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GLOBAL WELL-POSEDNESS AND SCATTERING
FOR THE FOCUSING

NONLINEAR SCHRÖDINGER EQUATION
IN THE NONRADIAL CASE

Pigong Han

Abstract. The energy-critical, focusing nonlinear Schrödinger equation in the nonradial
case reads as follows:

i∂tu = −∆u− |u|
4

N−2 u, u(x, 0) = u0 ∈ H1(RN ), N ≥ 3.

Under a suitable assumption on the maximal strong solution, using a compactness argument
and a virial identity, we establish the global well-posedness and scattering in the nonradial
case, which gives a positive answer to one open problem proposed by Kenig and Merle [Invent.
Math. 166 (2006), 645–675].
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1. INTRODUCTION AND THE MAIN RESULT

We consider the energy-critical nonlinear Schrödinger equation in RN (N ≥ 3):{
i∂tu = −∆u± |u|

4
N−2u in RN × R,

u(x, 0) = u0 in RN ,
(1.1)

where u = u(x, t) : RN ×R→ C denotes the complex-valued wave function, i =
√
−1.

The sign “−” corresponds to the focusing problem, while the sign “+” corresponds
to the defocusing problem. Cazenave-Weissler [6, 7] showed that if ‖∇u0‖2 is suit-
ably small, then there exists a unique solution u ∈ C(R;H1(RN )) of (1.1) satisfying
‖u‖

L
2(N+2)
N−2 (R;L

2(N+2)
N−2 (RN ))

< ∞. In the defocusing case, if u0 ∈ H1(RN ) is radial,

Bourgain [1] proved the global well-posedness for (1.1) with N = 3, 4, and that
for more regular u0, the solution preserves the smoothness for all time. (Another
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proof of this last fact is due to Grillakis [13] for N = 3.) Bourgain’s result is then
extended to N ≥ 5 by Tao [29], still under the assumption that u0 is radial. Sub-
sequently, Colliander-Keel-Staffilani-Takaoke-Tao [8] obtained the result for general
u0 ∈ H1(R3). Ryckman-Visan [26] extended this result to N = 4 and finally to N ≥ 5
by Visan [30]. In the focusing case, these results do not hold. In fact, the classical
virial identity shows that if E(u0) < 0 and |x|u0 ∈ L2(RN ), the corresponding solution
breaks down in finite time.

Ginibre-Velo [11] considered a general case:

{
i∂tu = −∆u− |u|q−1u in RN × R,
u(x, 0) = u0 in RN ,

(1.2)

and established the local well-posedness of the Cauchy problem (1.2) (focusing case)
in the energy space H1(RN ) with 1 < q < 1 + 4

N−2 . Furthermore, they proved
the global existence for both small and large initial data in the L2-subcritical case:
1 < q < 1 + 4

N . In the L2-supercritical case: 1 + 4
N < q < 1 + 4

N−2 , Glassey [12],
Ogawa-Tsutsumi [24,25] showed that the strong solution of the Cauchy problem (1.2)
blows up in finite time for a class of initial data, especially for negative energy initial
data. Holmer-Roudenko [15] established sharp conditions on the existence of global
solutions of (1.2) with q = 3. In the L2-critical case: q = 1 + 4

N , Weinstein [31] gave a
crucial criterion in terms of L2-mass initial data. Relevant work on the above topics
of (1.2) is referred to [2, 3, 9, 14,16,18,20,23,27] and the references therein.

Using the concentration compactness, which is obtained by Keraani [18],
Kenig-Merle [19] considered problem (1.1) in the focusing case for N = 3, 4, 5, and
discussed global well-posedness and blow-up for the energy-critical problem (1.1) in
the radial case. Moreover, they expected their results could be extended to the case
of radial data for N ≥ 6, and believed that it remained an interesting problem to re-
move the radial symmetry assumption. Subsequently, Killip-Visan [22] considered the
focusing problem (1.1) with dimensions N ≥ 5, and proved that if a maximal-lifespan
solution u : I × RN → C obeys supt∈I ‖∇u(t)‖2 < ‖∇W‖2, then it is global and
scatters both forward and backward in time. Here W denotes the ground state, which
is a stationary solution of the equation of the focusing problem (1.1). In particular,
if a local strong solution has both energy and kinetic energy less than those of the
ground state W at some point in time, then the local strong solution is global and
scatters in higher dimensions N ≥ 5. Further results are referred to [10,17].

In the present paper, under a suitable assumption on the local strong solution, we
establish the global well-posedness and scattering for the focusing problem (1.1) in
the nonradial case, which gives a positive answer to one open problem proposed by
Kenig-Merle in [19].

In order to state our main result conveniently, we rewrite the focusing problem
(1.1) as follows: {

i∂tu = −∆u− |u|
4

N−2u in RN × R,
u(x, 0) = u0 ∈ H1(RN ),

(1.3)
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Through a standard technical process (see [4]), one can easily check that the solution
u of (1.3) defined on the maximal interval (−T−(u0), T+(u0)) obeys conservations of
charge and energy:∫

RN

|u(x, t)|2dx =

∫
RN

|u0(x)|2dx, ∀t ∈ (−T−(u0), T+(u0)), (1.4)

and
E(u(t)) = E(u0), ∀t ∈ (−T−(u0), T+(u0)), (1.5)

where

E(u(t)) =
1

2

∫
RN

|∇u(x, t)|2dx− 1

2∗

∫
RN

|u(x, t)|2
∗
dx, 2∗ =

2N

N − 2
.

Talenti [28] proved that the function

W (x) =
(N(N − 2))

N−2
4

(1 + |x|2)
N−2

2

satisfies |∇W | ∈ L2(RN ) and solves the elliptic equation

−∆W = |W |
4

N−2W in RN .

The main result of this paper reads as follows.

Theorem 1.1. Assume that u0 ∈ H1(RN ), N = 3, 4, 5. Then there exists a unique
solution u of (1.3) defined on the maximum existence of interval (−T−(u0), T+(u0))
with u ∈ C((−T−(u0), T+(u0)), H1(RN )), where 0 < T−(u0), T+(u0) ≤ +∞.
Let E(u0) < E(W ), ‖∇u0‖L2(RN ) < ‖∇W‖L2(RN ). Assume that there exists a non-
negative real-valued function ϕ ∈ C∞0 (RN ) such that∫
RN

ϕ|u0|2dx > 0 and inf
t∈(0, T+(u0))

f(t) ≥ 0
(
resp. sup

t∈(−T−(u0), 0)

f(t) ≤ 0
)
,

(1.6)
where

f(t) , Im

∫
RN

u(x, t)∇ϕ(x) · ∇u(x, t) dx.

Then T−(u0) = T+(u0) = +∞, the solution u belongs to C(R1, H1(RN )), and there
exists u0,+, u0,− ∈ H1(RN ) such that

lim
t→+∞

‖u(t)− eit∆u0,+‖H1(RN ) = 0, lim
t→−∞

‖u(t)− eit∆u0,−‖H1(RN ) = 0.
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Remark 1.2. (i) Let ϕR ∈ C∞0 (RN ) be a cut-off function, which satisfies
ϕR(x) ≡ 1 if |x| ≤ R; ϕR(x) ≡ 0 if |x| ≥ 2R; |∇ϕR(x)| ≤ C

R for any x ∈ RN . Then it
follows from Lemma 2.2 below that

sup
t∈(−T−(u0), T+(u0))

∣∣∣Im ∫
RN

u(x, t)∇ϕR · ∇u(x, t) dx
∣∣∣ ≤

≤ sup
t∈(−T−(u0), T+(u0))

C

R
‖u(t)‖L2(R≤|x|≤2R)‖∇u(t)‖L2(R≤|x|≤2R) ≤

≤ C

R
‖u0‖L2(RN )‖∇u0‖L2(RN ) −→ 0 as R −→∞,

which implies that for any ε > 0, there exists a large number R > 0 such that

inf
t∈(0, T+(u0))

Im

∫
RN

u(x, t)∇ϕR · ∇u(x, t) dx ≥ −ε.

However, this estimate does not work in obtaining (2.26) below because we have
to let t = tj −→ +∞ in (2.26). That is why we need the additional assumption (1.6)
in Theorem 1.1.

(ii) If the initial datum u0 ∈ Ḣ1(RN ) (N = 3, 4, 5) is radial. The global existence
of the strong solution of (1.3) and the scattering in Ḣ1(RN ) are proved in [19] without
assumption (1.6). Here we do not need the radial symmetry assumption on u0, which
is replaced by (1.6). Therefore, our conclusion (i.e., Theorem 1.1) improves the results
in [19] in some sense.

(iii) It is well known that if E(u0) < 0, u0 ∈ H1(RN ) with |x|u0 ∈ L2(RN ), then
the solution u of (1.3) blows up at some finite time. But it does not contradict Theorem
1.1. In fact, under the assumptions in Theorem 1.1, the initial energy E(u0) ≥ 0. In-
deed, using the assumption ‖∇u0‖L2(RN ) < ‖∇W‖L2(RN ) and the Sobolev inequality,
we get

E(u0) =
1

2
‖∇u0‖2L2(RN ) −

1

2∗
‖u0‖2

∗

L2∗ (RN ) ≥

≥
(1

2
− N − 2

2N
C
− N
N−2

N ‖∇u0‖
4

N−2

L2(RN )

)
‖∇u0‖2L2(RN ) ≥

≥
(1

2
− N − 2

2N
C
− N
N−2

N ‖∇W‖
4

N−2

L2(RN )

)
‖∇u0‖2L2(RN ) =

=
1

N
‖∇u0‖2L2(RN ),

(1.7)

where CN = ‖∇W‖
4
N

L2(RN )
is the best Sobolev constant (see [28] for details).

Throughout this paper, we denote the norm of H1(RN ), Ḣ1(RN ) by ‖u‖H1 =( ∫
RN (|∇u(x)|2+|u(x)|2)dx

) 1
2 , ‖u‖Ḣ1 =

( ∫
RN |∇u(x)|2dx

) 1
2 , respectively, and positive

constants (possibly different line to line) by C.
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2. PROOF OF THE MAIN RESULT

Lemma 2.1. Let u ∈ C((−T−(u0), T+(u0)), H1(RN )) be a solution of (1.3), and
let ϕ ∈ C4([0,∞)) with ϕ(s) ≡ const if s > 0 is large. Then for any t ∈
(−T−(u0), T+(u0))

d

dt

∫
RN

ϕ(|x|)|u(x, t)|2dx = 2Im

∫
RN

∇ϕ(|x|) · ∇u(x, t)u(x, t)dx

and

d2

dt2

∫
RN

ϕ(|x|)|u(x, t)|2dx = 4

∫
RN

ϕ′′(|x|)|∇u(x, t)|2dx− 4

N

∫
RN

∆ϕ(|x|)|u(x, t)|2
∗
dx−

−
∫
RN

∆2ϕ(|x|)|u(x, t)|2dx.

Proof. Since the proof is similar to those of Lemma in [12] and Lemma 7.6.2 in [5],
we omit the details here.

The following variational estimates are Theorem 3.9 and Corollary 3.13 in [19].

Lemma 2.2 ([19]). Suppose that∫
RN

|∇u0|2dx <
∫
RN

|∇W |2dx and E(u0) < (1− δ0)E(W ), where δ0 ∈ (0, 1).

Let I 3 0 be the maximal interval of existence of the solution u ∈ C(I,H1(RN ))
of (1.3). Then there exists δ = δ(δ0, N) > 0 such that for each t ∈ I∫

RN

|∇u(x, t)|2dx < (1− δ)
∫
RN

|∇W |2dx,

δ

∫
RN

|∇u(x, t)|2dx <
∫
RN

(
|∇u(x, t)|2 − |u(x, t)|2

∗)
dx,

E(u(t)) ≥ 0.

Furthermore, E(u(t)) '
∫
RN
|∇u(x, t)|2dx '

∫
RN
|∇u0|2dx, for all t ∈ I with compara-

bility constants which depend only on δ0.

The following rigidity theorem plays a fundamental role in the proof of Theo-
rem 1.1.

Theorem 2.3. Assume that u0 ∈ H1(RN ) satisfies∫
RN

|∇u0|2dx <
∫
RN

|∇W |2dx and E(u0) < E(W ).
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Let u be the solution of (1.3) with the maximal interval of existence
(−T−(u0), T+(u0)), and let the assumption (1.6) hold. Suppose that there exists
λ(t) > 0, x(t) ∈ RN with the property that

K =
{
v(x, t) =

1

λ(t)
N−2

2

u
(x− x(t)

λ(t)
, t
)

: t ∈
[
0, T+(u0)

)}
is such that K is compact in Ḣ1(RN ). Then T+(u0) = +∞, u0 ≡ 0 in RN .

Remark 2.4. If x(t) ≡ 0 or λ(t) ≥ A0 > 0 and |x(t)| ≤ C0, Theorem 2.3 is verified
in [19] for u0 ∈ Ḣ1(RN ).

Proof of Theorem 2.3. Step 1. T+(u0) = +∞. If T+(u0) < +∞, then from Lemma
2.11 in [19], one has

‖u‖S(0,T+(u0)) = +∞, where ‖u‖S(I) = ‖u‖
L

2(N+2)
N−2 (I,L

2(N+2)
N−2 (RN ))

. (2.1)

Now we claim that
λ(t) −→ +∞ as t −→ T+(u0). (2.2)

Indeed if there exists a sequence {tj}, tj −→ T+(u0) such that λ(tj) −→ A < +∞ as
j −→ +∞.

Set vj(x) = v(x, tj) = 1

λ(tj)
N−2

2

u
(x−x(tj)

λ(tj)
, tj
)
. It follows from the compactness of

K in Ḣ1(RN ) that there is a subsequence (still denoted by {vj}) and v0 ∈ Ḣ1(RN )
such that

vj −→ v0 in Ḣ1(RN ).

Then it holds

u
(
y − x(tj)

λ(tj)
, tj

)
= λ(tj)

N−2
2 vj(λ(tj)y) −→ A

N−2
2 v0(Ay) in Ḣ1(RN ). (2.3)

If A = 0, it follows from (2.3) that u(y − x(tj)
λ(tj)

, tj) −→ 0 in Ḣ1(RN ). So

‖∇u(tj)‖L2(RN ) −→ 0 as tj −→ T+(u0). (2.4)

Using the conservation of energy (1.5), one has

E(u0) = E(u(tj)) −→ 0 as tj −→ T+(u0). (2.5)

In addition, (iii) in Remark 1.2 and the assumption: ‖∇u0‖L2 < ‖∇W‖L2 yield

‖∇u0‖2L2 ≤ NE(u0). (2.6)

Combining (2.5) and (2.6), we infer ‖∇u0‖L2 = 0. So u0 ≡ 0 in RN . Using the
conservation of charge (1.4), one has for t ∈ [0, T+(u0))∫

RN

|u(t, x)|2dx =

∫
RN

|u0(x)|2dx = 0,
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which implies us that u ≡ 0 a.e. on RN × [0, T+(u0)). This is a contradiction with
(2.1).

If lim
j→∞

λ(tj) = A ∈ (0,+∞). Let h(x, t) be the solution of (1.3) (which is

guaranteed by Remark 2.8 in [19]) on the interval Iη = (T+(u0) − η, T+(u0) + η),
h(x, T+(u0)) = A

N−2
2 v0(Ax), ‖h‖S(Iη) < +∞, where η = η(‖∇v0‖L2(RN )).

Let hj(x, t) be the solution of (1.3) with hj(x, T+(u0)) = u(x− x(tj)
λ(tj)

, tj). Then the
convergence in (2.3) and the continuous dependence on the initial data (see Remark
2.17 in [19]) imply that

‖hj − h‖S(I η
2

) −→ 0 as j −→ +∞.

Then
sup
j
‖hj‖S(I η

2
) < +∞. (2.7)

In addition, the uniqueness theorem on the strong solution of (1.3) (see Definition
2.10 in [19]) yields

hj(x, t) = u
(
x− x(tj)

λ(tj)
, t+ tj − T+(u0)

)
for every t ∈ I η

2
. (2.8)

Combining (2.7) and (2.8), we get

+∞ > sup
j
‖hj‖S(I η

2
) ≥ lim inf

j−→∞
‖u‖S(tj− η2 ,tj+

η
2 ) ≥ ‖u‖S(T+(u0)− η2 ,T+(u0)) = +∞,

which contradicts (2.1).
From the above arguments, we know that (2.2) holds.
Let ψ ∈ C∞0 (RN ), ψ(x) = ψ(|x|), ψ ≡ 1 for |x| ≤ 1 ψ ≡ 0 for |x| ≥ 2 |∇ψ| ≤ 2.

Define ψR(x) = ψ( xR ) and

yR(t) =

∫
RN

|u(x, t)|2ψR(x)dx, ∀t ∈ [0, T+(u0)).

Then from Lemma 2.1 and the conservation of charge (1.4), one has

|y′R(t)| ≤ 2
∣∣∣Im ∫

RN

u∇u · ∇ψR(x)dx
∣∣∣ ≤

≤ C

R

( ∫
RN

|∇u(x, t)|2dx
) 1

2
( ∫
RN

|u(x, t)|2dx
) 1

2 ≤

≤ C

R

(∫
RN
|∇W (x)|2dx

) 1
2
( ∫
RN

|u0(x)|2dx
) 1

2

.

(2.9)
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Note that u(x, t) = λ(t)
N−2

2 v(λ(t)x+ x(t), t), we deduce for any R > 0, ε > 0∫
|x|<R

|u(x, t)|2dx = λ(t)−2

∫
|y−x(t)|<Rλ(t)

|v(y, t)|2dy =

= λ(t)−2

∫
B(x(t),Rλ(t))

⋂
B(0,εRλ(t))

|v(y, t)|2dy+

+ λ(t)−2

∫
B(x(t),Rλ(t))\B(0,εRλ(t))

|v(y, t)|2dy.

(2.10)

Using Hölder inequality and the compactness property of K in Ḣ1(RN ), we conclude
from (2.2) that

λ(t)−2

∫
B(x(t),Rλ(t))

⋂
B(0,εRλ(t))

|v(y, t)|2dy ≤ CR2ε2
( ∫
|y|≤εRλ(t)

|v(y, t)|2
∗
dy
) 2

2∗ ≤

≤ CR2ε2
∫
RN

|∇W |2dx

(2.11)

and

λ(t)−2

∫
B(x(t),Rλ(t))\B(0,εRλ(t))

|v(y, t)|2dy ≤ CR2
( ∫
|y|≥εRλ(t)

|v(y, t)|2
∗
dy
) 2

2∗ −→ 0

as t −→ T+(u0).

(2.12)

Combining (2.10), (2.11) and (2.12), we derive for all R > 0∫
|x|<R

|u(x, t)|2dx −→ 0 as t −→ T+(u0),

and so
yR(t) −→ 0 as t −→ T+(u0). (2.13)

From (2.9), (2.13), we obtain for any t ∈ [0, T+(u0)) and R > 0

yR(t) = |yR(t)− yR(T+(u0))| ≤

≤ C

R
(T+(u0)− t)

( ∫
RN

|∇W (x)|2dx
) 1

2
( ∫
RN

|u0(x)|2dx
) 1

2

. (2.14)

Let R −→ +∞ in (2.14), we get∫
RN

|u(t, x)|2dx = 0 for each t ∈ [0, T+(u0)),
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and then u ≡ 0 a.e. on RN × [0, T+(u0)), which contradicts (2.1). Therefore,
T+(u0) = +∞.
Step 2. u0 ≡ 0 in RN . If u0 6≡ 0 in RN , it holds true that

sup
t∈[0,+∞)

|x(t)| < +∞. (2.15)

In fact, assume that there exists an increasing sequence {tj}, tj −→ +∞(= T+(u0))
as j −→ +∞ such that

|x(tj)| −→ +∞ as j −→ +∞. (2.16)

It follows from the Hardy inequality and the compactness property of K in Ḣ1(RN )
that for any ε > 0, there exists a large number M(ε) > 0 such that for any M ≥M(ε)

sup
t∈[0,+∞)

∫
|y|≥M

(
|∇v(y, t)|2 + |v(y, t)|2

∗
)
dy < ε. (2.17)

Note that for any Q > R > 0 and t ∈ [0,+∞)∫
R<|x|<Q

|∇u(x, t)|2dx =

∫
Rλ(t)<|y−x(t)|<Qλ(t)

|∇v(y, t)|2dy. (2.18)

In the next discussion, we analyze the three possible cases of the limit of the sequence
{ λ(tj)
|x(tj)|} (select a subsequence if necessary).

(1) If lim
j→+∞

λ(tj)
|x(tj)| = 0, then for any Q > 0

lim
j→+∞

(
|x(tj)| −Qλ(tj)

)
= lim
j→+∞

(
|x(tj)|

(
1− Qλ(tj)

|x(tj)|

))
= +∞ > M(ε).

From (2.17) and (2.18), one has for any Q > 0

lim
j→+∞

∫
|x|<Q

|∇u(x, tj)|2dx ≤ lim
j→+∞

∫
|y|≥|x(tj)|−Qλ(tj)

|∇v(y, tj)|2dy ≤

≤ sup
t∈[0,+∞)

∫
|y|≥M(ε)

|∇v(y, t)|2dy ≤ ε.
(2.19)

Similarly, using the Sobolev inequality, we infer that for any Q > 0

lim
j→+∞

∫
|x|<Q

|u(x, tj)|2
∗
dx ≤ ε. (2.20)

Combination of (2.19), (2.20) yields that (selecting a subsequence if necessary) for
any Q > 0

u(x, tj) −→ 0 a.e. on {x ∈ RN ; |x| < Q} as j −→ +∞. (2.21)
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On the other hand, it follows from the conservation of charge (1.4) and Lemma 2.2
that

sup
j
‖u(tj)‖H1 <∞.

Up to a subsequence if necessary,

u(x, tj) ⇀ ũ weakly in H1(RN ) and L2(RN ) as j −→ +∞; (2.22)

and
u(x, tj) −→ ũ a.e. on RN as j −→ +∞. (2.23)

From (2.21) and (2.23), we infer that

ũ = 0 a.e. on {x ∈ RN : |x| < Q} as j −→ +∞;

and so
ũ = 0 a.e. on RN due to the arbitrariness of Q. (2.24)

From (2.21)–(2.24), up to a subsequence if necessary, we derive

u(x, tj) −→ 0 strongly in L2
loc(RN ) as j −→ +∞. (2.25)

Let ϕ ∈ C∞0 (RN ) be the given real-valued function in (1.6). Then it follows from
assumption (1.6) and Lemma 2.1 that for any t > 0∫

RN

ϕ(x)|u(x, t)|2dx ≥
∫
RN

ϕ(x)|u0(x)|2dx. (2.26)

Letting t = tj −→ +∞ in (2.26), together with (2.25), we deduce that∫
RN

ϕ(x)|u0(x)|2dx ≤ 0,

which is a contradiction because of the assumption:
∫
RN ϕ(x)|u0(x)|2dx > 0.

(2) If lim
j→+∞

λ(tj)
|x(tj)| ∈ (0,+∞), there exist R > 0 (which is independent of j, ε) and

j1 = j1(ε) > 0 such that R λ(tj)
|x(tj)| ≥ 2 and |x(tj)| ≥ M(ε) for any j ≥ j1. Then from

(2.17) and (2.18), one gets for any j ≥ j1,∫
|x|>R

|∇u(x, tj)|2dx ≤
∫

|y|≥(R
λ(tj)

|x(tj)|
−1)|x(tj)|

|∇v(y, tj)|2dy ≤

≤ sup
t∈[0,+∞)

∫
|y|≥M(ε)

|∇v(y, t)|2dy ≤ ε.
(2.27)
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If lim
j→+∞

λ(tj)
|x(tj)| = +∞, there exists j2 = j2(ε) > 0 such that (

λ(tj)
|x(tj)| − 1)|x(tj)| ≥M(ε)

for any j ≥ j2. Then from (2.17) and (2.18), we derive for any j ≥ j2,∫
|x|>1

|∇u(x, tj)|2dx ≤
∫

|y|≥(
λ(tj)

|x(tj)|
−1)|x(tj)|

|∇v(y, tj)|2dy ≤

≤ sup
t∈[0,+∞)

∫
|y|≥M(ε)

|∇v(y, t)|2dy ≤ ε.
(2.28)

Set J = max{j1, j2}. From (2.27) and (2.28), we conclude that there exists a positive
number R, which is independent of j, ε, such that for any j ≥ J∫

|x|>R

|∇u(x, tj)|2dx ≤ ε. (2.29)

Using the Sobolev inequality and the Hardy inequality, after a similar argument, we
conclude for any j ≥ J∫

|x|>R

|u(x, tj)|2
∗
dx ≤ C(ε), where C(ε) −→ 0 as ε −→ 0. (2.30)

Here we take the same symbols R, J in (2.29) and (2.30) for the sake of simplicity.
Let ϕ ∈ C∞0 (RN ), ϕ(x) = ϕ(|x|), ϕ ≡ |x|2 for |x| ≤ 1; ϕ ≡ 0 for |x| ≥ 2. Define

ϕR(x) = R2ϕ( xR ) and

zR(t) =

∫
RN

|u(x, t)|2ϕR(x)dx, ∀t ∈ [0,+∞).

It follows from Lemmas 2.1, 2.2 and the Hardy inequality that for any t ∈ [0,+∞)

|z′R(t)| ≤ 2
∣∣∣Im ∫

RN

u∇u · ∇ϕR(x)dx
∣∣∣ ≤

≤ CR2
( ∫
RN

|∇u(x, t)|2dx
) 1

2
( ∫
RN

|u(x, t)|2

|x|2
dx
) 1

2

CR2

∫
RN

|∇u0(x)|2dx.
(2.31)

From (2.29), (2.30) and Lemma 2.2, one has for any j ≥ J

8

∫
|x|≤R

(
|∇u(x, tj)|2 − |u(x, tj)|2

∗)
dx ≥ C(δ0)

∫
RN

|∇u0(x)|2dx, (2.32)

where R is independent of j.
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From (2.29), (2.30), (2.32) and Lemmas 2.1, 2.2, we obtain for any j ≥ J

z′′R(tj) = 4

∫
RN

ϕ′′R(|x|)|∇u(x, tj)|2dx−
4

N

∫
RN

∆ϕR(|x|)|u(x, tj)|2
∗
dx−

−
∫
RN

∆2ϕR(|x|)|u(x, tj)|2dx ≥

≥ 8

∫
|x|≤R

(
|∇u(x, tj)|2 − |u(x, tj)|2

∗)
dx−

− C
∫

|x|>R

(
|∇u(x, tj)|2 + |u(x, tj)|2

∗)
dx−

− C
∫

R≤|x|≤2R

(
|u(x, tj)|2

∗) 2
2∗ dx ≥ C

∫
RN

|∇u0(x)|2dx,

(2.33)

where R is given in (2.31), and independent of j.
Combining (2.31), (2.32) and (2.33), we conclude for any j ≥ J

CR2

∫
RN

|∇u0(x)|2dx ≥ |z′R(2tj)− z′R(tj)| =

= tj

1∫
0

z′′R(2stj + (1− s)tj)ds ≥ Ctj
∫
RN

|∇u0(x)|2dx,

from which we get a contradiction if j ≥ J is sufficiently large, because tj −→ +∞
as j −→ +∞, and R is independent of j. Here we have used the fact: replacing tj by
any t with t ≥ tj , j ≥ J , (2.33) still holds. This is not difficult to verify because the
sequence {tj} is taken to be increasing on j.

Whence (2.15) holds. Now we claim that there exists a positive number C0 (which
is independent of t) such that

λ(t) ≥ C0 for any t ∈ [0,+∞). (2.34)

We present a proof by contradiction. Assume that there is a sequence {tm},
tm −→ +∞ as m −→ +∞ such that

λ(tm) −→ 0 as m −→ +∞.

Observe that u(x, t) = λ(t)
N−2

2 v(λ(t)x + x(t), t). From the conservation of charge
(1.4), one has∫

RN

|v(x, tm)|2dx = λ(tm)2

∫
RN

|u(x, tm)|2dx = λ(tm)2

∫
RN

|u0(x)|2dx,
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which implies that

v(x, tm) −→ 0 a.e. on RN as m −→∞.

Whence from the compactness property of the set K in Ḣ1(RN ), we can find a sub-
sequence of {v(x, tm)} (still denoted by {v(x, tm)}) such that

v(x, tm) −→ 0 in Ḣ1(RN ) as m −→∞. (2.35)

However, one gets from Lemma 2.2∫
RN

|∇v(x, tm)|2dx =

∫
RN

|∇u(x, tm)|2dx '
∫
RN

|∇u0(x)|2dx > 0. (2.36)

This contradicts (2.35) by passing the limitm −→∞ in (2.36). Therefore (2.34) holds.
From (2.15) and (2.34), we conclude that for any t ∈ [0,+T+(u0)) and R > 0∫
|x|>R

|∇u(x, t)|2dx =

∫
|y−x(t)|>Rλ(t)

|∇v(y, t)|2dy ≤

≤
∫

|y|>Rλ(t)−|x(t)|

|∇v(y, t)|2dy ≤
∫

|y|>CR−C

|∇v(y, t)|2dy.

Whence it follows from (2.34) that for ε > 0, there exists a large number R(ε) > 0
such that for any t ∈ [0,+∞)∫

|x|>R(ε)

(
|∇u(x, t)|2 + |u(x, t)|2

∗)
dx < ε. (2.37)

In addition, Lemma 2.2 implies that

8

∫
RN

(
|∇u(x, t)|2 − |u(x, t)|2

∗)
dx ≥ C̃δ0

∫
RN

|∇u0(x)|2dx, (2.38)

It follows from (2.37) and (2.38) that there exists a sufficiently large number M0 > 0
such that for all t ∈ [0,+∞)

8

∫
|x|≤M0

(
|∇u(x, t)|2 − |u(x, t)|2

∗)
dx ≥ C

∫
RN

|∇u0(x)|2dx, (2.39)

where we take ε = ε0
∫
RN |∇u0(x)|2dx in (2.37) with ε0 > 0 suitably small.

Let zR(t) be defined as in the above. From Lemma 2.1, one has for any t ∈ [0,+∞)

|z′R(t)− z′R(0)| ≤ CR2

∫
RN

|∇u0(x)|2dx. (2.40)
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From (2.40) and Lemmas 2.1, 2.2, we obtain for every t ∈ [0,+∞)

z′′M0
(t) = 4

∫
RN

ϕ′′M0
(|x|)|∇u(x, t)|2dx− 4

N

∫
RN

∆ϕM0
(|x|)|u(x, t)|2

∗
dx−

−
∫
RN

∆2ϕM0
(|x|)|u(x, t)|2dx ≥

≥ 8

∫
|x|≤M0

(
|∇u(x, t)|2 − |u(x, t)|2

∗)
dx−

− C
∫

|x|>M0

(
|∇u(x, t)|2 + |u(x, t)|2

∗)
dx−

− C
∫

M0≤|x|≤2M0

(
|u(x, t)|2

∗) 2
2∗ dx ≥ C

∫
RN

|∇u0(x)|2dx.

(2.41)

Combining (2.40) and (2.41), we obtain for every t ∈ [0,+∞)

CM2
0

∫
RN

|∇u0(x)|2dx ≥ |z′M0
(t)− z′M0

(0)| =
t∫

0

z′′M0
(s)ds ≥ Ct

∫
RN

|∇u0(x)|2dx,

from which we get a contradiction if t > 0 is large enough unless
∫
RN |∇u0(x)|2dx = 0.

From the above argument of Steps 1, 2, we complete the proof of Theorem 2.3.

Proof of Theorem 1.1. We first introduce notation (see [19]): (SC)(u0) holds if for
the particular function u0 with

∫
RN |∇u0|2dx <

∫
RN |∇W |

2dx and E(u0) < E(W ).
Let u be the corresponding strong solution of problem (1.3) with maximal interval
of existence I, then I = (−∞,+∞) and ‖u‖S((−∞,+∞)) < ∞, where ‖ · ‖S(I) =
‖ · ‖

L
2(N+2)
N−2 (I,L

2(N+2)
N−2 (RN ))

.

Note that if ‖∇u0‖L2(RN ) ≤ δ, (SC)(u0) holds. Whence there exists a number EC
with δ ≤ EC ≤ E(W ) such that if u0 is as in (SC)(u0) and E(u0) < EC , (SC)(u0)
holds and EC is optimal with this property.

From Remark 2.8 in [19] and the uniqueness theory on strong solutions of (1.3)
(see Definition 2.10 in [19]), we know that problem (1.3) admits a unique maximal
strong solution u ∈ ((−T−(u0), T+(u0)), H1(RN )). If T+(u0) < ∞ then by Lemma
2.11 in [19], ‖u‖S(I+) = +∞, where I+ = [0, T+(u0)]. By the definition of EC , we
infer that E(u0) ≥ EC . If E(u0) = EC , then by Proposition 4.2 in [19], there exists
x(t) ∈ RN and λ(t) ∈ R+ such that

K =
{
v(x, t) =

1

λ(t)
N−2

2

u

(
x− x(t)

λ(t)
, t

)
: t ∈ I+

}
has the property that K is compact in Ḣ1(RN ). Therefore it follows from Theorem
2.3 that T+(u0) = +∞, u0 ≡ 0 in RN , which is a contradiction (we may always
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assume u0 6≡ 0 in RN . Otherwise, the uniqueness theory on strong solutions of (1.3)
in Definition 2.10 in [19] implies that problem (1.3) has only a trivial (global) solution).

If E(u0) > EC . Note that E(su0) −→ 0 as s −→ 0, there exists s0 ∈ (0, 1) such
that E(s0u0) = EC . Repeating the proof in the case E(u0) = EC , we also infer u0 ≡ 0
in RN , which is a contradiction. Similarly, a contradiction appears if T−(u0) <∞.

From the above arguments, we conclude that (SC) holds. That is, T−(u0) =

T−(u0) = +∞ and u ∈ C(R, H1(RN )), u ∈ L
2(N+2)
N−2 (R, L

2N(N+2)

N2+4 ). Moreover
from Remark 2.8 in [19] and following the proof of Theorem 2.5 in [19], ∇u ∈
L

2(N+2)
N−2 (R, L

2N(N+2)

N2+4 ).
Note that

u(t) = eit∆u0 + i

t∫
0

ei(t−s)∆|u(s)|
4

N−2u(s)ds.

Set F(t) = eit∆. Then the solution u can be rewritten as

u(t) = F(t)u0 + i

t∫
0

F(t− s)|u(s)|
4

N−2u(s)ds.

Let v(t) = F(−t)u(t). It follows from the Strichartz estimates (see [4, 21]) that for
any 0 < τ < t

‖v(t)− v(τ)‖H1 =

= ‖F(t)(v(t)− v(τ))‖H1 = ‖i
t∫
τ

F(t− s)|u(s)|
4

N−2u(s)ds‖H1 ≤

≤ C
(
‖|u|

4
N−2u‖

L2((τ,t),L
2N
N+2 (RN ))

+ ‖∇
(
|u|

4
N−2u

)
‖
L2((τ,t),L

2N
N+2 (RN ))

)
≤

≤ C‖u‖
4

N−2

S((τ,t))

(
‖u‖W ((τ,t)) + ‖∇u‖W ((τ,t))

)
,

where ‖u‖S(I) = ‖u‖
L

2(N+2)
N−2 (I,L

2(N+2)
N−2 (RN ))

, ‖u‖W (I) = ‖u‖
L

2(N+2)
N−2 (I,L

2N(N+2)

N2+4 (RN ))
,

and the Sobolev inequality is used: ‖u‖S(I) ≤ C‖u‖W (I), ∀I ⊆ R.
Whence ‖v(t) − v(τ)‖H1 −→ 0 as τ, t −→ +∞. Therefore, there exists u+ ∈

H1(RN ) such that v(t) −→ u+ in H1(RN ) as t −→ +∞. So

‖u(t)− eit∆u+‖H1(RN ) =

= ‖F(t)(v(t)− u+)‖H1(RN ) = ‖v(t)− u+‖H1(RN ) −→ 0 as t −→ +∞.

Similarly there exists u− ∈ H1(RN ) such that

‖u(t)− eit∆u−‖H1(RN ) −→ 0 as t −→ −∞.

Here it is not difficult to verify that

u+ = u0 + i

+∞∫
0

e−is∆|u(s)|
4

N−2u(s)ds, u− = u0 − i
0∫

−∞

e−is∆|u(s)|
4

N−2u(s)ds.
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