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OPEN TRAILS IN DIGRAPHS

Sylwia Cichacz, Agnieszka Görlich

Abstract. It has been shown in [S. Cichacz, A. Görlich, Decomposition of complete bipartite

graphs into open trails, Preprint MD 022, (2006)] that any bipartite graph Ka,b, is decompos-
able into open trails of prescribed even lengths. In this article we consider the corresponding

question for directed graphs. We show that the complete directed graphs
←→

K n and
←→

K a,b are
arbitrarily decomposable into directed open trails.
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1. INTRODUCTION

Consider a simple graph G whose size we denote by ‖G‖. Write V (G) for the vertex

set and E(G) for the edge set of a graph G. If G is a graph,
←→
G will denote the digraph

obtained from G by replacing each edge xy ∈ E(G) by the pair of arcs −→xy and −→yx.

Here and subsequently, a directed trail
−→
T of length n will be identified with a

sequence (v1, v2, . . . , vn+1) of vertices of
−→
T such that −−−→vivi+1 are distinct arcs of

−→
T for

i = 1, 2, . . . , n. Notice that we do not require the vi to be distinct. A trail
−→
T is closed

if v1 = vn+1 and
−→
T is open if v1 6= vn+1.

A sequence of positive integers τ = (t1, t2, . . . , tp) is called admissible for a di-

graph
←→
G if it adds up to ‖

←→
G ‖ and for each i ∈ {1, . . . , p} there exists an open

directed trail of length ti in
←→
G . Let τ = (t1, t2, . . . , tp) be an admissible sequence for

←→
G . If

←→
G is arc-disjointly decomposed into directed open trails

−→
T 1,
−→
T 2, . . . ,

−→
T p of

lengths t1, t2, . . . , tp respectively, then τ is called realizable in
←→
G and the sequence

(
−→
T 1, . . . ,

−→
T p) is said to be a

←→
G -realization of τ or a realization of τ in

←→
G . If for

each admissible sequence τ for
←→
G there exits a

←→
G -realization of τ , then the digraph

←→
G is called arbitrarily decomposable into open trails.

Let
←→
K n be a complete digraph and

←→
K a,b be a complete bipartite digraph with

two sets of vertices A and B such that |A| = a and |B| = b. In our paper we prove
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a necessary and sufficient condition for digraphs
←→
K n and

←→
K a,b to be decomposable

into arc-disjoint open trails of positive lengths t1, t2, ...tp for any admissible sequence
τ = (t1, t2, ...tp).

Observe that in G =
←→
K n or G =

←→
K a,b there does not exist an open trail of

length ‖G‖, so we can assume that p > 1.
Such problems were investigated in [4]:

Theorem 1.1 ([4]). A complete bipartite graph Ka,b is arbitrarily decomposable into
open trails if and only if one of the following conditions holds:

10 a = 1 or
20 a and b are both even.

For oriented graphs the similar problem of decomposition was considered by
Meszka and Skupień ([6]). They showed that complete multidigraphs are arbitrarily
decomposable into nonhamiltonian paths.

The first result on the topic of the arbitrary decomposition of graphs into trails is
due to Balister, who proved that if G = Kn for n odd or G = Kn − I, where I is a
1-factor in Kn, for n even, then G is arbitrarily decomposable into closed trails ([1]).
Horňák and Woźniak ([5]) showed that complete bipartite graphs Ka,b for a, b even
are also arbitrarily decomposable into closed trails. The notion of arbitrarily decom-
posable graphs into closed trails were generalized to oriented graphs (see Balister [2]
and Cichacz [3]). Balister proved a necessary and sufficient condition for a complete

digraph
←→
K n.

Theorem 1.2 ([2]). If
∑p

i=1
ti = 2

(
n

2

)
and ti > 2 for i = 1, . . . , p, then

←→
K n can be

decomposed as an arc-disjoint union of directed closed trails of lengths t1, t2, . . . , tp,
except in the case when n = 6 and all ti = 3.

Whereas Cichacz ([3]) showed that complete directed graphs
←→
K a,b are arbitrarily

decomposable into closed directed trails.
In this article we consider the corresponding question for open directed trails.

2. DECOMPOSITION OF COMPLETE BIPARTITE DIGRAPHS

There is no loss of generality in assuming that a 6 b for each complete bipartite

digraph
←→
K a,b. For simplicity of notation let si = t1 + . . . + ti.

Before we prove the main result in that section we will need the following lemma.

Lemma 2.1. Let t1, . . . , tp be positive odd integers and let
−→
G be a bipartite directed

trail of size ‖G‖ = t1 + . . .+ tp. Then,
−→
G can be decomposed into p open directed trails

of lengths t1, . . . , tp.

Proof. Write
−→
G = (x0, x1, . . . , xsp

) and define the decomposition of
−→
G as fol-

lows:
−→
T 1 = (x0, x1, . . . , xt1),

−→
T 2 = (xt1 , xt1+1, . . . , xt1+t2), . . . ,

−→
T p = (xt1+...+tp−1

,
. . . , xsp

).
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Because in a bipartite digraph there is no closed directed trail of odd size, all trails
defined above are open.

Theorem 2.2. Let G =
←→
K a,b (b ≥ a ≥ 1) and let A and B be the partition sets of G

with |A| = a and |B| = b. Let τ = (t1, . . . , tp) be an admissible sequence for G. Then,
unless a = b = 2 and τ = (2, 2, 4), (2, 4, 2) or (4, 2, 2), G has a realization of τ such
that each Ti has at leat one endvertex in B.

Proof. We will argue by induction on a. For a = 1 Theorem 2.2 is true. Thus let
a ≥ 2. If a = b = 2 then one can prove the theorem by inspection. From now on
assume that b ≥ 3 (even if a = 2). Let s denote the sum of odd terms in τ . Suppose
first that s > 0. Notice that any trail of odd length has an endvertex in B. Thus,

if s = 2ab we obtain a proper
←→
K a,b-realization of τ by Lemma 2.1. We may assume

s < 2ab. Note that s is even, since the size of G is even. Let (t′1, . . . , t
′

q) be a sequence
obtained form τ by deleting all odd terms. If we can find a realization (S, T ′

1, . . . , T
′

q)
of a sequence (s, t′1, . . . , t

′

q) such that each trail has endvertices in B, then we obtain
a desired realization of τ in G by applying Lemma 2.1 to S.

In the view of the above paragraph, we may assume that all terms of τ are even.
Suppose first that there exists tj > 2b. We may assume without loss of generality that

j = p. Let t′p = tp−2b. By induction we can find a realization (
−→
T 1,
−→
T 2, . . . ,

−→
T p−1,

−→
T ′

p)

of the sequence (t1, t2, . . . , tp−1, t
′

p) in
←→
K a−1,b. Putting

−→
T p =

−→
T ′

p ∪
←→
K 1,b we obtain a

proper
←→
K a,b-realization of τ .

From now on suppose that ti 6 2b for all i. We assume first that there exists
ti < 2b. In this case at least two terms of the sequence τ satisfy ti < 2b. We may assume

that t1 < 2b and tp < ab. We consider G as an arc-disjoint union of H =
←→
K a−1,b

and F =
←→
K 1,b of sizes 2(a − 1)b and 2b, respectively. Let j be the index such that

sj−1 6 2b and sj > 2b. Therefore 2 6 j 6 p − 1. If sj−1 = 2b then j > 3 and we
obtain a realization by applying the induction assumption to F with (t1, t2, . . . , tj−1)
and to H with (tj , tj+1, . . . , tp). Thus we may assume sj < 2b. Let us introduce

t′j = 2b−sj−1, t′′j = tj−t′j. By induction we can find a realization (
−→
T 1, . . . ,

−→
T j−1,

−→
T ′

j)

of (t1, . . . , tj−1, t
′

j) in F and a realization (
−→
T ′′

j ,
−→
T j+1, . . . ,

−→
T p) of (t′′j , tj+1, . . . , tp), such

that each trail has both endvertices in B (since all trails have even length). Since b > 3

we can permute vertices of B in F in such a way that the trail
−→
T ′

j has precisely one

endvertex common with
−→
T ′′

j forming an open trail
−→
T j of length tj .

Hence, we are left with the case t1 = t2 = . . . = tp = 2b. Let t′′p−1 = 2,
t′′p = 2b − 2 and t′p−1 = tp−1 − 2, t′p = 2. By induction we can find a real-

ization (
−→
T 1,
−→
T 2, . . . ,

−→
T p−2,

−→
T ′

p−1,
−→
T ′

p) of the sequence (t1, t2, . . . , tp−2, t
′

p−1, t
′

p) in
←→
K a−1,b. Putting

−→
T p−1 =

−→
T ′

p−1 ∪
←→
K 1,1,

−→
T p =

−→
T ′

p ∪
←→
K 1,b−1 we obtain a desired

←→
K a,b-realization of τ .



602 Sylwia Cichacz, Agnieszka Görlich

3. DECOMPOSITION OF COMPLETE DIGRAPHS

Let τ = (t1, . . . , tp) be an admissible sequence for G. We can assume that t1 ≤ . . . ≤ tp.
We shall write (tr1

1 , . . . , trl

l ) for the sequence (t1, . . . , t1
︸ ︷︷ ︸

r1

, . . . , tl, . . . , tl
︸ ︷︷ ︸

rl

).

Using Theorem 2.2 we prove the analogous result for complete digraphs.

Theorem 3.1. If τ = (t1, . . . , tp) is an admissible sequence for G =
←→
K n and n ≤ 4,

then τ is realizable in G, except in the case when n = 3 and all ti = 2.

Proof. Let τ = (t1, . . . , tp) be an admissible sequence for G =
←→
K n (p > 1). We

will argue by induction on n. The basic idea of the proof is to consider
←→
K n as an

arc-disjoint union of
←→
K 1,n−1 and

←→
K n−1, each of which have sizes 2(n− 1) and (n−

1)(n− 2), respectively. Let A = {x} and B be the partition sets of
←→
K 1,n−1 such that

|A| = 1 and |B| = n− 1.

We start our analysis by dealing with n 6 3. The digraph
←→
K 2 is trivially arbitrarily

decomposable into open trails. One may check that every admissible sequence τ for

the digraph
←→
K 3, except the sequence τ = (23) is

←→
K 3-realizable.

Fig. 1.
←→

K 4-realizations of three sequences

Suppose now that n > 4.

The sequences (26), (43) and (62) are
←→
K 4-realizable, see Figure 1. Obviously every

admissible sequence τ such that tp = 6 is realizable in
←→
K 4 (see the realization of (62)

in Figure 1). The same is with any admissible sequence for K4 such that tp = 2 (see
the realization of (26) in Figure 1)

Let τ = (t1, . . . , tp) be an admissible sequence for
←→
K n different than described

above. Notice that, since an admissible sequence τ is non-decreasing, tp ≥ 3 in any
admissible sequence for K4. We will consider now two cases.
Case 1: For some i ∈ {1, . . . , p}, si−1 < 2(n− 1) and si > 2(n− 1) (s0 = 0).
Let τ ′ = (t1, . . . , ti−1, t

′

i) and τ ′′ = (t′′i , ti+1, . . . , tp), where t′i = 2(n − 1) − si−1 > 1
and t′′i = ti − t′i > 1.

Assume first that i = 1, then t′i = 2(n − 1). By induction we can find a
←→
K n−1-realization (

−→
T ′′

1 ,
−→
T 2 . . . ,

−→
T p) of τ ′ (notice that n > 4). Let

−→
T 1 =

−→
T ′′

1 ∪
←→
K 1,n−1

and we obtain a
←→
K n-realization of τ .
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Similarly if i = p then we can find a realization (
−→
T 1,
−→
T 2 . . . ,

−→
T p−1,

−→
T ′

p) of τ ′

in
←→
K 1,n−1 by Theorem 2.2 and we put

−→
T p =

−→
T ′

p∪
←→
K n−1 obtaining a

←→
K n-realization

of τ .
For 1 < i < p we can find a

←→
K 1,n−1-realization (

−→
T 1, . . . ,

−→
T i−1,

−→
T ′

i) of τ ′ by

Theorem 2.2 and a
←→
K n−1-realization (

−→
T ′′

i ,
−→
T i+1 . . . ,

−→
T p) of τ ′′ by induction (notice

that τ ′′ 6= (23)). We define the open directed trail
−→
T ′

i as (v1, . . . , vt′
i
+1) and

−→
T ′′

i

as (w1, . . ., wt′′
i
+1). Observe that if t′i is odd, then v1 ∈ B or vt′

i
+1 ∈ B, whereas

if t′i is even, then v1, vt′
i
+1 ∈ B. Assume first that v1 ∈ B. Since n − 1 > 3, we

may choose the realization of τ ′ in such a way that v1 = wt′′
i
+1 and vt′

i
+1 6= w1.

In such a case, if we denote
−→
T i as (w1, . . . , wt′′

i
+1, v2, . . . , vt′

i
+1), then

−→
T i is an open

directed trail of length ti and the sequence (
−→
T 1, . . . ,

−→
T p) is a

←→
K n-realization of τ .

Hence, let v1 /∈ B. It implies that vt′
i
+1 ∈ B and we can assume that vt′

i
+1 = w1 and

−→
T i = (v1, . . . , vt′

i
+1, w2, . . . , wt′′

i
+1)). The sequence (

−→
T 1, . . . ,

−→
T p) is a

←→
K n-realization

of τ .
Case 2: For some i ∈ {1, . . . , p}, si = 2(n − 1). Let us define τ ′ = (t1, . . . , ti) and
τ ′′ = (ti+1, . . . , tp).

Suppose first that n = 4. Recall that 3 6 tp < 6. Therefore the sequences τ ′ and

τ ′′ are realizable in
←→
K 1,3 and

←→
K 3, respectively.

From now on let n > 5. Assume first that i > 1. If p > i + 1, then by Theo-

rem 2.2 we can find a realization (
−→
T 1, . . . ,

−→
T i) of τ ′ in

←→
K 1,n−1 and (

−→
T i+1 . . . ,

−→
T p)

is a
←→
K n−1-realization of τ ′′ by induction. If p = i+1 then tp > 2(n− 1) = ‖

←→
K 1,n−1‖

(because n ≥ 5). So we proceed in the same way as in Case 1 (splitting tp into two
parts this time).

Suppose now that i = 1. It implies t1 = 2(n− 1). If additionally t1 < tp, we have
si − t1 + tp < 2(n− 1) and we again proceed in the same way as in Case 1 (splitting
tp into two parts). Hence, we are left with the case t1 = tp = 2n− 2 ≥ 8.

By induction we can find a
←→
K n−1-realization (

−→
T 2,
−→
T 3, . . . ,

−→
T p) of (t2, t3, . . . , tp)

such that
−→
T 2 ends with an arc −→yz. Let

−→
T 1 be a closed trail

←→
K 1,n−1 and assume

(without loss of generality) that the trail finishes with −→yx. Changing −→yx to −→yz in
−→
T 1

and −→yz to −→yx in
−→
T 2 we complete the proof.
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