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RANK-ONE PERTURBATION
OF TOEPLITZ OPERATORS AND REFLEXIVITY
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Abstract. It was shown that rank-one perturbation of the space of Toeplitz operators
preserves 2-hyperreflexivity.
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1. INTRODUCTION

Let H be a Hilbert space. By B(H) we denote the algebra of all bounded linear
operators on H.

It is well known that the space of trace class operators 7¢ is a predual to B(H)
with the dual action (A, f) = tr(Af), for A € B(H) and f € 7c. The trace norm in 7¢
will be denoted by || - ||1. Denote by F}, the set of operators of rank at most k. Every
rank-one operator may be written as x ® y, for x, y € H, and (z ® y)z = (z,y)z for
z € H. Moreover, tr(T(z ®y)) = (Tx,y).

Let M C B(H) be a subspace (when we write subspace we mean a norm closed
linear manifold). By d(T, M) we will denote the standard distance from an operator T'
to a subspace M, i.e., d(T, M) = inf{||T — M| : M € M}. It is known that when M
is weak™® closed d(T, M) = sup{|tr(Tf)| : f € ML, ||fl1 < 1}, where M denotes
the preannihilator of M.

Recall that the reflexive closure of a subspace M C B(H) is given by

ref M = {T € B(H) : Tx € [Mz] for all z € H},

where [-] denotes the norm-closure. A subspace M is called reflexive if M = ref M.
Due to Longstaft [14] we know that when M is a weak® closed subspace of B(H),
then M is reflexive if and only if M is a closed linear span of the set of all operators
of rank one contained in M, (i.e., M, = [M N Fy]). A subspace M C B(H)
is called k-reflerive if M®*) = {M®) . M € M} is reflexive in B(H®*)), where
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M® =M@ &M and H*® =H @ - @& H. Kraus and Larson [12, Theorem 2.1]
proved that a weak™ closed subspace M C B(H) is k-reflexive if and only if M is a
closed linear span of rank-k operators contained in M (i.e., M, = [M N F]).

In [2] Arveson defines an algebra A as hyperreflexive if there is a constant a
such that d(T,A) < a sup{||PLTP| : P € LatA} for all T € B(H). In [11] this
definition was generalized to subspaces of operators. A subspace M C B(H) is called
hyperreflerive if there is a constant a such that

d(T, M) < a sup{|Q*TP|| : P, Q are projections and Q* MP = 0}

for all T' € B(H). As it was shown in [12] the supremum on the right hand side is
equal to sup{|[(T,g @ h)| : g@he M, [g®h|: < 1}.

Recall after [10] the definition of k-hyperreflexivity. Let M C B(H) be a subspace.
For any T € B(H) denote

ap(T, M) = sup{[tr(Tf)| : f € ML O F, [[flli <1}

A subspace M is called k-hyperreflezive if there is a > 0 such that for any T' € B(H)
the following inequality holds:

ATy M) < aop(T, M). (1.1)

Let k(M) be the infimum of the collection of all constants a such that inequality (1.1)
holds, then ki (M) is a constant of k-hyperreflexivity. Operator T is k-hyperreflexive
if the WOT closed algebra generated by T’ and identity is k-hyperreflexive.

When k = 1 the definition above coincides with the definition of hyperreflexivity
and the letter k will be omitted.

2. REFLEXIVITY OF PERTURBATED TOEPLITZ OPERATORS

Let T be the unit circle on the complex plane C. Denote L? = L?(T,m) and L™ =
L°°(T, m), where m is the normalized Lebesgue measure on T. Let H? be the Hardy
space corresponding to L? and Py2 be a projection from L? onto H?2. For each ¢ € L™
we define Ty, : H?> — H? by Tyf = Py=(¢f) for f € H?. Operator T} is called a
Toeplitz operator and T will denote the space of all Toeplitz operators.

The unilateral shift S can be realized as the multiplication operator by independent
variable T,. Moreover, T = {T, : ¢ € L™} = {A : T; AT, = A} ([9, Corollary 1 to
Problem 194]). Hence 7T is weak™ closed.

Let {e;};en be the usual basis in H2. Denote by M;,,, the subspace T +C(e;®e,,).
In [4, Theorem 3.1] the authors proved that the space of all Toeplitz operators is not
reflexive but it is 2-reflexive. We will show that the subspace M, has the same
properties.

Proposition 2.1. The subspace My, is not reflexive but it is 2-reflezive.

Proof. Notice that (M) = T1.N(e;®ey,) 1. Since T, contains no nonzero rank-one
operators, then M, is not reflexive.
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Notice that
T =span{e; ®e; — Se; ® Se; 14,5 =1,2,...},
where S is the unilateral shift. Therefore,

(Mim) 1 =span{e; ® e; — Se; ® Sej 14,5 =1,2,...,(i,7) # (I,m)
and (i+1,j+1)# (I,m)}.

Hence My, is 2-reflexive. O

Recall after [5] the following definition.

Definition 2.2. Subspace M C B(H) has property A, /;, if M is weak™ closed and for
any weak™ continuous functional ¢ on M there is g € F}, such that ¢(M) = tr(Mg)
for M € M.

Proposition 2.3. The subspace My, =T + C(e; ® e,,) has property A, 4.

Proof. Let t € Tc. Since T has property A/, ([10, Proposition 4.1]), there is f ¢
F such that (t — f) € T.. If (t — f) € (Ce; ® e) 1, then (t — f) € (M) If
(t—f) ¢ (Cep ®em)r, then (t — f — Ae; ® e + Aejy1 ® €my1) € (M) 1, where
A = Pee,(t — f)Pce,, and Pge, denotes the orthogonal projection on Ce;. So M, has
property Ay 4. O

In [13] Larson proved that if M is k-reflexive, then any weak™ closed subspace
L C M is k-reflexive if and only if M has property A, /5. It follows immediately from
Proposition 2.1 and Proposition 2.3 that:

Corollary 2.4. Every weak*-closed subspace of My, =T +C(e;®ey,) is 4-reflexive.

On the other hand, due to [8] we know that the algebra of analytic Toeplitz
operators is hyperreflexive. Moreover, the space of all Toeplitz operators T is
2-hyperreflexive and k2(7) < 2 (see [10,15]). We will show that the subspace M, is
2-hyperreflexive. In the proof we will use the projection 7 : B(H?) — T constructed
by Arveson in [1, Proposition 5.2|, which has the property that for any A € B(H?) the
operator m(A) belongs to the weak* closed convex hull of the set {T, AT,» : n € N}.

Proposition 2.5. Subspace My, =T +C(e; ® e,,) is 2-hyperreflexive with constant
lig(./\/llm) < 2.

Proof. Let A € B(H?). For A\ € C define Ay = A — \e; ® e,,. Notice that for any
reC
d(A, Mu) < [|[A—7(A) = Aer ®@ e || = [[Ax — m(AN)]|-

Since the space of Toeplitz operators T is 2-hyperreflexive with constant at most 2,
we have that

d(Ax,T) < ||Ax — m(AN)|| < 2a2(Ax, T) (for details see [10]).
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To complete the proof it is enough to show that for any A € B(H?) there is A € C
such that

Ckg(A)”T) = OéQ(A,Mlm). (21)
Note that

as(Ax, T) =sup{|tr(Axt)| : 2t = e; ® ej — €i4k @ €4k, k > 1,4,7 =0,1,2,... }.

If this supremum is realized by 2t = e; ® ¢; — e;4x ® €1 for (¢,7) # (I,m) and
(i+k,j+ k) # (I,m), then equality (2.1) holds. So, it is enough to consider the case
when

ag(Ax, T) =sup{|tr(Axt)| : 2t = e; ® ey, — €14k @ emik, k > min{—1, —m}} =
:sup{%|alm — A — ptkmtk| + k> min{—l,—m}}.

Suppose that as(A, My,,) = 8 > 0. Note that for any A\ we have § < as(Ax, 7).
If we choose A = @iy, — Gi41,m+1, then

a2(Ax, T) = sup{3|ai+1,m+1 — Qsk,mk| + k > min{—1, —m}} < 3.

Hence as(Ay, T) = az(A, M), which completes the proof. O
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