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clusion problem with multi-valued maximal monotone mappings and inverse-strongly mono-
tone mappings in a Hilbert space. Under suitable conditions, some strong convergence the-
orems are proved. Our results extend some recent results in the literature.
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1. INTRODUCTION

Throughout this paper we assume that H is a real Hilbert space and C'is a nonempty
closed convex subset of H.

In the sequel, we denote the set of fixed points of a mapping S by F(S).

A bounded linear operator A : H — H is said to be strongly positive, if there
exists a constant 4 such that

(Az,z) > 7|z|*>, Vz € H. (1.1)
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Let B : H — H be a single-valued nonlinear mapping and M : H — 28 be
a multi-valued mapping. The “so-called” quasi-variational inclusion problem (see,
Chang [2,3]) is to find an u € H such that

0 € B(u) + M(u). (1.2)

A number of problems arising in structural analysis, mechanics and economics can
be studied in a framework of this kind of variational inclusions (see, for example [5]).

The set of solutions of quasi-variational inclusion (1.2) is denoted by VI(H,B,M).
Special Case

If M = 90¢, where dd¢ is the subdifferential of §¢, C' is a nonempty closed convex
subset of H and é¢ : H — [0,00) is the indicator function of C)| i.e.,

0, z e,
oc =
400, x¢&C,

then the quasi-variational inclusion problem (1.2) is equivalent to find u € C such
that
(B(u),v —u) >0, YveC. (1.3)

This problem is called the Hartman-Stampacchia variational inequality problem (see,
for example [7]). The set of solutions of (1.3) is denoted by VI(C, B).

Recall that a mapping B : H — H is called a-inverse strongly monotone (see
[13]), if there exists an « > 0 such that

(Bx — By,x —vy) > o||Bx — Byl||*, Vz,y € H.

A multi-valued mapping M : H — 2 is called monotone, if for all z,y € H,u €
Mz, and v € My, implies that (u—v, z—y) > 0. A multi-valued mapping M : H — 2%
is called mazimal monotone, if it is monotone and if for any (x,u) € H x H

(u—v, x—y) >0, VY (y,v) € Graph(M)

(the graph of mapping M) implies that u € Mx.

Proposition 1.1 ([13]). Let B : H — H be an a-inverse strongly monotone mapping,
then:

(a) B is é—Lz’pschitz continuous and a monotone mapping;
(b) If X\ is any constant in (0,2a], then the mapping I — AB is nonexpansive, where
I is the identity mapping on H.

Let C be a nonempty closed convex subset of H, © : C'x C' — R be an equilibrium
bifunction (i.e., O(z,x) =0, Vo € C) and let ¢ : C'— R be a real-valued function.

Recently, Ceng and Yao [1] introduced the following mized equilibrium problem
(MEP), i.e., to find z € C such that

MEP :0(z,y)+ ¢(y) —¢(2) >0, Vy € C. (1.4)
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The set of solutions of (1.4) is denoted by M EP(0, ¢), i.e.,
MEP(©) ={z€ C:0(z,y) + ¢(y) —¢(z) 20, Vy € C}.

In particular, if ¢ = 0, this problem reduces to the equilibrium problem, i.e., to
find z € C such that

EP: O(z,y)>0, VyeC.

Denote the set of solution of EP by EP(0).

On the other hand, Li et al. [6] introduced a two step iterative procedure for the
approximation of common fixed points of a nonexpansive semigroup {7T'(s) : 0 < s <
oo} on a nonempty closed convex subset C' in a Hilbert space.

Very recently, Saeidi [9] introduced a more general iterative algorithm for finding
a common element of the set of solutions for a system of equilibrium problems and
of the set of common fixed points for a finite family of nonexpansive mappings and a
nonexpansive semigroup.

Recall that a family of mappings .7 = {T'(s) : 0 < s < 00} : C — C is called a
nonexpansive semigroup, if it satisfies the following conditions:

(a) T(s+1t)=T(s)T(t) for all s,t >0 and T(0) = I;
(b) 1 T(s)z = T(s)yll < [lz —yl, Yo,y € C.
(¢) The mapping T'(-)z is continuous, for each z € C.

Motivated and inspired by Ceng and Yao [1], Li et al. [6] and Saeidi [9], the
purpose of this paper is to introduce a hybrid iterative scheme for finding a common
element of the set of solutions for a system of mixed equilibrium problems, the set
of common fixed points for a nonexpansive semigroup and the set of solutions of the
quasi-variational Inclusion problem with multi-valued maximal monotone mappings
and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions,
some strong convergence theorems are proved. Our results extends the recent results
in Zhang, Lee and Chan [13]|, Takahashi and Takahashi [11], Chang, Joseph Lee and
Chan [4], Ceng and Yao [1], Li et al. [6] and Saeidi [9].

2. PRELIMINARIES

In the sequel, we use x,, — = and x,, — x to denote the weak convergence and strong
convergence of the sequence {z,} in H, respectively.

Definition 2.1. Let M : H — 2 be a multi-valued maximal monotone mapping,
then the single-valued mapping Jys» : H — H defined by

Jur(u) = +AM)"Hu), Yue H

is called the resolvent operator associated with M, where X is any positive number
and I is the identity mapping.
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Proposition 2.2 ([13]). (a) The resolvent operator Jurx associated with M is
single-valued and nonexpansive for all A > 0, i.e.,

[T (@) = Il < llz —yll, Vo,y € H, VA>0.
(b) The resolvent operator Jas y is 1-inverse-strongly monotone, i.e.,
[T (@) = T a@)I® < (2 =y, Jara(e) — Iua(y)), Yo,y € H.

Definition 2.3. A single-valued mapping P : H — H is said to be hemi-continuous,
if for any x,y € H, the mapping t — P(x + ty) converges weakly to Pz (as t — 0+).

It is well-known that every continuous mapping must be hemi-continuous.

Lemma 2.4 ([8]). Let E be a real Banach space, E* be the dual space of E, T : E —
25" be a mazimal monotone mapping and P : E — E* be a hemi-continuous bounded
monotone mapping with D(P) = E then the mapping S =T+ P : E — 28" s a
mazximal monotone mapping.

For solving the equilibrium problem for bifunction © : C' x C — R, let us assume
that © satisfies the following conditions:
(Hy) ©(z,z) =0 for all x € C.
(Hy) © is monotone, i.e., O(z,y) + O(y,z) <0 for all z,y € C.
(H3) For each y € C, x — O(z,y) is concave and upper semicontinuous.
(Hy) For each z € C, y — O(x,y) is convex.

A map n: C x C — H is called Lipschitz continuous, if there exists a constant
L > 0 such that

In(z )l < Lz —yll, VayecC.

A differentiable function K : C' — R on a convex set C is called:
(i) n-convex [1] if
K(y) - K(iﬂ) > <K/(‘T)vn(yax)>v Vx,y € Ca

where K'(z)) is the Fréchet derivative of K at x;
(ii) n-strongly convex|7] if there exists a constant > 0 such that

K(y) - K@)~ (K@), n(p,2)) = (5) o = yl, vayec.

Let © : C' x C — R be an equilibrium bifunction satisfying the conditions (Hy) —
(Hy4). Let r be any given positive number. For a given point € C, consider the
following auziliary problem for M EP (for short, M EP(x,r)): to find y € C such that

Oy, 2) + ¢(2) — oly) + ~{K'(y) ~ K'(z),n(z,)) 2 0, ¥z € C,

where n: C'xC — H is a mapping and K'(z) is the Fréchet derivative of a functional
K:C — Ratz. Let VO : C — C be the mapping such that for each x € C, V,°(x)
is the solution set of M EP(x,1), i.e.,

Vo(z)={y € C:0(y,2) +¢(z) — oy)+

1, , (2.1)
+ (K'(y) = K'(2),n(2,9)) 20, V2 C}, Voel.
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Then the following conclusion holds:.

Proposition 2.5 ([1]). Let C be a nonempty closed convex subset of H, ¢ : C'— R be
a lower semicontinuous and convex functional. Let © : C' x C' — R be an equilibrium
bifunction satisfying conditions (Hy)—(Hy). Assume that:

(i) n: C x C — H is Lipschitz continuous with constant L > 0 such that:
(a) n(z,y) +n(y,x) =0, Vo,y € C,
(b) n(-,-) is affine in the first variable,
(¢) for each fized y € C,x — n(y,x) is continuous from the weak topology to the
weak topology;

(ii) K : C — R is n-strongly convex with constant pn > 0 and its derivative K' is
continuous from the weak topology to the strong topology;

(iii) for each x € C, there exist a bounded subset D, C C and z, € C such that for
any y € C\ Dy, the following holds:

1

Oy, ) + ¢(2z) = ply) + —(K'(y) = K'(2), (22, y)) <0

Then the following holds:

(i) V€ is single-valued;
(i) V,® is nonexpansive if K' is Lipschitz continuous with constant v > 0 such that
w> Lu;
(iii) F(V,°) = MEP(©);
(iv) MEP(O) is closed and convet.

Lemma 2.6 ([10]). Let C' be a nonempty bounded closed convex subset of H and let
S={T(s):0< s < oo} be a nonexpansive semigroup on C, then for any h > 0.

t t

lim sup H1 /T(s)xds - T(h)(1 /T(s)xds)” =0.
t—o0 et t
0 0

Lemma 2.7 ([6]). Let C be a nonempty bounded closed convex subset of H and let
S={T(s):0<s < oo} be a nonexpansive semigroup on C. If {x,} is a sequence in
C such that x, — z and limsup,_, . limsup,,_, . [|T(s)z, — z,|| =0, then z € F(S).

3. MAIN RESULTS

In order to prove the main result, we first give the following Lemma.

Lemma 3.1 ([13]). (a) u € H is a solution of variational inclusion (1.2) if and only
zfu = J]W’)\(’LL — )\Bu), VA >0, ie.,

VI(H,B,M) = F(Jux(I - AB)), YA > 0.

(b) If A € (0,2a], then VI(H, B, M) is a closed conver subset in H.
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In the sequel, we assume that H, C, M, A, B, f, 7, F, @i, n:;, Ki(i =1,2,---N)
satisfy the following conditions:

(1) H is a real Hilbert space, C C H is a nonempty closed convex subset;

(2) A: H — H is a strongly positive linear bounded operator with coefficient 5 > 0,
f+ H — H is a contraction mapping with a contraction constant h (0 < h < 1)
and 0 < 7 < %, B : C — H is a a-inverse-strongly monotone mapping and
M : H — 2 is a multi-valued maximal monotone mapping;

(3) 7 ={T(s):0<s<oo}:C — C is a nonexpansive semigroup;

4) F =1{0;, :i=12,---,N} : C xC — R is a finite family of bifunctions
satisfying conditions (Hy) — (Hy) and ¢; : C — R(i = 1,2,--- ,N) is a finite
family of lowersemi-continuous and convex functionals;

(5) n;: C xC — H is a finite family of Lipschitz continuous mappings with constant
L;>0(i=1,2,---,N) such that:

(a) mi(z,y) +ni(y,z) =0, Y,y € C,

(b) n;(-,-) is affine in the first variable,

(c) for each fixed y € C,z — n;(y, ) is continuous from the weak topology to
the weak topology;

(6) K; : C — R is a finite family of n;-strongly convex with constant p; > 0 and
its derivative K is not only continuous from the weak topology to the strong
topology but also Lipschitz continuous with constant v; > 0, p; > L;v;.

In the sequel we always denote by F(.7) the set of fixed points of the nonexpansive
semi-group 7, VI(H,B,M) the set of solutions to the variational inequality (1.2) and
MEP(.%) the set of solutions to the following auziliary problem for a system of mized
equilibrium problems:

O1(yM, z) + d1(z) — 1 (yi) + %<K’(yff)) — K'(2,), m(z,yM)) >0, Ve,
1
1

7<K/(y'EL2)) - K,(ygll)% 772(I7y512))> Z 07 Vr € Oa

Oa(yl?, z) + ¢a(z) — P2 (yP) + =

On_1 (N, 2) + dn_1(@) — o1 (¥ )+

1
+ ——(K' (M) = K (gD, v (2, ) > 0, Vo e O,
TN—-1

ON(Yn, ) + On(x) — ON (Yn)+
+ %<Kl(yn) - K/( ;N_l))a nN(xayn» > 07 Vo € Ca

where
ygnl) = ‘/r(?IITH
i i (i— i1/ 9i— i—2) _ i .
u) = VY = VIV = Vv 2y

:V,,(?i~~~V}(;)2V;?1xn, i=23,---,N—1,

— eN @2 @1
yn—‘/rN ‘/7«2 V;l L,
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and V,(:) :C—C, i=1,2,--- N is the mapping defined by (2.1)
In the sequel we denote by ¥* =V, ... V92V 9 forl € {1,2,--- ,N} and ¥° = I.

Theorem 3.2. Let H, C, A, B, M, f, T, F, p;, n;, K;(i = 1,2,--- |N) be the
same as above. Let {x,}, {pn}t, {&} and {y,} be the explicit iterative sequences
generated by x1 € H and

tn tn
1 1
bt = f (- [ T(s)oads) + Bun + (1= )1 = @A) [ T(s)puds,
"0 "0
>
pn = Jur(I — AB)&,, Vn>1,
n = JM,/\(I - /\B)Z/n,
VI VS,
(3.1)
where r;(i = 1,2,--- /N) be a finite family of positive numbers, A €

(0,20, {an}, {Bn} C [0,1] and {t,} C (0,00) is a sequence with t, T oco. If
¢ = F(I)MEP(F)N\VI(H,B,M) # 0 and the following conditions are sat-
isfied:
(i) for each x € C, there exist a bounded subset D, C C and z, € C such that for
any y € C'\ D,

0:(y 7) + ilze) — wily) + %<K;<y> ~ K!(2), (2, 9)) < 0.

(i) limy,— o ap = 0, 270;1 ap = 00, 0 < liminf, o B, < limsup,_, ., On <1, then
the sequence {x,} converges strongly to * = Pg(I — A+~ f)(z*), provided that
Vr(?i is firmly nonexpansive where Py is the metric projection of H onto 4.

Proof. We observe that from conditions (ii), we can assume, without loss of generality,

that o, < (1 —6,)|1 4]~
Since A is a linear bounded self-adjoint operator on H, then

[All = sup{[{Au, w)| : u € H,[Ju]| = 1}.
Since
(1 =B — anA)u,u) =1 — B, — an(Au,u) > 1— 3, — a,||A]| >0,
this implies that (1 — 8,)] — a, A is positive. Hence we have

(1= Bn)! — anAll = sup{[(((1 = Bu)] — anA)u,u)| s u € H, [[uf =1}
=sup{l — B, — an(Au, u) :u € H,[jul| =1} <
<1-0,—ay<l.
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Let Q = Py. Note that f is a contraction with coefficient h € (0,1). Then, we
have
QU —A+7f)(z) = QU - A+ )W < [T - A+~f)(z) - I - A+~7f)W) <
< =Allllz =yl +~[f(z) = fFWI <
< A=Az -yl +~hllz -yl =
=[1=@F=y0)lz-yl,
for all x,y € H. Therefore, Q(I — A+ ~f) is a contraction of H into itself, which
implies that there exists a unique element z* € H such that 2* = Q(I — A+~ f)(z*) =
Py (I — A+ f)(a”).
Next, we divide the proof of Theorem 3.2 into 9 steps:
Step 1. First prove the sequences {z,}, {pn}, {{&n} and {y,} are bounded.
(a) Pick p € ¢4, since y,, = ¥ N, and p = ¥ p, we have

lyn = pll = 17N = pll < [z = p]|- (32)
(b) Since p € VI(H,B, M) and p, = Jy (I — AB)&,, we have p = Jy A(I — AB)p,
and so
[on = pll = [Jaea(I = AB)&n = Jua(I = AB)p|| <
<II=AB)G — U= ABYl < o —pll=
= I = AB)yn — Jua(I — AB)p|| <
< llyn = pll < llzn = pl|-
Letting u, = - [ T(s)ands, o=~ fo 5)pnds, we have

tn

1 o
um —pll = | / T(s)auds —pl < - / IT(s)zn — T()pllds < |zn —pll.  (3.4)
0

tn
0
Similarly, we have

llgn = pll < llon = plI- (3:5)
Form (3.1), (3.2), (3.3), (3.4)and (3.5), we have

|Zn+1 —pll =
= [lanvf(un) + Bpzn + (1 = Bu)I — anA)gn —pll =
= ”O‘n'y(f(un) - f(p)) + ﬁn(xn - p)"‘

+ (1 = Bu)I — anA)(gn — p) + an(vf(p) — Ap)| <
< anyhllun = pll + Bullzn — pll + (1 = Br) — anllgn — pll + anllvf(p) — Apll <
< an'Yh”xn _pH + ﬁnnmn _pll + ((1 - ﬂn) - Oz,fy)”%n p” + O‘nH'Yf(p) - Ap|| <
<(I-an(y - vh))Hwn —pll + anllvf(p) — Ap| <

—— g ) = Apl

< mazfjzn - pll. 5

< mazz; — PII» - ||7f( ) — Apll.
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This implies that {z,} is a bounded sequence in H. Therefore
{un}, {pn}, {&n}, {7f(un)} and {q,} are all bounded.
Step 2. Next we prove that
Jns1 — 2all = 0 (n = o). (3.6)
In fact, let us define a sequence {z,} by

Tn41 = (1 - ﬂn)zn + ﬁnxn Vn 2 17

then we have

Zn+1 — Zn =
_ Zny2 — Br41Tnt1 _ Tngl — Brn _
1-—- Bn+l 1- ﬁn
_ a1 f(Ungr) + (L= Bni) ] — ans1A)gnia
1-Bny1
. Oén'yf(un) + ((1 - ﬁn)I - anA)qn _
1- ﬂn
On41 Qn
= T 5 n — A n - n) — A n n — {4n
1—ﬁn+1hf(u +1) = Agn1] 1—ﬁnhf(u) Gn] + Gn+1 — ¢
and so
Hzn+1 - Zn” - Hanrl - mTLH S
Qp
< " (v f (ung )| + | A l])+
1—Bng1
tr,,,+1 tn+1
ay, 1 1
+ (v f )l + [ Agnl) + l-— [ T(s)pnt1ds — T(s)pnds||+
1—0n Int1 5 tnt1
tnt1 1 tn
1
i [ Tods = = [ Te)pads] = rnsa = 2] <
n+1 n
0 0
Qp41
< ﬁ(\lvf(unﬂ)\l + | Agns1 )+
- Mn+1
tn+1
an,
@)+ MAal) + - [ 1TG)us = T(s)paldst
1-—- ﬁn tn+1

0
tnt1

(2%
1 1
o [ TOds = [ Tpds] = s =zl
n+1 n
0 0

+ |l
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Since p, = Jur(I — AB)¢, and ypi1 = Y N(zni1), yn = ¥V (x,), from the
nonexpansivity of . we have

lpnt1 = pull = [ITaA (I = AB)Ent1 = T (I = AB)én|| <
< lgn —&nll =

3.8
= Al = ABj — Jaarl 3Bl < Y
< Yn+1 = Ynll < [Tns1 — 2.
Substituting (3.8) into (3.7), we get
||Zn+1 - ZnH - ||$n+1 - !L‘nH S
Q1
< ﬁ(”’ﬁ(%ﬂ)” + | Agn+1l)+
n+1 tott
1
an
7wl + Agal) + 72— [ 17(6)puss = T(s)paldst
1 ﬁn thrl
tn41 tn 0
1 1
i [ Tonds = - [ Te)pads] = lrnss =zl <
n+1 n
Qp41
< T (i) + g+
an+ ) trni1 (39)
T2 ()l + 1Agal) + = [ Nz = oalds+
1 ﬁn tn-{-l
tn41 tn 0
1 1
i [ Tends = - [ Te)pads] = lfrnss = 2] <
n+1 n
0
Qn41 Qn
< 2y )|+ g ) + T f )|+ g+
1 ﬂn-&-l 1 ﬂn

tnt1 tn

1 1
i [ Tpuds = - [ T()puds].
n+1 5 n 5

From conditions ¢, C (0,00) and ¢, T oo, we have

A 7
i [ T6puds = [ T(s)pnas] =
n+1 n
0 0
] tn tnt1 ] tn
([ TIpuds + [ Te)puds) ~ - [ T(5)puds] <
tn—i—l tn
0 tn 0
1 tn tn+1
< [t~ ta)Tpulds + IT(s)pnlds =
tnthrl ) thrl
ty —t t —t t
_ 1+1 nM+ n+1 nMZZM(l_ n)_>0’

tn+1 thrl tn+1
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where M = supy>g.,>1 [|T(s)pnll. From (3.9) and conditions lim,, . o, = 0 and
0 < liminf,, o Bn < limsup,,_,. Bn < 1 that

limsup(||zn41 = znll = [@n41 — 2al]) < 0.
n—oo
Hence, we have
lim ||z, — z,|| = 0.
n—oo
Consequently
lim [|z,41 — 2zn|| = lUm (1 — 83,)]|zn — 2n]| = 0.
n—oo n—oo

Step 3. Next we prove that
lim |z, — gn|| = 0. (3.10)

Since

[2n = gnll < llzn — Zngall + [[2n41 — gull <
<o = Tnga || + anllvf (un) — Agall + Ballzn — gnll,

simplifying it we have
_%n

1
1_571 1_/6n

Since o, — 0, ||@pnt1 —xn|| — 0, and {vf(u,) — Ag,} is bounded, from the condition
limy,— 00 ap, = 0 and 0 < liminf,, oo B, < limsup,,_, o, Bn < 1, we have ||z, —gn| — 0.
Step 4. Next we prove that

zn — qnll < |20 — Tpya | + 7 (un) — Agal|-

st = T(s)ns1]l = 0 (n = 00). (3.11)
Since xp41 = anyf(un) + Bnzn + (1 — Bu)I — anA)gn, then
[2n+1 = gnll < anl[vf(un) — Agnll + Bullzn — gnll-
From condition lim, . oy, = 0 and ||z, — ¢,|| — 0, we have
[Zn41 — gull — 0. (3.12)

Let K ={w € C: |lw—p| < maz|z1 —p|, ﬁ\hf(p) — Ap||, then K is a nonempty
bounded closed convex subset of C' and T'(s)-invariant. Since {z,} C K and K is
bounded, there exists r > 0 such that K C B,, it follows from Lemma 2.6 that

lim [lgn — T(s)gal] — 0. (3.13)
From (3.12) and (3.13) , we have

i — T(nill = (21 — gn + g — T(5)n + T(5)gn — T(s)t]| <
< ||xn+1 - QHH + ”q” - T(S)QH” =+ ”T(S)Qn - T(S)$n+1|| <
< ||xn+1 - qﬂ” + HQn - T(S)QnH + HQn - xn-i-l” — 0.
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Step 5. Next we prove that

(i) lim |[¥"* e, — ¥, =0, V1€ {0,1,-- N —1};

n—oo

) . N (3.14)
(i7) Especially, lim |¥Vz, — x| = lim |y, — 2] = 0.
n—0o0o n—oo

In fact, for any given p € ¢4 and [ € {0,1,---, N — 1}, Since Vr(?ifl is firmly nonex-
pansive, we have

17 = pl2 = V2L () = VDI <

Ti41 Ti4+1
S <‘/;(?lirl (A//lxn) - b 7/lxn - p> =

= <7/l+1xn - D ai/lxn - p> =

1
= S = pl* + 17 2 = plI* = 17 20 = 7 2 |),

It follows that
17" @ = pl? < llwn —plI? = |7 20 — 7|2 (3.15)

From (3.1), we have

[Znt1 —plI* =
= [lanyf(un) + Brn + (1 = Bu)I — anA)gn — p||* =
= [lan(vf (un) = Ap) + Bu(xn — gn) + (I — nA)(gn — p)||* <
< (I = anA)(gn = p) + Bul@n — @n) > + 200 (v f (un) — Ap, 21 — p) <
<1 = anA)(gn = p)I| + Bull(@n — ) II* + 200 (7f (un) — Ap, np1 — p) <
< [(1 = anV)llpn = pll + Bullzn — gnlll® + 200 (v (un) — Ap, zni1 —p) =
= (1= an¥)?llpn — 2l + Ballzn — gnll* +2(1 — n¥)Ballon — pll - 20 — gnll+

+ 20| f (un) — Apll - 2041 — pll-

(3.16)

Since

lon =Pl < ll€n =2l < 17V an = pll < |V 20 —pll V€ {0,1, -, N =1}
Substituting (3.15) into (3.16), it yields

[@ns1 = pl* <

< (1= an®){llzn = pI? = 1720 = 72} + B2 llen — aal®+
+2(1 = an¥) - Bullpn =l - |20 = gnll + 2an[lvf (un) = Apll - 2041 —pll =

= (1= 2007 + (@n¥)?)llzn — plI* = (1 = x|V 2 — V" 2n|* + Billzn — aul*+
+2(1 = ) Bnllon = pll - |2 — gnll + 2an[l7f (un) = Apll - 2011 — pl-
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Simplifying it we have

(1- an’_Y)2||7/lxn - 7/l+1m7z||2 <

< llen = pl? = Izt = plI* + an¥?[lzn — plI*+
+ Ballzn = aull? +2(1 — @n¥)Ballpn — pll - 120 — gull+
+ 2017 f (un) = Apl| - [|2n41 — pl.

Since a, — 0, |2ps1 — Tn| — 0, || — qul| — 0, it yields ||#'a, — ¥ Hla,| — 0.
Step 6. Now we prove that for any given p € ¢4

lim ||By, — Bp| = 0. (3.17)
In fact, it follows from (3.3) that

lpn = 21> < 16 = pI* = [T A (T = AB)yn = Jara(I = AB)p||? <
<|I(I = AB)yn — (I = AB)p||* =
= llyn — PlI* = 2X\(yn — p, Byn — Bp) + X?||By, — Bp[|> < (3.18)
< lyn = plI*> + A(X = 20) || By, — Bp||* <
< lzn = plI* + A(A = 20)[| By, — Bpl*.

Substituting (3.18) into (3.16), we obtain

[€ns1 = plI? <

< (1= an¥)*{[lzn = plI> + A\ = 20) | Byn — Bpl|*} + Bz — qnl*+

+ 2(1 - anﬁ)ﬂn”pn - p” : ”-rn - QnH + 20‘n||7f(un) - Ap” ) Hxn-i-l - pH
Simplifying it, we have

(1 - an¥)’M2a = N)|| By, — Bp|)* <
< Nzn = pl? = l#ntr = pl? + an¥?l|zn =l + Ballzn — aull*+
+2(1 — an¥)Bullpn — pll - 120 — @nll + 2an |17 f(un) — Ap| - |2n+1 — pl|-
Since o, — 0, 0 < liminf, . B, < limsup,,_., On < 1, [|[Tps1 — 2nl — 0, |n —
an|l — 0, and {vf(un) — Ap},{z,} are bounded, these imply that ||By, — Bp| —
0 (n — o0).
Step 7. Next we prove that
nh—>Holo lyn — pnll = 0. (3.19)
In fact, since
[9n = pnll < Nlyn = &all + €0 — pall;

for the purpose, it is sufficient to prove

[yn = &nll = 0 and [[&n = pnll — 0.
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(a) First we prove that ||y, — &,/ — 0.
In fact, since

1€n — plI* =
=Ty a(I = AB)yn — Jua(I — AB)p||*> <
S(yn - >\Byn - (p - )‘Bp)7€n _p> =

1

=5 {llyn = AByn — (p=ABD)|1? + 1€n—plI* = lyn—AByn — (p—ABp) — (&, —p)|1?} <
1 —pl? —|? = |yn — & — M(By,, — Bp)||*} <

< gy =PI + 1160 = 217 = llyn — & — AM(Byn — Bp)[I} <

1
< llyn=pl* + 180 =PI = llyn —=&all* + 2Myn —&n, Byn—Bp) = A*|| Byn — Bp|*}

we have

Hgn _p||2 < Hyn _pH2 - Hyn _gnHQ +2)‘<yn _gna Byn - Bp> - /\2||Byn —BpH2. (320)
Substituting (3.20) into (3.16), it yields that

zns1 = pI* < (1= ) {llyn — 2l = lyn — &all*+

+ 2Myn = &n, Byn — Bp) = A Byn = Bp|*} + B |lon — aall*+

+2(1 = an)Bullon = pll - 20— gnll + 2an|[7f(un) — Ap|l - 201 —pl-
Simplifying it we have

(1- anﬁ)zllyn - §n||2 <

< ([lzn = ngall) - (lzn = Pl + 201 = pll) + a0 — plI*+

+2(1 = w7 Myn — &n, Byn — Bp) — (1 — an)? N || Byn — Bpl|* + B; |z — qnl*+
+2(1 — an¥)Bullon — Pl - |20 — anll + 20 |17 f (ur) — Apl| - [|2541 — pI|-

Since ay, — 0, 0 < liminf,, o B, < limsup,,_ o Bn <1, ||[2n —aqnl| = 0, || Byn —

Bp|| = 0 (n —o0), [[#ns1—xn| — 0 and {yf(un) — Ap}, {xn}, {pn} are bounded,
these imply that ||y, — &nl| — 0 (n — o0).
(b) Next we prove that

lim ||€n - pn” = 0. (3'21)
n—00

In fact, since ||€y, — pull = [T x(I — AB)Yn — I a(I — AB)En||l < llyn — &nll — 0,

and so Hyn - pn” = ||yn —&n+& — an < ||yn - §n|| + ||§n - an — 0.
Step 8. Next we prove that

limsup(yf(z*) — Az*, 41 — 2¥) <O0. (3.22)

n—oo
(a) First, we prove that
tn

lim sup(ti /T(s)pnds —z*,vf(z*) — Az*) <0. (3.23)
n—oo n 0
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To see this, there exist a subsequence {p,,} of {p,} such that

tn

limsup<ti /T(s)pnds — " yf(z¥) — Az™) =

n—oo n
tni

= lim Sup<ti /T(S)pmds —a",vf(a") — Az7)

1—00 n;

we may also assume that p,, — w, then g,, = %fgw T(s)pn,ds — w. Since
|zn — gnl| — 0, we have x,, — w.
Next, we prove that
weY.

(1°) We first prove that w € F(7). In fact, since {x,,} — w. From Lemma 2.7
and Step 4, we obtain w € F(.7).

(2°) Now we prove that w € N, MEP(O,, ¢;).

Since z,, — w and noting Step 5, without loss of generality, we may assume
that #'z,, — w, V1 € {0,1,2,--- ,N — 1}. Hence for any z € C and for any
1€{0,1,2,--- ,N — 1}, we have

Kl/+1(/yl+1xni) - Kl/+1(7/lxni)
Ti41
> =01 (V1) — o1 (@) + o (P ).

3 77l+1($a 4//l+1xn1,)> =

(

By the assumptions and by the condition (Hs) we know that the function p; and the

mapping & — (—0;4+1(z,y)) both are convex and lower semi-continuous, hence they

Kl/+1(41/l+1$"1')7KL/+1(7/ZI”1') — 0
Ti4+1

are weakly lower semi-continuous. These together with

and 7'*lz, — w, we have

0= limjnf{<Kl+1(7/l+133m) - KlJrl(’f/lIm)

i—00 T4l
>l inf{ =01 (V' gy, ) — g (2) + i (V) )

s (@, )} 2

ie.,
Or1(w, x) + prp1(x) — pre1(w) >0

for allz € C and [ € {0,1,--- , N — 1}, hence w € N}, MEP(©, ¢;).

(3%) Now we prove that w € VI(H, B, M).

In fact, since B is a-inverse-strongly monotone, it follows from Proposition 1.1
that B is a L-Lipschitz continuous monotone mapping and D(B) = H (where D(B)
is the domain of B). It follows from Lemma 2.4 that M + B is maximal monotone.
Let (v,g) € Graph(M + B), i.e., g — Bv € M(v). Since z,, — w and noting Step
5, without loss of generality, we may assume that ¥z, — w, in particular, we have
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Yn, = VN, — w. From ||y, — pn|| — 0, we can prove that p,, — w. Again since
pn; = Ju (I — AB)&,,, we have
. 1

By virtue of the maximal monotonicity of M, we have

1
<V —Pniy9 — Bv — X(&m — Pn; — )‘Bgnl» > 0
and so

1
<V_Pniag> > <V_pnivBV+ X(ém — Pn; — AB§H1)> =

1
= <V_pni7BV_ Bpm +Bpnz - Bgnz + X(gnz _pnz)> 2

1
>0+ (v = pn;y Bpn;, — B&n,) + (V= pn,, X(fm = Pn;))-
Since ||&, — pnl|l — 0, ||B&n, — Bpnll — 0 and p,, — w, we have
lim <V_pniag> = <V_wag> > 0.

n;— 00

Since M + B is maximal monotone, this implies that § € (M + B)(w), ie., w €
VI(H,B,M), and so w € 4.
Since z* = Pg(I — A+~ f)(z*), we have

tn

limsup<ti/T(s)pnds — ¥, yf(z¥) — Ax™) =

n—oo n 0
tn;
1
= limsup(t— /T(s)pmds — ", vf(z*) — Az*) =

= limsup(gn, — =", 7f(z") — Az*) =

— (w— 2", 7 /(") - Az) 0.
(b) Now we prove that

limsup(yf(z*) — Az”, zpq1 — 2") < 0.

n—oo

From ||2,,+1 — ¢n|| — 0 and (a), we have

limsup(yf(z*) — Az™, 1 — z¥) =

n—oo

= limsup(yf(z*) — Az™, Zpy1 — gn + ¢ — 2¥) <

< limsup(yf(z*) — Az™, Tpy1 — qn) + limsup(yf(z*) — Az*, g, — ™) < 0.
n—oo n—o0

Step 9. Finally we prove that

Ty — T
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Indeed, from (3.1) , we have

241 = 2|* =

= llan(Vf(un) — Ax™) + Bu(zn — ™) + (1 = B)] — anA)(gn — 27)|1* <
< |Bulwn — 2) + (1 = Bu)] — anA)(gn — x*)”2 + 200 (v f(un) — A2™, 2py1 —27) <
< Q= B)] = anA)(gn — &) + Ballzn — 2]+
+ 20,7 (f (un) = f(27), Xpg1 — &%) + 200 (v f(2") — Az™, 2py1 — 27) <
<[ = Ba = an)llpn — 2|l + Bullwn — 2*[* + 2anvhllen — 27| - 2nsr — 2"+
+ 20, (v f(x¥) — Ax™ xpy1 — ) <
< (1= an¥)llen = 271 + anvh{llzn — 2*|* + [l2ng1 — %[ *}+
+ 20 (vf(a™) — Ax™, xpp1 — 7).

This implies that

i

(1 - O‘n’?)2 + O‘n'yh 2 2an
< n— * =/ n N _ A *7 n e\
< SO o, — 07|+ T (@) — A2 s =)
2(:}/_’7]7‘)0471 * (|2 (Oé’”«ﬁ/)2 * (|2 2a’ﬂ *
= 1_7 n - 5 7 n - 5 7 -
L e e TAEA Gl
- Ax*»anrl _$*> <
2(?77}1)&" *112 2(’_)/77}7’)0‘% an,?2 * (2
<f1l-=—1 — _
< (1= T — | 4 S 2T, — a2
1
* —A * o ok _
e (@)~ A =)
= (1= ln)[lwn — x*”Q + O,
where
" 1—anvh
and
207 —yh)an . any? 9 1
5n: - * N _ A *, " — 2"\
o g g llen = a1+ = (0 () — Ax”, s =)

It is easy to see that I, — 0, Y. .-, = oo and limsup,_, ‘;—" < 0. Hence the
sequence {x,} converges strongly to x*.
This completes the proof of Theorem 3.2. O
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Corollary 3.3. Let H, C, A, B, M, f, I, F, vi, 75, K;(i = 1,2,--- |N) be the
same as Theorem 3.2. Let {xzn}, {pn}, {&n} and {yn} be explicit iterative sequences
generated by x1 € H and

tn tn

bust = f (- [ T(s)oads) + Bun + (1= )1 = @A) [ T(s)puds,

tn n
0 0
>
pn = Pe(l = AB)é,, vzl
§n = Pc(I — AB)yn,
Yn = VI‘C;)VN s V;"(;)zvr?lmna
(3.24)
where r;(i = 1,2,--- N) are a finite family of positive numbers, A €

(0,20, {an}, {Bn} C [0,1] and {t,} C (0,00) is a sequence with t, T oco. If
G =F(7)MEP(F)NVI(C,B) # 0 and the following conditions are satisfied:

(i) for each x € C, there exist a bounded subset D, C C and z, € C such that for
any y € C'\ Dy,

0i(y, 22) + wilzz) — wily) + %(Ké(y) — Kj(2),mi(22,9)) <0,

3
(i) limy oo o =0, D07 @y = 00, 0 < liminf,, . B, < limsup,_, o Bn < 1,

then the sequence {x,} converges strongly to some point x* = Pgy(I — A+ vf)(z*),
provided that VTG’ s firmly nonerpansive.

Proof. Taking M = 06c : H — 2% in Theorem 3.2, where §c : H — [0,00) is the
indicator function of C, i.e.,

0, z e,
oc =
400, x¢C,

then the variational inclusion problem (1.2) is equivalent to variational inequality
(1.3), i.e., to find u € C such that

(B(u),v —u)y >0,Yv € C.

Again, since M = 0dc, the restriction of Jys» on C is an identity mapping, i.e.,
Juale = I and so we have

Po(I = AB)ky, = Jux(Pc(I — AB)ky,);  Pc(I — AB)yn = Jux(Pc(I — AB)yn).

Hence the conclusion of Corollary 3.3 can be obtained form Theorem 3.2 immediately.
O
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