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INVESTIGATING THE NUMERICAL RANGE
AND Q-NUMERICAL RANGE
OF NON SQUARE MATRICES

Aikaterini Aretaki, John Maroulas

Abstract. A presentation of numerical ranges for rectangular matrices is undertaken in this
paper, introducing two different definitions and elaborating basic properties. Further, we
extend to the q-numerical range.
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1. INTRODUCTION

LetMm,n(C) be the set of matrices A = [aij ]
m,n
i,j=1 with entries aij ∈ C. For m = n,

the set
F (A) = {〈Ax, x〉 : x ∈ Cn, ‖x‖2 = 1} (1.1)

is the well known numerical range or field of values of A, for which basic properties
can be found in [5, 8] and [6, Chapter 22]. Equivalently, we say that F (A) = f(Sn),
where Sn is the unit sphere of Cn and the function f on Sn is defined by the bilinear
mapping g : Sn × Sn → C, such that f(x) = g(x, x) = 〈Ax, x〉. F (A) is a closed and
convex set and contains the spectrum σ(A) of A.

Recently in [4], it has been proposed a definition of the numerical range of a matrix
A ∈Mm,n with respect to a matrix B ∈Mm,n the compact and convex set

w‖·‖(A,B) =
⋂
z0∈C
D(z0, ‖A− z0B‖), (1.2)

where ‖B‖ ≥ 1 and ‖·‖ denotes any matrix norm. In this paper any special type of
matrix norm associated with the vector norm will be followed by the corresponding
index [7]. The definition (1.2) is an extension of the definition of F (A) for square
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matrices in [2, 3] and clearly the numerical range is based on the notion of a matrix
norm. In [4] it is proved that w‖·‖(A,B) coincides with the disc in C

D

(
〈A,B〉
‖B‖2

,
∥∥∥A− 〈A,B〉

‖B‖2
B
∥∥∥√1− ‖B‖−2

)
(1.3)

in the case when the matrix norm ‖·‖ is induced by the inner product 〈·, ·〉.
Another proposal for the definition of the numerical range for rectangular matrices

is via the projection onto the lower or the higher dimensional subspace. Let m > n
and the vectors v1, . . . , vn of Cm form an orthonormal basis of Cn. Clearly, the matrix
P = HH∗, where H =

[
v1· · · vn

]
∈ Mm,n, is an orthogonal projector of Cm −→ Cn.

In this case, we define the (lower) numerical range of A ∈ Mm,n with respect to H,
to be the set:

wl(A) = F (H∗A) = {〈Ax,Hx〉 : x ∈ Cn, ‖Hx‖2 = 1} , (1.4)

where obviously H∗A is an n × n matrix. Moreover, the vector y = Hx ∈ Cm is
projected onto Cn along K, where K is the orthogonal complement of Cn, i.e. Cm =
Cn⊕K. Also, in (1.4) the second set has been defined in [1] as a “bioperative” numerical
range W (A,H), without requiring H to be an isometry. Since ‖y‖2 = 〈Hx,Hx〉1/2 =
‖x‖2, we can also define in a similar way the (upper) numerical range wh(A) using
the higher dimensional m×m matrix AH∗. Namely,

wh(A) = F (AH∗). (1.5)

Similarly, if m < n, then x = Hy and consequently

wl(A) = F (AH), wh(A) = F (HA). (1.6)

It is obvious that, for m = n and H = I, wl(A) and wh(A) are reduced to
the classical numerical range F (A) in (1.1). Some additional properties of these sets
are exposed in section 2, including the notion of the sharp point and a relation of
wl(A), wh(A) and w‖·‖(A,B) for B = H.

In the second part of the paper, section 3, we refer to the q-numerical range for
a rectangular matrix A and q ∈ [0, 1]. First, we extend the notion of the numerical
range in [2, 3] to the q-numerical range, considering the algebra of operators on Cn,
which is identified with the algebraMn of square n× n complex matrices. Using the
nonempty set of linear functionals

Lq = {f :Mn → C such that ‖f‖ = 1, f(I) = q ∈ [0, 1]} , (1.7)

we may well define the q-numerical range of A to be the set

Fq(A) = {f(A) : f ∈ Lq} . (1.8)

Since any linear functional on Mn(C) is induced by a unit vector y ∈ Cn via A 7→
〈Ax, y〉, such that ‖y‖2 = 1 and 〈x, y〉 = q ≤ 1 for all unit vectors x ∈ Cn, the set
(1.8) is identified with the set [9–11]

Fq(A) = {〈Ax, y〉 : x, y ∈ Cn, ‖x‖2 = ‖y‖2 = 1, 〈x, y〉 = q} . (1.9)
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In section 3, we prove that

Fq(A) =
⋂
z0∈C
D(qz0, ‖A− z0In‖2). (1.10)

The set Fq(A) in relation (1.10), when q 6= 0, is identified with the well known
numerical range w‖·‖2(A, 1

q In), defined in [4], of A with respect to the matrix 1
q In.

Adapting the arguments in [4] to our purpose and using any matrix norm, the relation
(1.10) is extended to the q-numerical range of A ∈Mm,n with respect to B ∈Mm,n,
defining the set

w‖·‖(A,B; q) =
⋂
z0∈C
{z ∈ C : |z − qz0| ≤ ‖A− z0B‖ , ‖B‖ ≥ q} , (1.11)

where q ∈ [0, 1]. Similarly the q-numerical range of A ∈ Mm,n with respect to the
matrix B ∈Mm,n in (1.11) is identified, when q 6= 0, with the well known numerical
range w‖·‖(A, 1

qB) of A with respect to the matrix 1
qB. A discussion for the case q = 0

is considered separately.
The set in (1.11) is compact and convex and for q = 1 w‖·‖(A,B; 1) is reduced

to the numerical range of A with respect to B in (1.2). Also, in section 3, we outline
some basic properties of w‖·‖(A,B; q) and prove that it coincides with a circular disc
when the matrix norm ‖·‖ is induced by the inner product 〈·, ·〉.

2. PROPERTIES

In this section we will study basic properties and the relations between the various
numerical ranges for rectangular matrices. We also show that, when the norm is
induced by an inner product, the union of the numerical ranges w‖·‖(A,B), as B
varies, is the disc D(0, ‖A‖).
Proposition 2.1. Let A,B ∈ Mm,nsuch that ‖B‖ ≥ 1.Then for any matrix norm
‖·‖ induced by an inner product 〈·, ·〉, the following statements hold:

1.
⋃
‖B‖≥1

w‖·‖(A,B) = D(0, ‖A‖).

2. If rankB = k and ‖σ‖2 ≥
√
k, where the vector σ = (σ1, . . . , σk) corresponds to

the singular values of B, then the centers of the discs in (1.3), 〈A,B〉‖B‖2 ∈ D(0, ‖A‖2),
with respect to the Frobenius inner product 〈A,B〉 = tr(B∗A).

Proof. 1. By definition (1.2) we have w‖·‖(A,B) = ∩λ∈CD(λ, ‖A− λB‖). From this it
is immediate that w‖·‖(A,B) ⊆ D(0, ‖A‖) for every B ∈ Mm,n, ‖B‖ ≥ 1 and hence⋃
‖B‖≥1 w‖·‖(A,B) ⊆ D(0, ‖A‖).
Conversely, let z ∈ D(0, ‖A‖). Then:

— if z 6= 0 then z ∈ w‖·‖(A, 1
zA),

— if z = 0 then, using the relation (1.3), 0 ∈ w‖·‖(A,B), where B is taken such that
〈A,B〉 = 0, ‖B‖ ≥ 1.

Hence D(0, ‖A‖) ⊆
⋃
‖B‖≥1 w‖·‖(A,B).
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2. Denoting by λ(·) and σ(·) the eigenvalues and singular values of matrices, re-
spectively and making use of known inequalities [8, p. 176–177] it follows that

|〈A,B〉|
‖B‖2

=
|tr(B∗A)|
‖B‖2

=
|
∑
λ(B∗A)|
‖B‖2

≤
∑
|λ(B∗A)|
‖B‖2

≤
∑
σ(B∗A)
‖B‖2

≤

≤
∑
σ(B∗)σ(A)
‖B‖2

≤ σmax(A)
∑
σ(B)∑
σ2(B)

.

(2.1)

Since ‖σ‖2 ≥
√
k, then

∑
σ2(B) = ‖σ‖22 ≥

√
k ‖σ‖2 ≥ 〈1, σ〉 =

∑
σ(B) and conse-

quently by (2.1),
|〈A,B〉|
‖B‖2

≤ σmax(A) = ‖A‖2 .

Example 2.2. If A =
[
6 + i 0 1/2
−4 −3− 6i 0

]
and ‖B‖F = [tr(B∗B)]1/2 denotes the

Frobenius norm of B, Proposition 2.1 is illustrated in Figure 1, where the drawing
discs w‖·‖F (A,B) in (1.3), for six different matrices B with ‖B‖F ≥ 1, approximate
the disc D(0, ‖A‖F ). The dashed circle is the boundary of the disc D(0, ‖A‖2).
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In (1.4) and (1.5) we referred to the numerical ranges wl(A) and wh(A), respe-
ctively, for rectangular matrices with respect to an m × n isometry H (m > n). For
these numerical ranges we have the following.
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Proposition 2.3. Let m > n, A ∈Mm,n and H ∈Mm,n be an isometry, then:

1. wl(A) ⊆ wh(A),
2.
⋃
H wl(A) =

⋃
H wh(A) = D(0, ‖A‖2),

3. σ(A,H) ⊆ wl(A) ⊆ D(0, ‖A‖2), where σ(A,H) =
{
λ ∈ C : Ax = λHx, x ∈

Cn\ {0}
}
denotes the set of the generalized eigenvalues of A.

Proof. 1. Let the unitary matrix U =
[
H R

]
∈Mm,m, where H ∈Mm,n. Then

wh(A) = F (AH∗) = F (U∗AH∗U) = F
([ H∗A 0

R∗A 0

])
whereupon wl(A) = F (H∗A) ⊆ wh(A).

2. Suppose z ∈
⋃
H wl(A) =

⋃
H F (H∗A), then for an m× n, isometry H

|z| ≤ r(H∗A) ≤ ‖H∗A‖2 ≤ ‖H
∗‖2 ‖A‖2 = ‖A‖2 ,

where r(·) denotes the numerical radius of a matrix. Thereby,
⋃
wl(A) =

⋃
H F (H∗A)

⊆ D(0, ‖A‖2). On the other side, if z = y∗Ax ∈ D(0, ‖A‖2), then there exists an
m × n isometry H such that y = Hx and z = x∗(H∗A)x ∈ F (H∗A). The assertion⋃
wh(A) = D(0, ‖A‖2) is established similarly.
3. Since σ(A,H) ⊆ σ(H∗A, In) for any m × n isometry H, we need merely to

apply 2.

Corollary 2.4. For A,B ∈ Mm,n with rankB = n and B = QR is the
QR-factorization of B, then

W (A,B) = {〈Ax,Bx〉 : x ∈ Cn, ‖Bx‖2 = 1} = F (Q∗AR−1),

where W (A,B) is the “bioperative” numerical range defined in [1].

Proof. Obviously,

W (A,B) = {〈Q∗Ax,Rx〉 : x ∈ Cn, ‖Rx‖2 = 1} =

=
{〈
Q∗AR−1ω, ω

〉
: ω ∈ Cn, ‖ω‖2 = 1

}
= F (Q∗AR−1).

By definitions (1.4), (1.5) or (1.6) the concept of the sharp point (i.e. the boundary
point with nonunique tangents [8, p.50]) of F (AH∗) or F (H∗A) is transferred to the
sharp point of wh(A) or wl(A), respectively. Especially, we note:

Proposition 2.5. Let A ∈ Mm,n, m > n and λ0(6= 0) be a sharp point of wh(A)
with respect to an isometry H ∈Mm,n. Then λ0 ∈ σ(H∗A) and is also a sharp point
of wl(A) with respect to H.

Proof. For the sharp point λ0 ∈ ∂wh(A) = ∂F (AH∗) with H∗H = In appar-
ently, λ0 ∈ σ(AH∗) = σ(U∗AH∗U) = σ(H∗A) ∪ {0}, for the unitary matrix
U =

[
H R

]
∈Mm,m, i.e. λ0 ∈ σ(H∗A) ⊆ F (H∗A) = wl(A).

Moreover, for λ0, according to the definition of the sharp point, there exist θ1, θ2 ∈
[0, 2π), θ1 < θ2 such that

Re(eiθλ0) = max
{

Rea : a ∈ eiθwh(A)
}
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for all θ ∈ (θ1, θ2). Since wh(A) ⊇ wl(A) we have

Re(eiθλ0) = max
a∈eiθwh(A)

Rea ≥ max
b∈eiθwl(A)

Reb

for all θ ∈ (θ1, θ2).
Furthermore, for every θ ∈ (θ1, θ2)

Re(eiθλ0) ∈ Re(eiθF (H∗A)) ≤ max
{

Reb : b ∈ eiθF (H∗A)
}

and thus Re(eiθλ0) = max
{

Reb : b ∈ eiθF (H∗A)
}

for all θ ∈ (θ1, θ2), concluding
that λ0(6= 0) is a sharp point of F (H∗A) = wl(A).

It is noticed here that the converse of Proposition 2.5 does not hold as is illustrated
in the next example.

Example 2.6. If A =


1 + i −7 0

5i 0.02 0
0 0 6− i
0 0 0

 and H =
[

0
I3

]
, λ0 = 5i is a sharp

point of wl(A) but not of wh(A). Note that in Figure 2 ‘∗’ denote the eigenvalues 0
and 5i of AH∗.
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Finally, we present the next inclusion relation.

Proposition 2.7. Let m > n and A,H ∈Mm,n with H an isometry. Then

wl(A) ⊆ w‖·‖2(A,H) ⊆ wh(A).

Proof. Using (1.4) the definition of the numerical range presented in [2] and equation
(1.2) we have

wl(A) = F (H∗A) =
⋂
z0∈C
{z : |z − z0| ≤ ‖H∗A− z0In‖2} =

=
⋂
z0∈C
{z : |z − z0| ≤ ‖H∗A− z0H

∗H‖2} ⊆

⊆
⋂
z0∈C
{z : |z − z0| ≤ ‖H∗‖2 ‖A− z0H‖2} =

=
⋂
z0∈C
{z : |z − z0| ≤ ‖A− z0H‖2} = w‖·‖2(A,H).

For the second inclusion we have

w‖·‖2(A,H) =
⋂
z0∈C
{z : |z − z0| ≤ ‖A− z0H‖2} =

=
⋂
z0∈C
{z : |z − z0| ≤ ‖AH∗H − z0H‖2} ⊆

⊆
⋂
z0∈C
{z : |z − z0| ≤ ‖AH∗ − z0Im‖2 ‖H‖2} =

=
⋂
z0∈C
{z : |z − z0| ≤ ‖AH∗ − z0Im‖2} = F (AH∗) = wh(A).

Combining Propositions 2.3(2) and 2.7, we obtain the following immediate corol-
lary.

Corollary 2.8. Let m > n and A,H ∈Mm,n with H an isometry. Then⋃
H

w‖·‖2(A,H) = D(0, ‖A‖2).

Example 2.9. For A =


5i −1 i

2− 7i 0 4
−1 2 0.3
0.5 5 1

, Proposition 2.7 is illustrated in Fig-

ure 3. The unshaded area approximates the set w‖·‖2(A,H), whereas the thin and the
bold curve inside and outside this area, depict the boundaries of wl(A) and wh(A),
respectively, with respect to the isometry

H =


−0.1856− 0.1899i −0.2828− 0.2242i 0.8783− 0.1527i
−0.4251 + 0.0565i 0.6297 + 0.1258i 0.1929− 0.0260i
0.2363 + 0.0733i 0.1885 + 0.6418i 0.2993 + 0.0222i
0.8152− 0.1407i 0.0806− 0.0589i 0.1362− 0.2426i

 .
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3. THE Q-NUMERICAL RANGE

First, we present the q-numerical range of square n × n matrices A in (1.8) as an
intersection of circular discs, yielding its convexity. Particularly, we obtain a gener-
alization of Lemma 6.22.1 in [3] for the algebra of matrices Mn endowed with the
matrix norm. This result also applies to the infinite dimensional case of operators.

Proposition 3.1. Let A ∈Mn and Fq(A) as in (1.8), then

Fq(A) =
⋂
z0∈C
D(qz0, ‖A− z0In‖),

where ‖·‖ is any matrix norm.

Proof. We denote Ω =
⋂
z0∈C {z ∈ C : |z − qz0| ≤ ‖A− z0In‖}. If γ ∈ Fq(A) in (1.8),

then there exists a linear functional f ∈ Lq such that γ = f(A). Thus

|γ − qz0| = |f(A− z0In)| ≤ ‖f‖ ‖A− z0In‖ = ‖A− z0In‖ ,

for every z0 ∈ C. Hence γ ∈ Ω.
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For the opposite inclusion ⊇, let γ ∈ Ω. If A is a scalar matrix, i.e. A = cIn, c ∈ C,
then |γ − qc| ≤ ‖A− cIn‖ = 0 ⇒ γ = qc. Thus, for any linear functional f ∈ Lq, we
have γ = cf(In) = f(cIn) = f(A) ∈ Fq(A).

On the other hand, selecting B ∈ Mn such that {In, A,B} are linearly indepen-
dent and ‖B‖ ≤ 1, we consider the subspace X = span {In, A,B}. We then define the
linear functional f̃ : X → C such that

f̃(c1In + c2A+ c3B) = c1q + c2γ + c3, c1, c2, c3 ∈ C.

Hence,

|γ − qz0| ≤ ‖A− z0In‖ ∀ z0 ∈ C⇒
|f̃(A)− z0f̃(In)| ≤ ‖A− z0In‖ ∀ z0 ∈ C⇒
|f̃(A− z0In)| ≤ ‖A− z0In‖ ∀ z0 ∈ C⇒ ‖f̃‖ ≤ 1.

Since, (c1, c2, c3) = (0, 0, 1)⇒ 1 = |f̃(B)| ≤ ‖f̃‖ ‖B‖ ≤ ‖f̃‖, clearly we have ‖f̃‖ = 1,
whereas for (c1, c2, c3) = (1, 0, 0) and (c1, c2, c3) = (0, 1, 0) we obtain f̃(In) = q and
f̃(A) = γ, respectively. Due to the Hahn-Banach theorem, f̃ can be extended to a
linear functional f :Mn → C such that ‖f‖ = ‖f̃‖ = 1 and f|X = f̃ . Consequently,
f ∈ Lq such that f(A) = γ ∈ Fq(A).

Remark 3.2. In case of the spectral norm ‖·‖2 = 〈·, ·〉1/2 on Cn, the q-numerical
range defined by (1.8) is expressed with an inner product, due to the Riesz repre-
sentation theorem. In fact, as we have noticed in the definition (1.8), the set (1.8)
is identified with (1.9). This discussion along with the preceding proposition imply a
new description of the q-numerical range (1.9) for square matrices, namely,

Fq(A) =
⋂
z0∈C
D(qz0, ‖A− z0In‖2) = {〈Ax, y〉 : ‖x‖2 = ‖y‖2 = 1, 〈x, y〉 = q} .

Following the analogous idea developed in [4], we extend the notion of the
q-numerical range to rectangular matrices. That is,

w‖·‖(A,B; q) =
⋂
z0∈C
D(qz0, ‖A− z0B‖),

with respect to any matrix norm ‖·‖ and any matrix B such that ‖B‖ ≥ q, where
q ∈ [0, 1]. In the next proposition, we outline some basic properties of w‖·‖(A,B; q).

Proposition 3.3. For A ∈Mm,n, the following conditions hold:

1. w‖·‖(A,B; q) = w‖·‖(A, Bq ) for q 6= 0,
2. w‖·‖(c1A+ c2B,B; q) = c1w‖·‖(A,B; q) + c2q for every c1, c2 ∈ C,
3. q1w‖·‖(A,B; q2) ⊆ q2w‖·‖(A,B; q1) for 0 < q1 ≤ q2 ≤ 1.
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Proof. 1. By definition, for q 6= 0

w‖·‖(A,B; q) =
⋂
λ∈C
{z : |z − qλ| ≤ ‖A− λB‖ , ‖B‖ ≥ q} =

=
⋂
λ∈C

{
z : |z − qλ| ≤

∥∥∥A− qλB
q

∥∥∥, ‖B‖
q
≥ 1
}

=

=
⋂
µ∈C

{
z : |z − µ| ≤

∥∥∥A− µB
q

∥∥∥, ‖B‖
q
≥ 1
}

= w‖·‖

(
A,

B

q

)
.

2. By statement 1 and Proposition 8 in [4], for q 6= 0 and any c1, c2 ∈ C we have

w‖·‖(c1A+ c2B,B; q) = w‖·‖

(
c1A+ c2B,

B

q

)
= w‖·‖

(
c1A+ c2q

B

q
,
B

q

)
=

= c1w‖·‖

(
A,

B

q

)
+ c2q = c1w‖·‖(A,B; q) + c2q.

If q = 0 and c1 6= 0, then for any c2:

w‖·‖(c1A+ c2B,B; 0) =
⋂
z0∈C
{z : |z| ≤ ‖c1A+ c2B − z0B‖} =

=
⋂
z0∈C

{
z :
∣∣∣∣ zc1
∣∣∣∣ ≤ ∥∥∥A− z0 − c2

c1
B
∥∥∥} =

=
⋂
µ∈C
{c1u : |u| ≤ ‖A− µB‖} = c1w‖·‖(A,B; 0).

If c1 = q = 0 then it is immediate (take z0 = c2) that w‖·‖(c2B,B; 0) = {0}.
3. It is proved in [4] that w‖·‖(A,B) ⊆ b−1w‖·‖(A, b−1B), when |b| < 1. According

to this and 1, since 0 < q1
q2
< 1, it is

q1

q2
w‖·‖(A,B; q2) =

q1

q2
w‖·‖

(
A,

B

q2

)
⊆ w‖·‖

(
A,

q2

q1

B

q2

)
= w‖·‖

(
A,

B

q1

)
= w‖·‖(A,B; q1).

This statement is an analogue for the q-numerical range in [9].

Proposition 3.4. Let A,B ∈Mm,n with ‖B‖ ≥ q, q ∈ [0, 1] and the matrix norm is
induced by the inner product 〈·, ·〉. Then

w‖·‖(A,B; q) = D

(
q
〈A,B〉
‖B‖2

,
∥∥∥A− 〈A,B〉

‖B‖2
B
∥∥∥
√
‖B‖2 − q2

‖B‖

)

and even w‖·‖(A, 0; 0) = D(0, ‖A‖).
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Proof. For q ∈ (0, 1] the relation is verified readily by combining Proposition 3.3(1)
and Proposition 13 in [4]. For the case q = 0, we have

w‖·‖(A,B; 0) =
⋂
z0∈C
{z : |z| ≤ ‖A− z0B‖ , ‖B‖ ≥ 0} =

=
{
z : |z| ≤ min

z0∈C
‖A− z0B‖, ‖B‖ ≥ 0

}
.

(3.1)

Using the translation property of the q-numerical range (Proposition 3.3(2)) for the
matrix C = A− 〈A,B〉‖B‖2 B and Lemma 11 in [4], we obtain

w‖·‖(A,B; 0) = w‖·‖(C,B; 0)

with 〈C,B〉 = 0. Hence, by (3.1) and non zero B,

w‖·‖(A,B; 0) =
{
z : |z| ≤ min

z0∈C
‖C − z0B‖

}
=

=
{
z : |z| ≤ min

ρ∈R+

√
‖C‖2 + ρ2 ‖B‖2

}
=

= {z : |z| ≤ ‖C‖} = D
(

0, ‖A− 〈A,B〉
‖B‖2

B‖
)
.

Since ‖B‖ = 0⇔ B = 0, by (3.1) we have w‖·‖(A, 0; 0) = D(0, ‖A‖).

In the next example we present the set w‖·‖(A,B; q) in (1.11) with respect to two
different types of matrix norm.

Example 3.5. A =

 i 2− i −1 0.5
−1 0 −3 2
4 0.3i 0 0.6

, B =

0.65 0 0 0
0 0.5− 0.35i 0 0
0 0 0.1 0.75i

 ,
where ‖B‖1 = 0.75 and ‖B‖2 = 0.7566. The w‖·‖1(A,B; 0.5) and w‖·‖2(A,B; 0.5) are
illustrated in Figure 4 and in Figure 5, respectively.
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By Proposition 3.3(1), we obtain an analogous statement of Proposition 2.1(1).

Proposition 3.6. Let A,B ∈ Mm,n such that ‖B‖ ≥ q, where the matrix norm is
induced by an inner product and 0 ≤ q ≤ 1. Then⋃

‖B‖≥q,0≤q≤1

w‖·‖(A,B; q) = D(0, ‖A‖).

Proof. We have⋃
‖B‖≥q,0<q≤1

w‖·‖(A,B; q) =
⋃

‖B‖
q ≥1

w‖·‖

(
A,

B

q

)
=

⋃
‖Γ‖≥1

w‖·‖(A,Γ) = D(0, ‖A‖),

where Γ = B
q , for all B ∈Mm,n and all q ∈ (0, 1] such that ‖Γ‖ ≥ 1.

For q = 0, B 6= 0, using Proposition 3.4, we have⋃
B 6=0

w‖·‖(A,B; 0) =
⋃
B 6=0

D
(

0,
∥∥∥A− 〈A,B〉

‖B‖2
B
∥∥∥) ⊆ D(0, ‖A‖).

Hence, since w‖·‖(A, 0; 0) = D(0, ‖A‖), we get the result.

Especially, for square matrices we have the following.

Proposition 3.7. Let A ∈Mn and G = {B ∈Mn : rankB = 1, trBB∗ = 1, trB = q,
q ∈ [0, 1]}. If the matrix norm ‖·‖ is induced by the Frobenius inner product, then⋃

B∈G
w‖·‖(A,B) = Fq(A),

with Fq(A) in (1.9).

Proof. Since B ∈ G, we write B = yx∗ with ‖x‖2 ‖y‖2 = 1 and 〈x, y〉 = q. Hence,
by (1.3)

w‖·‖(A,B) = D(〈A, yx∗〉 , 0) =
y∗Ax

‖y‖2 ‖x‖2
and consequently for x̂ = x/ ‖x‖2, ŷ = y/ ‖y‖2 we obtain⋃

B∈G
w‖·‖(A,B) = {ŷ∗Ax̂ : ‖x̂‖2 = ‖ŷ‖2 = 1, ŷ∗x̂ = q} = Fq(A).
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