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ON SOME CLASSES
OF MEROMORPHIC FUNCTIONS
DEFINED BY SUBORDINATION
AND SUPERORDINATION

Alina Totoi

Abstract. Let p € N* and 3,7 € C with 8 # 0 and let ¥, denote the class of meromorphic
. a_p .
functions of the form g(z) = W +a+az+...,z2€U,a_p #0.
We consider the integral operator Jp g, : Kp gy C Xp — X, defined by
1
5 [ ’
Ip.p.4(9)(2) = [’YZAYP /gﬁ(t)tvldt] v 9€Kppy, z€U.
0

We introduce some new subclasses of the class ¥,, associated with subordination and su-
perordination, such that, in some particular cases, these new subclasses are the well-known
classes of meromorphic starlike functions and we study the properties of these subclasses
with respect to the operator Jj 3, -.
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1. INTRODUCTION AND PRELIMINARIES

Let U = {z € C : |z| < 1} be the unit disc in the complex plane, U = U \ {0},
H({U)={f:U — C: f is holomorphic in U}, N={0,1,2,...} and N* =N\ {0}.
For p € N* let ¥,, denote the class of meromorphic functions of the form

a_ .
9(2)27,17‘*‘@0-1—&1»24-..., zelU, a_, #0.
We will also use the following notations:

/
Yi(a) = {g €%, :Re [29((?} >,z € U}, where a < p,
g(z

651



652 Alina Totoi

29'(2)
Z;(a,6):{g€§]p:a<Re {— o) ] <(5,z€U},Wherea<p<5,
Hla,n]={f € HU) : f(2) =a+ apz" + ap412" ™t +...} for a € C, n € N*,
Ay ={feHU): f(2) =2+ apn412" + ap422"? + ...}, n € N*, and for n = 1 we
denote A; by A and this set is called the class of analytic functions normalized at the
origin.

We remark that X7 («) is the well-known class of meromorphic starlike functions
of order o, when 0 < o < 1.

Definition 1.1 ([4, p. 4]). Let f and F be members of H(U). The function f is said
to be subordinate to F, written f < F or f(z) < F(z), if there exists a function w
analytic in U, with w(0) = 0 and |w(z)| < 1, such that f(z) = F(w(z)).

Definition 1.2 ([4, p. 16]). Let ¢ : C*> x U — C and let h be univalent in U. If p is
analytic in U and satisfies the ( second order ) differential subordination

b(p(2), 29/ (2), 2°p" (2); 2) < h(z2), (1.1)

then p is called a solution of the differential subordination. The univalent function ¢
is called a dominant of the solutions of the differential subordination, or more simply,
a dominant, if p < ¢ for all p satisfying (1.1). A dominant ¢ that satisfies ¢ < ¢ for
all dominants ¢ of (1.1) is said to be the best dominant of (1.1). (Note that the best
dominant is unique up to a rotation of U).

If we require the more restrictive condition p € Hla,n], then p will be called an
(a,n)-solution, ¢ an (a,n)-dominant, and ¢ the best (a,n)-dominant.

Definition 1.3 ([?], [1, p. 98]). Let ¢ : C3> x U — C and let h be analytic in U.
If p and ¢(p(2),2p'(2), 2%p"(2); z) are univalent in U and satisfy the second order
differential superordination

h(z) < @(p(2), 20 (2), 2°p"(2);2), 2 €U, (1.2)

then p is called a solution of the differential superordination. An analytic function ¢
is called a subordinant of the solutions of the differential superordination, or more
simply, a subordinant, if ¢ < p for all p satisfying (1.2). An univalent subordinant ¢
that satisfies ¢ < ¢ for all subordinants ¢ of (1.2) is said to be the best subordinant.
Note that the best subordinant is unique up to a rotation of U.

Definition 1.4 ([1, p. 99]). We denote by @ the set of functions f that are analytic
and injective on U \ E(f), where

B(f) = {c € 00 s tim () = o0}

and they are such that f'(¢) # 0 for ( € OU \ E(f). The subclass of @ for which
f(0) = a, is denoted by Q(a).
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Definition 1.5 ([4, p. 46]). Let ¢ be a complex number such that Rec > 0, let n be
a positive integer, and let

n 2Rec

Cp = Cplc) = ——

I
Rec +ime

lely/1+ (1.3)

2C,
If R(z) is the univalent function defined in U by R(z) = ﬁ, then the “Open Door”

function is defined by

ch(z)R<z+b>20 (2 4+ b)(1 + bz) L4)

’ 1+bz "(14+b2)2 — (2 +0)2’

where b = R71(c).

Theorem 1.6 ([4, p. 83]). Let 3,y € C and let h be convex in U, with h(0) = a. Let
n be a positive integer. Suppose that the differential equation

nzq'(z)
q(z) + W = h(z) (1.5)

has a univalent solution q that satisfies q(z) < h(z). If p € Hla,n] satisfies

zp'(2)

3p(2) +1 =< h(z), (1.6)

p(z) +

then p(z) < q(z), and q is the best (a,n)-dominant of (1.6).

Corollary 1.7 ([4, p. 84]). Let h be convex in U, with h(0) = a, and let m and n
be positive integers. Let q.,, and g, be univalent solutions of the differential equation
(1.5) for n =m and n respectively, with q, < h. If m > n, then ¢, < qn.

Theorem 1.8 ([5], [1, p. 114]). Let 3,y € C and let h be convez in U with h(0) = a.
Suppose that the differential equation

24 (2)

1D+ Za 47

=h(z), zeU,

has the univalent solution q with q(0) = a, and q(z) < h(z). If p € Hla,1] N Q and

zp'(2)

p(z) + =———— is univalent in U, then
(2) Bp(z) +v

zp'(2)

h(z) < p(z) + 302 + 7

= q(2) < p(2).

The function q is the best subordinant.
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Theorem 1.9 ([4, p. 86]). Let 8,7 € C with 8 # 0, and let n be a positive integer.
Let Rgqy~n be as given in (1.4), let h be analytic in U with h(0) = a, and let
Re[Ba++v] > 0. If

Bh(z) +7 < Rga+t~y,n(2),
then the solution q of

nzq'(z)
q(z) + B+ h(z), (1.7)

with q(0) = a, is analytic in U and satisfies Re [Bq(z) + 7] > 0.
If a # 0, then the solution for (1.7) is given by

where

If a = 0, then the solution is given by
-1

X ﬂ / X —1
q(z)=H=(z) |= | H~ ()t dt -
n !

2 1
) li [ 17 tldtl NG
H(z) = zexpf/oz @dt.

Theorem 1.10 ([4, p. 97]). Let 3, v € C with 8 # 0, and let n be a positive integer.
Let Rgqy~n be as given in (1.4), let h be analytic in U, with h(0) = a, Re [Ba+~v] > 0
and

I

where

(1) Bh(2) +7 < Rpatym(2)-

If q is the analytic solution of the Briot-Bouquet differential equation

nzq'(z) s
q(2) + O h(z)
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as given in (1.8), and if

!/
(it) h is convex or Q(z) = _E) is starlike,

Baq(z) +~

then q and h are univalent. Furthermore, if p € Hla,n] satisfies

2p'(2) ;
p(2) + O h(2),

then p < q, and q is the best (a,n)-dominant.
Theorem 1.11 ([3]). Let 8,y € C and let h be a convex function in U, with

Re[Bh(z)+~] >0, zeU.
Let g, and qi be the univalent solutions of the Briot-Bouquet differential equation

negs) o .
Q(Z)"‘W—h( )s €U, q(0)=h(0),

forn =m and n = k respectively. If m/k, then qi(z) < gm(2) < h(z). So, qr(z) <
q1(2) < h(z).
Theorem 1.12 ([5], [1, p. 117]). Let 8, v € C and let the function h € H(U) with
h(0) = a and Rec > 0, where ¢ = Ba + v and suppose that

(1) Bh(z) +7 < Rea(2).
Let q be the analytic solution of the Briot-Bouquet differential equation

R A C)

and suppose that

is starlike in U.

Ifpe Hla,1]NQ and p(z) + is univalent in U, then

2p'(2)
Bp(z) +v

h(z) < p(z) + = q(z) < p(2)

and the function q is the best subordinant.

Corollary 1.13 ([8]). Letp € N*, 3,y € C with 8 # 0 and Re (y—pB) > 0. Ifg € &,

and ,
ﬁzg(fj) +7 < Ry—pgp(2),
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then 1
y—pB [* 17
6) = Jpato)) = | 222 [ et e,
with 2PG(z) #0, z € U, and

2G'(2)
G(z)

Re [ﬂ +"y}>0, zeU.

All powers are chosen as principal ones.
We remark that if p € N*, 3,7 € C with 8 # 0, Re (y — pf) > 0 and g € ¥,, with

zg'(2)
b 9(2)

we have from Corollary 1.13 that G = J, g ,(g9) € X, with 2PG(z) # 0, z € U, so

+9 < Ry_ppp(2), 2z€U,

!
P(z)=— ZS(S) € H|p, p]. Having these conditions, it is easy to see that from
_ 2 B :
G(z) = P ph / t"’lgﬂ(t)dt} , zel,
27 0
we obtain
2P'(2) 2g'(2) 2G'(2)
P(z) + =— , where P(z)=— . 1.9
N OE e o)

2. MAIN RESULTS

In this section we present and prove five theorems and five corollaries concerning the
integral operator J, . We consider some new subclasses of the class ¥, associated
with superordination and subordination, and we establish the conditions such that
when we apply the integral operator J, g to a function which belongs to one of these
new subclasses, the result remains in a similar class.

The first result is a simple lemma and we will use it latter to present some examples
for the results included in this paper. For this lemma we need the next criteria for
convexity:

Theorem 2.1 ([6]). If f € A, and

n
1
<
@< zel,
then
1
1"(2) <1, zeU,

f'(z)
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hence, f is convex. The result is sharp for the function
Zn+1

Lemma 2.2. Let o,8,7 € C with v # 0, a +y # 0 and |B] < |y|. Let h be the

Sfunction
az

Bz+~’

h(z) =z + zel.

If we have
AaBy?| < (7] = 18])° e+, (2.1)

then h is convex in U.

Proof. Since |B| < |y| we have Bz +v # 0, z € U, so, h € H(U). We also have
o+ ~

R'(0) = # 0, hence h e A.
a -+
It is easy to see that
2a8y
hW'(z)=——""—, z€U,
& =By
hence
2 2 2 1
Y )| = b Iozﬁvl3 - Iaﬁfgﬂ <l Leuw
aty la+] B2+ (W[ =18 la+~] ~ 2

For the last inequality we used the fact that 4|a8v2| < (|v| — |8])3|a + 7.
Using Theorem 2.1, for n = 1, we obtain that h is convex in U.

Remark 2.3. 1. It is obvious that if & is a convex function in U (with h’(0) # 0),
then §; + d2h(rz) is also a convex function, when r € (0, 1], 1,92 € C, d2 # 0.
2. If we consider o = |3| =1 in the above lemma, then the condition (2.1) becomes

APy < |y + 1y - D2 (2.2)

It is not difficult to verify that the condition (2.2) holds for each real number v > 3, 2.
In other words, the functions

z z
+ , 2+
vtz -z

, z€eU,

are convex functions when v > 3, 2.
We mention here that in 7] the authors proved that the function

z
h :]_ _—
(2) +Z+z+2’ zeU,

is convex in U, so the function z + 5 is also a convex function.



658 Alina Totoi

Next, we define some new subclasses of the class ¥, associated with superordina-
tion and subordination, such that, in some particular cases, these new subclasses are
the well-known classes of meromorphic starlike functions.

Definition 2.4. Let p € N* and hq,ho,h € H(U) with hq1(0) = ho(0) = h(0) = p
and hq(z) < ha(z). We define:

98, (hy, ha) = {g €5, hi(z) < —zjég) < hg(z)},

2, (h) = {g €x,: _2(@) h(z)} .

9(2)
-2
We remark that if we consider h(z) = hpa(z) = M,
—z
U,0 < a < p,since by, o(U) = {z € C: Rez > a}, we have XS, (h) o) = X5 ().
Theorem 2.5. Let p € N* and 3,7 € C with 5 # 0 and Re (v —pB) > 0. Let h; and
ha be convex functions in U with h1(0) = ho(0) = p and let g € £S,(h1, ha) such that

z €

29'(2)
e

Suppose that the Briot-Bouquet differential equations

+9 < Ry_ppp(2), ze€U.

4E) N and o) e PFLE)
(I(Z)‘Fm—hl( ) d g )+7—BQ(2) hao(z), z€eU,

have the univalent solutions qi and, respectively, ¢, with ¢i(0) = ¢5(0) = p and
q% =< hl, qg =< h2.

2g'(z) . , 2G'(2)
Let G = J, . is univalent in U and € Q, then
P,ﬁ,'Y(g) f g(z) G(Z)

G € SS,(a1, 48).

The functions qi and q5 are the best subordinant and, respectively, the best
(p, p)-dominant.

!
Proof. From g € £5,(h1, ha) we have Zg((j) € H({U) and
g(z
29'(2)
hi(z) < — < ha(z2), 2.3
1) < =2 <o) (2.3
with h1 < he and Ay (0) = hg(O) =Dp.
! /
Let P(z) = @ (Z), z € U. Since 'y—l—ﬁZg (2) < Ry_ppp(2), z € U, we have from

G(z) 9(2)
Corollary 1.13 that G = Jp, 3,,(9) € Xp, with 2PG(2) # 0, z € U. Hence, P € H[p, p|.
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From (1.9) and (2.3), we obtain

2P'(z)
v — BP(2)

If we apply Theorem 1.6 (for a = n = p, h = hy and with —/ instead of 3) to the
subordination

< ha(z), where P(z)= —zgéz), zel.

hi(z) < P(z2) +

zP'(2)
P(z) + < hs(z), ze€U,
() + o <hale)

we get

P(z) < ¢5(2), zeU. (2.4)

zP'(z) . ) )
Because P € H[p,p] N Q and P(z) + Y= BP() is univalent in U, we may apply
v — z

Theorem 1.8 (for a = p, n = 1, h = hy and with —f instead of 3) to

zP'(2)
hi(z) < P(2) + 5= BP(z)’
and we get

qi(2) < P(2), z € U. (2.5)

From (2.4) and (2.5) we have
qi(2) = P(2) < g(2), zeU,
which is equivalent to

i) < - <4

(2), =zeU. (2.6)

Since G € ¥, we have from (2.6) that G € XS, (qi, ¢5).
From Theorem 1.6 and Theorem 1.8 we also have that the functions ¢} and ¢} are
the best subordinant and, respectively, the best (p, p)-dominant. O

If we consider in the hypothesis of Theorem 2.5 the condition
Re[y— Bha(2)] >0, zeU,

instead of

zg'(2)
I} +v<Ry_pgpp(2), z€U,
g(z) Y—Bp p( )
we get the next result.
Theorem 2.6. Let p € N* and 3,7 € C with 5 # 0 and Re (y — p3) > 0. Let hy and
he be convex functions in U with hq1(0) = ha(0) = p, h1 < hy and

Re[y — Bha(2)] >0, zeU.
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! Gl
29'(2) is univalent in U and 2G(2)

9(2) G(2)

G € ESP(QL qg)a

Let g € ¥Sp(h1,he) and G = J, 5(g). If
then

€Q,

where g and ¢§ are the univalent solutions of the Briot-Bouguet differential equations

q(z) + ,yz_qﬂ(qz()z) =hi(z), z€U, (2.7)
and, respectively,
q(z) + % = ha(z), z€U, (2.8)

with q1(0) = ¢5(0) = p.
The functions qi and % are the best subordinant and, respectively, the best
(p, p)-dominant.

Proof. From g € ¥£.5,(hy, he) we have

_29'(2) A s
hl( ) 9(2) h2( )7 € Uv
hence ,
v Bn(e) <7+ 52 <9 = Bha(e), €. (2.9

Since Re [y — Bha(2)] > 0, z € U, we get from (2.9) that

zg'(2)
9(2)

Re[y—Bhi(2)] >0 and Re [’y—i—ﬂ ]>0, zeU.

Now, it is obvious that we have

zg'(2)
+ 5 < R,_ z), zeU,
v g(z) ¥ 51)71)( )

v —PBhi(z) < Ry_pp1(z) and v — Bha(z) < Ry_pgp(2), z€U.

It is easy to see that the conditions from the hypothesis of Theorem 1.9 are fulfilled
(for h = hy,a = p and n = 1) so, the solution ¢} of the equation (2.7) with ¢1(0) = p
is analytic in U. Analogous we have that the solution ¢4 of the equation (2.8) with
¢5(0) = p is analytic in U.

Since h; and hs are convex functions, we have from Theorem 1.10 that the
analytic functions ¢} and ¢5 are univalent in U, and from Theorem 1.11 (since
Re [y — Bhi(z)] > 0 and Re[y — Bha(2)] > 0, z € U) we have the subordinations
g} < hy and ¢} < ha.

Therefore, the conditions from the hypothesis of Theorem 2.5 are fulfilled and the
result follows using this theorem. O
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Remark 2.7. Let the conditions from the hypothesis of Theorem 2.6 be fulfilled. If we
consider, in addition, that ¢} and ¢} are the univalent solutions of the Briot-Bouquet
differential equations

(2) + p2q'(2)

Po o) =hi(z), zeU,

and, respectively,

4z oy
q(Z) + N — ﬁq(Z) - h2( )a € Ua

with ¢} (0) = ¢3(0) = p, we have from the above theorem and Corollary 1.7, that

~2G'(2)
G(z)

@ (2) < qi(2) < <q5(2) < q3(2), z€U.

Hence G € £5,(ql, ¢5) is the best choice.
If we consider for Theorem 2.5 only the subordination, we obtain the next result.

Theorem 2.8. Let p € N* and 3,7 € C with 3 # 0 and Re (y — pB) > 0. Let h be a
convez function in U with h(0) = p and g € £S,(h) such that

zg'(2)
p 9(2)

Suppose that the Briot-Bouquet differential equation

+9 < Ry_ppp(2), ze€U.

pzd'(2) ;
v — Bq(z) =2,

has the univalent solution q with q(0) = p and g < h. Then

q(z) + zeU,

G = Jpp~(9) € ES,(q)-

The function q is the best (p, p)-dominant.

Proof. Let P(z) = —Zggg)

2PG(2) #£0,z€ U, so P € Hlp,p|.
Since P is analytic in U, we have from (1.9) that

, 2 € U. We know from Corollary 1.13 that G € ¥, with

2P(z)  _29'(2)
PO+ =5 = g 7Y
Because g € 35,(h) we have Zg;S) < h(z), z € U, hence
P+ L ), seu
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Using Theorem 1.6 (for a = n = p and with —3 instead of 3) we get P < ¢, so

~2G'(2)
G(2)

<q(z), zel. (2.10)

Since G € ¥, we obtain from (2.10) that
G = Jpp(9) € X5p(q).

We also have from Theorem 1.6 that the function ¢ is the best (p,p)-dominant. [

Theorem 2.9. Let p € N* and 3,y € C with 8 # 0 and Re [y —pB] > 0. Let hy and
he be analytic functions in U with hi(0) = ha(0) = p, hy < he and

(i) v —Bha(z) < Ry_pg1(2), z€U.

If ¢ and qo are the analytic solutions of the Briot-Bouquet differential equations

q(z) + % =hi(z), z€U, (2.11)
and, respectively,
q(z) + % = ha(z), z€U, (2.12)

with ¢1(0) = ¢2(0) = p and if

/
) 260 (2) is starlike in U,

v — Baqi(2)
/
(#it) he is convex or _ () is starlike,
v — Baa(2)
then g1 and qo are univalent in U.
29'(2) 2G'(2)

€Q,

18 univalent in U and

9(2) G(2)

G e ESp(ql,QQ).

Moreover, if g € 3.S,(h1, he) such that
where G = Jp .4(g), then

The functions q1 and qo are the best subordinant and, respectively, the best
(p, p)-dominant.

Proof. From hy < hg and (i) we have
v — Bhi(z) < v — Pha(2) < Ry_ppi(2), ze€U. (2.13)
From (2.13), using also the fact that R_,51(2) < Ry_pgp(2), 2 € U, we have

v —PBhi(z) < Ry_pp1(2), v —Pha(z) < Ry_ppp(z), z€U.
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Therefore, from Theorem 1.9 (for n = 1 and h = hy, respectively n = p and h = hy)
we have the existence of the analytic solutions ¢; and g2 of the equation (2.11),
respectively (2.12).

Since we have conditions (4¢) and (i#¢) in the hypothesis, we obtain from Theorem
1.10 the univalence of ¢; and ¢s.

From g € ¥£5,(h1, ho) and (2) we have

zg'(2)
9(2)

Since Ry—pg1(2) < Ry—pgp(2), z € U, we have from (2.14)

v —PBhi(z) < v+ <y —Pha(z) < Ry—pp1(2), z€U. (2.14)

zg'(2)
9(2)

Using Corollary 1.13 we have G = Jp, 53~(g) € X, with 2PG(z) # 0, z € U. Conse-
quently,

v+ <Ry _ppp(2), zeU.

_ 2G'(2)
P € Hlp,p|], where P(Z')——G(Z)7 zeU.
From (1.9) and g € £5,(h1, ha) we obtain
2P'(2)
hi(2) < P(2) + ———20 Z ho(2), z€U. 2.15
1(2) < )+ B <o) (2.15)

2P'(2)
It is easy to see that we have P € H[p,p|N @ and P(z) + ————

We remark that the conditions from the hypotheses of Theorem 1.10 and Theorem
1.12 are met, so, using these two theorems we get from (2.15) that

univalent in U.

q1(z) < P(2) < q2(2), z€eU. (2.16)

_2G'(2)

Since P(z) = G

, 2z €U, and G € £, we obtain from (2.16) that

G S ESp(ql,qQ).

Of course, we also have from Theorem 1.10 and Theorem 1.12, that the functions g;
and ¢o are the best subordinant and, respectively, the best (p, p)-dominant. O

From Theorem 1.9, since p # 0, we have that the solutions ¢; and g2 (from the
above theorem) are given by:

-1

q(z) = 27 H " (2) | -8 / H PP~ tdt |+
0

@I

-1

1
e Hl(tZ)}”ﬁ . v
B 50/{11[1(2) A
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where

If we consider only the subordination for Theorem 2.9 we obtain the next result.

Theorem 2.10. Let p € N* and 8,y € C with 8 # 0 and Re(y — pB) > 0. Also let
h e H{U) with h(0) = p such that

(1) ~v—PBh(z) < Ry_ppp(2), zeU.
If q is the analytic solution of the Briot-Bouquet differential equation

pzq'(2)

V—Tq(z):h(z)’ zeU,

q(z) +

with q(0) = p and if

2q'(2)
v — Bq(2)

(i) h is convex or is starlike,

then q is univalent in U.
Moreover, if g € 3.S,(h) and G = Jp 3,(9), then G € £S,(q).
The function q is the best (p, p)-dominant.

Proof. The fact that the function ¢ is univalent in U results from Theorem 1.10. Since
g € £5,(h) we have

< h(z), ze€U, (2.17)
and using (i) we obtain

2g'(2)

9(2)

Using now Corollary 1.13 we get that G = J, 5.,(9) € £, with 2PG(z) # 0, z € U.

v+ B < R,,_pg,p(z), zeU.

2G'(2)
Hence, P € H|p,p|, where P(z) = — Glo) z € U. We know that
z
P/ /
P(z)+ 2P(z) - (Z), zeU,

7= BP(z) 9(2)
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and using (2.17) we get

2P'(2)
v — BP(z)

Using now Theorem 1.10 for a = n = p and with —( instead of 3, we obtain that
P(z) < q(2), so

P(z) + < h(z), zeUl.

2G'(2)
— . 2.1
G0 <q(z), z€U (2.18)
Since G € ¥, we have from (2.18) that G € ¥£.5,(q).
It is obvious that the function ¢ is the best (p, p)-dominant. O

If we consider, in the above theorem, that the function A is convex we obtain the
corollary:

Corollary 2.11. Let p € N* and 8,7 € C with 8 # 0 and Re (v — pB3) > 0. Also let
g € Sp(h) with h convex in U, h(0) = p. If the function h satisfies the condition
v—PBh(z) < Ry_ppp(2), z€U,
then
G = Jp3+(9) € ESp(q),
where q is the univalent solution of the Briot-Bouquet differential equation

o) + p2q'(2)

7_Tq(z):h(z), zeU,

with q(0) = p.
The function q is the best (p, p)-dominant.

Next, we present an application for the above corollary, when 5 = 1,v € R, for a
particular function h. We will use the notation .J, - instead of J, 1 .

Corollary 2.12. Let p € N* and v > p+ 3 such that 4p(y —p)? < v(y —p —1)3.

If g € £S,(h) with h(z) =p+ z+ L, then
Y—P— =

G=Jp,(9) € ESp(p+ 2),

2G'(2)
G(z)

which is equivalent to —&—p’ <1, z € U. Therefore,

2G'(z)
G(2)

p—1<Re[— }<p—i—17 zeU,

this meaning that G € X (p — 1,p +1).
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Proof. Considering a« = p, § = —1, v — v — p in Lemma 2.2, we remark that the

conditions from this lemma are met in the hypothesis of this corollary, so, the function
bz . .
h(z) =p+ z+ ——— is convex in U.

It is easy to see that the function ¢(z) = p + z is the univalent solution for the
differential equation

pzq'(2) :
q(z) + ———= =h(2), zeU, with ¢(0)=p.
(2)+ 2L = (2 (0
Next we verify that [Imh(z)| < C,(y — p), z € U, which is equivalent to
pz
‘Im <z+ >‘ <Vp*+2p(y—-p), zeU.
T—p—z

We have

i e ) 252

Y—p—z z=7+p Z—v+pw

If we denote v — p with a we have from the hypothesis a > 3 and

I 1 |Im z| < 1 < 1 <1 cU >3
m = -,z a
z—a| |z—al> |z—al? = (a—Rez)? ~ a’ ’ -
S0 . .
‘Im ’< , zel.
z—y+pl Y—P

Im (Z+m
Y—PpP—z

Now it is obvious that we have |[Imh(z)| < +/p? + 2p(y — p) = Cp(y — p), hence
[Im [y — h(2)]| < Cp(y —p), 2z € U, this means that

Therefore, we get

>’<p+1,z€U,so MImh(z)| <p+1,z€U.

v—h(z) < Ry_pp(2), zeU.
Therefore, from Corollary 2.11, we obtain
G=Jp(9) € ESp(p+ 2),
2G'(2)
G(2)

If we consider for Corollary 2.11 the condition Re [y — Bh(2)] > 0, z € U, instead
of v — Bh(z) < Ry_ppp(2), z € U, we get:

Corollary 2.13. Let p € N* and 8,7 € C with 8 # 0 and Re (v — pB) > 0. Also let
g € Sp(h) with h convex in U and h(0) = p. If

which is equivalent to

+p’<1,z€U. O]

Re[y—Bh(2)] >0, zeU,
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then
G= Jp,ﬁxy(g) € ESP((I)a

where q is the univalent solution of the Briot-Bouquet differential equation

p2q(z)

The function q is the best (p, p)-dominant.

z €U, q(0) =p.

Proof. The result follows from Corollary 2.11. O

Since for Corollary 2.13 we have ¢ < h (see Theorem 1.11), we get the next
corollary:

Corollary 2.14. Let p € N* and 8,7 € C with 8 # 0 and Re (v — pB) > 0. Also let
g € 2Sp(h) with h convex in U and h(0) = p. If

Re[y—pBh(2)] >0, zeU,
then
G = Jpp~(9) € LSp(h).

Furthermore, using Corollary 2.14 for a particular function h, we present a result
which was also obtained in [8] but using a different method.
-2
We consider h(z) = hpo(2) = w, z€U,wherepe N"and 0 < a < p.

It is not difficult to see that h, o (U) = {z € C/Rez > a} and h, (0) = p.
Using the notations given at the beginning of this paper we have

g € ESp(hpa) & g€ Xi(a).

We now get the next result:

R
Corollary 2.15. [8] Let p e N*, 3 <0, v € C and % < a < p. Then we have
g€ E;(a) =G =Jp,5,(9) € E;(a).
Re~
Proof. From —— < a < p and 8 < 0 we have Rey — fa > 0 and Rey — p3 > 0.

It is easy to see that
Rey — fRehpa(2) >Rey—aBf >0, zeU,

hence Re [y — fhpa(2)] >0, z € U.

We know that g € ¥5(a) < g € %5, (hy o).

Since the conditions from Corollary 2.14 holds, we get G = J, 3.4(g) € £Sp(hp.a)
which is equivalent to G' € X5 (a). O
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