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GLOBAL WELL-POSEDNESS AND SCATTERING
FOR THE FOCUSING
NONLINEAR SCHRODINGER EQUATION
IN THE NONRADIAL CASE

Pigong Han

Abstract. The energy-critical, focusing nonlinear Schréodinger equation in the nonradial
case reads as follows:

10 = —Au — |u|ﬁu, u(z,0) =uo € H'(RY), N >3.

Under a suitable assumption on the maximal strong solution, using a compactness argument
and a virial identity, we establish the global well-posedness and scattering in the nonradial
case, which gives a positive answer to one open problem proposed by Kenig and Merle [Invent.
Math. 166 (2006), 645-675].
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1. INTRODUCTION AND THE MAIN RESULT

We consider the energy-critical nonlinear Schrédinger equation in RV (N > 3):

(1.1)

10w = —Au + |u\ﬁu in RV x R,
u(x,0) = ug in RV,

where u = u(z,t) : RN xR — C denotes the complex-valued wave function, i = /—1.

The sign “—” corresponds to the focusing problem, while the sign “+” corresponds

to the defocusing problem. Cazenave-Weissler [6,7] showed that if ||Vugl|2 is suit-

ably small, then there exists a unique solution u € C(R; H'(R™)) of (1.1) satisfying

llu]| 20vi2) 2(N+2) < oo. In the defocusing case, if ug € H*(RY) is radial,

Bourgain [1] proved the global well-posedness for (1.1) with N = 3,4, and that
for more regular ug, the solution preserves the smoothness for all time. (Another
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proof of this last fact is due to Grillakis [13] for N = 3.) Bourgain’s result is then
extended to N > 5 by Tao [29], still under the assumption that ug is radial. Sub-
sequently, Colliander-Keel-Staffilani-Takaoke-Tao [8] obtained the result for general
up € H'(R3). Ryckman-Visan [26] extended this result to N = 4 and finally to N > 5
by Visan [30]. In the focusing case, these results do not hold. In fact, the classical
virial identity shows that if F(ug) < 0 and |z|ug € L?(R"), the corresponding solution
breaks down in finite time.
Ginibre-Velo [11] considered a general case:

{i@tu = —Au—|ulr'u inRN xR, 12)

u(z,0) = ug in RV,

and established the local well-posedness of the Cauchy problem (1.2) (focusing case)
in the energy space H'(RM) with 1 < ¢ < 1+ ﬁ. Furthermore, they proved
the global existence for both small and large initial data in the L?-subcritical case:
1 < ¢ <1+ 4. In the L%supercritical case: 1 + + < ¢ < 1+ 57, Glassey [12],
Ogawa-Tsutsumi [24,25] showed that the strong solution of the Cauchy problem (1.2)
blows up in finite time for a class of initial data, especially for negative energy initial
data. Holmer-Roudenko [15] established sharp conditions on the existence of global
solutions of (1.2) with ¢ = 3. In the L?-critical case: ¢ = 1+ %7 Weinstein [31] gave a
crucial criterion in terms of L2-mass initial data. Relevant work on the above topics
of (1.2) is referred to [2,3,9,14,16,18,20,23,27] and the references therein.

Using the concentration compactness, which is obtained by Keraani [18§],
Kenig-Merle [19] considered problem (1.1) in the focusing case for N = 3,4,5, and
discussed global well-posedness and blow-up for the energy-critical problem (1.1) in
the radial case. Moreover, they expected their results could be extended to the case
of radial data for NV > 6, and believed that it remained an interesting problem to re-
move the radial symmetry assumption. Subsequently, Killip-Visan [22] considered the
focusing problem (1.1) with dimensions N > 5, and proved that if a maximal-lifespan
solution u : I x RN — C obeys sup,e; [|Vu(t)|2 < [VW]|2, then it is global and
scatters both forward and backward in time. Here W denotes the ground state, which
is a stationary solution of the equation of the focusing problem (1.1). In particular,
if a local strong solution has both energy and kinetic energy less than those of the
ground state W at some point in time, then the local strong solution is global and
scatters in higher dimensions N > 5. Further results are referred to [10,17].

In the present paper, under a suitable assumption on the local strong solution, we
establish the global well-posedness and scattering for the focusing problem (1.1) in
the nonradial case, which gives a positive answer to one open problem proposed by
Kenig-Merle in [19].

In order to state our main result conveniently, we rewrite the focusing problem
(1.1) as follows:
i0u = —Au — |u|ﬁu in RY x R, (1.3)

u(z,0) = ug € HY(RY), '
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Through a standard technical process (see [4]), one can easily check that the solution
u of (1.3) defined on the maximal interval (—T_(ug), T4 (ug)) obeys conservations of
charge and energy:

/|u(x,t)|2dx=/|u0(x)|2dw, Wt € (=T (uo), T (uo)), (1.4)
and
E(u(t)) = E(u), Vt€ (=T-(uo), T+ (uo)), (1.5)
where

1 1 . . IN
B(n) =2 [ e 0pde - o [t o, 2= 2V
RN RN

Talenti [28] proved that the function

N-—2

W(x) = N =2)) = 2)2%
(1 +1aP)

NS

satisfies [VW| € L2(RY) and solves the elliptic equation
—AW = |W|¥=W in RV,

The main result of this paper reads as follows.

Theorem 1.1. Assume that ug € H*(R™), N = 3,4,5. Then there exists a unique
solution u of (1.3) defined on the mazimum existence of interval (—T—(ug), Ty (uo))
with u € C((=T-(up), Ty (ug)), HL(RY)), where 0 < T_(ug), Ty (ug) < +o0.

Let E(ug) < E(W), [[Vuol 2@yy < [[VW||L2@ny. Assume that there exists a non-
negative real-valued function ¢ € C(RY) such that

/(p|u0|2dz >0 and
RN

ft)z0 (resp- sup f(t) §0>,

inf
t€(0, Ty (uo)) te(—T- (uo),0)

where

f@&) = 1Im /ﬂ(axt)Vgp(w) -Vu(z,t)dz.

RN

Then T_(ug) = T4 (ug) = 400, the solution u belongs to C(R', HY(RY)), and there
exists ug +,ug,— € HY(RN) such that

lim ||u(t) — €itA’ll,07+HH1(]RN) =0, tiiznoo u(t) — &

Jm o, || 1y = 0.
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Remark 1.2. (i) Let pr € C(RY) be a cut-off function, which satisfies
pr(x) =1if |z| < R; pr(x) =0if |z| > 2R; |Ver(x)| < % for any z € RY. Then it
follows from Lemma 2.2 below that

sup ‘Im /ﬂ(x,t)VgoR~Vu(x,t) dz| <
te(—T—(uo), T4+ (uo))
RN
C
< sup Slu®)lr2(rejzi<2r) [Vu(d) | L2 (r< |2 <2r) <

te(=T_ (uo), T (uo)) B

c
< EHUQHLQ(RN)||VUO||L2(RN) —0 as R — o0,

which implies that for any € > 0, there exists a large number R > 0 such that

inf Im | w(z,t)Vegr - Vu(z,t)de > —e.
£(0, T} (o) Z (@ Ver Vulz1)
R

However, this estimate does not work in obtaining (2.26) below because we have
to let t =t; — +o0 in (2.26). That is why we need the additional assumption (1.6)
in Theorem 1.1.

(i) If the initial datum ug € H'(RN) (N = 3,4,5) is radial. The global existence
of the strong solution of (1.3) and the scattering in H'(RY) are proved in [19] without
assumption (1.6). Here we do not need the radial symmetry assumption on g, which
is replaced by (1.6). Therefore, our conclusion (i.e., Theorem 1.1) improves the results
in [19] in some sense.

(iii) It is well known that if F(ug) < 0, up € HY(RY) with |z|ug € L*(RY), then
the solution u of (1.3) blows up at some finite time. But it does not contradict Theorem
1.1. In fact, under the assumptions in Theorem 1.1, the initial energy F(ug) > 0. In-
deed, using the assumption ||[Vuo| r2@yy < [[VW]| 2@~y and the Sobolev inequality,
we get

1

1
E(ug) = §||VU0||2Lz(RN) o

||U0||2L2* ®N) =

1 N-2 N ez
> (5 - WCNN 2||V“0||52(5{N))HvuOH%z(RN) =

1 N-2 .~ s 2 o
> (5 - 5Cin ||VW||L2(RN)) IVuol|L2@ny =

1
= NHVUOH%Z’(RN)’

where Cy = ||VWHL%2(RN) is the best Sobolev constant (see [28] for details).

Throughout this paper, we denote the norm of H'(RN), H'(RN) by ||lul/g =

1 1
(Jan (IVu(@)P+|u(@)|?)dz) 2, [Jull 2 = (g~ [Vu(z)]?dz)?, respectively, and positive
constants (possibly different line to line) by C'.
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2. PROOF OF THE MAIN RESULT

Lemma 2.1. Let u € C((—=T_(ug), Ty (ug)), H*(RN)) be a solution of (1.3), and
let ¢ € C*[0,00)) with ¢(s) = const if s > 0 is large. Then for any t €
(=T (uo), T (uo))

%/gp(|x|)|u(m,t)|2dac = 2[m/V<p(|x\) -Vu(z, t)u(z, t)d
RN RN
and
2
G [ bl Pds = [ " (ahVate.OPde - 5 [ Aptal)futa, ) de-

RN RN RN

—/Mwwmmaww
RN

Proof. Since the proof is similar to those of Lemma in [12] and Lemma 7.6.2 in [5],
we omit the details here. O

The following variational estimates are Theorem 3.9 and Corollary 3.13 in [19].

Lemma 2.2 ([19]). Suppose that

/ |V |*de < / VW |2dz and E(ug) < (1—380)E(W), where & € (0,1).

RN RN

Let I > 0 be the mazimal interval of existence of the solution u € C(I,H'(RN))
of (1.3). Then there exists 6 = 6(dg, N) > 0 such that for each t € I

/|Vu(:c,t)|2d:c< (1—8)/|VW|2dx,
RN RN

5/ Vu(z, )| 2dz < / (IVu(z, ) = |u(e, )[*")da,
RN RN
E(u(t)) > 0.

Furthermore, E(u(t)) ~ [ |Vu(z,t)[*dz ~ [ |Vuo|?dz, for all t € I with compara-
RN RN
bility constants which depend only on §g.

The following rigidity theorem plays a fundamental role in the proof of Theo-
rem 1.1.

Theorem 2.3. Assume that ug € H'(RY) satisfies

/|Vu0|2d:z:< /|VW|2da: and  E(ug) < E(W).

RN RN
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Let uw be the solution of (1.3) with the mazimal interval of existence
(=T—(uo), T+ (up)), and let the assumption (1.6) hold. Suppose that there exists
A(t) >0, z(t) € RN with the property that

K‘:{”““”::A@;zz“(x;é§ﬂ70: te (0.7 (w) }

is such that K is compact in H'(RN). Then Ty (ug) = +00, ug = 0 in RV,

Remark 2.4. If z(t) = 0 or A(t) > Ag > 0 and |z(t)| < Cp, Theorem 2.3 is verified
in [19] for ug € HY(RY).

Proof of Theorem 2.3. Step 1. T\ (ug) = +oo. If T (ug) < 400, then from Lemma
2.11 in [19], one has

lulstozrtuon =400, wherelellsiy =l sy, aqusp 0 (20)
Now we claim that
A(t) — +oo as t — T4 (up). (2.2)

Indeed if there exists a sequence {¢;}, t; — T4 (ug) such that A\(t;) — A < +o0 as
J — +oo.

Set vj(z) = v(z,t;) = ru(*5 z(ty) ¢

OB t;). It follows from the compactness of

1
M) T
K in H'(RYN) that there is a subsequence (still denoted by {v;}) and vy € H'(RYN)
such that
vi — vy in  H'(RM).

Then it holds

ufy - i&;”) = A(t) T v (At)y) — AT w(Ay) i H'RY).  (2.3)

If A =0, it follows from (2.3) that u(y — 573, ;) — 0 in H'(RY). So

IVu(tj)lp2@yy — 0 as t; — Ty (uo). (2.4)

Using the conservation of energy (1.5), one has
E(ug) = E(u(t;)) — 0 as t; — T4 (uo). (2.5)
In addition, (iii) in Remark 1.2 and the assumption: [|Vugl/r2 < ||VW]||12 yield
Vol < NE(uo). (2.6

Combining (2.5) and (2.6), we infer ||Vug|zz = 0. So up = 0 in RY. Using the
conservation of charge (1.4), one has for ¢ € [0, T (ug))

/|utx2d:1:*/|uo )|?dx =0,
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which implies us that u = 0 a.e. on RY x [0,7 (up)). This is a contradiction with
(2.1).

If lim A(¢;) = A € (0,+00). Let h(x,t) be the solution of (1.3) (which is

j—o0
guaranteed by Remark 2.8 in [19]) on the interval I,, = (T (uo) — 1, T4 (uo) + 1),
N-2

h(ZE,T+(U0)) = AT’U()(Ax), HhHS(I,,]) < +00, where n= T](||V1}0||L2(RN)).

Let hj(z,t) be the solution of (1.3) with h;(z, T (uo)) = u(z — f\g ; i) Then the
convergence in (2.3) and the continuous dependence on the initial data (see Remark
2.17 in [19]) imply that

th*hHS(Ig) — 0 as j—> +oo.

Then
J

In addition, the uniqueness theorem on the strong solution of (1.3) (see Definition
2.10 in [19]) yields

(t;)
j = — i — T f In. 2.
hj(z,t) u(a: )\(tj)’t+ t; +(u0)) or every te€ly (2.8)
Combining (2.7) and (2.8), we get

00 > sup illsry) = minf flulls, - g.6+2) = lullscr o) - 3.7 (o)) =+,

which contradicts (2.1).

From the above arguments, we know that (2.2) holds.

Let ¢ € C(RY), w(x) = ¥(|jz|), v = 1 for |z| < 1 ¢ =0 for |z| > 2 |Vy| < 2.
Define 1r(x) = (%) and

0= [ lu(e. 0P vrla)do, ¥t € 0.T:(uo)).
RN

Then from Lemma 2.1 and the conservation of charge (1.4), one has

lyn ()] < Q’Im/UVu-V¢R @ da:‘ <

1

E/\Vuxﬂdx /\uxt|dz < (2.9)

%(/ |VW(x)|2dx)§(/ \uo(x)|2dz>%.
I

IN
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N-—2

= v(A(t)x + x(t),t), we deduce for any R > 0, € > 0

Note that u(z,t) = A(¢)

(e, )Pz = A(t) 2 / oy £) 2y =

|z|<R ly—z(t)| <RX(t)
= )‘(t)_Q / |v(y,t)|2dy—|— (2’10)
B(x(t),RA()) () B(0,eRA())
LA / lo(y, 1) 2dy.

B(z(t),RA(t))\B(0,eRA(1))

Using Holder inequality and the compactness property of K in H? (RY), we conclude
from (2.2) that

2
¥

2*dy)z <

A1) 2 / oy <ore( [
B(a(t),RA(t)) () B(0,eRA(1)) ly|<CRA(E)

§0R262/|VW|2dx

RN
(2.11)
and
2
A1) 0Py < CR( [ o) dy) T 0
B(a(t),RA®)\B(0,cRA(t)) ly1><RA() (2.12)
as t— T+(U0).
Combining (2.10), (2.11) and (2.12), we derive for all R > 0
|u(x,t)|?de — 0 as t — Ty (up),
|lz|<R
and so
yr(t) — 0 as t — T4 (up). (2.13)
From (2.9), (2.13), we obtain for any ¢ € [0,7 (ug)) and R > 0
yr(t) = lyr(t) = yr(T (uo))| <
9 z H 2.14
< 5 @etun) =0 [ VW)Pdr) ([ un(o)dr)” (2.14)

RN RN
Let R — 400 in (2.14), we get

/ lu(t,z)|*dz =0 for each t € [0,T (up)),

RN



Well-posedness and scattering for nonlinear Schrédinger equation 495

and then v = 0 a.e. on RY x [0, (up)), which contradicts (2.1). Therefore,
T+ (Uo) = +o00.
Step 2. ug = 0 in RV, If ug # 0 in RY, it holds true that

sup |z(t)] < 4o0. (2.15)
te[0,400)

In fact, assume that there exists an increasing sequence {t,}, t; — +oo(= T} (uo))
as j — 400 such that

|z(t;)] — +o0 as j — +oo. (2.16)

It follows from the Hardy inequality and the compactness property of K in H LRN)
that for any € > 0, there exists a large number M (¢) > 0 such that for any M > M(e)

sup /(|W(y,t)|2+\u(y,t)|2*)dy<e. (2.17)

te[0,4+00)
ly|>M

Note that for any @ > R > 0 and ¢ € [0, +00)

Ve, £)2de = / Vo(y, £)2dy. (2.18)
R<|z|<Q RA®)<|y—=z(t)|<QA(?)
In the next discussion, we analyze the three possible cases of the limit of the sequence
{%} (select a subsequence if necessary).

() If lim 2 =0, then for any Q >0
J oo

lim (Jz(t;)] — QA(t;)) = lim (\x(tj)\ (1 - QWJ'))) = +00 > M(e).

jotoo j=too |2(t;)]

From (2.17) and (2.18), one has for any Q >0

lim [ [Vae,t;)Pde < lim / Voly,t,)Pdy <
J—+oo J—+oo
T >lx(t;)|—QN(t;
lz]<@ [yl =l (t;)]—QX(t;) (2.19)
<  sup / |Vu(y, t)|?dy < e.
te[0,4+00)
lyl>M (e)
Similarly, using the Sobolev inequality, we infer that for any @ > 0
lim lu(z,t;)* dz < e. (2.20)
J—+oo
lz|<Q

Combination of (2.19), (2.20) yields that (selecting a subsequence if necessary) for
any @ >0

u(z,t;) — 0 ae on {reRY; |z/<Q} as j— +oc. (2.21)
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On the other hand, it follows from the conservation of charge (1.4) and Lemma 2.2
that

sup [[u(t;) | mr < oo
J

Up to a subsequence if necessary,
u(w,t;) = u weakly in H'(RY) and L*RY) as j— 4oo; (2.22)
and
u(z,t;) — u ae.on RY as j— 4oo. (2.23)
From (2.21) and (2.23), we infer that
1=0 aeon {rcRY:|z[<Q} as j— +oo;
and so
=0 ae on RY due to the arbitrariness of Q. (2.24)

From (2.21)—(2.24), up to a subsequence if necessary, we derive

2RYY as j— 4oo0. (2.25)

loc

u(z,tj) — 0 strongly in L

Let ¢ € Cg°(RY) be the given real-valued function in (1.6). Then it follows from
assumption (1.6) and Lemma 2.1 that for any ¢ > 0

/np(w)|u(m,t)\2dx2 /(p(q:)|uo(m)|2dx. (2.26)

RN RN

Letting t = t; — +o0 in (2.26), together with (2.25), we deduce that

/ () o (2)|2da: < 0,
RN

which is a contradiction because of the assumption: [y (2)|ug(z)|?dz > 0.

(2) If .liin ‘;‘8]_3' € (0,400), there exist R > 0 (which is independent of j, €) and
J—+o0 J
A(t;)

j1 = ji(€) > 0 such that Ryh = 2 and |z(t;)| > M(e) for any j > j1. Then from
(2.17) and (2.18), one gets for any j > 71,

Ve, t))Pde < / Voly. 1)) dy <
o> R Y12 (R —Dla(t)] (2.27)
< sup / |Vo(y,t)2dy < e.
te[0,4+00)

ly|=>M (€)
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If lim W) = oo, there exists jo = ja(e) > 0 such that (2 — 1)|a(t;)] > M(e)
o too 17(E5)] [=(t5)] J

for any j > jo. Then from (2.17) and (2.18), we derive for any j > ja,

/ Vulz, t;)de < / Yoy, t))[2dy <

lz[>1 W12 (g =Dl (t)] (2.28)
< sup [Vu(y, t)[dy < e.
t€[0,4+00)
ly|>M (e)

Set J = max{j1,j2}. From (2.27) and (2.28), we conclude that there exists a positive
number R, which is independent of j, €, such that for any j > J

/ |Vu(z,t;)|dr <e. (2.29)
|z|>R

Using the Sobolev inequality and the Hardy inequality, after a similar argument, we
conclude for any j > J

lu(z,t;)|* dz < C(e), where C(e) — 0 as e—0. (2.30)
|z|>R
Here we take the same symbols R, .J in (2.29) and (2.30) for the sake of simplicity.

Let ¢ € CP(RY), o(x) = p(|2]), ¢ = |z|? for |z| < 1; p = 0 for |z| > 2. Define
or(x) = R2(%) and

— [ e 0P ora)de. i o, o)

It follows from Lemmas 2.1, 2.2 and the Hardy inequality that for any ¢ € [0, 4+00)

|zR(t)] < 2’Im/ﬂVu~VgoR(x)dx‘ <

Y (2.31)

<C’R2 /|Vux t) 2dm E /|u| E 50R2/|Vuo )|?da.

From (2.29), (2.30) and Lemma 2.2, one has for any j > J

8 / (\Vu(x,tj)|2 - |u(9:,tj)\2*)dx > C(dp) / |Vug(z)|*de, (2.32)

|z|<R RN

where R is independent of j.
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From (2.29), (2.30), (2.32) and Lemmas 2.1, 2.2, we obtain for any j > J

4 «
it =4 [ ehlla)IVuat)Pda = - [ Apnlel)lute ) do-

]RN ]RN
- / A2 () u(e, 1) Pdr >
]RN
> 8 / (Vi t5)[2 — (e, t5)[* )do— (2.33)
|z|<R
_¢ / (Ve )2 + [, )2 ) d—
|z|>R
¢ [ (uwt)P)Fdrzc [ [Fuo)Pda

R<|z|<2R RN

where R is given in (2.31), and independent of j.
Combining (2.31), (2.32) and (2.33), we conclude for any j > J

CR? / Vo (@) P > |Zp(2t5) — 2ia(t;)] =

RN

1
=t / 2p(2st; + (1 — s)tj)ds > Ct; / |Vug ()2 de,
0 RN

from which we get a contradiction if j > J is sufficiently large, because t; — +oo
as j — 400, and R is independent of j. Here we have used the fact: replacing ¢; by
any t with ¢ > ¢;, 7 > J, (2.33) still holds. This is not difficult to verify because the
sequence {t;} is taken to be increasing on j.

Whence (2.15) holds. Now we claim that there exists a positive number Cy (which
is independent of ¢) such that

A(t) > Cy  for any t € [0,+00). (2.34)

We present a proof by contradiction. Assume that there is a sequence {t,,},
ty, — +00 as m — +oo such that

AMtm) — 0 as m — 4o0.

Observe that u(x,t) = A(t) =
(1.4), one has

v(At)x + x(t),t). From the conservation of charge

/\v(x,tm)|2dx:)\(tm)2/|u(:z:,tm)|2dx:>\(tm)2/|u0(x)|2dx,
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which implies that
v(x,tym) — 0 ae.on RY as m — oo.

Whence from the compactness property of the set K in H'(RV), we can find a sub-
sequence of {v(x,t,)} (still denoted by {v(z,t,,)}) such that

v(z,ty,) — 0 in HY(RY) as m — oo. (2.35)

However, one gets from Lemma 2.2

/|Vv(x,tm)|2d9::/|Vu(a:,tm)|2da;:/\Vuo(z)|2dx>0. (2.36)
RN RN RN

This contradicts (2.35) by passing the limit m — oo in (2.36). Therefore (2.34) holds.
From (2.15) and (2.34), we conclude that for any ¢ € [0, 47T (ug)) and R > 0

/|w<:c,t>|2dx: / Yoy, )[2dy <

|z|>R |[y—x(t)|>RA(t)
< / Voly, t)[2dy < / Voly, t)dy.
[y|>RX(t)—|x(t)] ly|>CR-C

Whence it follows from (2.34) that for € > 0, there exists a large number R(e) > 0
such that for any ¢ € [0, +00)

/ (1Vule, D) + [ulz, )2 )dz < e. (2.37)
||>R(e)
In addition, Lemma 2.2 implies that
8/ (|[Vu(z, t)]* - |u(z,t)\2*)dx > 550 / |Vug(x)|?d, (2.38)
RN RN
It follows from (2.37) and (2.38) that there exists a sufficiently large number My > 0
such that for all ¢ € [0, +00)
8 / (|Vu(z,t)* - |u(x,t)|2*)dx > C/ |Vug(z)|*de, (2.39)
|z| <My RN
where we take € = € [pn [Vuo(z)[*dz in (2.37) with € > 0 suitably small.

Let zr(t) be defined as in the above. From Lemma 2.1, one has for any ¢ € [0, +00)

|2 (t) — 2R (0)| < CR? / |Vug(z)|*d. (2.40)

RN
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From (2.40) and Lemmas 2.1, 2.2, we obtain for every t € [0, +00)

4 .
) =4 [ (e IVua0)Pde - 5 [ Agas(ahluta, 0 do-

RN RN
—/A%mmmwwwmz
RN

> 8 / (1Vule, ) — [ulz, )2 )dz—

|z|<Mo

(2.41)

—c / (Vule, )2 + Juz, )2 )dz—
|z|>Mo

e / (Ju(z, 1) 2*)2%deC/Wu0(z)|2dx.

Mo<|z|<2M, RN

Combining (2.40) and (2.41), we obtain for every ¢ € [0, +00)

t

CME / |Vug(z)|?dx > |z§wo(t) — ZMO(O)| = /zj\’%(s)ds > Ct/ |Vug(x)|?de,

RN 0 RN

from which we get a contradiction if ¢ > 0 is large enough unless [,y [Vuo(z)[*dz = 0.
From the above argument of Steps 1, 2, we complete the proof of Theorem 2.3. [

Proof of Theorem 1.1. We first introduce notation (see [19]): (SC)(ug) holds if for
the particular function uy with [pn [Vug|?dz < [pn [VW|?dz and E(ug) < E(W).
Let u be the corresponding strong solution of problem (1.3) with maximal interval
of existence I, then I = (—o0,+00) and ||ulls((—c,400)) < 00, Where || - [[g(1) =

‘ 2(N+2) 2(N+2)
L N-2 (I,L N-2 (RN

Note that if || Vug || 2ryy < 8, (SC)(uo) holds. Whence there exists a number Ec
with § < E¢ < E(W) such that if ug is as in (SC)(ug) and E(ug) < E¢, (SC)(ug)
holds and E¢ is optimal with this property.

From Remark 2.8 in [19] and the uniqueness theory on strong solutions of (1.3)
(see Definition 2.10 in [19]), we know that problem (1.3) admits a unique maximal
strong solution u € ((—T-(ug), Ty (ug)), H(RN)). If T (up) < oo then by Lemma
2.11 in [19], [Jullg(7,) = +oo, where I, = [0, (ug)]. By the definition of E¢, we
infer that E(ug) > E¢. If E(ug) = E¢, then by Proposition 4.2 in [19], there exists
z(t) € RN and A(t) € R* such that

K= {v(x,t) = )\(t)lNz_2 u(m ;(f)(t)7t> tte I+}

has the property that K is compact in H L(RN). Therefore it follows from Theorem
2.3 that T\ (ug) = 400, up = 0 in R, which is a contradiction (we may always
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assume ug Z 0 in RY. Otherwise, the uniqueness theory on strong solutions of (1.3)
in Definition 2.10 in [19] implies that problem (1.3) has only a trivial (global) solution).
If E(ug) > Ec. Note that E(sug) — 0 as s — 0, there exists s € (0,1) such
that E(soug) = F¢. Repeating the proof in the case E(ug) = E¢, we also infer ug = 0
in RY, which is a contradiction. Similarly, a contradiction appears if T_(ug) < oc.
From the above arguments, we conclude that (SC) holds. That is, T_(ug) =

2(N+2) 2N(N+2)
T_(ug) = +oo and u € CR,HY(RN)), v € L~z (R,L ~°+i ). Moreover

from Remark 2.8 in [19] and following the proof of Theorem 2.5 in [19], Vu €
2(N+2) 2N(N+2)

L ~N—2 (RvL NZia )
Note that

¢
u(t) = e"Pug + i/ei(t_S)A|u(s)|ﬁu(s)ds.
0
Set F(t) = e*A. Then the solution u can be rewritten as

u(t) = F(tyug + i / F(t = s)|u(s)| 2 u(s)ds.
0

Let v(t) = F(—t)u(t). It follows from the Strichartz estimates (see [4,21]) that for
any 0 <7<t

[o() = v(T)|[ar =

= [[F@O () — o)l = IIi/f(t— $)lu(s)| 2 u(s)ds| g <

4 4
< N—2 N—-2 <
< C(I™7ul 188 ey * IVl ot ) <

_4
< CllallZZ oy (Ielhwicroy + IVulwic )

where fllsn =l 2p ) o gy Wellwen = ol oy | ongin o

and the Sobolev inequality is used: ||ul|s(;) < Cllullw (), YI CR.
Whence ||v(t) — v(7)||gr — 0 as 7,t — +o0. Therefore, there exists uy €

H'(RY) such that v(t) — uy in H*(RY) as t — +00. So

Ju(t) — € uy| gy =

= [FO)(w(t) = up )l mwny = [[0(t) = utllm@sy — 0 as & — 4o0.
Similarly there exists u_ € H'(RY) such that

[|u(t) — eitAu_HHl(RN) —0 as t— —oc.
Here it is not difficult to verify that
+o0 0

Uy = ug +1 / efiSA|u(s)|ﬁu(s)ds, u_ =ug —1 / efiSA|u(s)|ﬁu(s)ds. O

0 —o0
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