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EXISTENCE AND UNIQUENESS RESULTS
FOR FRACTIONAL DIFFERENTIAL EQUATIONS
WITH BOUNDARY VALUE CONDITIONS

LinLi Lv, JinRong Wang, Wei Wei

Abstract. In this paper, we study the existence and uniqueness of fractional differential
equations with boundary value conditions. A new generalized singular type Gronwall in-
equality is given to obtain important a priori bounds. Existence and uniqueness results of
solutions are established by virtue of fractional calculus and fixed point method under some
weak conditions. An example is given to illustrate the results.
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1. INTRODUCTION

In this paper, we study the following boundary value problems (BVP for short) for
fractional differential equations involving the Caputo derivative
{CDO‘y(t) = f(t,y(t)), O<a<l, teJ=10,T] a1

ay(0) +by(T) = c,

where “D® is the Caputo fractional derivative of order o, f : J X R — R will be
specified latter and a, b, ¢ are real constants with a + b # 0.

Very recently, fractional differential equations have been proved to be valuable
tools in the modelling of many phenomena in various fields of engineering, physics
and economics. We can find numerous applications in viscoelasticity, electrochemistry,
control and electromagnetic. There has been a significant development in fractional
differential equations. One can see the monographs of Kilbas et al. [7], Miller and Ross
[8], Lakshmikantham et al. [10], Podlubny [11]. Particulary, Agarwal et al. [1] establish
sufficient conditions for the existence and uniqueness of solutions for various classes of
initial and boundary value problem for fractional differential equations and inclusions
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involving the Caputo fractional derivative in finite dimensional spaces. Particularly,
fractional differential equations and optimal controls in Banach spaces are studied
by Balachandran et al. [2, 3|, Benchohra et al. [4], N’Guérékata [5, 6], Mophou and
N’Gueérékata [9], Wang et al. [12-19], Zhou et al. [20-22] and etc.

The existence of solutions for this kind of BVP has been studied by Benchohra
et al. [4]. Let us mention, however, the assumptions on f are strong (f is continuous
and satisfies uniformly Lipschitz condition or uniformly bounded). We will present
the new existence and uniqueness results for the fractional BVP (1.1) by virtue of
fractional calculus and fixed point method under some weak conditions. Compared
with the results appeared in [4], there are at least two differences: (i) the assumptions
on f are more general and easy to check; (ii) a priori bounds is established by a new
singular type Gronwall inequality (Lemma 3.1) given by us.

The rest of this paper is organized as follows. In Section 2, we give some notations
and recall some concepts and preparation results. In Section 3, we give a generalized
singular type Gronwall inequality which can be used to establish the estimate of fixed
point set {y = AFy, A € (0,1)}. In Section 4, we give two main results (Theorems
4.1-4.2), the first result based on Banach contraction principle, the second result
based on Schaefer’s fixed point theorem. Finally, an example is given to demonstrate
the application of our main results.

2. PRELIMINARIES

In this section, we introduce notations, definitions, and preliminary facts which are
used throughout this paper. We denote by C(J, R) the Banach space of all continuous
functions from J into R with the norm ||y||« := sup{|y(¢)| : t € J}. For measurable
functions m : J — R, define the norm

JIm@lPdt)”, 1<p< o,
J

Imllesry =19
inf { sup |m(t)|}, p= oo,
(=0 tej—J

where (J) is the Lebesgue measure of J. Let LP(J, R) be the Banach space of all
Lebesgue measurable functions m : J — R with ||m||1» (s r) < 0.

We need some basic definitions and properties of fractional calculus theory which
are used in this paper. For more details, see [7].

Definition 2.1. The fractional order integral of the function h € L([a,b],Ry) of
order a € R, is defined by

[oh(t) = / @F(‘Z;h(s)ds,

where T is the Gamma function.
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Definition 2.2. For a function h given on the interval [a,b], the a-th
Riemann-Liouville fractional order derivative of h, is defined by

om0 - o (5) / (t = 5" h(s)ds

a

Here n = [a] + 1 and [«] denotes the integer part of .

Definition 2.3. For a function h given on the interval [a,b], the Caputo fractional
order derivative of h, is defined by

t
1

(DEM = iy e / (= 5= 11 (5)ds,

a

where n = [a] + 1 and [a] denotes the integer part of .

Lemma 2.4. Let a > 0, then the differential equation *D*h(t) =0 has solutions
h‘(t) =co+cit+ 02t2 4+ Cn_1tn71,

where ¢; € R, 1=0,1,2,--- ,n—1,n=[a] + 1.
Lemma 2.5. Let a > 0, then

I“(°Dh)(t) = h(t) + co + c1t + cot® + - + ¢ 1" 1,

for somec; € R, i=0,1,2,--- ,n—1,n=[a] +1.
Now, let us recall the definition of a solution of the fractional BVP (1.1).

Definition 2.6 (|1, Definition 3.1]). A function y € C(J, R) is said to be a solution
of the fractional BVP (1.1) if y satisfies the equation *D%y(t) = f(t,y(t)) a.e. on J,
and the condition ay(0) + by(T) = ¢

For the existence of solutions for the fractional BVP (1.1), we need the following
auxiliary lemma.

Lemma 2.7 ([1, Lemma 3.2]). A function y € C(J,R) is a solution of the fractional
integral equation

T

t
1 o 1 b a—
Fi/ f(s) ds_a—i—b F(a)/(T—S) Lf(s)ds —c|
0

0

if and only if y is a solution of the following fractional BVP

{CDO‘y(t):f(t)’ O<a<l, ted (2.1)

ay(0) + by(T) = c.
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As a consequence of Lemmas 2.7, we have the following result which is useful in
what follows.

Lemma 2.8. A function y € C(J, R) is a solution of the fractional integral equation

t T
1 b

a 1 1 a—1
=ty =9 oD = = | s [ = s s e

0 0

if and only if y is a solution of the fractional BVP (1.1).

Lemma 2.9 (Bochner theorem). A measurable function f: J — R is Bochner inte-
grable if | f| is Lebesgue integrable.

Lemma 2.10 (Ascoli-Arzela theorem). Let S = {s(t)} is a real-valued (n-dimensio-
nal) vector function family of continuous mappings s : [a,b] — R. If S is uniformly
bounded and equicontinuous, then there exists a uniformly convergent function se-
quence {s,(t)}(n=1,2,...,t € [a,b]) in S.

Theorem 2.11. (Schaefer’s fized point theorem) Let F' : C(J,R) — C(J,R) com-
pletely continuous operator. If the set

E(F)={ze€C(J,R): x =AFz for some X€|0,1]}

1s bounded, then F has at least a fized point.

3. GRONWALL’S INEQUALITY
WITH MIXED TYPE SINGULAR INTEGRAL OPERATOR

In order to apply the Schaefer fixed point theorem to show the existence of solutions,
we need a new generalized singular type Gronwall inequality with mixed type singular
integral operator. It will play an essential role in the study of fractional BVP.

Lemma 3.1. Let y € C(J, R) satisfy the following inequality:

t T

|mmsa+b/u—@WHM@P@+c/auww*W@P@, (3.1)

0 0

where a € (0,1), A € [0,1 — %] for some 1 < p< ﬁ, a,b,c > 0 are constants. Then
there exists a constant M* > 0 such that

ly(t)] < M.

ppe—1)+1
pla—1)+1

_ 1, |y(t)| <1,
”@{ym,MM>L

Proof. Let M := (b+ c) { }; > 0, and



Existence and uniqueness results for fractional differential equations. . . 633

t

T
W(t)] < 2(t)] <a+1+0 / (t - )2 () Mds + ¢ / (T — 5 a(s)Mds <

1 p—1
1)+b / s)Pla— 1)ds ! /|x = 1ds T+
0
1

f o) ([ ™ <
0

Tp(a—1)+1 J
< 1
_(a+1)+b{ a_1+1] /|x ,, s+

Tp(a—1)+1 Ap
1d <
+c[ o= 1) +J /| [P=Tds <

<(a+1)+(b+e) {m] ’ /|x(s)|%ds -
0

S

T
1)+ M/ 2(s)ds.
0

By the standard Gronwall inequality, we have

ly(t)| < |z(t)] < (a+ 1)eMT .= M. O

4. MAIN RESULTS

Before stating and proving the main results, we introduce the following hypotheses.
(H1) The function f:J x R — R is Lebesgue measurable with respect to ¢ on J.
(H2) There exists a constant «; € [0,a) and real-valued function m(t) €

L(’%(J7 R, ) such that
|f(t,u1) — f(t,u2)] < m(t)|ug —uz| foreach te€J andall wuj,us €R.

(H3) There exists a constant as € [0,«) and real-valued function h(t) €
L2 (J, Ry) such that

|f(t,y)] < h(t) foreach teJ andall ye€R.



634 LinLi Lv, JinRong Wang, Wei Wei

For brevity, let M = ||m| = ||A]|
L1 (J,Ry) Lo (J,Ry)
Our first result is based on the Banach contraction principle.

Theorem 4.1. Assume that (H1)-(H3) hold. If

M e
Qoo r7(t)=—— (g B2 )<< I teJd, (41
aar(®) T(a)(9201)1-a ( el )‘w fora (1)

then the system (1.1) has a unique solution.

Proof. For each t € J , we have

t t l1—ao t a2
‘t—so‘ Lf(s,y(s) ‘ds<< (t—s)1a2ds> ( (h(s))=zds <
/ / /
t 1—as T o2
< (t —s)T==z ds) < (h(s))=zds <
/ /
To-ar
e

Thus, |(t — s)* 1 f(s,y(s))| is Lebesgue integrable with respect to s € [0,¢] for all
te Jandy e C(J,R). Then (t — s)*1f(s,y(s)) is Bochner integrable with respect
to s € [0,¢] for all t € J due to Lemma 2.9.
Hence, the fractional BVP (1.1) is equivalent to the following fractional integral
equation
t

y(t) = ﬁ / (£ — )2 £ (s, y(s))ds—
0

T

1 b a—1
- @/(T—s) f(s,y(s))ds—c|, ted
0
Let
Ta-axff o] Ta—asff Ic]
> a—as\1— + a—az\1— :
F(a)(m)l 2 |a+b| I'(a )(m)l @ |a+ b

Now we define the operator F' on B, := {y € C(J,R) : ||y|lcc <7} as follows

t

(Fy)(t) = %a) =9 s uts))as
0

1

b|T()

T
b 1
) f(s,y(s))ds —cf, ted
0/
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Therefore, the existence of a solution of the fractional BVP (1.1) is equivalent to that
the operator F' has a fixed point in B,.. We shall use the Banach contraction principle
to prove that F' has a fixed point. The proof is divided into two steps.
Step 1. Fy € B, for every y € B,.

In fact, for y € B, and all ¢t € J, one can verify that F is continuous on J, i.e.,
Fy e C(J,R), and

(Fy)(t / Y1 (s, y(s)) [dst

0
T
[ -t pteias+
|a+b|F la +b —
0
1 t
< a—1
< 5w [t s hs)ds
0
o f 5
T — ) L h(s)d ¢
|a+b|r()/< 8)* hls)ds + o <
0
¢ 17042 t a2
1 -
< oy /(t—s)ﬁds /(h(s»u%ds +
0 0
T 1—as T Qg
0 0
LI
la+0] —
T ) Tl
T Do) (§=2)t |a+b| D()(§=22)t2  fa+0] =

which implies that ||Fy||co < 7. Thus, we can conclude that for all y € B,, Fy € B,.

i.e., F': B, — B, is well defined.
Step 2. F' is a contraction mapping on B,..



636 LinLi Lv, JinRong Wang, Wei Wei

For z,y € B, and any t € J, using (H2) and Holder inequality, we get

[(Fz)(t) = (Fy) ()] <

1 / a—1
= p(a)o/(t—S) |f(s,2(s)) — f(s,y(s))|ds+

1
< w7 [ (=9 mla(s) = y(s)lds+
0
o
T — a—1 _ ds <
e [ €9 ket — o)l <
0
o = ylloe | elllz = ylloe [
T = Ylloo a—1 T — Ylloo
< — = t— d ds <
< = [um s tmtaas + PEEE [ = tm(sis <
0 0
t 170(1 t [e5]
RS Jimon?
o) (t—s)T==1ds (m(s))=1ds +
0 0
T 1—aq T aq
bl vl ([ir e fotr
T —s)aid aids | <
SRl I (CEREE (m(s)7rds | <
0 0
o —plloe e
m|| 1 +
I'a) (?‘:7311)1—041 I ||L(’11 (J,Ry)
blllz = glloe T
<
a0 (e) (2= " ) =
< | (e + MEE) e
= F(a)(ﬁ’%(‘fll)l‘c” |a—|-b| Ylloo-

So we obtain
HF~T - FyHoo < Qa,al,T(t)”:E - y”OO

Thus, F is a contraction due to the condition (4.1).

By Banach contraction principle, we can deduce that F' has an unique fixed point
which is just the unique solution of the fractional BVP (1.1). O

Our second result is based on the well known Schaefer’s fixed point theorem.
We make the following assumptions:

(H4) The function f : J x R — R is continuous.



Existence and uniqueness results for fractional differential equations. . . 637

(H5) There exist constants A € [0,1 — %] for some 1 < p < 2~ and N > 0 such
that

|f(t,u)] < N1+ |u]*) for each t € J and all u € R.

Theorem 4.2. Assume that (H4)—(H5) hold. Then the fractional BVP (1.1) has at
least one solution on J.

Proof. Transform the fractional BVP (1.1) into a fixed point problem. Consider the
operator F': C(J, R) — C(J, R) defined as (4.2). It is obvious that F' is well defined
due to (H4).

For the sake of convenience, we subdivide the proof into several steps.
Step 1. F' is continuous.

Let {y,} be a sequence such that y,, — y in C(J, R). Then for each ¢ € J, we have

[(Fyn)(t) = (Fy)(1)] <

t

1 o
: r<a>/ (6= )" 175 wn(5)) = T, ()l +
oo
b / (T =) £ (5 yn(5)) = £(5:9(s))lds <
1 / o
< @/(t— s) 1i1615>\f(8,yn(8)) f(s,y(s))|ds+

T
i L /(T — )t 31615) |f(s,yn(s)) — f(s,y(s))|ds <
0

|a + b ()
p T
< ||f(.,yn(.))r—aj)‘(~7y(.))||oo /(t _elds 4 |a|_l|7_b| S
0 0
- 14
= Tla+1) (1 - |a+b|> 1 Cowm () = FC ) e-

Since f is continuous, we have

e o
P00 = Fille < gy (14 1o ) 10 0) = Pyl — 0 as = o

Step 2. F' maps bounded sets into bounded sets in C(J, R).
Indeed, it is enough to show that for any n* > 0, there exists a £ > 0 such that
for each y € By» = {y € C(J,R) : ||yl < n*}, we have ||Fy|o < L.
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For each t € J, we get

-

[(Fy)(1)] <

—

(@) /(t = 8)* S (s y(s))lds+
0

T
— )t ]
\a+b\1“ / 5) |f$y())|d8+|a+b\+
0

T
i = ¢
Jro/(Ts) 1(1+|y( )| )dSerJr

T

t
e s+ o
< — t—g)2 14 ald
o [ T [
0

0

N et P
+r(a)0/(t )" y(s) s+

bV

arore ] @ lue)ds <

Fla+1) |a+bI'(a+1) |a+b
N

t
I‘i/ a1|y \ds—l—
0

by
la+ BT (a)

<

+

* (T — 5)>Jy(s)Mds <

NT® | NT | NTO( Y B NT® ()

<
“INa+1) |a+bT(a+1) |a+b T(a+1) la + bl (a+ 1)’

which implies that

— w|> < NTWWV( o >
[EYlloo < T(a+1) ( la+b])  Ja+b  T(a+1) PR
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Step 3. F maps bounded sets into equicontinuous sets of C'(J, R). Let 0 < 1 <ty < T,
y € B,-. Using (H5), we have

|(Fy)(t2) — (Fy)(t1)| =

t1

(t2 = 8)* 7" f(s,y(s))ds — ﬁ O/(tl —8)* 7 f(s,y(s))ds| <

o |
o |

< [(t2 = 5)* 7 = (t1 = 5)* 1] (s, 9(s))ds| +
i f —8)% L f(s,y(s))ds

IN

/! / (1= 9)"7 = (t2 = )° 7] (5. 9(5)) ds+
0

2

I'(a) / (t2 = ) f(s,y(s))lds <

< N / (1 — ) — (b2 — 9)* (1 + y(s)N)ds+
0

F(a)t
*\ A “ *\ A t2
< N“;(g)” D [l =92 = 2 =9 s + (1;(5)7) D [t —sas <
0 t1
NA+ @)Y o a oy < SN+ )Mt — t1)*
Smﬂh—tﬂ‘f‘?(tz—tl))é Tla+1)

As ty — ty, the right-hand side of the above inequality tends to zero, therefore F' is
equicontinuous. As a consequence of Step 1-3 together with the Arzela-Ascoli theo-
rem (Lemma 2.10), we can conclude that F' : C(J,R) — C(J, R) is continuous and
completely continuous.
Step 4. A priori bounds.

Now it remains to show that the set

E(F)={y€ C(J,R):y = AFy for some A € (0,1)}

is bounded.
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Let y € E(F), then y = AFy for some A € (0,1). Thus, for each ¢t € J, we have

¢
. 1 a—1 -
mwA(Fm)/u 971 (5, (s))ds
1 b /
ol [ -9 stends =),
0
For each t € J, we have
(o) < VT Ap|NT® Mel
Y= Tar1) TJarbT@tl)  Jato]
t T
AN a1 A AlbIN / _ gl A
+ /(t ) Hy(s)] ds+ +b|F ) Hy(s)|ds.

I(c)
0
By Lemma 3.1, there exists a M* > 0 such that
() < M, te .

0

Thus for every t € J, we have
[ylloc < M™.

This shows that the set E(F') is bounded.

As a consequence of Schaefer’s fixed point theorem, we deduce that F' has a fixed
point which is a solution of the fractional BVP (1.1). O

5. EXAMPLE

In this section we give an example to illustrate the usefulness of our main results.
Let us consider the following fractional boundary value problem,

cpe - “ly()]
{ D y(t)—(prgeet)(‘%, a€(0,1), teJ,

y(0) + y(T) = 0, (&)

Set .
ety
LY) = o T
169 = T ity
Let y1,y2 € [0,00) and ¢t € J. Then we have

(t,y) € J x [0,00).

eft

(14 9e?)

Yy Y2
I+ 1+y
_ ey — yal < _°©
(I149e)(1+y1)(1+y2) — 14 9et
Obviously, for all y € [0,00) and each t € J,
—t

|f(tay1) - f(ta y2)|

—t —t

g1 — o] < S| .
— Y21 > 10 Y1 — Y2

—t —t
e e
y '< <

t —.
#tvl = I+y|~ 1+9 = 10

1+ 9et
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For t € J, B € (0,a), let m(t) = h(t) = 9o € L¥(J,Ry), M =

—t
€

10

1 .
LB (J,Ry)

Choosing suitable 8 € (0, @), one can arrive at the following inequality

MT>8

L(a)(§=5)1°

3
><§<1
1-8

Qa,p1 =

Thus all the assumptions in Theorem 4.1 are satisfied, our results can be applied to
the problem (5.1).
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