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ON THE MAXIMUM LIKELIHOOD ESTIMATOR
IN THE GENERALIZED BETA REGRESSION MODEL
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Abstract. The subject of this article is to present the beta – regression model, where we
assume that one parameter in the model is described as a combination of algebraically
independent continuous functions. The proposed beta model is useful when the dependent
variable is continuous and restricted to the bounded interval. The parameters are obtained by
maximum likelihood estimation. We prove that estimators are consistent and asymptotically
normal.
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1. INTRODUCTION

It is often encountered in practice that the dependent variable takes values only from
a finite interval (see [1] and [4]). In this paper we deal with this case as we examine the
problem of maximum likelihood estimation for the beta distributed regression model.
The maximum likelihood estimators for beta models have been recently studied in
Ferrari and Cribari–Neto [1], Cribari–Neto and Vasconcellos [3], Rydlewski [4,5] and
Souza et al. [7]. The linear regression model is widely used in applications to analyze
data that are considered to be related to other variables. It should not be used in
models where the dependent variable is restricted to the interval (0, 1). Moreover, this
paper analyses the problems where variables may be time dependent. The dependance
on time might be described by a cyclic function, not by a linear function.

Our results are not covered by Wei’s monograph on exponential family nonlinear
models (see [9] pp. 2–3).

Maximum likelihood estimation for different nonlinear models, as well as references
to the relevant literature, are given by Seber and Wild [6].

The Generalized Linear Model applied to beta regression is widely discussed in
[3]. However, in [3] the authors do not prove that there exists exactly one maximum
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likelihood estimator in the model. The application of small sample bias adjustments
to the maximum likelihood estimators of these parameters is discussed in [1].

The paper is organised as follows. In Section 2, we describe a model. Section 3
contains results on the existence and uniqueness of the maximum likelihood estima-
tor. In Section 4, we discuss the asymptotics of the model. Section 5 contains some
computational aspects of the developed theory.

2. MODEL DEFINITION

The proposed model is based on an assumption that the dependent data is beta
distributed. The beta density is given by

π(y, p, q) =
1

B(p, q)
yp−1(1− y)q−1, 0 < y < 1, (2.1)

where p > 0, q > 0 and B(·, ·) is the beta function. The mean and the variance of y
are, respectively,

E(y) =
p

p+ q
(2.2)

and
V ar(y) =

pq

(p+ q)2(p+ q + 1)
. (2.3)

It is also common to define the above model in terms of precision parameters. Hence,
if we define ϕ = p/(p+ q) and φ = p+ q, then we have

E(y) = ϕ and V ar(y) =
ϕ(1− ϕ)

1 + φ
.

In this parametrization the beta density is given by

π(y, ϕ, φ) =
1

B(ϕφ, (1− ϕ)φ)
yϕφ−1(1− y)(1−ϕ)φ−1, 0 < y < 1, (2.4)

where 0 < ϕ < 1 and φ > 0.
Let y1, . . . , yn be independent, beta-distributed random variables observed at the

design points t1, . . . , tn. We have the following model of the mean

E(yj) = ϕ(tj),

and the variance

V ar(yj) =
ϕ(tj)(1− ϕ(tj))

1 + φ
, j = 1, . . . , n,

where ϕ is a sum of algebraically independent continuous functions. The tj ’s may be
interpreted as time points. The unknown precision parameter φ is independent of tj .
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The model is useful if the response is restricted to the interval (a, b), where a < b,
because we could then model (y − a)/(b− a).

We consider the special case of the model where

0 ≤ yj ≤ 1, j = 1, . . . , n, (2.5)

and

ϕ(tj) = Kθ(tj) +M

(
β0 +

p∑
k=1

αk sin
2πk

T
tj + βk cos

2πk

T
tj

)
,

where functions of tj are continuous and algebraically independent and we assume
that 0 ≤ ϕ(tj) ≤ 1 for j = 1, . . . , n. The function θ(·) is responsible for the modelling
of the trend. Such a model has been developed in our previous work [4].

In our model we substitute for ϕ a function of variable ti, which depends on the
multidimensional parameter A. Precisely, we use a set of m algebraically independent
continuous functions. Consider

p(A, t) =

m∑
k=1

Akfk(t), (2.6)

where A = (A1, . . . , Am) and p(A, t) is modelling the parameter p of the beta distri-
bution for each of the observations. Let y1, . . . , yn be independent beta distributed
random variables, where each variable has the p parameter in equation (2.1) given by
the expression in (2.6). Let E(yj) = ϕ(tj) for j = 1, . . . , n. Then, it follows from the
aforementioned assumptions that the expected value of yj has the following form

E(yj) =

m∑
k=1

αkfk(tj), j = 1, . . . , n,

with αk = Ak/φ, where 0 ≤ ϕ(tj) ≤ 1. Absolute continuity of the random variables
guarantees that 0 < ϕ(tj) < 1, a.e. with respect to the Lebesgue measure.

In order to model the parameter p = φϕ we take m algebraically independent
continuous functions.

To estimate the parameters we will use the maximum likelihood estimation. In
our beta regression model, the likelihood function has the form

L(y1, . . . , yn, t1, . . . , tn, A, φ) =

=

n∏
j=1

1

B(p(A, tj), φ− p(A, tj))
y
p(A,tj)−1
j (1− yj)φ−p(A,tj)−1,

(2.7)

where B(·, ·) is the beta function. Hence, the logarithm of the likelihood function is

logL =

n∑
j=1

logLj =

=

n∑
j=1

−logB(p(A, tj), φ−p(A, tj))+(p(A, tj)−1) log yj+(φ−p(A, tj)−1) log(1−yj).
(2.8)
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We can carry out a reparametrization analogous to the one described at the beginning
of this section. Let a = (α1, . . . , αm). Then,

ϕ(a, tj) =
p(A, tj)

φ
=

m∑
k=1

αkfk(tj).

Obviously

logL(φa, φ) =

n∑
j=1

logLj(φa, φ),

where

logLj (φa, φ) = − logB(φϕ(a, tj), φ(1− ϕ(a, tj)))+

+ (φϕ(a, tj)− 1) log yj + (φ(1− ϕ(a, tj))− 1) log(1− yj).

Later on, we will prove that the maximum likelihood estimator is determined uniquely.
Ferrari and Cribari-Neto [3] defined a regression structure for beta distributed re-
sponses that differs from (2.4). Our model is equivalent to the model developed by
Ferrari and Cribari-Neto [3] through reparametrization

(A1, . . . , Am, φ)↔
(
A1

φ
, . . . ,

Am
φ
, φ

)
.

However, in [3] the proof of uniqueness and existence of the maximum likelihood
estimator has not been established. Furthermore, the results established in [3] does
not include explicit proofs of consistency and asymptotic normality. The proofs are
also absent in [7].

3. MAXIMUM LIKELIHOOD ESTIMATION

Lemma 3.1. The function logB(x, y) is a strongly convex function of x and y.

Proof. Let x1, x2, y1, y2 > 0 and let λ ∈ (0, 1). We obtain

B (λx1 + (1− λ)x2, λy1 + (1− λ)y2)=

1∫
0

sλx1+(1−λ)x2−1(1− s)λy1+(1−λ)y2−1ds =

=

1∫
0

[
sx1−1(1− s)y1−1

]λ [
sx2−1(1−s)y2−1

]1−λ
ds.

In light of the Hölder inequality with Hölder conjugates 1
λ and 1

1−λ we get

B (λx1 + (1− λ)x2, λy1 + (1− λ)y2) ≤

≤

 1∫
0

sx1−1(1− s)y1−1ds

λ  1∫
0

sx2−1(1− s)y2−1ds

1−λ

.
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Thus
B (λx1 + (1− λ)x2, λy1 + (1− λ)y2) ≤ B (x1, y1)

λ
B (x2, y2)

1−λ

and finally we have

logB(λx1 + (1−λ)x2, λy1 + (1−λ)y2) ≤ λ logB(x1, y1) + (1−λ) logB(x2, y2). (3.1)

Equality in (3.1) holds if and only if there exists a nonzero constant c ∈ R such that

sx2−1(1− s)y2−1 = c
(
sx1−1(1− s)y1−1

)
for s ∈ [0, 1]. In other words, the equality is valid if and only if x1 = x2 and y1 = y2.
The proof of the lemma is complete.

Lemma 3.2. Let [c, d] be a closed and bounded interval. Let f1, . . . , fm be a set of
continuous algebraically independent functions on [c, d]. The set of all parameters A
of the form (A1, . . . , Am, φ) ∈ Rm+1 such that for any t ∈ [c, d] ,

0 ≤
m∑
k=1

Akfk(t) ≤Mφ (3.2)

is non-empty, closed and convex in Rm+1.

Proof. Proof of this lemma can be found in [5].

Lemma 3.3. Let f1, . . . , fm : R −→ R be a set of algebraically independent continuous
functions. The set a of all parameters a = (α1, . . . , αm) ∈ Rm satisfying the equation

0 ≤
m∑
k=1

αkfk(t) ≤M (3.3)

for any t ∈ R is non-empty and compact in Rm.

Proof. Proof of this lemma can be found in [5] as well.

The proof of the next lemma is similar in spirit to that of Lemma 3.3 for the
gamma regression model in [5]. Although these proofs run along similar lines, there
are subtle adjustments necessary to fit the argument to each new situation.

Lemma 3.4. Exactly one of the conditions specified below is true

(i) for all j = 1, . . . , n

yj =

m∑
k=1

αkfk(tj);

(ii)

lim
φ→+∞

d

dφ
logL(φa, φ) < 0.
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Proof. In the beta regression model we have

lim
φ→∞

d

dφ
logL(φa, φ) = lim

φ→∞

d

dφ

n∑
j=1

logLj(φa, φ) =

= lim
φ→∞

d

dφ

n∑
j=1

(− logB(φϕ(a, tj), φ(1− ϕ(a, tj)))+

+ (φϕ(a, tj)− 1) log yj + (φ(1− ϕ(a, tj))− 1) log(1− yj)).

Let wj = ϕ(a, tj). Consequently

logLj(φa, φ) = − logB(φwj , φ(1−wj))+(φwj−1) log yj +(φ(1−wj)−1) log(1−yj).

We take advantage of the B function property in order to get

logLj(φa, φ) = − log Γ(φwj)− log Γ(φ(1− wj)) + log Γ(φ)+

+ (φwj − 1) log yj + (φ(1− wj)− 1) log(1− yj).

Hence
d

dφ
logLj(φa, φ) = − d

dφ
log Γ(φwj)−

d

dφ
log Γ(φ(1− wj))+

+
d

dφ
log Γ(φ) + wj log yj + (1− wj) log(1− yj) =

= −wjΨ (φwj)− (1− wj)Ψ(φ(1− wj))+
+ Ψ(φ) + wj log yj + (1− wj) log(1− yj),

where Ψ(y) = d
dy log Γ(y). Using the well–known equality

lim
y→∞

(Ψ(y)− log y) = 0,

we obtain

lim
φ→∞

d

dφ
logLj(φa, φ) = −wj logwj−(1−wj) log(1−wj)+wj log yj+(1−wj) log(1−yj).

Define
h(y) = wj log y + (1− wj) log(1− y).

The function h takes the largest value at y = wj , and hence

lim
φ→∞

n∑
j=1

d

dφ
logLj(φa, φ) ≤ 0

and if for at least one j ∈ {1, . . . , n} we have yj 6= wj , then we obtain

lim
φ→∞

n∑
j=1

d

dφ
logLj(φa, φ) < 0.
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Lemma 3.5. The function logL(φa, φ) as a function of the parameter φ is strictly
concave.

Proof. It suffices to show that function

logB (φϕ(a, tj), φ(1− ϕ(a, tj)))

is strongly convex for at least one j ∈ {1, . . . , n}. Strong convexity now follows
from the definition of convexity and the Hölder inequality, like that of the proof
of Lemma 3.1

Let J ∈ Rn×m be a real matrix

f1(t1) . . . . . . . . . fm(t1)

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

f1(tn) . . . . . . . . . fm(tn)


. (3.4)

Parameters Ak and Al are defined to be orthogonal if the (Ak, Al) component of the
Fisher information matrix is zero. Note that if the functions fk and fl are orthogonal,
in the sense that fk(tj)fl(tj) = 0 if and only if k 6= l for j = 1, . . . , n, then the
parameters Ak and Al are orthogonal.

Lemma 3.6. If n–the number of observations is sufficient, i.e., n ≥ m, and the rank
of the matrix J is maximal, i.e., rankJ = m, then the function logL(A1, . . . , Am, φ)
is strictly concave.

Proof. It follows from Lemma 3.1, that the function logB(x, y) is strictly convex. The
function

logL(A1, . . . , Am, φ) =

=

n∑
j=1

−logB(p(A, tj), φ−p(A, tj))+(p(A, tj)−1) log yj+(φ−p(A, tj)−1) log(1−yj)

is concave as the sum of concave and linear functions. As we have assumed, that the
rank of the matrix J is maximal, the intersection of all hyperplanes

p(A, tj) = p(A1, . . . , Am, tj) = const

is at most a single point. Following the same lines as the last paragraph of the
proof of Lemma 3.1, we find out that for the above fact it suffices to prove that
the logL(A1, . . . , Am, φ) function is strictly concave.
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Theorem 3.7. Let n ≥ m and let for a given t1, . . . , tn ∈ [c, d] the rank of matrix J
defined in (3.4) be maximal. Then for given t1, . . . , tn ∈ [c, d] with probability 1 there
exists exactly one (Â, φ̂) ∈ A such that

L(Â, φ̂) = max
(A,φ)∈A

L(A, φ),

where L is the likelihood function defined in (2.7).

Proof. The proof proceeds along the same lines as the proof of Theorem 3.7 in [5].

4. CONSISTENCY AND ASYMPTOTIC NORMALITY

Let θ ∈ Θ be now a set of parameters. Jn(θ) is the observed information matrix at θ.
We should make some assumptions.

(AN 1) Let the true parameter θ0 ∈ int Θ.
(AN 2) Let

1

n
Jn(θ)→ K(θ), n→ +∞,

uniformly in N(δ), where N(δ) is a neighbourhood of the true θ with radius δ
and K(θ) is some positive definite matrix. The assumption is widely accepted
[2, 9].

Theorem 4.1. Under (AN 1) and (AN 2), the maximum likelihood estimator in the
beta–regression model is strongly consistent.

Proof. We show that

∃δ∗ > 0∀δ ∈ (0, δ∗]∃n∗ ∈ N∀n > n∗∀θ ∈ ∂N(δ) : P (ln(θ)− ln(θ0) < 0) = 1, (4.1)

where ln(·) is the log-likelihood for n observations, N(δ) = {θ : ‖θ − θ0‖ < δ},
∂N(δ) = {θ : ‖θ − θ0‖ = δ} and N(δ) = {θ : ‖θ − θ0‖ ≤ δ}.

It means that θ̂n, that maximizes ln(θ) must be inside N(δ). Because δ ≤ δ∗ and
δ is arbitrarily small, we get θ̂n → θ0 a.e.

Let λ = θ−θ0
δ and Taylor theorem gives us that

ln(θ)− ln(θ0) = δλT l′n(θ0) +
1

2
δ2λT l′′n(θ̂n)λ,

for some t̂n ∈ [0, 1] is θ̂n = t̂nθ0 + (1− t̂n)θ. (4.1) is equivalent to

∃δ∗ > 0∀δ ∈ (0, δ∗]∃n∗ ∈ N∀n > n∗∀θ ∈ ∂N(δ) :

P

(
1

n
λT l′n(θ0) <

1

2n
δλT

(
−l′′n(θ̂n)

)
λ

)
= 1. (4.2)
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Let Jn be the Fisher information matrix from n observations. Define Rn(θ̂n) =

l′′n(θ̂n) + Jn(θ̂n). In our model Rn(θ̂n) = 0 and consequently we obtain

∃δ∗ > 0∀δ ∈ (0, δ∗]∃n∗ ∈ N∀n > n∗∀θ ∈ ∂N(δ) :

P

(
1

n
λT l′n(θ0) <

1

2n
δλTJn(θ̂n)λ

)
= 1.

Function Jn(θ) is continuous in θ0 and assumption (AN 2) gives us

∀ε > 0∃δ1 > 0∃n1 ∈ N∀θ ∈ N(δ1)∀n > n1 :∣∣∣∣ 1nλTJn(θ)λ− λTK(θ0)λ

∣∣∣∣ ≤ ∣∣∣∣ 1nλTJn(θ)λ− λTK(θ)λ

∣∣∣∣+ ∣∣λTK(θ)λ− λTK(θ0)λ
∣∣ < ε.

Let c = λmin(K(θ0)) be the smallest eigenvalue of matrix K(θ0). From inequality
λmin(K(θ0)) ≤ λTK(θ0)λ, for λTλ = 1, we obtain

(i) ∀ε > 0∃δ1 > 0∃n1 ∈ N∀θ ∈ N(δ1)∀n > n1 :
1

n
λTJn(θ)λ > c− ε a.s.

We need to prove that (ii) limn→+∞
1
nλ

T l′n(θ0)→ 0 a.s., for any λ, λTλ = 1.
It is true due to the Strong Law of Large Numbers and inequality(

λT l′n(θ0)
)2 ≤ (λTλ)(l′Tn l

′
n) = ‖λ‖2‖l′n‖2.

From (i) and (ii) we obtain

∀ε>0∃δ∗>0∃n2∈N ∀θ∈N(δ∗)∀n>n2 :
1

n
λT (−l′′(θ))λ =

1

n
λTJn(θ)λ > c− ε a.e.

Now we have θ̂n ∈ N(δ∗), for n > n2. (ii) gives us that

∀ε > 0∃δ∗ > 0∀δ ∈ (0, δ∗]∃n∗ ≥ n2∀θ ∈ N(δ)∀n > n∗ :
1

n
λT l′n(θ0) <

1

2
δ(c− ε) a.e.

which completes the proof.

We will concern asymptotic normality.

(AN 3) Let δ > 0

max
θ∈Un(δ)

‖Vn(θ)− I‖ → 0,

where Vn(θ) = −J−
1
2

n (θ0)l′′n(θ)J
− 1

2
n (θ0) and

Un(δ) =
{
θ ∈ Θ : ‖J

1
2
n (θ0) (θ − θ0) ≤ δ‖

}
for n ∈ N.

The following lemma is an adaptation of Lemma 1 in [2].
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Lemma 4.2. Under assumptions (AN 1)–(AN 3)

J
− 1

2
n l′n

D−→ N (0, I), n→ +∞,

where Jn = Jn(θ0), ln = l′n(θ0) and symbol D−→ means convergence in the distribution.

Proof. We will show that the moment generating function of the random variable
λTJ

− 1
2

n l′n converges to a standard normal distribution moment generating function
if λTλ = 1. Let us fix δ > 0 and λ, λTλ = 1. If θn = θ0 + δJ

− 1
2

n λ, n ∈ N, then
θn ∈ Un(δ). The Taylor expansion of the log likelihood becomes

ln(θn) = ln(θ0) + (θn − θ0)T l′n +
1

2
(θn − θ0)T l′′n(θn)(θn − θ0),

where θn = tnθn + (1− tn)θ0 for tn ∈ [0, 1]. We get

exp

{
λTJ

− 1
2

n

(
−l′′n(θn)

)
J
− 1

2
n λ

δ2

2

}
Ln(θn) = exp

{
δλTJ

− 1
2

n l′n

}
Ln(θ0),

and

exp

{
λTVn(θn)λ

δ2

2

}
Ln(θn) = exp

{
δλTJ

− 1
2

n l′n

}
Ln(θ0),

where Ln is a likelihood function. The left side of the equality is integrable, because
exp

{
λTVn(θ)λ δ

2

2

}
is a continuous function with respect to θ, and so it is bounded

on a compact line segment [θ0, θn]. This upper bound is not a function of y1, . . . , yn,
because Jn(θ) = −l′′n(θ). Integrating the identity we obtain

Eθn exp

{
λTVn(θn)λ

δ2

2

}
= E exp

{
δλTJ

− 1
2

n l′n

}
.

Assumption (AN 3) and θn ∈ Un(δ) give us

∀ε > 0∃n1 ∈ N∀n ≥ n1 :∣∣∣∣exp

{
λTVn(θn)λ

δ2

2

}
− exp

{
λTλIδ2

2

}∣∣∣∣ =

∣∣∣∣exp

{
λTVn(θn)λ

δ2

2

}
− exp

{
δ2

2

}∣∣∣∣ ≤ ε.
Integrating the inequality, we obtain by the dominated convergence theorem

Eθn exp

{
λTVn(θn)λ

δ2

2

}
→ E exp

{
δ2

2

}
, n→∞.

Therefore

E exp
{
δλTJ

− 1
2

n l′n

}
→ E exp

{
δ2

2

}
, n→∞,

when λTλ = 1. The theorem on the continuity of moment generating functions ensure
us that λJ−

1
2

n l′n, λ ∈ Rm+1 is asymptotically standard gaussian. Because λ is arbitrary
such that ‖λ‖ = 1, the proof is completed.
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Theorem 4.3. Under (AN 1), (AN 2) and (AN 3), the maximum likelihood estimator
in the beta–regression model is asymptotically normal.

√
n
(
θ̂n − θ0

)
D−→ N

(
0,K−1(θ0)

)
.

Proof. Taylor’s expansion of l′n(θ0) around θ̂n, where θ0 is the true parameter and θ̂n
is a solution of the likelihood equations when the number of observations is n. We
obtain

l′n(θ0) = l′n(θ̂n) + l′′(θ∗n)(θ0 − θ̂n) = −l′′n(θ∗n)(θ̂n − θ0),

where θ∗n = t∗nθ0 + (1 − t∗n)θ̂n for some t∗n ∈ [0, 1]. We have also θ∗n → θ0, n → +∞,
because θ̂n → θ0. Rewrite our equation

J
− 1

2
n l′n = J

− 1
2

n {−l′′n(θ∗n)} J−
1
2

n J
1
2
n (θ̂n − θ0).

√
n(θ̂n − θ0) =

(
1

n
Jn

)− 1
2

G−1
n J

− 1
2

n l′n, (4.3)

where
Gn = J

− 1
2

n {−l′′n(θ∗n)} J−
1
2

n .

We shall prove that Gn → Im+1 a.e., n→ +∞. We already have

Gn =

(
1

n
Jn

)− 1
2
{

1

n
Jn(θ∗n)− 1

n
Rn(θ∗n)

}(
1

n
Jn

)− 1
2

,

where matrix Rn(·) = 0 as in the proof of Theorem 3.7 From assumption (AN 2)

1

n
Jn → K(θ0) and

(
1

n
Jn

)− 1
2

→ K−
1
2 (θ0), n→ +∞.

Because θ̂n → θ0 a.e., so 1
nJn(θ∗n) → K(θ0). We obtain Gn → Im+1, n → +∞ a.e.

The preceding lemma gives us
√
n
(
θ̂n − θ0

)
D−→ N

(
0,K−

1
2 (θ0)K−

1
2 (θ0)

)
= N

(
0,K−1(θ0)

)
.

5. APPLICATIONS

This section contains an application of the beta regression model proposed in Sec-
tion 2. All computations were carried out using Mathematica 7.0. After computing
MLEs (maximum likelihood estimators), it is important to provide confidence inter-
vals and to perform some diagnostic analyses in order to check the goodness-of-fit of
the estimated model.

An approximate (1 − α)100% confidence interval for θk, k = 1, . . . ,m + 1 and
α ∈ (0, 0.5), has limits given by θ̂k ± q1−α2

(
J−1
n (θ̂)kk

)0.5, where J−1
n (θ̂)kk is the kth

diagonal element of J−1
n (θ̂) and qγ represents the γ quantile of theN(0, 1) distribution.
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The discrepancy of fit can be measured as twice the difference between the max-
imum achievable log–likelihood and that attained under the fitted model. In other
words, D(y, θ) =

∑n
i=j 2(lj(θ̂)− lj(θ)). We also have D(y, θ) =

∑n
j=1(rdj )2, where

rdj = sign(yj − ŷj)2(lj(θ̂)− lj(θ))0.5.

The observation with a large absolute value of rdj may be viewed as discrepant. The
rdj are called the jth deviance residuals. We shall also consider the residuals rj =
yj − E(ŷj).

Example 5.1. We draw a sample of size 80 from a beta distributed random variable,
where p(A1, tj) = A1 = 1 and φ = 10, j = 1, . . . , 80.

MLEs of A1 and φ computed withMathematica 7.0 and Newton–Raphson method
are Â1 = 0.964 269 and φ̂ = 11.6337. We have the following confidence intervals for A1:
(0.6189, 1.3097), (0.7019, 1.2668) and (0.7447, 1.1838) for α = 0.01, α = 0.05 and α =
0.1, respectively. The confidence intervals for φ are (6.5600, 16.7074), (7.7793, 15.4881)
and (8.4086, 14.8588) for α = 0.01, α = 0.05 and α = 0.1, respectively. We have
D(y, θ) = 3.2104.

Example 5.2. We draw a sample of size 80 from a beta distributed random variable,
where p(A1, tj) = A1(sin Π

8 tj + 1.2), where A1 = 1 and φ = 30, j = 1, . . . , 80. In such
a way we could check periodicity in a shape parameter.

MLEs of A1 and φ computed withMathematica 7.0 and Newton–Raphson method
are Â1 = 0.983 251 and φ̂ = 30.6473. We have the following confidence intervals for
A1: (0.6356, 1.3309), (0.7191, 1.2474) and (0.7623, 1.2043) for α = 0.01, α = 0.05
and α = 0.1, respectively. The confidence intervals for φ are (17.4421, 43.8525),
(20.6155, 40.6791) and (22.2530, 39.0413) for α = 0.01, α = 0.05 and α = 0.1, re-
spectively. We also get D(y, θ) = 0.1428.

Example 5.3. We draw a sample of size 80 from a beta distributed random variable,
where p(A1, tj) = A1(| 12 sin Π

8 tj |+ 2), where A1 = 1 and φ = 10, j = 1, . . . , 80.
MLEs of A1 and φ computed withMathematica 7.0 and Newton–Raphson method

are Â1 = 1.02276 and φ̂ = 9.66938. We have the following confidence intervals for A1:
(0.6304, 1.4151), (0.7247, 1.3208) and (0.7733, 1.2722) for α = 0.01, α = 0.05 and α =
0.1, respectively. The confidence intervals for φ are (5.8447, 13.4941), (6.7638, 12.5750)
and (7.2380, 12.1006) for α = 0.01, α = 0.05 and α = 0.1, respectively. We receive
D(y, θ) = 0.8709.

Example 5.4. We draw a sample of size 40 from a beta distributed random variable,
where p(A1, tj) = A1 sin Π

8 tj + A2
tj
8 + 2, where A1 = 1, A2 = 1 and φ = 1000,

j = 1, . . . , 40. We consider periodical data with a trend.
MLEs of A1, A2 and φ computed with Mathematica 7.0 and Newton–Raphson

method are Â1 = 1.05728, Â2 = 1.06575 and φ̂ = 1141.7. We have the following
confidence intervals for A1: (0.1100, 2.0036), (0.2654, 1.8490) and the following for
A2: (0.4200, 1.7115), (0.5254, 1.6060) for α = 0.05 and α = 0.1, respectively. The
confidence intervals for φ are (709, 1573.9) and (780, 1503) for α = 0.05 and α = 0.1,
respectively. We also have D(y, θ) = 0.5063.
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Note that the computed discrepancies are small. The following plots (Fig. 1) of the
residuals show no detectable pattern. However, the approximate confidence intervals
are not very satisfying. It is due to the fact that we have a relatively small number
of observations.

Crucially, the differences θ̂k − θk are relatively small. This is the main result of
this section, which motivates our approach.

When the number of parameters exceed 3 the computations of maximum likelihood
estimators do not give satisfying results or the computations are simply aborted.

Fig. 1. Eight residuals plots for the four above examples. The left panels plot the residuals
against the index of observation, while the right plot the deviance residuals against the index

of observation
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