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INEQUALITIES FOR REGULARIZED DETERMINANTS
OF OPERATORS

WITH THE NAKANO TYPE MODULARS
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Abstract. Let {pk} be a nondecreasing sequence of integers, and A be a compact operator
in a Hilbert space whose eigenvalues and singular values are λk(A) and sk(A) (k = 1, 2, . . .),
respectively. We establish upper and lower bounds for the regularized determinant

∞∏
k=1

(1− λk(A)) exp
[ pk−1∑

m=1

λm
k (A)

m

]
, assuming that

∞∑
j=1

s
pj
j (A/c)

pj
<∞

for a constant c ∈ (0, 1).
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Let H be a separable Hilbert space. For a compact linear operator A in H, A∗ is
the adjoint, λj(A) are the eigenvalues and sk(A) =

√
λk(A∗A) (k = 1, 2, . . .) are

the singular values taken with their multiplicities and ordered in the decreasing way:
|λj(A)| ≥ |λj+1(A)| and sj(A) ≥ sj+1(A). Let SNp (1 < p <∞) be the Schatten-von
Neumann ideal of operators A with the finite norm Np(A) := [Trace(A∗A)p/2]1/p.
We will say that a compact operator in H is of infinite order if it does not belong
to any Schatten-von Neumann ideal. Such operators arise in various applications.
Many fundamental results on infinite order compact linear operators can be found in
the well-known book [9, Section 3.1]. The literature on the determinants of compact
operators and their applications is very rich, see the interesting recent papers [2, 3,
10,15,16] and references cited therein; about the classical results see [1,7,14]. At the
same time to the best of our knowledge, bounds for the determinants of infinite order
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operators are not enough considered in the available literature. The motivation of
this paper is to extend some useful results on determinants of Schatten-von Neumann
operators to infinite order operators.

Since sk(A)→ 0, there is an integer ν ≥ 1 such that
ν∑
k=1

sk(A) ≤ ν (1.1)

for a given compact operator A. Everywhere below {pk}∞k=ν is a nondecreasing se-
quence of integers pk > 1 (k ≥ ν). Assume that the condition

∞∑
j=ν

s
pj
j (A/c)

pj
<∞ (1.2)

holds for a constant c ∈ (0, 1). Take

p1 = . . . = pν−1 = 1. (1.3)

If ν = 1, then condition (1.3) is not required. Put π(ν) := {pk}∞k=1 and

γπ(ν)(A) :=

∞∑
j=1

s
pj
j (A)

pj
.

According to (1.2) γπ(ν)(A/c) <∞.
Let Y be an arbitrary vector space over C. A functional m : Y → [0,∞) is called

modular if it satisfies the properties: a) m(x) = 0 iff x = 0, b) m(αx) = m(x) for
α ∈ C with |α| = 1, c) m(αx+ βy) ≤ m(x) +m(y) if α, β > 0 with α+ β = 1 for all
x, y ∈ Y , cf. [13] (see also [11,12]).

Now let Y be a space of number sequences x = {xk}∞k=1, andm(x) = m(x1, x2, . . .)
a modular on Y . For example,

m(x) =
∞∑
k=1

|xk|pk
pk

is a modular, cf. [13]. Now, for a compact operator in H put

γ̂(A) := m(s1(A), s2(A), . . .).

Then γ̂(A) will be called a modular of A. So γπ(ν)(A) is a modular of A.
We will check that (1.2) implies the condition

∞∑
j=1

|λj(A)|pj <∞. (1.4)

Then the regularized determinant is defined as

detπ(ν)(I −A) :=
∞∏
j=1

Epj (λj(A)),
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where I is the unit operator,

Ep(z) := (1− z) exp
[ p−1∑
k=1

zk

k

]
(p ≥ 2) and E1(z) := 1− z (z ∈ C).

Theorem 1.1. Let conditions (1.1)–(1.3) hold. Then

|detπ(ν)(I −A)| ≤ exp
[γπ(ν)(A/c)

1− c

]
.

This theorem is proved in the next section. It generalizes the main result from [4].
About the recent results on the Nakano ideals see [6] and references therein.

2. PROOF OF THEOREM 1.1

Lemma 2.1. Let A be compact and conditions (1.1), and (1.3) hold. Then for any
constant c ∈ (0, 1) we have

n∑
j=1

|λj(A)|pj ≤
1

1− c

n∑
j=1

s
pj
j (A/c)

pj
, pj ∈ π(ν), n > ν.

If, in addition, (1.2) holds, then

∞∑
j=1

|λj(A)|pj ≤
γπ(ν)(A/c)

1− c
.

Proof. Put λj(A) = λj , sj(A) = sj . According to (1.1) and the Weyl inequalities [8]
we have

ν∑
k=1

|λk| ≤
ν∑
k=1

sk ≤ ν.

Hence |λν | ≤ 1 and
n∑
k=1

tk|λk| ≤
n∑
k=1

tksk

for any nonincreasing sequence tk. Since pk > 1, and |λk+1| ≤ |λk| ≤ |λν | ≤ 1, for
k ≥ ν, we obtain |λk+1|pk ≤ |λk|pk−1. Take tk = 1 for k < ν and tk = |λk|pk−1 for
k ≥ ν. Then by (1.3),

n∑
k=1

|λk|pk ≤
ν−1∑
k=1

sk +

n∑
k=ν

|λk|pk−1sk, n ≥ ν. (2.1)

By the Young inequality, we arrive at the inequality

|λk|pk−1sk ≤
cqk |λk|qk(pk−1)

qk
+

(sk/c)
pk

pk
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with 1/qk + 1/pk = 1. But qk ≥ 1, cqk ≤ c and qk(pk − 1) = pk. So

|λk|pk−1sk ≤ c|λk|pk +
(sk/c)

pk

pk
.

Hence, (2.1) implies

n∑
k=1

|λk|pk ≤
ν−1∑
k=1

sk + c

n∑
k=ν

|λk|pk +

n∑
k=ν

(sk/c)
pk

pk
,

or according to (1.3),

(1− c)
n∑
k=1

|λk|pk ≤
n∑
k=1

(sk/c)
pk

pk
.

This proves the lemma.

Lemma 2.2. For any integer p ≥ 1 and all z ∈ C, we have

|Ep(z)| ≤ exp[ηpr
p] ≤ exp[rp], r = |z|,

where ηp = p−1
p for p 6= 1, p 6= 3, and η1 = η3 = 1.

This lemma is proved in [5] but according to the referee’s suggestion, for the sake
of completeness, we give the proof of Lemma 2.2 in Section 4 below.

Corollary 2.3. Let condition (1.4) hold. Then

|detπ (I −A)| ≤ exp
[ ∞∑
j=1

|λj(A)|pj
]
.

Indeed, in view of Lemma 2.2,

|detπ (I −A)| ≤
∞∏
j=1

exp[|λj(A)|pj ].

Hence the required result follows.
The assertion of Theorem 1.1 follows from the previous corollary and Lemma 2.1.

3. LOWER BOUNDS FOR DETERMINANTS

Again, for brevity put λj(A) = λj . We begin with the following lemma, in which
π = {pk} is a nondecreasing sequence of positive integers.

Lemma 3.1. Let A be a compact operator satisfying the conditions

sup
k
|λk| < 1 (3.1)
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and
∞∑
k=1

|λk|pk
pk

<∞. (3.2)

Then

|detπ(I −A)| ≥ exp

[
− 1

φ̃1(A)

∞∑
k=1

|λk|pk
pk

]
,

where φ̃1(A) := infj=1,2,...;s∈[0,1] |1− sλj |.

Proof. Put wj(z) := Epj (zλj). Clearly,

w′k(z) =
[
− λk + (1− zλk)

pk−2∑
m=0

zmλm+1
k

]
exp

[ pk−1∑
s=1

zsλsk
s

]
.

But

−λj + (1− zλj)
pj−2∑
m=0

zmλm+1
j = −zpj−1λpjj ,

since
pj−2∑
m=0

zmλmj =
1− (zλj)

pj−1

1− zλj
.

So

w′j(z) = −zpj−1λ
pj
j exp

[ pj−1∑
m=1

zmλmj
m

]
= hj(z)wj(z),

where

hj(z) := −
zpj−1λ

pj
j

1− zλj
.

Therefore,

Epj (λj) = wj(1) = exp

[ 1∫
0

hj(s)ds

]
.

But ∣∣∣∣∣
1∫

0

hj(s) ds

∣∣∣∣∣ ≤
1∫

0

spj−1 ds

|1− sλj |
≤ 1

pj φ̃1(A)
.

Hence,

|Epj (λj)| ≥ exp
[
− |λj |pj

pj φ̃1(A)

]
.

This proves the required result.
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Now assume that, instead of (3.1), the condition (1.1) holds. Again take p1 =
. . . = pν−1 = 1. With the notation

ψν−1(A) =
(

min
k=1,...,ν−1

|1− λk|
)ν−1

,

we have |E1(λj)| = |1− λj | ≥ (ψν−1(A))
1/(ν−1) (j ≤ ν − 1) and

|detπ(ν)(I −A)| =
∞∏
j=1

|Epj (λj)| ≥ ψν−1(A)
∞∏
j=ν

|Epj (λj)|.

By Lemma 3.1,
∞∏
j=ν

|Epj (λj)| ≥ exp

[
− 1

φ̃ν(A)

∞∑
k=ν

|λk|pk
pk

]
,

where φ̃ν(A) := infj=ν,ν+1,...;s∈[0,1] |1− sλj |.
We thus have proved the following result.

Lemma 3.2. Let A be a compact operator, such that conditions (1.3) and (3.2) are
fulfilled. Then

|detπ(ν)(I −A)| ≥ ψν−1(A) exp

[
− 1

φ̃ν(A)

∞∑
k=ν

|λk|pk
pk

]
.

Lemma 2.1 and the previous one imply our next result.

Theorem 3.3. Let conditions (1.1)–(1.3) be fulfilled. Then

|detπ(I −A)| ≥ ψν−1(A) exp

[
−

γπ(ν)(A/c)

(1− c)φ̃ν(A)

]
.

4. PROOF OF LEMMA 2.2

Put bp =
∑p
k=2

1
k . We begin with the following result.

Lemma 4.1. For any integer p ≥ 2 and all z ∈ C, we have the inequality

|Ep(z)| ≤ 1 +
ebp

p− 1

(
exp

[
p− 1

p
rp

]
− 1

)
, r = |z|.

Proof. Clearly,

E′p(z) =

[
− 1 + (1− z)

p−2∑
m=0

zm

]
exp

[
p−1∑
m=1

zm

m

]
.
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But −1 + (1− z)
∑p−2
m=0 z

m = −zp−1. So

E′p(z) = −zp−1 exp
[ p−1∑
m=1

zm

m

]
.

With z = reit and a fixed t we obtain

d|Ep(z)|
dr

≤ |E′p(z)| ≤ rp−1 exp
[ p−1∑
m=1

rm

m

]
. (4.1)

Let us check that
p−1∑
m=1

rm

m
≤ p− 1

p
rp + bp. (4.2)

To this end note that by the classical Young inequality we have x ≤ xs/s+ (s− 1)/s
(x > 0, s > 1). Hence taking s = p/m, we get,

p−1∑
m=1

rm

m
≤

p−1∑
m=1

(rp
p

+
p−m
pm

)
.

But
p−1∑
m=1

p−m
pm

=

p−1∑
m=1

1

m
− p− 1

p
=

p−1∑
m=1

1

m
− 1 +

1

p
= bp.

Hence (4.2) follows. Let us point to another proof of (4.2). Put

h(r) =

p−1∑
m=1

rm

m
− (p− 1)rp

p
.

Since

h′(r) =

p−1∑
m=1

rm−1 − (p− 1)rp,

we have h′(1) = 0. Since the maximum of h(r) is unique, and

h(1) =

p−1∑
m=1

1

m
− p− 1

p
= bp

and
p−1∑
m=1

rm

m
= h(r) +

(p− 1)rp

p
≤ bp +

(p− 1)rp

p
,

we obtain (4.2). So by (4.1), d|Ep(z)|
dr ≤ rp−1 exp [p−1p rp + bp]. Since Ep(0) = 1, this

inequality implies

|Ep(z)| ≤ 1 + ebp
r∫

0

sp−1 exp
[p− 1

p
sp
]
ds =
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= 1 +
ebp

p

rp∫
0

exp
[p− 1

p
t
]
dt = 1 +

ebp

p− 1

(
exp

[p− 1

p
rp
]
− 1
)
,

as claimed.

Lemma 4.2. For any integer p ≥ 2 and all z ∈ C, the inequality

|Ep(z)| ≤ Cp exp
[p− 1

p
rp
]
, r = |z|,

is true, where Cp = 1 for p 6= 3 and C3 = e5/6 1
2 ≥ 1.

Proof. First note that

|(1− z)ez|2 = (1− 2Re z + |z|2)e2Re z ≤ e−2Re z+|z|
2

e2Re z = e|z|
2

, z ∈ C,

and thus |E2(z)| ≤ e
1
2 |z|

2

. Furthermore, if ebp ≤ p−1, then the required result follows
from the previous lemma. We have eb4 = e13/12 ≤ 3 and eb5 = e77/60 ≤ 4. Clearly,

bp =
1

2
+

p∑
k=3

1

k
≤ 1

2
+

∫ p

2

dt

t
=

1

2
+ ln

(p
2

)
.

Therefore, for p ≥ 6,

ebp
1

p− 1
≤ e1/2 p

2(p− 1)
≤ e1/2 3

5
≤ 1.

This proves the lemma.

Proof of Lemma 2.2. Clearly |E1(z)| = |1 − z| ≤ e|z|. Consider the function f3(r) =
r + r2

2 − r
3. Its maximum is attained at

r0 = 1/6 +
√
1/36 + 1/3 ≈ 0.7676.

So f3(r0) = r0+
r20
2 − r

3
0 ≤ 0.69 ≤ ln 2. Consequently, r+ r2

2 = f3(r)+ r
3 ≤ ln 2+ r3.

Thus by (4.1),
d|E3(z)|
dr

≤ r2 exp

[
r +

r2

2

]
≤ 2r2 exp [r3].

Hence, |E3(z)| ≤ exp [r3]. Now the previous lemma yields the required result.
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