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Abstract. This paper is devoted to the study of the maximum principle for the elliptic
equation with a deviated argument. We will consider viscosity solutions of this equation.

Keywords: maximum principle, viscosity solution, elliptic equations.

Mathematics Subject Classification: 35J15, 35J60, 35R10.

1. INTRODUCTION

Let Ω be an open subset of Rn. We denote by C(Ω) the space of continuous functions
from Ω into R with the usual supremum norm. USC(Ω) is the space of upper semicon-
tinuous functions u : Ω→ R and LSC(Ω) is the space of lower semicontinuous func-
tions u : Ω → R. Moreover C0(Ω) = {u ∈ C(Ω) : u = 0 on ∂Ω}. The continuous
function α : Ω → Rn is given. We define IΩ : C0(Ω) → C(Rn), R : C(Rn) → C(Rn),
PΩ : C(Rn)→ C(Ω) and RΩ : C0(Ω)→ C(Ω) by

(IΩu) (x) =

{
u(x) for x ∈ Ω,

0 for x /∈ Ω,

Ru(x) = u(α(x)), PΩu = u|Ω, RΩ = PΩRIΩ.

We shall discuss the Maximum Principle for viscosity solutions of the following func-
tional differential elliptic problem:{

F
(
x, u(x), RΩu(x), Du(x), D2u(x)

)
= 0 in Ω,

u = 0 on Rn\Ω,
(1.1)
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where F : Ω × R × C(Ω) × Rn × S(n) → R is a given function. Here S(n) is the set
of symmetric n× n matrices. In order to define the viscosity solutions we need some
definitions and assumptions.

Assumption 1.1. Suppose that the function F : Ω×R×C(Ω)×Rn ×S(n)→ R of
the variables (x, r, q, p,X) is nondecreasing in r and nonincreasing in X.

In order to define the viscosity solutions we need some definitions.

Definition 1.2. If u : Ω→ R, x̂ ∈ Ω and

u(x) ≤ u(x̂)+ < p, x− x̂ > +
1

2
< X(x− x̂), x− x̂ > +o(|x− x̂|)

as Ω 3 x→ x̂, then we say that (p,X) ∈ J2,+
Ω u(x̂).

Definition 1.3. If u : Ω→ R, x̂ ∈ Ω, then we define the sets J2,−
Ω u(x̂), J̄2,+

Ω u(x) and
J̄2,−

Ω u(x) by

J2,−
Ω u(x̂) = −J2,+

Ω (−u(x̂)),

J̄2,+
Ω u(x) =

{
(p,X) ∈ Rn × S(n) : ∃(xn, pn, Xn) ∈ Ω× Rn × S(n)

(pn, Xn) ∈ J2,+
Ω u(xn) and (xn, u(xn), pn, Xn)→ (x, u(x), p,X)

}
,

J̄2,−
Ω u(x) =

{
(p,X) ∈ Rn × S(n) : ∃(xn, pn, Xn) ∈ Ω× Rn × S(n)

(pn, Xn) ∈ J2,−
Ω u(xn) and (xn, u(xn), pn, Xn)→ (x, u(x), p,X)

}
.

J2,+
Ω u(x̂) depends on Ω, but it is the same for all sets Ω, for which x̂ is an interior

point. Let J2,+u(x̂) denote this common value. Now, we can defined the viscosity
solutions.

Definition 1.4. Let F satisfy Assumption 1.1 and Ω ⊂ Rn. A viscosity subsolution
of F = 0 (equivalently, a viscosity solution of F ≤ 0) on Ω is a function u ∈ C(Ω)
such that

F (x, u(x), RΩu(x), p,X) ≤ 0 for all x ∈ Ω and (p,X) ∈ J2,+
Ω u(x).

Similarly, a viscosity supersolution of F = 0 on Ω is a function u ∈ C(Ω) such that

F (x, u(x), RΩu(x), p,X) ≥ 0 for all x ∈ Ω and (p,X) ∈ J2,−
Ω u(x).

Finally, u is a viscosity solution of F = 0 in Ω if it is both a viscosity subsolution and
a viscosity supersolution of F = 0 in Ω.

The Maxima Principles for non-functional differential elliptic equations can be
found in [2–4]. Existence of solutions for linear differential-functional equations of
elliptic type have been studied in [1]. Paper [5] is devoted to viscosity solutions for
first order partial differential-functional equations. In [2] we can find the following
lemma and theorem.
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Lemma 1.5. Let Θ be a subset of Rn, u ∈ USC(Θ), v ∈ LSC(Θ) and

Mγ = sup
(x,y)∈Θ×Θ

(
u(x)− v(y)− γ

2
|x− y|2

)
(1.2)

for γ > 0. Let Mγ <∞ for large γ and (xγ , yγ) be such that

lim
γ→∞

(
Mγ −

(
u(xγ)− v(yγ)− γ

2
|xγ − yγ |2

))
= 0. (1.3)

Then the following conditions holds:

lim
γ→∞

γ|xγ − yγ |2 = 0 and (1.4)

lim
γ→∞

Mγ = u(x̂)− v(x̂) = sup
x∈Θ

(u(x)− v(x)) , (1.5)

whenever x̂ ∈ Θ is a limit point of xγ as γ →∞.

Theorem 1.6. Let Θi be a locally compact subset of Rni for i = 1, 2, . . . , k,
Θ = Θ1 × . . .×Θk, ui ∈ USC(Θi), and ϕ be twice continuously differentiable in a
neighborhood of Θ. Set

w(x) = u1(x1) + . . .+ uk(xk) for x = (x1, . . . , xk) ∈ Θ,

and suppose x̂ = (x̂1, . . . , x̂k) ∈ Θ is a local maximum of w − ϕ relative to Θ. Then
for each ε > 0 there exists Xi ∈ S(ni) such that

(Dxi
ϕ(x̂), Xi) ∈ J̄2,+

Θi
ui(x̂i) for i = 1, 2, . . . , k,

and the block diagonal matrix with entries Xi satisfies

−
(

1

ε
+ ‖A‖

)
I ≤

 X1 · · · 0
...

. . .
...

0 · · · Xk

 ≤ A+ εA2, (1.6)

where A = D2ϕ(x̂) ∈ S(n), n = n1 + . . .+ nk and I denotes the unit matrix.

The above lemma and theorem will be used later.

2. THE MAXIMUM PRINCIPLE

Assumption 2.1. Suppose that the function F : Ω×R×C(Ω)×Rn ×S(n)→ R of
the variables (x, r, q, p,X) is continuous, nonincreasing in X and such that:

(a) there are constants L > K > 0 such that

F (x, r, q, p,X)− F (x, r̃, q̃, p,X) ≥ L(r − r̃)−K(q − q̃) (2.1)

for r ≥ r̃ and q ≥ q̃,
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(b) there is a function ω : [0,∞]→ [0,∞] that satisfies ω(0+) = 0 such that

F (y, r, q, γ(x− y), Y )− F (x, r, q, γ(x− y), X) ≤ ω(γ|x− y|2 + |x− y|), (2.2)

whenever x, y ∈ Ω, r ∈ R, q ∈ C(Ω), X,Y ∈ S (n) and

−3γ

[
I 0
0 I

]
≤
[
X 0
0 −Y

]
≤ 3γ

[
I −I
−I I

]
,

(c) there is constant M > 0 such that

|α(x)− α(y)| ≤M |x− y|. (2.3)

Remark 2.2. If the condition (a) holds, then the function F is nondecreasing in r
and nonincreasing in q.

Theorem 2.3. Let Ω be a bounded open subset of Rn, the function F satisfies As-
sumption 2.1. Let u ∈ C(Ω̄) (respectively, v ∈ C(Ω̄)) be a subsolution (respectively,
supersolution) of F = 0 in Ω and u ≤ v on ∂Ω. Then u ≤ v in Ω.

Proof. Let

Mγ = sup
(x,y)∈Ω̄×Ω̄

(
u(x)− v(y)− γ

2
|x− y|2

)
. (2.4)

Mγ is finite since u− v is continuous and Ω̄ is compact.
Suppose, contrary to our claim, that there is z ∈ Ω such that u(z) > v(z). From (2.4)
we get that

Mγ ≥ u(z)− v(z) ≡ δ > 0 for γ > 0. (2.5)

Choose (xγ , yγ) such that Mγ = u(xγ) − v(yγ) − γ
2 |xγ − yγ |2. By Lemma 1.5, we

know that limγ→∞ xγ = limγ→∞ yγ . Let g = limγ→∞ xγ = limγ→∞ yγ . We show
that (xγ , yγ) ∈ Ω × Ω for large γ. On the contrary, suppose that (xγ , yγ) /∈ Ω × Ω
for large γ. Then g ∈ ∂Ω. From the fact, that u ≤ v on ∂Ω and Lemma 1.5 we get
limγ→∞Mγ ≤ 0. This contradicts (2.5).

Let k = 2, Ω1 = Ω2 = Ω, u1 = u, u2 = −v and ϕ(x, y) = γ
2 |x−y|

2 in Theorem 1.6.
Note that

J̄2,−v = −J̄2,+(−v), Dxϕ(x̂, ŷ) = −Dyϕ(x̂, ŷ) = γ(x̂− ŷ),

A = D2ϕ(x̂, ŷ) = γ

[
I −I
−I I

]
, A2 = 2γA and ‖A‖ = 2γ.

And now from Theorem 1.6 we get that for every ε > 0 there exists X,Y ∈ S(n) such
that

(γ(x̂− ŷ), X) ∈ J̄2,+u(x̂), (γ(x̂− ŷ), Y ) ∈ J̄2,−v(ŷ) and

−
(

1

ε
+ 2γ

)[
I 0
0 I

]
≤
[
X 0
0 −Y

]
≤ γ (1 + 2εγ)

[
I −I
−I I

]
.
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Choosing ε = 1
γ yields

−3γ

[
I 0
0 I

]
≤
[
X 0
0 −Y

]
≤ 3γ

[
I −I
−I I

]
.

Let (x̂, ŷ) denote (xγ , yγ). From the definition of the subsolution and supersolution
we get

F (x̂, u(x̂), RΩu(x̂), γ(x̂− ŷ), X) ≤ 0 ≤ F (ŷ, v(ŷ), RΩv(ŷ), γ(x̂− ŷ), Y ). (2.6)

From Lemma 1.5 and (2.5)

0 < δ ≤Mγ = u(x̂)− v(ŷ)− γ

2
|x̂− ŷ|2,

γ|x̂− ŷ|2 → 0 as γ →∞.

By the above, we see that u(x̂) > v(ŷ). And now, we note that

Lδ ≤ LMγ ≤ L[u(x̂)− v(ŷ)] ≤ (2.7)
≤ F (x̂, u(x̂), RΩu(x̂), γ(x̂− ŷ), X)− F (x̂, v(ŷ), RΩu(x̂), γ(x̂− ŷ), X) =

= [F (x̂, u(x̂), RΩu(x̂), γ(x̂− ŷ), X)− F (ŷ, v(ŷ), RΩv(ŷ), γ(x̂− ŷ), Y )]+

+ [F (ŷ, v(ŷ), RΩv(ŷ), γ(x̂− ŷ), Y )− F (ŷ, v(ŷ), RΩu(x̂), γ(x̂− ŷ), Y )]+

+ [F (ŷ, v(ŷ), RΩu(x̂), γ(x̂− ŷ), Y )− F (x̂, v(ŷ), RΩu(x̂), γ(x̂− ŷ), X)].

From (2.6) we get

F (x̂, u(x̂), RΩu(x̂), γ(x̂− ŷ), X)− F (ŷ, v(ŷ), RΩv(ŷ), γ(x̂− ŷ), Y ) ≤ 0. (2.8)

From definitions of Mγ and (x̂, ŷ) we get

u(x̂)− v(ŷ)− γ

2
|x̂− ŷ|2 = Mγ ≥ u(α(x̂))− v(α(ŷ))− γ

2
|α(x̂)− α(ŷ)|2.

We thus obtain

u(α(x̂))− v(α(ŷ)) ≤ u(x̂)− v(ŷ)− γ

2
|x̂− ŷ|2 +

γ

2
|α(x̂)− α(ŷ)|2.

If v(α(ŷ)) ≤ u(α((x̂))), then by the above and (2.1), (2.3), we get

F (ŷ, v(ŷ), RΩv(ŷ), γ(x̂− ŷ), Y )− F (ŷ, v(ŷ), RΩu(x̂), γ(x̂− ŷ), Y ) ≤

≤ K[u(α(x̂))−v(α(ŷ))] ≤ K[u(x̂)−v(ŷ)]−Kγ
2
|x̂−ŷ|2+

Kγ

2
|α(x̂)−α(ŷ)|2 ≤

≤ K[u(x̂)− v(ŷ)] +
KγM

2
|x̂− ŷ|2.

(2.9)

F is nonincreasing in q, so if v(α(ŷ)) ≥ u(α(x̂)), then

F (ŷ, v(ŷ), RΩv(ŷ), γ(x̂− ŷ), Y )− F (ŷ, v(ŷ), RΩu(x̂), γ(x̂− ŷ), Y ) ≤ 0. (2.10)
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From (2.7)–(2.10) and (2.2), we get

L[u(x̂)− v(ŷ)] ≤ K[u(x̂)− v(ŷ)] +
KγM

2
|x̂− ŷ|2 + ω(γ|x̂− ŷ|2 + |x̂− ŷ|).

By the above,

(L−K)[u(x̂)− v(ŷ)] ≤ KγM

2
|x̂− ŷ|2 + ω(γ|x̂− ŷ|2 + |x̂− ŷ|). (2.11)

We know that L > K and

KγM

2
|x̂− ŷ|2 + ω(γ|x̂− ŷ|2 + |x̂− ŷ|)→ 0 as γ →∞.

Therefore, from (2.11) we get that [u(x̂)− v(ŷ)]→ 0 as γ →∞. We see from this and
(2.7) that Lδ ≤ 0. This contradicts the fact that there is z ∈ Ω such that u(z) > v(z).
This finishes the proof.

Now, we give an example which demonstrates that if F is increasing in q, then the
Theorem 2.3 is false.

Example 2.4. We define Ω = [−1, 1] × [−1, 1], u(x, y) = e1−x2−y2 , v(x, y) = 2, 5
and

(Lz)(x, y) = − 1

10

∂2z

∂x2
(x, y)− 1

10

∂2z

∂y2
(x, y) + u

(
x

10
+

9

10
,
y

10
+

9

10

)
− 2, 4.

We use the program wxMaxima and calculate (Lv)(x, y), (Lu)(x, y) for (x, y) ∈ Ω.
We get (Lv)(x, y) = 0, 1 for (x, y) ∈ Ω, and the graph of Lu : Ω → R is showed on
Figure 1. We see that (Lu)(x, y) < 0 for (x, y) ∈ Ω, u(x, y) < 1 < v(x, y) on ∂Ω and
u(0, 0) = e > 2, 5 = v(0, 0). Therefore, the assertion of Theorem 2.3 does not hold.

Fig. 1. Graph Lu on Ω
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