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ON THE RELATIVE EQUILIBRIUM CONFIGURATIONS

IN THE PLANAR FIVE-BODY PROBLEM
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Abstract. The number of central configurations in the Grebenicov-Elmabsout model of the
planar five-body problem is estimated. An appropriate rational parameterization is used to
reduce the equations defining such configurations to some polynomial ones. For the restricted
five-body problem a sharp estimation is given by using the Sturm separation theorem.
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1. INTRODUCTION

I. The Newtonian N -body problem in celestial mechanics consists of studying the
dynamics of N bodies with positions qi ∈ Rd, i = 1, . . . , N and masses mi ∈ R+

(the classical Newtonian problem), attracted to each other according to the law of
universal gravitation [1]:

mi · q̈i =
∂U

∂qi

, (1.1)

where U is the potential

U =
∑

1≤i<j≤N

mi · mj

|qi − qj |
. (1.2)

In the N -body problem, the simplest possible motions are such initial positions
qi, i = 1 . . .N that this configuration remains constant up to rotations and scaling, and
each body describes a Keplerian orbit. Only some special configurations of particles
are allowed in such motions. A. Wintner called them central configurations [2]. For
a given instant t = t0 the configuration of N bodies is central if the gravitational
acceleration q̈i acting on every mass point mi is proportional to its position qi, that is
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q̈i = λ · qi with λ 6= 0 for all i = 1, . . . , N . So the configuration of N bodies is central
in a barycentric frame of reference if there exists λ ∈ R such that:

λ · qi =

N
∑

j=1

mj

qi − qj

|qi − qj |3
(1.3)

for all i 6= j. Usually, by an inertial barycentric system of coordinates we understand a
frame, relative to which the center of mass (barycenter) given by R = 1

M

∑N
j=1

mjqj ,

with M =
∑N

j=1
mj , is considered at the origin of this system. Note, that if the

qi’s are coplanar, a central configuration is called a relative equilibrium because they
become equilibrium solutions in a rotating coordinate system [1]. For the 3-body
problem, L.Euler has found a collinear relative equilibrium and J.L. Lagrange has
found central configurations as two equilateral triangles (see [2]). In the collinear
case, the exact number of central configurations of N bodies has been stated by
F.R. Moulton [3]. He has established that there exists exactly N !

2
collinear relative

equilibria. The number of planar central configurations of an N -body problem for an
arbitrary number of positive masses has been established only for N = 3, i.e. there
are always five relative equilibria. Already in the four body problem there is sufficient
complexity to prevent a complete classification of non-collinear relative equilibria.
Even the problem of finiteness of the number of central configurations is a very difficult
one. This conjecture known also as the Wintner-Chazy-Smale conjecture was listed
by S. Smale as 6th problem on his list of problems for this century [4]. It is known
that in the N -body problem, for N = 4 (see [5]) and for N = 5 (see [6]), a position
of relative equilibrium where the bodies are at the vertices of a regular polygon with
N sides, exists only if the masses are equal. A complete classification for the case
of four equal masses has been purposed by A. Albouy [7]. The finiteness problem
for the general four body problem was settled by M. Hampton and R. Moeckel [8].
Beyond these fundamental results not much more is known in terms of classification
of planar central configurations for N = 4, whilst for N ≥ 5 the problem becomes
much more complicated. B. Elmabsout [9] and E.A. Grebenicov [10] have proved that
if the masses are equal, there exists a configuration of relative equilibrium, where the
bodies are located at the vertices of a regular N -gon for all N ≥ 4. A new class of
central configurations in the 5-body problem consisting of three bodies, located at the
vertices of an equilateral triangle, and other two ones located on the perpendicular
bisector, has been shown by J. Llibre and L.M. Mello [11]. Earlier, a case of central
configurations in the 5-body problem with three bodies at the vertices of an equilateral
triangle and with the other two situated symmetrically with respect to a perpendicular
bisector has been studied by M. Hampton [12]. In 2009, J. Llibre and L.F. Mello [13]
have considered a central con figuration of 7 masses in the form of five masses situated
at the vertices of a regular pentagon and two other masses located in the interior of
the pentagon symmetrically with respect to a perpendicular bisector according to one
side of this pentagon.

II. In 90-ies B. Elmabsout [9] and E.A. Grebenicov [10] have proved that besides
the class of gravitational models in the inertial barycentric system (the so-called
gravitational model of Lagrange-Wintner), there exists a new class of gravitational
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models, i.e. the class of gravitational models in non inertial frames (the so-called
gravitational model of Grebenicov-Elmabsout, we denote it by GE(m0, N)). They
have proved that there exists a relative equilibrium configuration in the (N +1)-body
problem, with N bodies M1, M2,. . . , MN having the same mass m, and situated at
the vertices of an N -sided regular polygon, while the body M0, of nonzero mass m0,
lies in the center of the polygon [9]. A geometric configuration of N bodies given
by positions qi, i = 1, N is called a central configuration in a non inertial coordinate
system, if there exists λ ∈ R such that ([9, 14]):

λ · qi =

N
∑

j=1

mj

( qj − qi

|qj − qi|3
−

qj

|qj − q0|3

)

−
m0 + mi

|qi − q0|3
qi (1.4)

for all i 6= j. Necessary and sufficient conditions for the existence of relative equi-
librium configurations in the (N + 1)-body problem for N = 4, 5 have been found
numerically by E.A. Grebenicov, D. Kozak-Skoworodkin and M. Jakubiak [15].

In 1991 B. Elmabsout has stated the existence of a relative equilibrium config-
uration of the N -body problem (N = p · n) for the Grebenicov-Elmabsout models
(GE(m0, p, n), when N material particles are located at the vertices of p regular
n-gons centered at a given mass m0, with the bodies on the same n-gon having equal
masses [16]. The existence of central configurations in an asymmetric N -body problem
for N = 7 has been shown by A. Siluszyk [17, 18].

The main goal of this paper is to evaluate the number of relative equilibrium
configurations in the non inertial Grebenicov-Elmabsout’s model of the five-body
problem.

2. MAIN RESULTS

Let q0, q1, q2, q3 and q4 be some bodies with positive masses in the planar five-body
problem in GE(m0, N). Let the bodies q0, q1 and q3 lie on the X-axis with the mutual
distance between q1 and q3 equal to |q1 − q3| = 2r0 and with both m1 and m3 equal
to m. Denote by |q2 − q0| and by |q4 − q0| the distances |q2| and |q4|, respectively (we
assume that q0 is in the origin of coordinate). The existence of such model have been
proved by B. Elmabsout [16]. If the bodies q2 and q4 also lie on the X-axis, then the
number of relative equilibria is equal to sixty [3]. We are concerned with the case
when q2 and q4 lie on the perpendicular OY . In the non inertial Cartesian coordinate
system M0xy, obtained from the initial barycentric system after a translation the
potential U takes the form W , also called the perturbation function [15]:

W =
∑

1≤i<j≤N

mimj(
1

|qi − qj |
+ 〈qi, qj〉

( 1

|qi|3
+

1

|qj |3

)

) +

N
∑

i=1

m0 + mi

|qi|
mi. (2.1)
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Taking into account that λ = W
I

, where I =
∑N

i=1
mi |qi|

2
is the moment of inertia,

necessary and sufficient conditions for the existence of central configurations in the
five-body problem in P0xy system take the form [15]:

4
∑

j=1

mj

( qj − qi

|qi − qj |3
−

qj

|qj |3

)

−
m0 + mi

|qi|3
qi = −

W

I
qi, (2.2)

where W and I are as above and N = 4. The equations describing our problem
are very complicated; they contain irrationalities, therefore applying the method of
parameterization from algebraic geometry, if applicable, could be a powerfull method
to write up these equations in polynomial forms with rational coefficients. Following
[19] we say that a system of N point masses is rationally parameterizable if its con-
figuration q1, q2, . . . qN and the mutual distances |qi − qj |, i, j = 1, N , i 6= j can be
described by rational functions of independent parameters, i.e., parameters subject
to no relations.

Theorem 2.1. The GE(m0, 4) model with m1 = m3 is rationally parameterizable for
all mi > 0, i = 0, 1, 2, 3, 4.

Proof. We start by noting that |q1 − q2|
2

= |q3 − q2|
2

= r2
0 + |q2|

2
and |q1 − q4|

2
=

|q3 − q4|
2

= r2
0 + |q4|

2
. Using the functions g(η) = η2−1

2η
and h(η) = η2

+1

2η
, both for

η > 0, we can rewrite these equalities as |q2| = r0g(η1) and |q4| = r0g(η2). These
transformations yield the following relations

{

|q1 − q2| = r0h(η1),

|q1 − q4| = r0h(η2),

which in turn, leads to rational coefficients in the equations (2.2).

Recall, that we do not distinct relative equilibrium configurations, which are ob-
tained one from another by a rotation or dilatation; so we speak about the classes of
relative equilibrium configurations.

Theorem 2.2. In the general Grebenicov-Elmabsout model of the planar 5-body prob-
lem with two equal masses the number of classes of relative equilibrium configurations
is at most 432.

In contrast with the general GE(m0, 4) model, treated in this theorem the fol-
lowing result is concerned with the restricted 5-body problem, when the masses m2

and m4 are infinitesimally small. Recall, that the restricted N -body problem repre-
sents a generalization of the classical restricted three-body problem for the first time
formulated by K.Jacobi, whose stability was profoundly studied by H. Poincare. In
[20] the restricted three body problem has been considered and a new computation
of the Birkhoff normal form of the Hamiltonian near the Lagrangian points has been
provided which permitted the authors to obtain a new proof of Lyapunov stability of
these particular solutions.
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Theorem 2.3. There are at most 12 classes of relative equilibrium configurations
in the Grebenicov-Elmabsout model of the restricted planar 5-body problem with two
equal masses.

To prove finiteness of the number of central configurations we use an appropri-
ate rational parameterization to reduce the equations of the corresponding relative
equilibrium configurations to some equations of the polynomial types. In this way
the problem becomes a geometric one and we are looking for the number of intersec-
tion points of the curves described by rational functions fi(x1, x2, . . . , xN ), which in
turn, can be reduced to some polynomial equations. The next step consists in the
evaluation of the number of solutions of polynomial systems of equations by using
the Bezout Theorem. For this we make use of the resultant. Let the polynomials
P, Q ∈ k[x1, x2, . . . , xn] have positive degrees in x1, i.e.

{

P = arx
r
1 + ar−1x

r−1
1 + . . . + a0, ar 6= 0,

Q = bsx
s
1 + bs−1x

s−1
1 + . . . + b0, bs 6= 0,

(2.3)

where ai, bi ∈ k[x2, x3, . . . , xn]. Recall that the resultant of P and Q with respect to
x1 is the Sylvester determinant

Res(P, Q, x1) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ar ar−1 . . . a0 0 . . . . . . . . 0
0 ar ar−1 . . . a0 0 . . . 0
...

. . .
. . .

0 . . . 0 ar ar−1 . . . . . . . . a0

bs bs−1 . . . . . . . . . . b0 0 . . . 0
0 bs bs−1 . . . . . . . . . . b0 . . . 0
...

. . .
. . .

0 . . . 0 bs bs−1 . . . . . . . . b0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where there are exactly s rows of ai’s and r rows of bi’s.
The most important property of resultants for our purposes is the following

one (see, e.g. [21]): if P, Q ∈ k[x1, x2, . . . , xn] have positive degrees in x1, then
Res(P, Q, x1) is in the elimination ideal defined by

〈P, Q〉 =
⋂

(k[x2, . . . , xn]).

It follows that if (x0
1, x

0
2, . . . , x

0
n) is a solution of the system P = Q = 0, then

Res(P, Q, x1)(x
0
2, . . . , x

0
n) = 0.

Proof of Theorem 2.2. In our case the functions W and I take the form:

W =
m2

2r0

+
m2

2

|q2|
+

2mm2
√

r2
0 + |q2|

2
+ m0

(2m

r0

+
m2

|q2|
+

m4

|q4|

)

+
m2

4

|q4|
−

− m2m4 |q2| |q4|
( 1

|q2|
3

+
1

|q4|
3

)

+
m2m4

|q2| + |q4|
+

2mm4
√

r2
0 + |q4|

2
,

(2.4)



500 Agnieszka Siluszyk

I = 2mr2
0 + m2 |q2|

2
+ m4 |q4|

2
. (2.5)

Hence the equation (2.2) for the planar five-body problem in the GE(m0, 4) model
with m1 = m3 = m is a set of four equations:































































































































W

I
x1 = m2(

x2 − x1

|q2 − q1|3
−

x2

|q2|
3
) + m3(

x3 − x1

|q3 − q1|3
−

x3

|q3|
3
)+

+ m4(
x4 − x1

|q4 − q1|3
−

x4

|q4|
3
) −

m0 + m1

|q1|
3

x1,

W

I
y1 = m2(

y2 − y1

|q2 − q1|3
−

y2

|q2|
3
) + m3(

y3 − y1

|q3 − q1|3
−

y3

|q3|
3
)+

+ m4(
y4 − y1

|q4 − q1|3
−

y4

|q4|
3
) −

m0 + m1

|q1|
3

y1,

W

I
y2 = m1(

y1 − y2

|q2 − q1|3
−

y1

|q1|
3
) + m3(

y3 − y2

|q3 − q2|3
−

y3

|q3|
3
)+

+ m4(
y4 − y2

|q4 − q2|3
−

y4

|q4|
3
) −

m0 + m2

|q2|
3

y2,

W

I
y4 = m1(

y1 − y4

|q4 − q1|3
−

y1

|q1|
3
) + m2(

y2 − y4

|q4 − q2|3
−

y2

|q2|
3
)+

+ m3(
y3 − y4

|q4 − q3|3
−

y3

|q3|
3
) −

m0 + m4

|q4|
3

y4.

(2.6)

It is easily seen, that the fourth equation can be obtained as a linear combination of
the first three ones, so in what follows we omit it. We start by using a parameterization
similar to that, used in the previous theorem, with the same functions g and h, and
consider the following transformations (here T denote transposition):

[x1, y1]
T = r0[1, 0]T + [x0, y0]

T ,

[x2, y2]
T = r0[0, g(η)]T + [x0, y0]

T ,

[x3, y3]
T = r0[−1, 0]T + [x0, y0]

T ,

[x4, y4]
T = r0[0, g(η)]T + [x0, y0]

T .

(2.7)

The mutual distances between the bodies q1, q2, q3 and q4 can be expressed as rational
functions of the variables η1 and η2, in the same way as in the proof of Theorem 2.1
with |q1 − q2| = |q3 − q2|, |q1 − q4| = |q3 − q4|, according to our model. Assuming
m2 6= m4, with m2, m4 6= 0, and applying the transformations (2.7) to the system
(2.6) we obtain a polynomial system of three equations fi(η1, η2; m, m0, m2, m4) =
∑n1

l1=0

∑n2

l2=0
Cs(m, m0, m2, m4)η

l1
1 ηl2

2 = 0 for i = 1, 2, 3, with Cs(m, m0, m2, m4) for
s = 1, 2, . . . as constants. The concrete form of these polynomials has been established
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by using CAS “Mathematica” [22]. We write down only the first terms of these
polynomials because of technical reasons:

f1 = −m2(4m0 + m)η16
1 η13

2 + m2(4m0 + m)η15
1 η14

2 −

− m4(4m0 + m)η14
1 η15

2 + m4(4m0 + m)η13
1 η16

2 + . . . ,

f2 = 3m4η
10
1 η6

2 + 3m2η
6
1η

10
2 + 3m4η

8
1η

6
2 + 3m2η

6
1η

8
2 + . . . ,

f3 = (2m + m0 + m4)η
16
1 η11

2 − (4m + 2m0 + 3m4)η
15
1 η12

2 −

− (2m + m0 + 3m2 + 2m4)η
13
1 η14

2 + (4m + 2m0+

+ 3m2)η
12
1 η15

2 − (2m + m0 + m2)η
11
1 η16

2 + . . .

(2.8)

The number of solutions of (2.8) will be estimated by the least number of solutions
of the following systems:

(i) :

{

f1 = 0,

f2 = 0,
(ii) :

{

f1 = 0,

f3 = 0,
(iii) :

{

f2 = 0,

f3 = 0.

Let us introduce the notation Kij(η1) = Res(fi, fj , η2), Li
′
j
′ (η2) =

Res(fi
′ , fj

′ , η1) for i, i
′

, j, j
′

= 1, 2, 3. Then the element (η1, η2) corresponds to a
central configuration if Kij(η1), Li

′
j
′ (η2) do not vanish identically for some fixed

i, j, i
′

j
′

and Kij(η1) = Li
′
j
′ (η2) = 0. We proceed to show that the polynomials

Kij(η1), Li
′
j
′ (η2) do not vanish for a fixed value of the corresponding variable. We

take η1 = 1, η2 = 1 and, by using CAS “Mathematica” we obtain that K12(1) 6= 0,
i.e.:

{

f1(η2) = a15η
15
2 + a14η

14
2 + a13η

13
2 + . . . + a0,

f2(η2) = b10η
10
2 + b9η

9
2 + b8η

8
2 + . . . + b0,

(2.9)

where ar, bs ∈ Q[m, m0, m2, m4, r0], r = 0, . . . , 15, s = 0, . . . , 10 and for all mi, r0 >

0, i = 2, 4
a15 = −256m2m4r

2
0 6= 0, b10 = 4m2 6= 0.

Taking η2 = 1 we conclude that Res(fi, fj , η2) = 0. Repeating the procedure for
the other cases and using the Bezout theorem for all pairs of polynomials fi, fj ,
i, j = 1, 2, 3, we obtain an upper bound, and, as a consequence, we obtain that the
number of solutions of (i), (ii) or (iii) is ≤ 432.

By using CAS “Mathematica” we demonstrate that the set of solutions of (i), (ii)
and (iii) is not empty for some open subsets of the parameter domain (see Fig. 1
and Fig. 2). On these figures black dots mean material points qi, i = 0, 1, . . . , 4. For
a relative equilibrium to exist, the configuration of masses must satisfy the following
system of equations ω2q− q

|q−q0|
3 m0+ ∂W

∂q
= 0, where q = (x, y) and

∑N
j=1

mj(
1

|q−qj |
−

〈q,qj〉

|qj |
3 ) (i 6= j) represents the perturbation function [15]. The rotation velocity of the

N bodies around M0xy must fullfill the conditions ω = ω1 = ω2 = . . . = ωN (see
[23]). The continuous and dot curves in the figures 1 and 2 represent the 0-levels of
the function κ1(x, y) = ω2x− m0x

|q|3
+ ∂W

∂x
and κ2(x, y) = ω2y− m0y

|q|3
+ ∂W

∂y
, respectively.
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Fig. 1. Model of five bodies with two
equal masses

Fig. 2. Model of five bodies with two
equal masses and two infinitesimal small

ones

Proof of Theorem 2.3. In the restricted planar 5-body problem the masses m2 and
m4 are infinitesimally small in comparison with m0 and m, so in the system (2.2)
we obtain only two equations. Similary as in the proof of theorem 2 we apply the
transformations (2.7) to the system (2.2) and, after reductions, we obtain rational
functions of the variable η with coefficients depending on the parameters m0 and
m. The rational function F (η; m0, m) is a sum of monomials; their degrees rise
from 0 to 12

F (η; m0, m) = (4m0 + m)η12 − 32(m0 + 2m)η9−

− 3(4m0 + m)η8 − 96(m0 − 2m)η7−

− 96(m0 + 2m)η5 + 3(4m0 + m)η4−

− 32(m0 − 2m)η3 − 4m0 + m.

(2.10)

Similarly as in the proof of Theorem 2.3 the polynomial equation F (η; m0, m) = 0
possesses at least one solution from R[η]. The number of solutions of a polynomial
equation F (η; m0, m) = 0 do not exceed 12.

3. NUMERICAL CALCULATIONS

In the previous section we have proved that the number of roots in the ring R[m0, m] of
the polynomial F (η; m0, m) for the restricted GE(m0, 4) model is at most 12. In this
part, by using Sturm’s method [24], we will prove that the number of real solutions
of the equation F (η; m0, m) = 0 is at most 3. Recall that a Sturm sequence is a
finite sequence of polynomials p0, p1, . . . , pm of decreasing degree with the following
properties:

– p0 = p is square free,
– if p(α) = 0, then sign(p1(α)) = sign(p

′

(α)),
– if pi(α) = 0 for 0 < i < m then sign(pi−1(α)) = −sign(pi+1(α)),
– pm does not change its sign.
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To obtain a Sturm chain, Sturm himself proposed to choose the intermediary
results when applying Euclid’s algorithm to p and its derivative:

p0(x) := p(x),

p1(x) := p
′

(x),

p2(x) := −rem(p0, p1) = p1(x)q0(x) − p0(x),

p3(x) := −rem(p1, p2) = p2(x)q1(x) − p1(x),

. . . ,

0 := −rem(pm−1, pm).

(3.1)

That is, successively take the remainder with polynomial division and change their
signs. Since deg(pi+1) < deg(pi) for 0 ≤ i < m, the algorithm terminates. The final
polynomial, pm, is the greatest common divisor of p and its derivative. Since p is
square free, it has only simple roots and shares no roots with its derivative, so pm

will be a non-zero constant. The Sturm chain then is p0, p1, . . . , pm.

Theorem 3.1 ([24]). Let K(α) be the number of sign changes (zeroes are not counted)
in the sequence p(α), p1(α), . . . , pm(α), where p is a square-free polynomial. Then for
two real numbers a < b, the number of distinct roots in the half-open interval (a, b] is
K(a) − K(b).

Theorem 3.2. Let ∆ be the number of the real roots of the polynomial F (η, m0, m)
with coefficients from the ring R[m0, m] of the GE(m0, 4) model of the restricted
planar 5-body problem. Then maxη∈R+ ∆ = 3 and minη∈R+ ∆ = 1 for each m0, m ∈
R+.

Proof of Theorem 3.2. Let the functions F (η, m0, m), F1(η; m0, m), F2(η; m0, m),. . . ,
Fs = constant form the Sturm’s sequence, where F1(η; m0, m) is the remainder of
division of F (η; m0, m) by F

′

(η; m0, m) taken with the opposite sign, F2(η; m0, m)
is the remainder of division of F

′

(η; m0, m) by F1(η; m0, m) taken with the opposite
sign and so on, with Fs = const. 6= 0 as the last term in this sequence. In our case
this sequence is the following one:

F1(η; m0, m) = −12(4m0 + m1)η
11 + 288(m0 + 2m1)η

8+

+ 24(4m0 + m1)η
7 + 672(m0 − 2m1)η

6+

+ 480(m0 + 2m1)η
4 − 12(4m0 + m1)η

3+

+ 96(m0 − 2m1)η
2,

F2(η; m0, m) = 8(m0 + 2m1)η
9 + (4m0 + m1)η

8+

+ 40(m0 − 2m1)η
7 + 56(m0 + 2m1)η

5−

− 2(4m0 + m1)η
4 + 24(m0 − 2m1)η

3+

+ (4m0 − m1),

. . . ,

F11(η; m0, m) = constant,

(3.2)



504 Agnieszka Siluszyk

where the concrete form of the polynomials Fi(η; m0, m) for i = 3, . . . , 11 are much
more complicated and we omit them by technical reasons. In the next step for each
element of this sequence in (0, +∞) we fix a sign. The coefficient of the highest
monomial of Fi(η; m0, m) is listed bellow for i = 0, 1, 2, 3, . . .:

A0 = 4m0 + m, A1 = −12(4m0 + m), A2 = 8(m0 + 2m),

A3 = 3
(2304m4

0 + 93440m3
0m + 335328m2

0m
2 + 413712m0m

3

128(m0 + 2m3)
+

199169m4

128(m0 + 2m3

)

, . . .

whilst the corresponding free terms of Fi(η; m0, m), i = 0, 1, 2, 3, . . ., are as follows:

B0 = −(4m0 − m), B1 = 0, B2 = 4m0 − m,

B3 = 3
(4864m4

0 − 128m3
0m − 20800m2

0m
2 + 8m0m

3

128(m0 + 2m)3
+

1281m4

128(m0 + 2m)3

)

, . . .

Let V (∞) be the number of sign changes in the Sturm sequence in +∞, whilst
V (0) assigns the number of sign changes in the Sturm sequence in 0. Then,
(max V (∞) − min V (0)) is the maximal number of real solutions of the equation
F (η; m0, m) = 0. Moreover, there is a minimal number of the real solutions of the
equation F (η; m0, m) = 0 in the set

{min V (∞) − min V (0), min V (∞) − max V (0)} .

In our case we get that V (∞) = {8, 9}, whilst V (0) = {6, 7}. In this way we have
obtained that maxη∈R+ ∆ = 3 and minη∈R+ ∆ = 1.
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