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NECESSARY OPTIMALITY CONDITIONS
FOR PREDATOR-PREY SYSTEM
WITH A HUNTER POPULATION

Narcisa C. Apreutesei

Abstract. An optimal control problem is studied for a predator-prey reaction-diffusion
system. A hunter population is introduced in the ecosystem and it is interpreted as a control
variable. One finds necessary optimality conditions in order that, in the end of a given time
interval, the total density of the two populations is maximal.
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1. INTRODUCTION

We are concerned with an optimal control problem for the predator-prey system of
partial differential equations

∂y1

∂t
= α1∆y1 + y1 (a1 − b1y2) ,

∂y2

∂t
= α2∆y2 + y2 (−a2 + b2y1) ,

a.e. on Q = (0, T )× Ω,

with no-flux boundary conditions

∂y1

∂ν
=
∂y2

∂ν
= 0 a.e. on Σ = (0, T )× ∂Ω

and some initial conditions

y1 (0, x) = y0
1 (x) , y2 (0, x) = y0

2 (x) a.e. on Ω.

This boundary value problem describes the dynamics of an ecosystem composed by a
prey and a predator population, whose densities at time t and position x are y1 (t, x)
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and y2 (t, x), respectively. The diffusion coefficients α1, α2, together with the pa-
rameters a1, a2, b1, b2 are supposed to be positive. The habitat is modelled by an
open bounded set Ω ⊂ RN , N ≤ 3 with the boundary ∂Ω smooth enough. The
terms ∂y1/∂ν, ∂y2/∂ν represent the outward normal derivatives of y1 and y2 on the
boundary of the domain.

Now one introduces a hunter population in the ecosystem. Suppose that it acts
only on the predator population and that the number of the hunted individuals is
proportional to the existing individuals in the predator population. The proportion-
ality factor at the moment t ∈ [0, T ] is denoted by u (t) and is regarded as a control
function. It is assumed to be homogeneous in the space variable. The dynamics of
the new ecosystem is modeled by the boundary value problem

∂y1

∂t
= α1∆y1 + y1 (a1 − b1y2) ,

∂y2

∂t
= α2∆y2 + y2 (−a2 + b2y1 − u) ,

a.e. on Q, (1.1)

∂y1

∂ν
=
∂y2

∂ν
= 0 a.e. on Σ, (1.2)

y1 (0, x) = y0
1 (x) , y2 (0, x) = y0

2 (x) a.e. on Ω. (1.3)

Assume that u belongs to the set of controls

U = {u : [0, T ]→ R, 0 ≤ u (t) ≤ 1, ∀t ∈ [0, T ]} .

Our goal is to determine the control u ∈ U such that the mean (on Ω) density of the
two populations in the habitat becomes maximal at the end of the time interval [0, T ].
Therefore, the optimal control problem can be formulated as

Min

{
−
∫
Ω

(y1 + y2) (T, x) dx

}
, u ∈ U , (y1, y2) solution of (1.1)–(1.3). (1.4)

Let
Ψ (y1, y2, u) = −

∫
Ω

(y1 + y2) (T, x) dx (1.5)

be the functional to be minimized. We work under the following hypotheses on the
initial condition y0 = (y0

1 , y
0
2):

(H1) y0
1 , y

0
2 ∈ H2 (Ω),

∂y0
1

∂ν
=
∂y0

2

∂ν
= 0 a.e. on ∂Ω, y0

1 > 0, y0
2 > 0 on Ω.

To study the existence of a strong solution to problem (1.1)–(1.3), let A be the
operator A : D (A) ⊂ L2 (Ω)2 → L2 (Ω)2 given by A (y1, y2) = (α1∆y1, α2∆y2), with
the domain

D (A) =
{
y = (y1, y2) ∈ H2 (Ω)2

,
∂y1

∂ν
=
∂y2

∂ν
= 0 a.e. on ∂Ω

}
and let f be the nonlinear term from system (1.1), i.e.

f (t, y) = (f1 (t, y) , f2 (t, y)) = (y1(a1 − b1y2), y2(−a2 + b2y1 − u)) .
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Then problem (1.1)–(1.3) can be written under the form{
y′ (t, x) = Ay (t, x) + f (t, y (t, x)) , a.e. t ∈ [0, T ] ,
y (0, x) = y0 (x) =

(
y0

1 (x) , y0
2 (x)

)
, a.e. x ∈ Ω.

(1.6)

Using this equivalent form for problem (1.1)–(1.3), we can easily prove an existence
result like in [7].

Theorem 1.1. If α1, α2, a1, a2, b1, b2 > 0, u ∈ U , and y0 =
(
y0

1 , y
0
2

)
satisfies

hypothesis (H1), then problem (1.1)–(1.3) has a unique strong solution y = (y1, y2) ∈
W 1,2

(
0, T ;L2 (Ω)2

)
, which is positive and bounded on Q. In addition, y1, y2 ∈

L2
(
0, T ;H2 (Ω)

)
∩ L∞

(
0, T ;H1 (Ω)

)
and∥∥∥∥∂yi

∂t

∥∥∥∥
L2(Q)

+ ‖yi (t) ‖H1(Ω) + ‖yi‖L2(0,T ;H2(Ω)) + ‖yi‖L∞(Q) ≤ C, (1.7)

where C is a positive constant independent of u.

The case without diffusion, together with some numerical results, can be found in
[3]. In [7] the author studies a similar problem, but with a different control function.
A minimization problem for a predator-prey system of ODEs with logistic growth rate
of the prey and general functional response was treated in [2]. In [1], a global behavior
is established for an age-dependent population model with a logistic term. In [5] the
authors study the global dynamics for a predator-prey model with stage structure for
a predator, while in [6] an impulsively controlled predator-pest model with disease in
the pest was investigated. For different models from population dynamics the reader
may refer to [8]. Some basic notions and results on optimal control theory and on
distributed control systems can be found in the monograph [4].

Section 2 of the present paper is devoted to the existence of an optimal solution
(y∗, u∗), where y∗ = (y∗1 , y

∗
2). In the third section we find some necessary optimal-

ity conditions for our optimal control problem. We end with some discussions and
conclusions.

2. THE EXISTENCE OF THE OPTIMAL SOLUTION

We prove now the existence of the optimal control and of the corresponding state.

Theorem 2.1. Under the above hypotheses, problem (1.1)–(1.4) admits at least one
optimal control u∗.

Proof. Let Ψ (y1, y2, u) be the cost functional defined by (1.5) and d =
inf {Ψ (y1, y2, u)}, subject to (1.1)–(1.3) and u ∈ U . Since u ∈ L∞ (0, T ), y1, y2 ∈
L∞ (Q) (see Theorem 1.1), it follows that d is finite. Therefore, there exists a se-
quence (y1n, y2n, un) of solutions to problem (1.1)–(1.3) with un ∈ U instead of u,
such that

d ≤ Ψ (y1n, y2n, un) ≤ d+
1
n
, ∀n ≥ 1. (2.1)
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So (y1n, y2n, un) verifies the boundary value problem
∂y1n

∂t
= α1∆y1n + y1n (a1 − b1y2n) ,

∂y2n

∂t
= α2∆y2n + y2n(−a2 + b2y1n − un),

a.e. (t, x) ∈ Q, (2.2)

∂y1n

∂ν
=
∂y2n

∂ν
= 0, a.e. (t, x) ∈ Σ, (2.3)

y1n (0, x) = y0
1 (x) , y2n (0, x) = y0

2 (x) , a.e. x ∈ Ω. (2.4)

Theorem 1.1 implies that∥∥∥∥∂yin

∂t

∥∥∥∥
L2(Q)

≤ C, ‖yin (t) ‖H1(Ω) ≤ C, ‖yin‖L2(0,T ;H2(Ω)) ≤ C, (2.5)

for all n ≥ 1, t ∈ [0, T ] and i = 1, 2. Since (yin) is bounded in C
(
[0, T ] ;L2 (Ω)

)
,

(∂yin/∂t) is bounded in L2 (Q), and (yin (t)) is compact in L2 (Ω), for each t ∈ [0, T ]
(because H1 (Ω) is compactly imbedded in L2 (Ω)), by the Ascoli-Arzela Theorem it
follows that (yin) is compact in C

(
[0, T ] ;L2 (Ω)

)
. Thus, at least on a subsequence

denoted again (yin), the following convergence holds:

yin → y∗i in L2 (Ω) uniformly with respect to t, i = 1, 2.

In view of the boundedness of yin, ∂yin/∂t in L2 (Ω), by system (1.1) we find that
(∆yin) is also bounded in L2 (Q), so it is weakly convergent on a subsequence. But
for every distribution T ,∫

Q

T∆yindtdx =
∫
Q

yin∆Tdtdx→
∫
Q

y∗i ∆Tdtdx =
∫
Q

T∆y∗i dtdx.

This implies that ∆yin ⇀ ∆y∗i weakly in L2 (Q). On the other hand, inequalities
(2.5) infer that

∂yin

∂t
⇀

∂y∗i
∂t

weakly in L2 (Q) ,

yin ⇀ y∗i weakly star in L∞
(
0, T ;H1 (Ω)

)
,

yin ⇀ y∗i weakly in L2
(
0, T ;H2 (Ω)

)
.

We also have y1ny2n → y∗1y
∗
2 in L2 (Q). On a subsequence denoted again un, we have

un ⇀ u∗ weakly in L∞ (0, T ). Since U is closed and convex, it is also weakly closed,
hence u∗ ∈ U . Then we can easily see that uny2n → u∗y∗2 in L2 (Q).

Passing to the limit as n → ∞ in (2.1)–(2.4), we deduce that (y∗1 , y
∗
2 , u
∗) verifies

problem (1.1)–(1.3) and minimizes the cost functional (1.4). The proof is complete.
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3. NECESSARY OPTIMALITY CONDITIONS

In this section we deduce the optimality system. Let (y∗, u∗) be an optimal pair,
where y∗ = (y∗1 , y

∗
2). Consider the adjoint system defined by{

p′ (t) +A∗p (t) = −f∗y (y∗) p (t) , t ∈ [0, T ] ,
p (T ) = −∇Ψ (y∗ (T ) , u∗ (T )) ,

where p = (p1, p2) is the adjoint variable, A∗ is the adjoint of operator A, and f∗y is
the adjoint of the Jacobian matrix fy. In detail, this can be written under the form

∂p1

∂t
= −α1∆p1 − a1p1 + y∗2 (b1p1 − b2p2) ,

∂p2

∂t
= −α2∆p2 + (a2 + u∗) p2 + y∗1 (b1p1 − b2p2) ,

a.e. on Q, (3.1)

∂p1

∂ν
=
∂p2

∂ν
= 0 a.e. on Σ, (3.2)

p1 (T, x) = p2 (T, x) = 1 a.e. on Ω. (3.3)

Like in Theorem 1.1, we can easily prove the existence of the solution to this problem.
More precisely, we have

Lemma 3.1. If αi, ai, bi > 0 (i = 1, 2), then the adjoint system (3.1)–(3.3) has
a unique strong solution p = (p1, p2) ∈ W 1,∞

(
0, T ;L2 (Ω)2

)
, such that p1, p2 ∈

L∞ (Q), p1, p2 ∈ L2
(
0, T ;H2 (Ω)

)
∩L∞

(
0, T ;H1 (Ω)

)
.

Let y∗ = (y∗1 , y
∗
2) and yε = (yε

1, y
ε
2) be the solutions of problem (1.1)–(1.3) corre-

sponding to the optimal control u∗ and to the control uε = u∗ + εu0, respectively,
where ε > 0 and u0 ∈ L∞ (0, T ) are chosen such that 0 ≤ u∗ + εu0 ≤ 1 a.e. on [0, T ].
Subtracting the system corresponding to (y∗, u∗) from that corresponding to (yε, uε)
and denoting zε

i = (yε
i − y∗i ) /ε, i = 1, 2, we arrive at

∂zε
1

∂t
= α1∆zε

1 + (a1 − b1yε
2) zε

1 − b1y∗1zε
2,

∂zε
2

∂t
= α2∆zε

2 + (−a2 + b2y
∗
1 − uε) zε

2 + b2y
ε
2z

ε
1 − y∗2u0,

a.e. on Q, (3.4)

∂zε
1

∂ν
=
∂zε

2

∂ν
= 0 a.e. on Σ, (3.5)

zε
1 (0, x) = zε

2 (0, x) = 0 a.e. on Ω. (3.6)

Lemma 3.2. There exist the limits zi = lim
ε→0

zε
i in L2 (Q), i = 1, 2 and they satisfy

the boundary value problem
∂z1

∂t
= α1∆z1 + (a1 − b1y∗2) z1 − b1y∗1z2,

∂z2

∂t
= α2∆z2 + (−a2 + b2y

∗
1 − u∗) z2 + b2y

∗
2z1 − y∗2u0,

a.e. on Q, (3.7)
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∂z1

∂ν
=
∂z2

∂ν
= 0 a.e. on Σ, (3.8)

z1 (0, x) = z2 (0, x) = 0 a.e. on Ω. (3.9)

Proof. Denoting by Zε = (zε
1, z

ε
2),

Mε =
(
a1 − b1yε

2 −b1y∗1
b2y

ε
2 −a2 + b2y

∗
1 − uε

)
, N =

(
0

−y∗2u0

)
,

problem (3.4)–(3.6) can be written in the form
∂Zε

∂t
= A (Zε) +MεZε +N, a.e. on (0, T ) ,

Zε (0) = 0.
(3.10)

If {S (t) , t ≥ 0} is the C0-semigroup generated by A, the solution of (3.10) can be
expressed as

Zε (t) = S (t) 0 +

t∫
0

S (t− s) (MεZε +N) (s) ds.

Since S (t) 0 = 0 and the elements of matrixMε are bounded in L∞ (Q) uniformly with
respect to ε (see (1.7)), by Gronwall’s inequality one obtains that Zε (t) is bounded in
L2 (Q) uniformly with respect to ε. Thus ‖yε

i − y∗i ‖L2(Q) = ε‖zε
i ‖L2(Q) → 0 as ε→ 0,

i.e. yε
i → y∗i (as ε→ 0) in L2 (Q), i = 1, 2.

By (3.4)–(3.6) and (3.7)–(3.9) we deduce that (zε
1 − z1, z

ε
2 − z2) verifies the bound-

ary value problem

∂(zε
1 − z1)
∂t

= α1∆(zε
1 − z1) + (zε

1 − z1)(a1 − b1yε
2)−b1y∗1(zε

2 − z2)−b1z1(yε
2 − y∗2),

∂(zε
2 − z2)
∂t

= α2∆(zε
2 − z2) + (zε

1 − z1)(b2yε
2 − uε) + (−a2 + b2y

∗
1) (zε

2 − z2)−

− b2z1 (yε
2 − y∗2)− εu0z1, a.e. on Q,

∂ (zε
1 − z1)
∂ν

=
∂ (zε

2 − z2)
∂ν

= 0 a.e. on Σ,

(zε
1 − z1) (0, x) = (zε

2 − z2) (0, x) = 0 a.e. on Ω.

The solution of this problem can be expressed with the aid of the semigroup
{S (t) , t ≥ 0} generated by A:

(
zε

1 − z1

zε
2 − z2

)
=

t∫
0

S (t− s)
(
a1 − b1yε

2 −b1y∗1
b2y

ε
2 − uε −a2 + b2y

∗
1

)(
zε

1 − z1

zε
2 − z2

)
(s) ds+

+

t∫
0

S (t− s)
(

−b1z1 (yε
2 − y∗2)

−b2z1 (yε
2 − y∗2)− εu0z1

)
(s) ds.



Necessary optimality conditions for predator-prey system with a hunter population 395

Applying Gronwall’s inequality and using the convergence yε
2 − y∗2 → 0 as ε → 0 in

L2 (Q), together with the boundedness of all the terms under the first integral, it
follows that zε

1 → z1, zε
2 → z2 in L2 (Q), as ε→ 0. The lemma is proved.

We come back to the optimal control problem and establish the necessary opti-
mality conditions.

Theorem 3.3. If u∗ ∈ U is an optimal control and y∗ = (y∗1 , y
∗
2) is the optimal state

for problem (1.4) subject to (1.1)–(1.3), then

u∗(t) =


0, if w (t) =

∫
Ω

y∗2p2dx > 0,

1, if w (t) =
∫
Ω

y∗2p2dx < 0,
(3.11)

where p = (p1, p2) satisfy the adjoint system (3.1)–(3.3).

Proof. Since (y∗, u∗) is an optimal pair, we have Ψ (y∗1 , y
∗
2 , u
∗) ≤ Ψ (yε

1, y
ε
2, u

ε), ∀ε > 0
such that 0 ≤ uε (t) ≤ 1. Dividing by ε > 0 and passing to the limit as ε → 0 in
L1 (Ω), one arrives at ∫

Ω

(z1 + z2) (T, x) dx ≤ 0. (3.12)

Now one multiplies the equations from (3.7) by p1 and p2, respectively, and the
equations from (3.1) by z1 and z2, respectively and sum them up. One gets(

p1
∂z1

∂t
+ z1

∂p1

∂t

)
+
(
p2
∂z2

∂t
+ z2

∂p2

∂t

)
= α1 (p1∆z1 − z1∆p1) +

+ α2 (p2∆z2 − z2∆p2)− u0y
∗
2p2.

Integrating over Q and using Green’s formula, with the aid of (3.2), (3.3), (3.8), (3.9)
and (3.12), we derive that

T∫
0

∫
Ω

u0y
∗
2p2dtdx = −

∫
Ω

(z1 + z2) (T, x) dx ≥ 0.

Taking u0 ∈ U of the form u0 = u− u∗ with u ∈ U , this inequality becomes
T∫

0

(u∗ − u) (t)w (t) dt ≤ 0, ∀u ∈ U , where w (t) =
∫
Ω

y∗2p2dx.

This implies that

w (t) ∈


{0}, if 0 < u∗ (t) < 1,
R+, if u∗ (t) = 1,
R−, if u∗ (t) = 0.

Consequently, the optimal control u∗ has the form (3.11). This completes the proof.



396 Narcisa C. Apreutesei

Remark 3.4. There is a neighbourhood (τ, T ] of the final time t = T such that
u∗ (t) = 0 on (τ, T ].

4. CONCLUSIONS AND DISCUSSIONS

In this paper we studied an optimal control problem related to a PDE system of
predator-prey type, where the control function is interpreted as the action of a hunter
population. We found necessary optimality conditions in order that the total in space
density of the populations becomes maximal at the end of a given time interval. When
the optimal control u∗ = 0, there is no action of the hunter population in the habitat
and the system coincides with the initial (uncontrolled) one. If u∗ = 1, then the
hunter population acts at its maximum capacity.

We intend to study in a future work a similar control problem for a system of three
reaction-diffusion equations which models the dynamics of an ecosystem composed by
a herbivorous population, a carnivorous one and a plant.
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