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TREES
WITH EQUAL GLOBAL OFFENSIVE k-ALLIANCE

AND k-DOMINATION NUMBERS

Mustapha Chellali

Abstract. Let k ≥ 1 be an integer. A set S of vertices of a graph G = (V (G), E(G)) is
called a global offensive k-alliance if |N(v) ∩ S| ≥ |N(v) − S| + k for every v ∈ V (G) − S,
where N(v) is the neighborhood of v. The subset S is a k-dominating set of G if every vertex
in V (G)− S has at least k neighbors in S. The global offensive k-alliance number γk

o (G) is
the minimum cardinality of a global offensive k-alliance in G and the k-domination number
γk(G) is the minimum cardinality of a k-dominating set of G. For every integer k ≥ 1 every
graph G satisfies γk

o (G) ≥ γk(G). In this paper we provide for k ≥ 2 a characterization of
trees T with equal γk

o (T ) and γk(T ).
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1. INTRODUCTION

We begin with some terminology. For a vertex v of a simple graph G = (V (G), E(G)),
the open neighborhood of v ∈ V (G) is N(v) = NG(v) = {u ∈ V (G) | uv ∈ E(G)}
and the degree of v, denoted by degG(v), is |NG(v)|. By n(G) and ∆(G) = ∆ we
denote the order and the maximum degree of the graph G, respectively. Specifically,
for a vertex v in a rooted tree T , we denote by C(v) and D(v) the set of children
and descendants, respectively, of v, and we define D[v] = D(v) ∪ {v}. The maximal
subtree at v is the subtree of T induced by D[v], and is denoted by Tv.

In [9] Kristiansen, Hedetniemi, and Hedetniemi introduced several types of al-
liances in graphs, including defensive and offensive alliances. We are interested in
a generalization of offensive alliances, namely global offensive k-alliances given by
Shafique and Dutton [10,11]. Let k ≥ 1 be an integer. A set S of vertices of a graph
G is called a global offensive k-alliance if |N(v) ∩ S| ≥ |N(v) − S| + k for every
v ∈ V (G) − S for 1 ≤ k ≤ ∆. The global offensive k-alliance number γk

o (G) is the
minimum cardinality of a global offensive k-alliance in G. If S is a global offensive
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k-alliance of G and |S| = γk
o (G), then we say that S is a γk

o (G)-set. Note that a global
offensive 1-alliance is a global offensive alliance and a global offensive 2-alliance is
a global strong offensive alliance. Recently, Fernau, Rodríguez and Sigarreta showed
in [5] that the problem of finding optimal global offensive k-alliances is NP-complete,
and Chellali, Haynes, Randerath and Volkmann presented in [3] several bounds on
the global offensive k-alliance number.

For a positive integer k, a set of verticesD in a graphG is said to be a k-dominating
set if each vertex of G not inD has at least k neighbors inD. The order of the smallest
k-dominating set of G is called the k-domination number, and it is denoted by γk(G).
The concept of k-domination was introduced by Fink and Jacobson in [6, 7], and is
studied, for example, in [4, 8] and elsewhere.

Clearly, if S is any global offensive k-alliance, then every vertex of V (G)−S has at
least k neighbors in S. Thus S is a k-dominating set of G, and hence γk(G) ≤ γk

o (G).
In this paper, we provide a characterization of trees with equal global offensive

k-alliance and k-domination numbers for every integer k ≥ 2. Note that a character-
ization of trees T with γ1(T ) = γ1

o(T ) has been given by Bouzefrane and Chellali [2].

2. MAIN RESULT

We begin by introducing the following trees defined in [1] by Blidia, Chellali and
Volkmann. For a positive integer p, a nontrivial tree T is called Np-tree if T contains
a vertex, say w, of degree at least p − 1 and degT (x) ≤ p − 1 for every vertex of
x ∈ V (T )−{w}. The vertex w will be called the special vertex of T . An Np-tree with
special vertex w is called exact if degT (w) = p− 1.

For the purpose of characterizing trees T with γk(T ) = γk
o (T ) for k ≥ 2 we define

the family Fk of all trees T that can be obtained from a sequence T1, T2, . . ., Tp

(p ≥ 1) of trees, where T1 is an Nk-tree with special vertex w of degree at least
k − 1, T = Tp, and, if p ≥ 2, Ti+1 can be obtained recursively from Ti by one of the
operations listed below.

– Operation O1: Attach an Nk-tree with special vertex x of degree at least k+ 1 by
adding an edge from x to any vertex u of Ti with the condition that if u does not
belong to a γk

o (Ti)-set D, then |NTi
(u) ∩D| > |NTi

(u)−D|+ k.
– Operation O2: Attach an Nk-tree with special vertex x of degree k − 1 or k by

adding an edge from x to a vertex u of Ti that belongs to a γk
o (Ti)-set.

– Operation O3: Attach an exact Nk-tree with special vertex x and q ≥ 1 new trees,
all vertices of degree at most k− 1 and join x and a vertex of each new tree by an
edge to a vertex z of Ti of degree exactly k − 1.

The following observations will be useful for the next.

Observation 2.1. For every graph G and positive integer k, every vertex with degree
at most k − 1 belongs to every γk

o (G)-set and to every γk(G)-set.
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Observation 2.2. Let k ≥ 2 be an integer and T a tree obtained from an Nk-tree H
with special vertex w by adding an edge between w and a vertex v of a tree T ′. Then
γk

o (T ′) ≤ γk
o (T )− |V (H)|+ 1 with equality if:

1) v belongs to a γk
o (T ′)-set.

2) degH(w) ≥ k + 1 and v satisfies |NT ′(v) ∩ D| > |NT ′(v) − D| + k, where D is
a γk

o (T ′)-set such that v /∈ D.

Proof. Let Q be a γk
o (T )-set. Then by Observation 2.1, Q contains V (H)−{w} and,

without loss of generality, w /∈ Q (else replace w in Q by v) and hence v ∈ Q. Thus
Q ∩ V (T ′) is a global offensive k-alliance of T ′, and so γk

o (T ′) ≤ γk
o (T )− |V (H)|+ 1.

Now let D′ be a γk
o (T ′)-set. If v ∈ D′, then D′ ∪ (V (H)− {w}) is a global offensive

k-alliance of T ′. If degH(w) ≥ k+ 1, v /∈ D′ and v satisfies |NT ′(v)∩D′| > |NT ′(v)−
D′| + k, then D′ ∪ (V (H)− {w}) is a global offensive k-alliance of T ′ too. In both
cases γk

o (T ) ≤ γk
o (T ′) + |V (H)| − 1 and the equality follows.

By using a similar proof we obtain the following

Observation 2.3. Let k ≥ 2 be an integer and T a tree obtained from an Nk-tree
H with special vertex w by adding an edge between w and a vertex v of a tree T ′.
Then γk(T ′) ≤ γk(T ) − |V (H)| + 1 with equality if either degH(w) ≥ k or v belongs
to a γk(T ′)-set.

We state a lemma.

Lemma 2.4. If k ≥ 2 and T ∈ Fk, then γk
o (T ) = γk(T ).

Proof. Assume that k ≥ 2 and let T be a tree of Fk. Then T is obtained from a
sequence T1, T2, . . ., Tp (p ≥ 1) of trees, where T1 is an Nk-tree with special vertex w
of degree at least k − 1, T = Tp, and, if p ≥ 2, Ti+1 can be obtained recursively from
Ti by one of the operations defined above. We will use induction on p. If p = 1, then
γk

o (T1) = γk(T1) = n(T1) or n(T1) − 1 depending on whether w has degree k − 1 or
more, respectively.

Assume now that p ≥ 2 and that the result holds for all trees T ∈ Fk that can
be constructed from a sequence of length at most p − 1, and let T ′ = Tp−1. By the
inductive hypothesis on T ′ ∈ Fk we have γk

o (T ′) = γk(T ′). Let T be a tree obtained
from T ′ and consider the following cases.

Assume that T is obtained from T ′ by using Operation O1 or O2. Let H be the
added Nk-tree. Then by Observations 2.2 and 2.3, γk

o (T ) = γk
o (T ′) + |V (H)| − 1,

γk(T ) = γk(T ′) + |V (H)| − 1 and hence γk
o (T ) = γk(T ).

Assume now that T is obtained from T ′ by using operationO3. LetH be the added
Nk-tree with special vertex x and H1, H2, . . . ,Hq the q added new trees attached to
z of T ′. We further assume that t trees among the q new trees are attached to z
by vertices of degree exactly k − 1, and so such vertices would have degree k in T .
It can be seen easily that γk

o (T ) = γk
o (T ′) + |V (H)| − 1 +

∑q
i=1 |V (Hi)| − t, and

γk(T ) = γk(T ′) + |V (H)| − 1 +
∑q

i=1 |V (Hi)| − t. Therefore γk
o (T ) = γk(T ).
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We now are ready to give our main result.

Theorem 2.5. Let k ≥ 2 be an integer. A tree T satisfies γk
o (T ) = γk(T ) if and only

if either ∆(T ) ≤ k − 2 or T ∈ Fk.

Proof. If T is a tree with ∆(T ) ≤ k − 2, then by Observation 2.1, γk
o (T ) = γk(T ) =

n(T ). If T ∈ Fk, then by Lemma 2.4, γk
o (T ) = γk(T ).

Let us prove the “only if” part. Let k ≥ 2 be an integer and T a tree with γk
o (T ) =

γk(T ). Suppose that ∆(T ) ≥ k−1 and let B(T ) = {x ∈ V (T ) : degT (x) ≥ k}. We use
an induction on the size of B(T ). If |B(T )| = 0 or 1, then T is an (exact) Nk-tree that
belongs to Fk. Let |B(T )| ≥ 2 and assume that every tree T ′ with |B(T ′)| < |B(T )|
such that γk

o (T ′) = γk(T ′) is in Fk. Let T be a tree with γk
o (T ) = γk(T ) and S

a γk
o (T )-set.
We now root T at a vertex r of maximum eccentricity. Let w be a vertex of degree

at least k at maximum distance from r. We further assume that among such vertices
w has maximum degree. Clearly since k ≥ 2, w 6= r and the subtree induced by
D(w) ∪ {w} is an Nk-tree with special vertex w of degree at least k − 1. Note that
every vertex in D(w) has degree at most k − 1 and so D(w) is contained in every
γk

o (T )-set and every γk(T )-set. Let u be the parent of w in the rooted tree. We
consider the following cases.
Case 1. degT (w) ≥ k + 2. Let T ′ = T − Tw. By Observation 2.3, γk(T ) = γk(T ′) +
|V (Tw)| − 1 and by Observation 2.2, γk

o (T ′) ≤ γk
o (T ) − |V (Tw)| + 1. If γk

o (T ′) <
γk

o (T )−|V (Tw)|+ 1, then using the fact γk
o (T ) = γk(T ) we arrive to γk

o (T ′) < γk(T ′),
a contradiction. Therefore γk

o (T ′) = γk
o (T ) − |V (Tw)| + 1. Hence we may assume

that w /∈ S (else replace w by u) and so S′ = S ∩ V (T ′) is a γk
o (T ′)-set. Observe

that if u /∈ S′, then since w /∈ S the set S′ is a γk
o (T ′)-set for which u satisfies

|NT ′(u) ∩ S′| > |NT ′(u) − S′| + k. Now it follows by the previous equalities that
γk

o (T ′) = γk(T ′). If B(T ′) = ∅, then degT (u) = k and T ′ is an exact Nk-tree with
special vertex u, that is T ′ ∈ Fk. If B(T ′) 6= ∅, then clearly |B(T ′)| < |B(T )| and
hence by induction on T ′, we have T ′ ∈ Fk. Therefore in both cases T ∈ Fk and is
obtained from T ′ by using Operation O1.
Case 2. degT (w) = k + 1. Let T ′ = T − Tw. By Observation 2.3, γk(T ) = γk(T ′) +
|V (Tw)| − 1 and by Observation 2.2, γk

o (T ′) ≤ γk
o (T ) − |V (Tw)| + 1. By using the

same argument as that used in Case 1, we obtain γk
o (T ′) = γk

o (T )−|V (Tw)|+ 1. Also
w /∈ S (else replace w by u in S) and hence u ∈ S, implying that S′ = S ∩ V (T ′)
is a γk

o (T ′)-set, where u ∈ S′. The previous equalities imply that γk
o (T ′) = γk(T ′).

Clearly |B(T ′)| < |B(T )| but we note that B(T ′) 6= {u} for otherwise S′−{u} would
be a global offensive k-alliance of T ′. Now by induction on T ′ we have T ′ ∈ Fk. Hence
T ∈ Fk and is obtained from T ′ by using Operation O2.
Case 3. degT (w) = k. By our choice of w every vertex in C(u) has degree at most
k. Recall that |B(T )| ≥ 2. If degT (u) ≤ k, then let T ′ = T − Tw. It can be seen
that γk(T ) = γk(T ′) − |V (Tw)| + 1 and γk

o (T ′) = γk
o (T ) − |V (Tw)| + 1. Therefore

γk
o (T ′) = γk(T ′) and by induction on T ′ we have T ′ ∈ Fk. Since degT ′(u) ≤ k − 1, u

belongs to every γk
o (T ′)-set. Thus T ∈ Fk and is obtained from T ′ by using Operation

O2. Now assume that degT (u) = q ≥ k + 1, then let w = w1, w2, . . . , wq−k+1 be any
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vertices of C(u), where the first t (t ≥ 1) vertices have degree exactly k and the
remaining vertices have degree at most k − 1. Let T ′ = T −

⋃q+1−k
j=1 Twj

. Note that
degT ′(u) = k − 1. By Observations 2.1, 2.2 and 2.3, it can be seen easily that

γk
o (T ) = γk

o (T ′) +

∣∣∣∣∣∣
q+1−k⋃

j=1

D[wj ]

∣∣∣∣∣∣− t,
and

γk(T ) = γk(T ′) +

∣∣∣∣∣∣
q+1−k⋃

j=1

D[wj ]

∣∣∣∣∣∣− t.
Therefore γk

o (T ′) = γk(T ′). Now since |B(T ′)| < |B(T )| we obtain by induction
T ′ ∈ Fk. Hence T ∈ Fk and is obtained from T ′ by using Operation O3.
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