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Abstract. The recent growing interest in special Clifford algebra valued polynomial solutions
of generalized Cauchy-Riemann systems in (n + 1)-dimensional Euclidean spaces suggested
a detailed study of the arithmetical properties of their coefficients, due to their combinatoric
relevance. This concerns, in particular, a generalized Appell sequence of homogeneous poly-
nomials whose coefficient set can be treated as a one-parameter family of non-symmetric
triangles of fractions. The discussion of its properties, similar to those of the ordinary Pascal
triangle (which itself does not belong to the family), is carried out in this paper.
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1. INTRODUCTION

In [11,18], we have considered for the first time the infinite array of numbers

T k
s (n) =

k!

n(k)

(n+1
2 )(k−s)

(k − s)!
(n−1

2 )(s)

s!
, n, k = 1, 2, . . . , s = 0, 1, . . . , k, (1.1)

where a(r) denotes the Pochhammer symbol, given by a(r):=
Γ(a+r)

Γ(a) , for any integer
r ≥ 1 and a(0) := 1, as well as 0(0) := 1. These numbers were introduced in the
framework of Clifford analysis (cf. [4]), in order to construct special polynomials in
Rn+1. Their relation with the elements of the Pascal triangle is obvious, since we can
write them also in the form

T k
s (n) =

(
k

s

)
(n+1

2 )(k−s)(
n−1

2 )(s)

n(k)
. (1.2)
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But considered in the form (1.1), they show their connection with the coefficients
of the geometric series and its higher degree relatives, namely with

1

(1− t)m
=

∞∑
r=0

m(r)

r!
tr, where t ∈ C,m > 0. (1.3)

Indeed, they are the product of two factors of the form m(r)

r! and of a third factor,
which is the reciprocal of such an expression. The series expansion of complex holo-
morphic functions through the series expansion of the Cauchy kernel in its integral
representation is well known and relies on the geometric series (m = 1). Analogously,
Clifford analysis deals with the series expansion of generalized holomorphic functions
in Rn+1 through the series expansion of the generalized Cauchy kernel in their integral
representation. Therefore it seems obvious to expect some similar relation to geometric
series (1.3) of degree m > 1. For readers familiar with the basics of Clifford analysis
this connection surely comes as no surprise, but so far as we know, it has never been
explicitly noticed before in this way.

Our main concern will be some arithmetical properties of the family of number
triangles composed by fractions T k

s (n) for different parameter values n in lines of
height k = 0, 1, . . . , and ordered from s = 0 up to s = k. Both representations (1.1)
and (1.2) show that they are not symmetric triangles like the ordinary Pascal triangle,
because T k

s (n) 6= T k
k−s(n).

We will try to omit as much as possible details from Clifford analysis, but due to
the particular role in Clifford analysis we would like to stress in this introduction at
least their origin as coefficients in the construction of generalized Appell polynomials
in that framework. Those generalized Appell polynomials have recently received a
lot of attention from several authors ([3, 8, 15, 16, 20]) due to their important role
in theory and applications ([6, 7, 9, 13]), specially in elasticity [3], PDE and special
functions ([5, 12]), or 3D-quasiconformal mapping problems ([10,11]).

The mentioned polynomial sequences in (n + 1) real variables take their values
in the real vector space of paravectors of the corresponding Clifford algebra C`0,n.
To understand what this means let {e1, e2, . . . , en} be an orthonormal basis of the
Euclidean vector space Rn with a non-commutative product according to the multi-
plication rules

ekel + elek = −2δkl, k, l = 1, . . . , n,

where δkl is the Kronecker symbol. The set {eA : A ⊆ {1, . . . , n}} with

eA = eh1eh2 . . . ehr , 1 ≤ h1 < . . . < hr ≤ n, e∅ = e0 = 1,

forms a basis of the 2n-dimensional Clifford algebra C`0,n over R.
Let now Rn+1 be embedded in C`0,n by identifying (x0, x1, . . . , xn) ∈ Rn+1 with

the algebra’s element x = x0 + x ∈ An := spanR{1, e1, . . . , en} ⊂ C`0,n. Here

x0 = Sc(x)

and
x = Vec(x) = e1x1 + . . .+ enxn
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are the so-called scalar part and vector part, respectively, of the paravector x ∈ An.
The conjugate of x is given by

x̄ = x0 − x

and the norm |x| of x is defined by

|x|2 = xx̄ = x̄x = x2
0 + x2

1 + . . .+ x2
n.

It follows that C`0,n-valued functions defined in some open subset Ω ⊂ Rn+1, in
general, are of the form f(z) =

∑
A fA(z)eA, where fA(z) are real valued.

The generalized Cauchy-Riemann operator in Rn+1, n ≥ 1, is defined by

∂ := 1
2 (∂0 + ∂x), ∂0 :=

∂

∂x0
, ∂x := e1

∂

∂x1
+ . . .+ en

∂

∂xn
. (1.4)

C 1-functions f satisfying the equation ∂f = 0 (resp. f∂ = 0) are generalized holo-
morphic functions, usually called left monogenic (resp. right monogenic).

A monogenic function f is hypercomplex differentiable in Ω in the sense of [14],
i.e. it has a uniquely defined areolar derivative f ′ in the sense of Pompeiu in each
point of Ω (for more details see also [17]). The hypercomplex (areolar) derivative f ′
of a monogenic function is given by f ′ = 1

2 (∂0 − ∂x)f , where

∂ :=
1

2
(∂0 − ∂x)

is just the conjugate generalized Cauchy-Riemann operator. If we recall the complex
partial derivatives (also called Wirtinger derivatives)

∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
and

∂f

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
,

then it is clear that the hypercomplex derivative f ′ is also a generalized hypercomplex
Wirtinger derivative f ′ = ∂f = 1

2 (∂0 − ∂x)f. There use is vital for the definition of
a basic polynomial sequence. Since a hypercomplex differentiable function belongs to
the kernel of ∂, it follows that in fact f ′ = ∂0f = −∂xf corresponding to the complex
case of a holomorphic function, where

df

dz
=
∂f

∂z
=
∂f

∂x
= −i∂f

∂y
.

After this excursion on the fundamentals of Clifford analysis we can now recall
the definition of a generalized Appell sequence (cf. [2, 18]) of monogenic polynomials
associated with ∂.

A sequence of monogenic polynomials (Fk)k≥0 is called a generalized Appell se-
quence of homogeneous polynomials with respect to ∂ if:

1. F0(x) ≡ 1,
2. Fn(0) = 0,
3. ∂ Fk = kFk−1, k = 1, 2, . . . .
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In [11,18], we have shown for the first time that for all n ≥ 1 and T k
s (n) given by

(1.1) the polynomials

Pn
k (x) =

k∑
s=0

T k
s (n)xk−s x̄s, (1.5)

form such a set of generalized Appell sequences. Moreover, we showed in those papers
also how these Appell sequences can be expressed in terms of several hypercomplex
variables of the form zk = xk − x0ek, x0, xk ∈ R, k = 1, 2, . . . , n.

But in the form (1.5) these polynomials are special monogenic polynomials in
the sense of [1], where a monogenic polynomial P is said to be special if there exist
constants aij ∈ An for which

P (x) =
∑
i,j

′x̄ixjai,j

(the primed sigma stands for a finite sum). This paper [1] is concerned with the
extension of the theory of basic sets of polynomials in one complex variable, as in-
troduced by J.M. Whittaker and B. Cannon, and was published ten years before the
introduction of the hypercomplex derivative in [14]. Hence, it has nothing to do with
Appell sequences.

In the following we prove several properties of the triangle numbers (1.1). In
particular, we present results that provide different constructive methods for obtaining
the aforementioned fractional number triangles in arbitrary dimensions n ≥ 2. We also
derive results concerned with the sum and alternating sum of the rows of the triangle
(1.1) which play an important role in the context of Clifford analysis.

2. PASCAL-LIKE FRACTIONAL NUMBER TRIANGLES

We start by first recalling some well known properties of the Pochhammer symbol,
namely

a(r) = (a+ r − 1)a(r−1) and a(a+ 1)(r) = (a+ r)a(r). (2.1)

These properties can be used to derive straightaway the following relations:(n+ 1

2

)
(k+1)

=
n+ 2k + 1

2

(n+ 1

2

)
(k)
, (2.2)

(n− 1

2

)
(s+1)

=
n+ 2s− 1

2

(n− 1

2

)
(s)
, (2.3)

and
(n− 1)

(n+ 1

2

)
(r)

= (n+ 2r − 1)
(n− 1

2

)
(r)
. (2.4)

It is also easy to conclude that, as already mentioned in formula (1.2),

T k
s (n) =

(
k

s

)∏k−s
i=1 (n+ 2i− 1)

∏s
i=0(n+ 2i− 1)

2kn(k)
,
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i.e.

2kT k
s (n) =

(
k
s

)
Rk

s (n),

where Rk
s (n) is a rational function which is the quotient of two monic polynomials in

n, both of degree k.
For n = 1 the only possible value of s is s = 0 and we have T k

0 (1) ≡ 1
for all k = 0, 1, . . .. On the other end of the range of the parameter n we have
T k
s (∞) = 2−k

(
k
s

)
as consequence of (1.2).

The last result reveals a connection between the infinite triangular table
2kT k

s (n), k = 0, 1, . . . , s = 0, . . . , k and the well known Pascal triangle which becomes
more clear on Table 1, where we present the first 5 rows of the table and highlight
(see the boldface numbers) the aforementioned relationship.

Table 1. The first 5 rows of 2kT k
s (n)

1
1(n+1)

n
1(n−1)

n

1(n+3)
n

2(n−1)
n

1(n−1)
n

1(n+5)(n+3)
n(n+2)

3(n+3)(n−1)
n(n+2)

3(n2−1)
n(n+2)

1(n+3)(n−1)
n(n+2)

1(n+5)(n+7)
n(n+2)

4(n+5)(n−1)
n(n+2)

6(n2−1)
n(n+2)

4(n2−1)
n(n+2)

1(n+5)(n−1)

n(n+2)

Moreover, computing the ratio of each number in (1.1) with its left-hand neighbor
(as Pascal himself did in [21]) it is not difficult to accept either the designation of
Pascal-like triangle for the values (1.1) of T k

s (n) or to guess a general law for the
numbers in Table 2 (see formula (3.4)).

Table 2. A Pascal-like triangle

1
1

n−1
n+1

2
1

n−1
n+3

1
2

n+1
n+1

3
1

n−1
n+5

2
2

n+1
n+3

1
3

n+3
n+1

4
1

n−1
n+7

3
2

n+1
n+5

2
3

n+3
n+3

1
4

n+5
n+1

5
1

n−1
n+9

4
2

n+1
n+7

3
3

n+3
n+5

2
4

n+5
n+3

1
5

n+7

n+3
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3. PROPERTIES

In this section we prove several properties of the number triangle (1.1). First of all,
we deduce the relationships of a given entry with its immediate neighbors.

Theorem 3.1. For k = 0, 1, . . . and s = 0, . . . , k

T k+1
s (n) =

(k + 1)(n+ 2k − 2s+ 1)

2(k − s+ 1)(n+ k)
T k
s (n). (3.1)

Proof. From (1.1) we get

T k+1
s (n) =

(k + 1)!

n(k+1)

(n+1
2 )(k−s+1)(

n−1
2 )(s)

(k − s+ 1)!s!

and from relations (2.1) and (2.2) we have

T k+1
s (n) =

(k + 1)!

(n+ k)n(k)

n+ 2(k − s) + 1

2

(n+1
2 )(k−s)(

n−1
2 )(s)

(k − s+ 1)!s!
=

=
(k + 1)(n+ 2k + 1)

2(k − s+ 1)(n+ k)
T k
s (n).

Theorem 3.2. For k = 0, 1, . . . and s = 0, . . . , k

T k+1
s+1 (n) =

(k + 1)(n+ 2s− 1)

2(s+ 1)(n+ k)
T k
s (n). (3.2)

Proof. From (1.1) we get

T k+1
s+1 (n) =

(k + 1)!

n(k+1)

(n+1
2 )(k−s)(

n−1
2 )(s+1)

(k − s)!(s+ 1)!

and from relations (2.1) and (2.3) we have

T k+1
s+1 (n) =

(k + 1)!

(n+ k)n(k)

n+ 2s− 1

2

(n+1
2 )(k−s)(

n−1
2 )(s)

(k − s)!(s+ 1)!
=

(k + 1)(n+ 2s− 1)

2(s+ 1)(n+ k)
T k
s (n).

Theorem 3.3. For k = 1, 2, . . . and s = 0, . . . , k − 1

T k
s+1(n) =

(k − s)(n+ 2s− 1)

(s+ 1)(n+ 2k − 2s− 1)
T k
s (n). (3.3)

Proof. We make use of (2.2) in the equivalent form(n+ 1

2

)
(k−s−1)

=
2

n+ 2k − 2s− 1

(n+ 1

2

)
(k−s)

in order to obtain

T k
s+1(n) =

k!

n(k)

(n+1
2 )(k−s−1)(

n−1
2 )(s+1)

(k − s− 1)!(s+ 1)!
=

n+ 2s− 1

n+ 2k − 2s− 1

k − s
s+ 1

T k
s (n).
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Corollary 3.4. If Qk
s+1(n) denotes the numbers presented in Table 2, then

Qk
s+1(n) =

(k − s)(n+ 2s− 1)

(s+ 1)(n+ 2k − 2s− 1)
, k = 1, 2, . . . , s = 0, . . . , k. (3.4)

Proof. The result follows at once from Theorem 3.3, since

Qk
s+1(n) =

T k
s+1(n)

T k
s (n)

.

T k
s

Th 3.1

��

Th 3.2

##

Th 3.3 // T k
s+1

T k+1
s T k+1

s+1

Fig. 1. The starting point T k
s

The recursive use of formulae (3.1)–(3.3) provides an easy way of constructing the
triangle in Table 1. The scheme in Figure 1 summarizes the above properties and
Figure 2 contains an example illustrating the relations between the elements of the
first 4 rows of the Pascal-like triangle (1.1).

The next result shows a n-independent relation between adjacent elements in the
row k and an element in the row k − 1.

Theorem 3.5. For k = 1, 2 . . . and s = 0, . . . , k − 1

(k − s)T k
s (n) + (s+ 1)T k

s+1(n) = kT k−1
s (n). (3.5)

Proof. Using Theorem 3.3 we obtain

(k − s)T k
s (n) + (s+ 1)T k

s+1(n) = (k − s)T k
s (n)

(
1 +

n+ 2s− 1

n+ 2k − 2s− 1

)
=

= 2(k − s) n+ k − 1

n+ 2k − 2s− 1
T k
s (n).

The use of Theorem 3.1 in the form

T k
s (n) =

k(n+ 2k − 2s− 1)

2(k − s)(n+ k − 1)
T k−1
s (n)

yields the final result.
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T 0
0

n+1
2n

��

n−1
2n

!!
T 1

0

n+3
2(n+1)

��

n−1
n+1

//

n−1
n+1

!!

T 1
1

n+1
2(n+1)

!!

n+1
n+1

��

T 2
0

n+5
2(n+2)

��

2(n−1)
n+3

//

3(n−1)
2(n+2)

!!

T 2
1 n+2

2(n+2)

//

3(n+3)
4(n+2)

��

3(n+1)
2(n+2)

!!

T 2
2

n+3
2(n+2)

!!

3(n+1)
2(n+2)

��

T 3
0

3 n−3
n+5

// T 3
1 n+1

n+3

// T 3
2 1

3
n+3
n+1

// T 3
3

Fig. 2. Relations between the first triangle elements

Finally, the next relation underlines once more the lack of symmetry of the triangle
under consideration. In fact, in each row k of the triangle, we can relate the element
in position (k, k − s) with the element in position (k, s) as follows.

Theorem 3.6. For k = 0, 1, . . . and s = 0, . . . , k

T k
k−s(n) =

2s+ n− 1

2(k − s) + n− 1
T k
s (n). (3.6)

Proof. From relation (2.4) we obtain

T k
k−s(n) =

k!

(n)(k)

(n−1
2 )(s)(

n+1
2 )(k−s)

s!(k − s)!
(2s+ n− 1)(n− 1)

(n− 1)(2(k − s) + n− 1)
=

=
2s+ n− 1

2(k − s) + n− 1
T k
s (n).

Figure 3 contains an illustration of Theorems 3.5 and 3.6.

Theorem 3.7. For k = 0, 1, . . .

k∑
s=0

T k
s (n) = 1. (3.7)
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T k−1
s

⊕
OO

T k
s

k−s
k

OO

T k
s+1

s+1
k

ee T k
k−s

2s+n−1
2(k−s)+n−1

99
...... T k

s

Fig. 3. Relations between consecutive and distant neighbors

Proof. Denote by σk(n) the sum σk(n) :=

k∑
s=0

T k
s (n). By using (3.5), we get

k−1∑
s=0

(k − s)T k
s (n) +

k−1∑
s=0

(s+ 1)T k
s+1(n) = k

k−1∑
s=0

T k−1
s (n),

i.e.

k

k−1∑
s=0

T k
s (n) +

k−1∑
s=0

[
(s+ 1)T k

s+1(n)− sT k
s (n)

]
= kσk−1(n)

or

k

k−1∑
s=0

T k
s (n) + kT k

k (n) = kσk(n) = kσk−1(n).

We have just proved that σk(n) = σk−1(n), which means that

σk(n) = σk−1(n) = σk−2(n) = . . . = σ0(n) = 1.

Remark 3.8. Theorem 3.7 can also be obtained as a particular case of the well known
Vandermonde Convolution Identity for Pochhammer symbols

(a+ b)(k) =

k∑
s=0

(
k

s

)
a(k−s)b(s).

In fact, using a = n+1
2 and b = n−1

2 as well as writing
(
k
s

)
as k!

(k−s)!s! we get automat-
ically by division by (a+ b)(k) = n(k) that

1 =

k∑
s=0

k!

n(k)

(n+1
2 )(k−s)(

n−1
2 )(s)

(k − s)!s!
=

k∑
s=0

T k
s (n), (3.8)

for n = 1, 2, . . . , k = 0, 1, . . . , s = 0, . . . , k.
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Finally, we present a property concerned with the alternating sum of the elements
of a row of the Pascal-like table (1.1).

Theorem 3.9.
k∑

s=0

(−1)sT k
s (n) = ck(n), where

ck(n) =

{
k!!(n−2)!!
(n+k−1)!! , if k is odd,
ck−1(n), if k is even.

(3.9)

Proof. From Theorem 3.5, we conclude that

k−1∑
s=0

(−1)s(k − s)T k
s (n) +

k−1∑
s=0

(−1)s(s+ 1)T k
s+1(n) = kck−1.

Reordering the sums, we obtain

kck(n) + 2

k−1∑
s=0

(−1)s(s+ 1)T k
s+1(n) = kck−1(n). (3.10)

Denoting by ϑk(n) the alternating sum ϑk(n) :=
∑k−1

s=0 (−1)s(s+ 1)T k
s+1(n), we prove

now that

ϑk(n) =

{
0, if k is even,
1
2
k(n−1)
n+k−1

∑k−1
s=0 (−1)sT k−1

s (n), if k is odd.
(3.11)

In fact, supposing first that k = 2m, m ∈ N, we get

ϑ2m(n) =

m−1∑
s=0

(−1)s(s+ 1)T 2m
s+1(n) +

2m−1∑
s=m

(−1)s(s+ 1)T 2m
s+1(n) =

=

m−1∑
s=0

(−1)s(s+ 1)T 2m
s+1(n) +

m−1∑
s=0

(−1)2m−1−s(2m− s)T 2m
2m−s(n) =

=

m∑
s=1

(−1)s−1
(
sT 2m

s (n)− (2m− s+ 1)T 2m
2m−s+1(n)

)
.

Applying (3.3) and (3.6) we can write

ϑ2m(n) =

m∑
s=1

(−1)s−1 (2m− s+ 1)(n+ 2s+ 1)

n+ 4m− 2s+ 1
T 2m
s−1(n)−

−
m∑
s=1

(−1)s−1(2m− s+ 1)
n+ 2s+ 1

n+ 4m− 2s+ 1
T 2m
s−1(n) = 0.

On the other hand, if k = 2m+ 1, m ∈ N, by Theorem 3.2, we conclude that

ϑ2m+1(n) =

2m∑
s=0

(−1)s
(2m+ 1)(n+ 2s− 1)

2(n+ 2m)
T 2m
s (n),
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which means that

n+ 2m

2m+ 1
ϑ2m+1(n) =

1

2

2m∑
s=0

(−1)s(n− 1)T 2m
s (n) +

2m∑
s=1

(−1)ssT 2m
s (n) =

=
1

2

2m∑
s=0

(−1)s(n− 1)T 2m
s (n)−

2m−1∑
s=0

(−1)s(s+ 1)T 2m
s+1 =

=
n− 1

2

2m∑
s=0

(−1)sT 2m
s (n)− ϑ2m(n).

Since ϑ2m(n) = 0, result (3.11) is proved and can be used in (3.10) in order to obtain

k(ck−1(n)− ck(n)) =

{
0, if k is even,
k(n−1)
n+k−1ck−1(n), if k is odd,

or equivalently,

ck(n) = ck−1(n), if k is even and ck(n) =
k

n+ k − 1
ck−1(n), if k is odd.

The last relations can be used to obtain

c2m−1(n) =
2m− 1

n+ 2m− 2
c2m−2(n) =

2m− 1

n+ 2m− 2
c2m−3(n) =

=
(2m− 1)(2m− 3)

(n+ 2m− 2)(n+ 2m− 4)
c2m−4(n) = . . . =

=
(2m− 1)(2m− 3) . . . 3

(n+ 2m− 2)(n+ 2m− 4) . . . (n+ 2)
c1(n).

But c1(n) = T 1
0 (n)− T 1

1 (n) = n+1
2n −

n−1
2n = 1

n and hence

c2m−1(n) =
k!!

(n+ k − 1)!!
(n− 2)!!

Remark 3.10. At the end we would like to mention that the case n = 2 leads to

c2m(2) =
1

22m

(
2m

m

)
=

1

22m−1

(
2m− 1

m− 1

)
= c2m−1(2),

calling the attention to the special role of the central binomial coefficient. It is also
worth underlining the similarity of the sequence (c2m(2))m≥0 and the Catalan num-
bers

Cm =
1

m+ 1

(
2m

m

)
.

Whereas the Catalan numbers are the ratio of the central binomial coefficient
(

2m
m

)
in the 2m-th row of the Pascal triangle and the total number of binomial coefficients
in the m-th row, the c2m(2) are the ratio of the same central binomial coefficient and
the sum of all binomial coefficients in the 2m-th row.
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