj = (vj1, . . . , v
j
n),

j = 1, 2, 3 such that

n∑
i=1

|vji (x)|pi
pi

≤ θpn2∏n
i=1 pi

for each x ∈ [0, 1] and j = 1, 2, 3.

Proof. Let w = (0, . . . , 0, wn(x)) with wn(x) defined by (2.6), r1 =
θpn1

c
∏n
i=1 pi

, and

r2 =
θpn2

c
∏n
i=1 pi

. Then, under the conditions (F1) and (F2), it is easy to verify that (B3)
and (B4) of Theorem 2.2 hold. The conclusion then follows from Theorem 2.2. The
details are omitted here.
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