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GRAPH CHOOSABILITY
AND DOUBLE LIST COLORABILITY

Hamid-Reza Fanaï

Abstract. In this paper, we give a sufficient condition for graph choosability, based on
Combinatorial Nullstellensatz and a specific property, called “double list colorability”, which
means that there is a list assignment for which there are exactly two admissible colorings.
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1. INTRODUCTION

The list coloring problem in graph theory is an exciting research area. It was in-
troduced by Vizing [6] and independently by Erdös, Rubin and Taylor [4]. In a list
coloring problem, we have a graph G with a list of available colors at each vertex,
and we are looking for a properly vertex coloring of G such that each vertex takes its
color from its list. Choosability means that it is possible for G to be list colorable
when only the size of lists is known. Alon and Tarsi in [2] defined a polynomial
associated with a graph (Combinatorial Nullstellensatz) and used it to give sufficient
conditions for choosability of a graph in terms of the existence of certain orientations
on the edges of the graph. In [1], this powerful algebraic approach has been used
to study some relations between choosability and unique list colorability. Here we
use the same method for double list colorable graphs and under some conditions, we
obtain a choosability result. Although, uniquely colorable graphs have been studied
by many authors, see for example [3] and [7], the double colorable graphs have not
been considered so much. However, the number of list-colorings was recently studied
by Thomassen in [5] and seems to be an interesting problem. In this note, the graphs
considered are finite, undirected and without loops. Let us recall some notation.

The vertex set of a graph G is denoted by V (G) and its edge set by E(G). We
denote by n, the number of vertices of G which is called the order of G and by m, the
number of edges of G which is called the size of G. For a graph G, a list assignment
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L is a function that assigns to each vertex v of G a set Lv of colors. An L-coloring of
G is a function that assigns to each vertex a color from its list such that two adjacent
vertices in G receive different colors. If G admits an L-coloring, then G is called
L-colorable. The graph G is said to be uniquely L-colorable, if there is exactly one
L-coloring. Similarly, G is said to be double L-colorable, if there are exactly two
L-colorings. For a function f : V (G) → N, we say that G is f -choosable if G is
L-colorable for every list assignment L satisfying |Lv| = f(v) for all v ∈ V (G).

In [2], the graph polynomial fG(x1, . . . , xn) of a graph G with vertex set V (G) =
{v1, . . . , vn} is defined by

fG(x1, . . . , xn) =
∏
{(xi − xj) | i < j, vivj ∈ E(G)}.

Let D be an orientation of G. An oriented edge (vi, vj) of G is called decreasing if
i > j. The orientation D is called even, if it has an even number of decreasing edges,
otherwise, it is called odd. For non-negative integers d1, . . . , dn, let DE(d1, . . . , dn)
and DO(d1, . . . , dn) denote, respectively, the sets of all even and odd orientations of
G, in which the outdegree of the vertex vi is di for 1 ≤ i ≤ n. We have the following
lemma in [2].

Lemma 1.1. In the above notation

fG(x1, . . . , xn) =
∑

d1,...,dn≥0

(|DE(d1, . . . , dn)| − |DO(d1, . . . , dn)|)
n∏

i=1

xdi
i .

2. RESULTS

In this section, based on the algebraic technique developed by Alon and Tarsi in [2],
and using the same idea of [1], a relation between choosability and double list col-
orability is obtained. First, we prove the following algebraic lemma which generalizes
Lemma 1 in [1].

Lemma 2.1. Let F be a field and let P = P (x1, . . . , xn) be a polynomial in n variables
over F such that degxi

(P ) ≤ di for 1 ≤ i ≤ n. Furthermore, for 1 ≤ i ≤ n, let Si

be a subset of F consisting of di + 1 elements and let ai, bi ∈ Si with (a1, . . . , an) 6=
(b1, . . . , bn). Suppose that P (a1, . . . , an) 6= 0, P (b1, . . . , bn) 6= 0 and P (x1, . . . , xn) = 0
for every (x1, . . . , xn) ∈

∏n
i=1 Si \ {(a1, . . . , an), (b1, . . . , bn)}. Then,

P (x1, . . . , xn) = c

n∏
j=1

∏
s∈Sj\{aj}

(xj − s) + d

n∏
j=1

∏
s∈Sj\{bj}

(xj − s)

for some constants c, d ∈ F .
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Proof. Let l1 =
∏n

j=1

∏
s∈Sj\{aj}(aj−s), l2 =

∏n
j=1

∏
s∈Sj\{bj}(bj−s) and define the

following polynomial,

Q(x1, . . . , xn) = P (x1, . . . , xn)− l−1
1 P (a1, . . . , an)

n∏
j=1

∏
s∈Sj\{aj}

(xj − s)−

− l−1
2 P (b1, . . . , bn)

n∏
j=1

∏
s∈Sj\{bj}

(xj − s).

Clearly degxi
(Q) ≤ di, for any i, 1 ≤ i ≤ n, and Q(s1, . . . , sn) = 0 for each

(s1, . . . , sn) ∈
∏n

i=1 Si. Now the result follows from Lemma 2.1 of [2].

We now use Lemma 2.1 to obtain a relation between choosability and double list
colorability. Let G be a graph on a set V = {v1, . . . , vn} of n ≥ 1 vertices. For
1 ≤ i ≤ n, let Lvi

be a list of di + 1 colors, where di ≥ 0 is a given integer. Suppose
that G is double L-colorable. We would like to prove that G is f -choosable provided
that f(vi) = di + 1 for 1 ≤ i ≤ n and d1 + . . . + dn = m, where m is the size of G.
The latter condition was needed in [1] and we must have it as well. Let

fG(x1, . . . , xn) =
∏
{(xi − xj) | i < j, vivj ∈ E(G)}

be the graph polynomial of G. For 1 ≤ i ≤ n, let Si = Lvi and S =
∏n

i=1 Si.
Since G is double L-colorable, there are exactly two n-tuples a = (a1, . . . , an) and
b = (b1, . . . , bn) in S, such that

(1) fG(a) 6= 0, fG(b) 6= 0 and fG(x1, . . . , xn) = 0,∀(x1, . . . , xn) ∈ S \ {a, b}.
For an arbitrary color c, let Vc be the set of vertices which receive the color c in the

L-coloring of the graph using the colors a1, . . . , an, and let V ′c be the set of vertices
which receive the color c in the L-coloring of the graph using the colors b1, . . . , bn.
With these notations, we have the following result.

Proposition 2.2. Let G be a graph on a set V = {v1, . . . , vn} of n ≥ 1 vertices. For
1 ≤ i ≤ n, let Lvi be a list of di + 1 colors where di ≥ 0 is a given integer. Suppose
that G is double L-colorable and d1 + . . .+dn = m, where m is the size of G. Suppose
that for some color c, with the above notation, the following equation does not hold:∑

v∈Vc\V ′c

deg(v)−
∑

w∈V ′c\Vc

deg(w) =
∑

v∈Vc\V ′c

(|Lv| − 2)−
∑

w∈V ′c\Vc

(|Lw| − 2). (2.1)

Then the following statements hold: (i) |DE(d1, . . . , dn)| 6= |DO(d1, . . . , dn)|, and (ii)
G is f -choosable provided that f(vi) = di + 1 for 1 ≤ i ≤ n.

Proof. By a result of Alon and Tarsi in [2], as noted in [1], it is sufficient to show that
K 6= 0, where

K = |DE(d1, . . . , dn)| − |DO(d1, . . . , dn)|.
We use the idea of [2] and proceed exactly as in [1]. The graph polynomial fG is
homogeneous and every monomial of fG has degree m. We apply the same argument
as in the proof of Theorem 2.1 in [2].
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This argument, already used in [1], implies that there is a polynomial
fG(x1, . . . , xn) satisfying the following conditions:

(2) fG(x1, . . . , xn) = fG(x1, . . . , xn) for every (x1, . . . , xn) ∈ S.
(3) degxi

(fG) ≤ di, for 1 ≤ i ≤ n.

(4) The coefficient of
∏n

i=1 xdi
i in fG is equal to its coefficient in fG.

By Lemma 1.1 and (4), it then follows that the coefficient of
∏n

i=1 xdi
i in fG is

equal to K. Combining (1)–(3), and Lemma 2.1, we then conclude that K = K1+K2,
where

K1 =
∏
{(ai − aj)|i < j, vivj ∈ E(G)}∏n

j=1

∏
s∈Sj\{aj}(aj − s)

, K2 =
∏
{(bi − bj)|i < j, vivj ∈ E(G)}∏n

j=1

∏
s∈Sj\{bj}(bj − s)

.

If K1 + K2 6= 0, then K 6= 0 and G would be f -choosable provided that f(vi) =
di + 1 for 1 ≤ i ≤ n. Suppose that K1 + K2 = 0. From this equation, we obtain
a contradiction with the assumption of the proposition concerning equation (2.1).
Note that the equation K1 + K2 = 0 can be written as the following

n∏
j=1

aj 6=bj

∏
s∈Sj\{aj ,bj}

(
bj − s

aj − s

)
= (−1)k+1

∏
i<j

vivj∈E(G)

(
bj − bi

aj − ai

)
, (2.2)

where k is the number of indexes j for which aj 6= bj . Consider the above equation in
terms of the indeterminate c for any color c, and compare the degree of c in the left
and in the right side. Then we see that equation (2.1) must hold for every color c.
Hence we have a contradiction.

Remark 2.3. We note that actually the equation K1 + K2 = 0 may be true. For
example a triangle with the lists {1, 2}, {1, 2}, {2, 3} is double L-colorable but is not
2-choosable.

Example 2.4. We adapt the example in Theorem 2 of [1] with a minor change.
For any natural number 3 ≤ t, consider the complete graph K2t−1, with the vertex
set {u1, . . . , ut, v1, . . . , vt−1}. For each i, j, 1 ≤ i ≤ t, 1 ≤ j ≤ t − 1, assign to
ui a list Lui

= {1, . . . , t} and to vj a list Lvj
= {1, . . . , t + j}. By adding t − 1

independent new vertices {w1, . . . , wt−1} to the complete graph K2t−1 and joining
the vertex wi, 1 ≤ i ≤ t − 1, to all vertices {v1, . . . , vt−1} and {ui+1, . . . , ut}, we get
a graph G of order 3t − 2 and size

(
2t−1

2

)
+ (t − 1)2 + 1 + 2 + . . . + (t − 1). For

each i, 1 ≤ i ≤ t − 2, we put Lwi
= {t + 1, . . . , 2t − 1} ∪ {i} and for wt−1 we put

Lwt−1 = Lwt−2 (this is the minor change with [1]). We can show that G is double
L-colorable using the same argument as in [1]. In fact, all colors {1, . . . , t} appear in
the vertices {u1, . . . , ut} and v1 is adjacent to these vertices, so v1 can only be colored
by t + 1. In the same manner, v2 can only be colored by t + 2 and similarly the color
of vi should be t + i, for 1 ≤ i ≤ t− 1. Since wi, for 1 ≤ i ≤ t− 1, is adjacent to all
vertices {v1, . . . , vt−1}, its color is uniquely determined. Also w1 is adjacent to the
vertices {u2, . . . , ut} so the color of u1 is 1. For any j, 1 ≤ j ≤ t − 2, the vertex uj
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can only be colored by j and for the vertices ut−1 and ut we have two choices. Hence
G is double L-colorable. We can check that the equation (2.1) does not hold for the
color t. It is easy to verify that

∑
v∈V (G)(|Lv| − 1) is equal to the size of G. Now by

Proposition 2.2, G is f -choosable.
Now, with the above notation, suppose that the equation (2.1) holds for every

color c. We are interested this time to the coefficient of the indeterminate c obtained
by the equation (2.2). Fix a color c. Let Vc and V ′c be as above. We use indexing
of the vertices in which the indexes of V ′c are greater than those of Vc. Suppose that
there exist r edges between Vc and V ′c in the graph. It is not hard to see that just by
comparing the coefficient of c in both sides of the equation (2.2), we must have that
k + r + 1 is an even number. So if k + r is an even number, we have choosability of
the graph.

Proposition 2.5. Let G be a graph on a set V = {v1, . . . , vn} of n ≥ 1 vertices. For
1 ≤ i ≤ n, let Lvi be a list of di + 1 colors where di ≥ 0 is a given integer. Suppose
that G is double L-colorable and d1 + . . . + dn = m, where m is the size of G. Let k
be the number of vertices which receive different colors in the two L-colorings of G.
Suppose that for some color c, in the above notation, there exist r edges between Vc

and V ′c such that k + r is an even number. Then the following statements hold:
(i) |DE(d1, . . . , dn)| 6= |DO(d1, . . . , dn)|, and (ii) G is f -choosable provided that f(vi) =
di + 1 for 1 ≤ i ≤ n.

Example 2.6. Let G be the cycle of length 2n. We assign to each vertex the same
list {1, 2} of colors. Then G is double L-colorable. In the above notation, the equation
(2.1) holds for the colors 1, 2. But the equation (2.2) does not hold. In fact we have
k = 2n and for each color 1 or 2, r = 2n. Hence the number k + r is even and by
Proposition 2.5, G is 2-choosable.

It is evident that in a similar way, we can study the relation between triple
L-colorability and choosability of a graph. This leads us to study an equation in
the form of the equation (2.2) with three terms involved. Determining the degree
or the coefficient of an indeterminate color c in such equation seems to be more
complicated.
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