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Abstract. A presentation of numerical ranges for rectangular matrices is undertaken in this
paper, introducing two different definitions and elaborating basic properties. Further, we
extend to the g-numerical range.
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1. INTRODUCTION

Let M., »(C) be the set of matrices A = [a;;];";, with entries a;; € C. For m = n,
the set
F(A) = {(Az,z) : 2 € C",||z|, = 1} (1.1)

is the well known numerical range or field of values of A, for which basic properties
can be found in [5,8] and [6, Chapter 22|. Equivalently, we say that F(A) = f(S,),
where S,, is the unit sphere of C" and the function f on S, is defined by the bilinear
mapping g : S, X S, — C, such that f(z) = g(x,z) = (Az,z). F(A) is a closed and
convex set and contains the spectrum o(A) of A.

Recently in [4], it has been proposed a definition of the numerical range of a matrix
A € My, ., with respect to a matric B € M, ,, the compact and convex set

wy. (4, B) = (1) D(z0, |4 - 20B]), (1.2)
zp€C
where ||B]| > 1 and ||| denotes any matrix norm. In this paper any special type of

matrix norm associated with the vector norm will be followed by the corresponding
index [7]. The definition (1.2) is an extension of the definition of F'(A) for square
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matrices in [2, 3] and clearly the numerical range is based on the notion of a matrix
norm. In [4] it is proved that wj.; (4, B) coincides with the disc in C

<A7B> _ <A’B> _ -2
D(anQ”A o7 21Vi- 12 ) 1

in the case when the matrix norm ||-|| is induced by the inner product (-, -).

Another proposal for the definition of the numerical range for rectangular matrices
is via the projection onto the lower or the higher dimensional subspace. Let m > n
and the vectors vy, ..., v, of C"™ form an orthonormal basis of C™. Clearly, the matrix
P =HH*, where H = [vl- .- vn] € M, n, is an orthogonal projector of C™ — C".
In this case, we define the (lower) numerical range of A € M,, ,, with respect to H,
to be the set:

wi(A) = F(H*A) = {(Az, Hz) : 2 € C", |Hz, = 1}, (1.4)

where obviously H*A is an n X n matrix. Moreover, the vector y = Hz € C™ is
projected onto C™ along K, where I is the orthogonal complement of C™*, i.e. C™ =
C"@K. Also, in (1.4) the second set has been defined in [1] as a “bioperative” numerical
range W (A, H), without requiring H to be an isometry. Since ||y, = (Hz, Hx)l/2 =
lz]l,, we can also define in a similar way the (upper) numerical range wy(A) using
the higher dimensional m x m matrix AH*. Namely,

wp(A) = F(AH™). (1.5)
Similarly, if m < n, then x = Hy and consequently
w(A) = F(AH), wp(A)=F(HA). (1.6)

It is obvious that, for m = n and H = I, w;(A) and wp(A) are reduced to
the classical numerical range F(A) in (1.1). Some additional properties of these sets
are exposed in section 2, including the notion of the sharp point and a relation of
wi(A),wr(A) and w). (A, B) for B= H.

In the second part of the paper, section 3, we refer to the g-numerical range for
a rectangular matrix A and ¢ € [0,1]. First, we extend the notion of the numerical
range in [2,3] to the g-numerical range, considering the algebra of operators on C",
which is identified with the algebra M., of square n x n complex matrices. Using the
nonempty set of linear functionals

Ly={f: M, —C suchthat |f||=1,fI)=qe][0,1]}, (1.7)
we may well define the g-numerical range of A to be the set
Fo(A) ={f(A): f €Ly} (1.8)

Since any linear functional on M, (C) is induced by a unit vector y € C" via A +—
(Az,y), such that |ly|l, = 1 and (z,y) = ¢ < 1 for all unit vectors € C”, the set
(1.8) is identified with the set [9-11]

Fy(A) = {{Az,y) s 2,y € C", lzlly = llyll, = 1, (z,9) = g} - (1.9)
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In section 3, we prove that

Fy(A) = (1) Dlazo, A = z0lnll,). (1.10)
zp€C
The set Fy(A) in relation (1.10), when ¢ # 0, is identified with the well known
numerical range wy., (4, %In), defined in [4], of A with respect to the matrix %In.
Adapting the arguments in [4] to our purpose and using any matrix norm, the relation
(1.10) is extended to the g-numerical range of A € My, , with respect to B € My, »,
defining the set

wp (A Big) = () {z€C: |z —qnl < A= B, Bl >q},  (111)
z0€C

where ¢ € [0,1]. Similarly the g-numerical range of A € M, ,, with respect to the
matrix B € M, , in (1.11) is identified, when ¢ # 0, with the well known numerical
range w. (4, %B) of A with respect to the matrix %B. A discussion for the case ¢ =0
is considered separately.

The set in (1.11) is compact and convex and for ¢ = 1 wy. (4, B;1) is reduced
to the numerical range of A with respect to B in (1.2). Also, in section 3, we outline
some basic properties of w.| (A4, B; ¢) and prove that it coincides with a circular disc
when the matrix norm ||-|| is induced by the inner product (-, ).

2. PROPERTIES

In this section we will study basic properties and the relations between the various
numerical ranges for rectangular matrices. We also show that, when the norm is
induced by an inner product, the union of the numerical ranges w. (A4, B), as B
varies, is the disc D(0, | 4])).

Proposition 2.1. Let A,B € M,, psuch that |B|| > 1.Then for any matriz norm
I|l induced by an inner product (-,-), the following statements hold:

L {J w4, B) =D(0,[|A]).

IBlI=1
2. If rankB = k and ||o|l, > V'k, where the vector ¢ = (01,...,0%) corresponds to
the singular values of B, then the centers of the discs in (1.3), ﬁ% € D(0, || 4]l),

with respect to the Frobenius inner product (A, By = tr(B*A).

Proof. 1. By definition (1.2) we have w.| (A, B) = NxecD(A, ||A — AB||). From this it
is immediate that w. (A, B) C D(0, ||A]]) for every B € My, 1y, | B]| > 1 and hence
Uysjz1 w1 (4, B) € D(0, [|A]]).
Conversely, let z € D(0, ||A]|). Then:
— if 2 # 0 then z € wH.H(A, %A),
— if z = 0 then, using the relation (1.3), 0 € wy.; (4, B), where B is taken such that
(4,B) =0, |B| > 1.
Hence D(O, ||AH) - UHBHZl w”_”(A, B)
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2. Denoting by A(-) and o(-) the eigenvalues and singular values of matrices, re-
spectively and making use of known inequalities [8, p. 176-177] it follows that

({4, B)| _ [tr(B*A)| _ [ZABA)| _ 2B A)| _ Y o(B"4) _

T T e T
_XoBYe) o So(B) |
ST ST}

Since ||o|l, > Vk, then Y o?(B) = ||a||§ > Vk|oll, > (1,0) = 3. o(B) and conse-
quently by (2.1),

(A, B)|

I1BII*

< Omax(4) = HAH2 O

6+1 0 1/2
-4 -3-6¢ O
Frobenius norm of B, Proposition 2.1 is illustrated in Figure 1, where the drawing
discs w .. (A, B) in (1.3), for six different matrices B with || B| > 1, approximate

the disc D(0, ||A]| ). The dashed circle is the boundary of the disc D(0, ||A[|5).

Example 2.2. If A = and ||B|» = [tr(B*B)]'/? denotes the
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In (1.4) and (1.5) we referred to the numerical ranges w;(A) and wy,(A), respe-
ctively, for rectangular matrices with respect to an m x n isometry H (m > n). For
these numerical ranges we have the following.
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Proposition 2.3. Let m >n, A€ My, ,, and H € M, , be an isometry, then:

L. w(A) Cwy(A),

2. Ug wi(A) = Uy wi(A) = D(0, [|All,),
3. 0(A,H) C wi(A) € D(0,||All,), where o(A,H) = {\ € C: Az = AHz,z €
C™\ {0} } denotes the set of the generalized eigenvalues of A.

Proof. 1. Let the unitary matrix U = [ H R ] € Myy,m, where H € M, ,. Then

wi(A) = F(AH*) = F(U*AH*U) = F( [ g:j 8 } )
whereupon w;(A) = F(H*A) C wp(A).

2. Suppose z € Uy wi(A) = Uy F(H*A), then for an m x n, isometry H
|2l <r(H"A) < [H™All, < [[H" ||, [|Ally = [IAl;

where 7(-) denotes the numerical radius of a matrix. Thereby, |Jw;(A) = Uy, F(H*A)
C D(0,]|A]l5). On the other side, if z = y*Az € D(0,| A]|,), then there exists an
m X n isometry H such that y = Hx and z = z*(H*A)x € F(H*A). The assertion
Jwn(A) = D(0, |All,) is established similarly.

3. Since 0(A,H) C o(H*A,I,) for any m x n isometry H, we need merely to
apply 2. O
Corollary 2.4. For A,B € M,,, with rankB = n and B = QR 1is the
QR-factorization of B, then

W(A, B) = {(Az, Bz) : x € C",||Bz|, = 1} = F(Q*AR™"),
where W (A, B) is the “bioperative” numerical range defined in [1].
Proof. Obviously,
W(A,B) = {(Q"Ax,Rx) : x € C",|Rz||, = 1} =
= {{(Q*"AR'w,w) 1w € C", |w|l, =1} = F(Q*AR™). O
By definitions (1.4), (1.5) or (1.6) the concept of the sharp point (i.e. the boundary

point with nonunique tangents [8, p.50]) of F(AH*) or F(H*A) is transferred to the
sharp point of wy,(A) or w;(A), respectively. Especially, we note:

Proposition 2.5. Let A € M,,, ,, m > n and Ao(# 0) be a sharp point of wp(A)
with respect to an isometry H € My, .. Then A\g € o(H*A) and is also a sharp point
of wi(A) with respect to H.

Proof. For the sharp point \g € Owp(A) = IF(AH*) with H*H = I, appar-
ently, \g € o(AH*) = o(U*AH*U) = o(H*A) U {0}, for the unitary matrix
U=[H R]|€Mpyum, ie X\ €o(H*A) C F(H*A) =w/(A).

Moreover, for Ao, according to the definition of the sharp point, there exist 61,62 €
[0,27), 61 < O3 such that

Re(e®?\g) = max {Rea:ac€ ewwh(A)}
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for all 6 € (0,05). Since wp,(A) D w;(A) we have

Re(e?Xg) = max Rea> max Reb
acetwy (A) beeifw;(A)

for all 6 € (64, 62).
Furthermore, for every 0 € (61, 62)

Re(e?)\g) € Re(e” F(H*A)) < max {Reb:be ewF(H*A)}

and thus Re(e®)g) = max {Reb:be eF(H*A)} for all § € (61,62), concluding
that Ao(# 0) is a sharp point of F(H*A) = w;(A). O

It is noticed here that the converse of Proposition 2.5 does not hold as is illustrated
in the next example.

14+¢ -7 0

5. 0.02 0 0 ..
Example 2.6. If A = 0 0 6—i and H = [ I ], Ao = 5i is a sharp
0 0 0

point of w;(A) but not of wp(A). Note that in Figure 2 ‘«’ denote the eigenvalues 0
and 5¢ of AH*.

w(A)
h
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Finally, we present the next inclusion relation.
Proposition 2.7. Let m >n and A, H € M,, ,, with H an isometry. Then
wl(A) - ’IUH.H2(A7 H) - wh(A).
Proof. Using (1.4) the definition of the numerical range presented in [2| and equation
(1.2) we have
wi(A) = F(H*A) = ﬂ {z:|z— 2| < ||H"A— 20L,|5} =
zp€C
() {z:1z— 20| <|[H*A—2H"H|,} €
z0€C
() {z: 1= 20l < |H"[l; 1A = 20H],} =
zo€C

() {z: 12— 20l < 1A= 20H|ly} = wyy, (A, H).
zp€C

N

For the second inclusion we have
wi, (A H) = [ {z: ]2 = 20 < |1A - 20H],} =

zo€C

= {z:lz— 2| < |AH*H — 2H| ,} C
zp€C

- m {z:|z— 2| <||JAH" — ZOImHQ HH”z} =
2p0€C

= () {z:lz— 20| < |AH" = 21|y} = F(AH") = wy(A). O
zo€eC

Combining Propositions 2.3(2) and 2.7, we obtain the following immediate corol-

lary.
Corollary 2.8. Let m >n and A, H € M,, , with H an isometry. Then

Jwyp, (A, H) =D(0, | A]l,).
H

51 -1 i
2—-7i 0 o . A
Example 2.9. For A = 1 2 03 |’ Proposition 2.7 is illustrated in Fig-
0.5 5 1

ure 3. The unshaded area approximates the set wy.||, (4, H), whereas the thin and the
bold curve inside and outside this area, depict the boundaries of w;(A4) and wy,(A),
respectively, with respect to the isometry

—0.1856 — 0.18997 —0.2828 — 0.2242¢: 0.8783 — 0.1527¢
—0.4251 + 0.05657  0.6297 + 0.1258  0.1929 — 0.0260¢
0.2363 + 0.0733¢ 0.1885 4 0.6418:  0.2993 4 0.02227
0.8152 — 0.1407¢ 0.0806 — 0.0589:  0.1362 — 0.24267

H =
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3. THE Q-NUMERICAL RANGE

First, we present the g-numerical range of square n X n matrices A in (1.8) as an
intersection of circular discs, yielding its convexity. Particularly, we obtain a gener-
alization of Lemma 6.22.1 in [3] for the algebra of matrices M,, endowed with the
matrix norm. This result also applies to the infinite dimensional case of operators.

Proposition 3.1. Let A € M,, and F,(A) as in (1.8), then

Fy(A) = () Dlgz0, A = z01al),
zo€C

where ||| is any matriz norm.

Proof. We denote Q =, .c{2 € C: [z —qzo| < [|A — 20l ||} If v € Fy(A) in (1.8),
then there exists a linear functional f € £, such that v = f(A). Thus

17 = qzol = [f(A = z0Ln)| < I A= 20Lnl]l = [[A = 2oL,

for every zo € C. Hence v € €.
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For the opposite inclusion D, let v € Q. If A is a scalar matrix, i.e. A = cl,, c € C,
then |y — gc| < ||A —¢l,,|| = 0 = v = gc. Thus, for any linear functional f € £, we
have 7 = cf (L) = f(cI,) = [(4) € Fy(A).

On the other hand, selecting B € M,, such that {I,, A, B} are linearly indepen-
dent and || B|| < 1, we consider the subspace X = span {I,, A, B}. We then define the
linear functional f : X — C such that

flerl, + c2A+c3B) = ciqg+cay +c¢3, c1,c2,c3 €C.
Hence,

l[v —qzo] < ||A = 20l,|] V2zpeC=
[F(A) = 20f ()] < A= 20Ln]| V20 €C=

f(A=20L) < A= 2L YzeC= |fl<1.

Since, (c1,¢2,¢3) = (0,0,1) = 1= [f(B)| < |[f[[ B < [[f]|, clearly we have || f|| =1,
whereas for (c1,c2,c3) = (1,0,0) and (cq, ¢2,¢3) = (0,1,0) we obtain f(I,) = ¢ and
f (A) = ~, respectively. Due to the Hahn-Banach theorem, f can be extended to a
linear functional f : M,, — C such that || f|| = || f|| = 1 and fle = f. Consequently,
f € Ly such that f(A) =~ € F,(A). O

Remark 3.2. In case of the spectral norm |[-||, = (;, -)1/2 on C", the g-numerical
range defined by (1.8) is expressed with an inner product, due to the Riesz repre-
sentation theorem. In fact, as we have noticed in the definition (1.8), the set (1.8)
is identified with (1.9). This discussion along with the preceding proposition imply a
new description of the g-numerical range (1.9) for square matrices, namely,

Fy(A) = [ Dlazo, |4 = 201ully) = {(Az,y) : llzlly = llyll, = 1, (z.9) = a} -
zp€C

Following the analogous idea developed in [4], we extend the notion of the
g-numerical range to rectangular matrices. That is,

w1 (A, Biq) = (1) D(qzo, |4 - 2 Bl),
z0€C

with respect to any matrix norm ||-|| and any matrix B such that ||B]|| > ¢, where
q € [0,1]. In the next proposition, we outline some basic properties of wy. (4, B; q).

Proposition 3.3. For A € M,, ,, the following conditions hold:

1. wHAH(A7B;q) = wHAH(A7 %) fOT q 75 0,
2. wy.(ctA+ 2B, B; q) = ciw). (A, B; q) + c2q for every c1,co € C,
3. quw. (A, B;q2) € qaw) (A, B;q1) for 0 <q1 < g2 < 1.
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Proof. 1. By definition, for ¢ # 0

wi (A, Biq) = (| {z: 2= gA < [A= 2B, |B] = q} =

AeC
= m {z:|zq)\ < ”A—q)\g’, ”3”21}
AeC q q
B B B
= ﬂ {z:|z—,u| < HA—;L—', ””21} :wH.H<A,—>.
pec q q q

2. By statement 1 and Proposition 8 in [4], for ¢ # 0 and any ¢;,c2 € C we have

B B B
wy (1A + 2B, By q) = wy (ClA +eB, E) = Wy (ClA Feay E) -
B
= LW (A, E) + coq = clw”.”(A,B; q) + c2q.

If ¢ =0 and ¢; # 0, then for any co:

w).|(c1A + 2B, B;0) ﬂ {z:]z]| < ||@A+ c2B — 2B|} =

zp€C

- ) {e:] 2] < Ja- 2228} -
20€C C1 C1

= () {cru: [ul < ||A = pB|} = crwy (A, B;0).
necC

If ¢; = ¢ = 0 then it is immediate (take 2o = c2) that wy.(c2B, B;0) = {0}.
3. It is proved in [4] that w). (4, B) € b~ w).(A,b~"B), when [b| < 1. According
to this and 1, since 0 < & <1, it is

¢ ¢ B @ B B
- . - 1 ) e 127\ )\ — . .
g VI (A Biaz) = P (A qg) C wy (Av m q2) W (A’ ql) wy (4, Bia1)

This statement is an analogue for the g-numerical range in [9]. O

Proposition 3.4. Let A, B € M, ,, with ||B|| > q, q € [0, 1] and the matriz norm is
induced by the inner product (-,-). Then

o8B A 1B e
w"'(A’B’q)_DGHBH”’A Eiadr )

and even w).|(A,0;0) = D(0, || Al]).
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Proof. For g € (0,1] the relation is verified readily by combining Proposition 3.3(1)
and Proposition 13 in [4]. For the case ¢ = 0, we have

wi(4,B;0) = (] {z: [zl < A= 20B], |B] >0} =
zo€C <31)

{z 2| < min ||A — 2z B||, ||B] > 0} .
zp€C

Using the translation property of the g-numerical range (Proposition 3.3(2)) for the

matrix C = A — 163’“92) B and Lemma 11 in [4], we obtain

wHH(A’ B; 0) = w”H (C, B; 0)
with (C, B) = 0. Hence, by (3.1) and non zero B,

wy.| (A, B;0) = {z ¢ |z| < min ||C — ZoB”} =
zo€C

=1<z:|2| < mi CI?+p2|B|} =
{11 < min Vicr + 2 1517

(4, B)
={=: < 101} =D (0,14 - S BI).
Since || B|| =0« B =0, by (3.1) we have w.||(A,0;0) = D(0, [|Al]). O
In the next example we present the set w.| (A, B;¢) in (1.11) with respect to two

different types of matrix norm.

i 2—i —1 05 0.65 0 0 0
Example 35. A=|-1 0 -3 2|,B=|0 05-035 0 0 |,
4 03 0 06 0 0 0.1 0.75i

where || B||; = 0.75 and || B||, = 0.7566. The w. (A, B;0.5) and w).|, (A, B;0.5) are
illustrated in Figure 4 and in Figure 5, respectively.
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By Proposition 3.3(1), we obtain an analogous statement of Proposition 2.1(1).

Proposition 3.6. Let A, B € M,,,, such that |B|| > q, where the matriz norm is
induced by an inner product and 0 < q < 1. Then

U w4 Bsg) = DO, Al

I1Bl>q.0<q<1
Proof. We have
B
U  wABg= U wy (A*) = (J w(A,T) =D(0,[|4]),
1Bl >q0<q<1 18154 7

q

where I' = %, for all B € M,,, , and all ¢ € (0,1] such that ||| > 1.
For ¢ = 0, B # 0, using Proposition 3.4, we have

A B
U wy(A.B;0) = | D(O, At 2>BH) C D(0, || Al).
B0 B0 Bl
Hence, since wy.|(4,0;0) = D(0, ||Al|), we get the result. O

Especially, for square matrices we have the following.

Proposition 3.7. Let A € M, andG ={B € M,, : rankB = 1,trBB* = 1,trB = ¢,
q € [0,1]}. If the matriz norm ||-|| is induced by the Frobenius inner product, then

U ’U)H.H(A,B) = Fq(A),
Beg
with Fy(A) in (1.9).

Proof. Since B € G, we write B = yz* with ||z|, ||y, = 1 and (z,y) = ¢. Hence,

by (1.3)
y*Ax

EBEE

and consequently for & = x/ ||z||5, § = y/ ||y||, we obtain

w.| (A, B) = D({A,yz"),0)

U wy (A, B) = {97 Ad « ||2[l, = |[§ll, = 1,973 = q} = F,(A). O
Beg
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