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TREES
WITH EQUAL GLOBAL OFFENSIVE k-ALLIANCE
AND k-DOMINATION NUMBERS

Mustapha Chellali

Abstract. Let k > 1 be an integer. A set S of vertices of a graph G = (V(G), E(G)) is
called a global offensive k-alliance if |[N(v) 0S| > |N(v) — S|+ k for every v € V(G) — S,
where N (v) is the neighborhood of v. The subset S is a k-dominating set of G if every vertex
in V(G) — S has at least k neighbors in S. The global offensive k-alliance number v*(G) is
the minimum cardinality of a global offensive k-alliance in G and the k-domination number
. (@) is the minimum cardinality of a k-dominating set of G. For every integer k > 1 every
graph G satisfies v¥(G) > 4 (G). In this paper we provide for k > 2 a characterization of
trees T with equal v¥(T") and v (T).
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1. INTRODUCTION

We begin with some terminology. For a vertex v of a simple graph G = (V(G), E(G)),
the open neighborhood of v € V(G) is N(v) = Ng(v) = {u € V(G) | wv € E(G)}
and the degree of v, denoted by degs(v), is |[Ng(v)|. By n(G) and A(G) = A we
denote the order and the mazimum degree of the graph G, respectively. Specifically,
for a vertex v in a rooted tree T, we denote by C(v) and D(v) the set of children
and descendants, respectively, of v, and we define D[v] = D(v) U {v}. The mazimal
subtree at v is the subtree of T' induced by D[v], and is denoted by T,.

In [9] Kristiansen, Hedetniemi, and Hedetniemi introduced several types of al-
liances in graphs, including defensive and offensive alliances. We are interested in
a generalization of offensive alliances, namely global offensive k-alliances given by
Shafique and Dutton [10,11]. Let & > 1 be an integer. A set S of vertices of a graph
G is called a global offensive k-alliance if |[N(v) N S| > |N(v) — S| + k for every
v € V(G)— S for 1 <k < A. The global offensive k-alliance number v*(G) is the
minimum cardinality of a global offensive k-alliance in G. If S is a global offensive
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k-alliance of G and |S| = v*(G), then we say that S is a v*(G)-set. Note that a global
offensive 1-alliance is a global offensive alliance and a global offensive 2-alliance is
a global strong offensive alliance. Recently, Fernau, Rodriguez and Sigarreta showed
in [5] that the problem of finding optimal global offensive k-alliances is NP-complete,
and Chellali, Haynes, Randerath and Volkmann presented in [3] several bounds on
the global offensive k-alliance number.

For a positive integer k, a set of vertices D in a graph G is said to be a k-dominating
set if each vertex of G not in D has at least k£ neighbors in D. The order of the smallest
k-dominating set of G is called the k-domination number, and it is denoted by v (G).
The concept of k-domination was introduced by Fink and Jacobson in [6, 7], and is
studied, for example, in [4,8] and elsewhere.

Clearly, if S is any global offensive k-alliance, then every vertex of V(G)— S has at
least k neighbors in S. Thus S is a k-dominating set of G, and hence 74 (G) < v*(G).

In this paper, we provide a characterization of trees with equal global offensive
k-alliance and k-domination numbers for every integer k > 2. Note that a character-
ization of trees T with v;(T) = v}(T) has been given by Bouzefrane and Chellali [2].

2. MAIN RESULT

We begin by introducing the following trees defined in [1] by Blidia, Chellali and
Volkmann. For a positive integer p, a nontrivial tree T is called N,,-tree if T contains
a vertex, say w, of degree at least p — 1 and degp(z) < p — 1 for every vertex of
z € V(T)—{w}. The vertex w will be called the special vertex of T. An N-tree with
special vertex w is called ezxact if degp(w) =p — 1.

For the purpose of characterizing trees T' with 44 (T) = v*(T') for k > 2 we define
the family Fj, of all trees T' that can be obtained from a sequence T4, 15, ..., T),
(p > 1) of trees, where Ty is an Nj-tree with special vertex w of degree at least
k—1,T =1T,, and, if p > 2, T;1; can be obtained recursively from 7; by one of the
operations listed below.

— Operation O;: Attach an Ny-tree with special vertex z of degree at least k+ 1 by
adding an edge from z to any vertex u of T; with the condition that if 4 does not
belong to a v¥(T})-set D, then |Nr,(u) N D| > |Nr,(u) — D| + k.

— Operation Oy: Attach an Nj-tree with special vertex = of degree k — 1 or k by
adding an edge from z to a vertex u of T; that belongs to a v¥(T})-set.

— Operation O3: Attach an exact Nj-tree with special vertex x and g > 1 new trees,
all vertices of degree at most £ — 1 and join x and a vertex of each new tree by an
edge to a vertex z of T; of degree exactly k — 1.

The following observations will be useful for the next.

Observation 2.1. For every graph G and positive integer k, every vertex with degree
at most k — 1 belongs to every v%(G)-set and to every v (G)-set.
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Observation 2.2. Let k > 2 be an integer and T a tree obtained from an Nj-tree H
with special vertex w by adding an edge between w and a vertex v of a tree T'. Then
YE(T") < AB(T) — |V(H)| + 1 with equality if:

1) v belongs to a 5 (T")-set.
2) degy(w) > k+ 1 and v satisfies |[Np/(v) N D| > |Np:(v) — D| + k, where D is
a y¥(T")-set such that v ¢ D.

Proof. Let Q be a v*(T)-set. Then by Observation 2.1, Q contains V(H) — {w} and,
without loss of generality, w ¢ Q (else replace w in @ by v) and hence v € Q. Thus
QNV(T') is a global offensive k-alliance of 7", and so v*(T") < v5(T) — |V(H)| + 1.
Now let D’ be a v¥(T")-set. If v € D', then D' U (V(H) — {w}) is a global offensive
k-alliance of T'. If degy (w) > k+1, v ¢ D’ and v satisfies [Ny (v) N D'| > |Np+ (v) —
D’'| 4+ k, then D' U (V(H) — {w}) is a global offensive k-alliance of T" too. In both
cases V¥ (T) < 4¥(T") + |V(H)| — 1 and the equality follows. O

By using a similar proof we obtain the following

Observation 2.3. Let k > 2 be an integer and T a tree obtained from an Nj-tree
H with special vertex w by adding an edge between w and a vertexr v of a tree T'.
Then v,(T') < v (T) — |V(H)| + 1 with equality if either degy(w) > k or v belongs
to a v (T")-set.

We state a lemma.
Lemma 2.4. Ifk > 2 and T € Fy, then v*(T) = v (T).

Proof. Assume that k& > 2 and let T be a tree of F,. Then T is obtained from a
sequence T4, T, ..., T, (p > 1) of trees, where T} is an Nj-tree with special vertex w
of degree at least k — 1, T'=T,, and, if p > 2, T;; can be obtained recursively from
T; by one of the operations defined above. We will use induction on p. If p = 1, then
YE(Ty) = (1) = n(Ty) or n(T1) — 1 depending on whether w has degree k — 1 or
more, respectively.

Assume now that p > 2 and that the result holds for all trees T' € F; that can
be constructed from a sequence of length at most p — 1, and let 7/ = T,,_;. By the
inductive hypothesis on 77 € F;, we have v¥(T") = 44 (T"). Let T be a tree obtained
from T” and consider the following cases.

Assume that T is obtained from 7" by using Operation O; or Os. Let H be the
added Nj-tree. Then by Observations 2.2 and 2.3, ¥*(T) = ~5(T") + |V(H)| - 1,
W(T) = (1) + |V (H)| — 1 and hence 75 (T) = (7).

Assume now that T is obtained from 7" by using operation Q3. Let H be the added
Nj-tree with special vertex x and Hy, Hs, ..., H, the ¢ added new trees attached to
z of T'. We further assume that ¢ trees among the ¢ new trees are attached to z
by vertices of degree exactly k — 1, and so such vertices would have degree k in T
It can be seen easily that v¥(T') = A5(T") + |V(H)| — 1 + >0, |V(H;)| — t, and
() = (T") + [V(H)| — 1+ S0, [V(H,)| — t. Therefore 15(T) = 3(T). O
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We now are ready to give our main result.

Theorem 2.5. Let k > 2 be an integer. A tree T satisfies v%(T) = v (T) if and only
if either A(T) <k—2 orT € Fy,.

Proof. If T is a tree with A(T) < k — 2, then by Observation 2.1, v%(T) = v(T) =
n(T). If T € Fy, then by Lemma 2.4, v¥(T) = (7).

Let us prove the “only if” part. Let k > 2 be an integer and T a tree with 7*(T") =
Y, (T). Suppose that A(T) > k—1 and let B(T) = {x € V(T) : degp(x) > k}. We use
an induction on the size of B(T). If |B(T)| = 0 or 1, then T is an (exact) Ny-tree that
belongs to Fy. Let |B(T)| > 2 and assume that every tree T' with |B(T")| < |B(T)|
such that v5(T") = 4% (T") is in Fj. Let T be a tree with v5(T) = ~(T) and S
a X (T)-set.

We now root T at a vertex r of maximum eccentricity. Let w be a vertex of degree
at least k at maximum distance from r. We further assume that among such vertices
w has maximum degree. Clearly since k > 2,w # r and the subtree induced by
D(w) U{w} is an Nj-tree with special vertex w of degree at least kK — 1. Note that
every vertex in D(w) has degree at most k — 1 and so D(w) is contained in every
7E(T)-set and every ~x(T)-set. Let u be the parent of w in the rooted tree. We
consider the following cases.

Case 1. degp(w) > k+2. Let T =T — T,. By Observation 2.3, v, (T) = v (T") +
|V(T,)| — 1 and by Observation 2.2, v5(T") < ~¥(T) — |V(T,,)| + 1. If ¥%(T") <
Y¥(T) — |V (T)| + 1, then using the fact v*(T) = ~;(T) we arrive to v*(T") < v (T"),
a contradiction. Therefore v*(T") = 4*(T) — |V(T,)| + 1. Hence we may assume
that w ¢ S (else replace w by u) and so S' = SN V(T') is a v*(T")-set. Observe
that if u ¢ S’, then since w ¢ S the set S’ is a v5(T")-set for which u satisfies
|Ng/(uw) N S| > |Np(u) — S| + k. Now it follows by the previous equalities that
AT = i (T"). If B(T') = 0, then degy(u) = k and T is an exact Nj-tree with
special vertex u, that is 7" € Fy. If B(T") # (), then clearly |B(T")| < |B(T)| and
hence by induction on 7”7, we have T’ € Fy. Therefore in both cases T' € Fj and is
obtained from 7" by using Operation O;.

Case 2. degp(w) =k +1. Let T =T — T,. By Observation 2.3, v (T) = v (T") +
|V(T,)| — 1 and by Observation 2.2, v5(T") < v¥(T) — |V(T\)| + 1. By using the
same argument as that used in Case 1, we obtain v5(T") = v*(T) — |V (T,)| + 1. Also
w ¢ S (else replace w by v in S) and hence w € S, implying that S’ = SNV (T)
is a Y¥(T")-set, where u € S’. The previous equalities imply that v¥(T") = 4, (1").
Clearly |B(T")| < |B(T')| but we note that B(T") # {u} for otherwise S’ — {u} would
be a global offensive k-alliance of T’. Now by induction on 7" we have T" € F}. Hence
T € Fy, and is obtained from 7" by using Operation Os.

Case 3. degp(w) = k. By our choice of w every vertex in C'(u) has degree at most
k. Recall that |B(T)| > 2. If degp(u) < k, then let T = T — T,,. It can be seen
that 7(T) = y(T') — |V(Ty)| + 1 and v*(T") = ~*(T) — |V(T,)| + 1. Therefore
YE(T") = 4%(T") and by induction on T" we have T € Fy,. Since degp (u) <k —1, u
belongs to every v (T")-set. Thus T' € F}, and is obtained from 7" by using Operation
Os. Now assume that degp(u) = ¢ > k + 1, then let w = w1, wa, ..., wq—k41 be any
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vertices of C'(u), where the first ¢ (¢ > 1) vertices have degree exactly k and the
remaining vertices have degree at most k — 1. Let T/ =T — Ug:}fk Tw,. Note that
degr (u) = k — 1. By Observations 2.1, 2.2 and 2.3, it can be seen easily that

q+1—k
V(T =81+ | | Dlwy]| -,
j=1
and
q+1-k
Ww(T) = (T +| |J Dhwy]| .
j=1
Therefore v%(T") = ~,(T"). Now since |B(T")| < |B(T)| we obtain by induction
T’ € Fy. Hence T € Fj, and is obtained from 7" by using Operation Os. O
REFERENCES

[1] M. Blidia, M. Chellali, L. Volkmann, Some bounds on the p-domination number in trees,
Discrete Math. 306 (2006), 2031-2037.

[2] M. Bouzefrane, M. Chellali, On the global offensive alliance number of a tree, Opuscula
Math. 29 (2009), 223-228.

[3] M. Chellali, T.W. Haynes, B. Randerath, L. Volkmann, Bounds on the global offensive
k-alliance number in graphs, Discuss. Math. Graph Theory 29 (2009), 597-613.

[4] O. Favaron, A. Hansberg, L. Volkmann, On k-domination and minimum degree in
graphs, J. Graph Theory 57 (2008), 33-40.

[5] H. Fernau, J.A. Rodriguez, J.M. Sigarreta, Offensive r-alliance in graphs, Discrete
Appl. Math. 157 (2009), 177-182.

[6] J.F. Fink, M.S. Jacobson, n-domination in graphs, Graph Theory with Applications to
Algorithms and Computer Science, John Wiley and Sons, New York, 1985, 282-300.

[7] J.F. Fink, M.S. Jacobson, On n-domination, n-dependence and forbidden subgraphs,
Graph Theory with Applications to Algorithms and Computer Science, John Wiley
and Sons, New York 1985, 301-311.

[8] A. Hansberg, L. Volkmann, Lower bounds on the p-domination number in terms of
cycles and matching number, J. Combin. Math. Combin. Comput. 68 (2009), 245-255.

[9] P. Kristiansen, S.M. Hedetniemi, S.T. Hedetniemi, Alliances in graphs, J. Combin.
Math. Combin. Comput. 48 (2004), 157-177.

[10] K.H. Shafique, R.D. Dutton, Mazimum alliance-free and minimum alliance-cover sets,
Congr. Numer. 162 (2003), 139-146.

[11] K.H. Shafique, R. Dutton, A tight bound on the cardinalities of mazimum alliance-free
and minimum alliance-cover sets, J. Combin. Math. Combin. Comput. 56 (2006),
139-145.



254

Mustapha Chellali

Mustapha Chellali
m_ chellali@yahoo.com

University of Blida
LAMDA-RO Laboratory, Department of Mathematics
B.P. 270, Blida, Algeria

Received: August 3, 2009.
Revised: January 15, 2010.
Accepted: January 16, 2010.



